Abstract: The durable goods sector is much more interest sensitive than the non-durables sector, and these sectoral differences have important implications for monetary policy. In this paper, we perform VAR analysis of quarterly US data and find that a monetary policy innovation has a peak impact on durable expenditures that is roughly five times as large as its impact on non-durable expenditures. We then proceed to formulate and calibrate a two-sector dynamic general equilibrium model that roughly matches the impulse response functions of the data. We derive the social welfare function and show that the optimal monetary policy rule responds to sector-specific inflation rates and output gaps. We show that some commonly-prescribed policy rules perform poorly in terms of social welfare, especially rules that put a higher weight on inflation stabilization than on output gap stabilization. By contrast, it is interesting that certain rules that react only to aggregate variables, including aggregate output gap targeting and rules that respond to a weighted average of price and wage inflation, may yield a welfare level close to the optimum given a typical distribution of shocks.

JEL classification: E31; E32; E52.

Keywords: VAR analysis, DGE models, sectoral disaggregation.

* Phone 202-452-2575; Fax 202-872-4926; Email christopher.erceg@frb.gov

** Telephone 202-452-3541; Fax 202-452-2301; Email andrew.levin@frb.gov
1 Introduction*

In past decades, macroeconomists were acutely aware of the extent to which the effects of monetary policy differ widely across sectors of the economy (cf. Mishkin 1977). These differences were particularly evident during the U.S. disinflationary episode of 1981-82, when high real interest rates induced dramatic declines in auto sales and residential construction. However, more recent analyses of monetary policy have focused almost exclusively on models with a single production sector and have considered policy rules that are oriented towards targeting aggregate variables.

In this paper, we document that the durable goods sector is much more interest-sensitive than the non-durables sector, and we demonstrate that these sectoral differences have important implications for monetary policy. In particular, we perform VAR analysis of quarterly US data and find that a monetary policy innovation has a peak impact on durable expenditures that is roughly five times as large as its impact on non-durable expenditures. We then proceed to formulate and calibrate a two-sector dynamic general equilibrium model that roughly matches the impulse response functions of the data. We derive the social welfare function and show that the optimal monetary policy rule responds to sector-specific inflation rates and output gaps.

We find that certain commonly-prescribed policy rules perform very poorly in terms of social welfare. In particular, rules that respond more aggressively to inflation than to the aggregate output gap tend to generate high volatility in sectoral output gaps, especially in the interest-sensitive sector. This results in sizeable welfare losses relative to the optimal rule. By contrast, we show that certain rules involving only aggregate variables may perform well in minimizing the loss function, including rules that either place a relatively high weight on the aggregate output gap, or respond to a weighted average of price and wage inflation. This may seem surprising, given that the loss function involves sectoral output gaps and inflation rates, but reflects that these particular strategies keep sectoral output dispersion relatively small given the shocks typically observed. Thus, our analysis suggests that certain types of aggregate rules may be very successful in coming close to the social optimum in “normal times” when the distribution of shocks resembles its historical average, though some departures towards targeting particular sectors may be warranted in unusual circumstances.

The remainder of this paper is organized as follows: Section 2 considers the empirical evidence on sectoral responses to monetary policy shocks. Section 3 outlines the dynamic general equilibrium model, and Section 4 characterizes the social welfare function. Section 5 describes the solution method and parameter calibration. Section 6 illustrates the baseline properties of the model, and then evaluates the performance of alternative policy rules in comparison with optimal monetary policy.

*We appreciate comments and suggestions from Larry Christiano, Marty Eichenbaum, Charlie Evans, Dale Henderson, and participants in the July 2001 NBER Summer Institute. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System.
2 Empirical Evidence

A large literature has utilized identified VARs to measure the response of aggregate output and prices to a monetary policy shock (cf. Sims 1980; Christiano, Eichenbaum, and Evans 1995). For example, one commonly-used specification is to analyze a 4-variable VAR involving real GDP, the GDP price index, an index of commodity prices, and the federal funds rate, and to identify the monetary policy shock using a Cholesky decomposition. Here we follow this approach to investigate the extent to which a shock has differential effects on output in the durable and non-durable sectors of the economy.

We start by considering five expenditure components of chain-weighted real GDP: consumer durables, residential structures, business equipment, business structures, and all other goods and services. We specify an 8-variable VAR that involves the logarithms of these five variables as well as the logarithm of the GDP price index, the logarithm of the IMF commodity price index, and the level of the federal funds rate. The VAR includes 4 lags of each variable, and is estimated using OLS over the period 1960:1 to 2001:4. Using a Cholesky decomposition (ordering the variables as listed above), we compute the response of these variables to a one-standard-deviation innovation to the federal funds rate. Finally, Monte Carlo simulations are used to obtain 95 percent confidence bands for each impulse response function (IRF).

As shown in Figure 1, these IRFs indicate that durable expenditures are much more interest-sensitive than non-durable expenditures. In particular, the monetary policy shock induces an initial rise of about 75 basis points in the federal funds rate; this increase is largely reversed within the next several quarters. Non-durable spending exhibits a peak response of about 0.2 percent to this shock: given that non-durables account for about three-quarters of nominal GDP, it is not too surprising that the magnitude of this response is roughly similar to that obtained for total GDP in a typical 4-variable VAR. In contrast, the peak response is roughly five times larger for consumer durables, business equipment, and business structures, and is about ten times larger for residential investment. (These components account for 8, 7, 4, and 4 percent of GDP, respectively.) It is also interesting to note the differences in timing of the peak response, which occurs within the first year for non-durables, consumer durables, and residential investment, but takes about twice as long for business equipment and structures.

In the subsequent analysis, we will formulate a two-sector model that abstracts from endogenous capital accumulation and focuses on the behavior of durable expenditures that contribute directly to household utility. To analyze the empirical analogues of these two components of aggregate output, we now disaggregate real GDP into only two types of expenditures: a chain-weighted index of consumer durables and residential investment, and a chain-weighted composite of all other expenditures (including business fixed investment). Since our analytic work will consider sector-specific price dynamics, we also construct a chain-weighted price index for each type of expenditure. Now we proceed to estimate a 6-variable VAR involving the two expenditure variables and the corresponding price indices as well as the IMF commodity price index and the federal funds rate. We compute IRFs using this order.
for the variables in the Cholesky decomposition, and then construct bootstrapped confidence intervals via Monte Carlo simulation.

As shown in Figure 2, the composite of consumer durables and residential investment spending exhibits a peak response of about 1.25 percent, compared with a peak response of about 0.2 percent for all other expenditures. As shown below, we calibrate the parameters of the model to roughly match the magnitudes of these responses. Finally, it is interesting to note that the price responses for these two categories of expenditures are quite similar despite the differences in quantity responses, suggesting the importance of short-run nominal inertia.

3 The Model

3.1 Firms and Price Setting

Henceforth we use the subscript m to refer to the sector that produces durable goods ("manufacturing"), while the subscript s refers to the sector that produces non-durables ("services"). Within each sector, a continuum of monopolistically competitive firms (indexed on the unit interval) fabricate differentiated products $Y_{jt}(f)$ for $j \in \{m, s\}$ and $f \in [0,1]$. Because households have identical Dixit-Stiglitz preferences, it is convenient to assume that a representative aggregator combines the differentiated products of each sector into a single sectoral output index Y_{jt}:

$$Y_{jt} = \left[\int_0^1 Y_{jt}(f)^{\frac{\lambda_m}{\lambda_m + \lambda_s}} \, df \right]^{\frac{1}{1+\theta_{Y_j}}}$$

where $\theta_{Y_j} > 0$. The aggregator chooses the bundle of goods that minimizes the cost of fabricating a given quantity of the sectoral output index Y_{jt}, taking the price $P_{jt}(f)$ of each good $Y_{jt}(f)$ as given. The aggregator sells units of each sectoral output index at its unit cost P_{jt}:

$$P_{jt} = \left[\int_0^1 P_{jt}(f)^{\frac{\lambda_m}{\lambda_m + \lambda_s}} \, df \right]^{-\theta_{P_j}}$$

It is natural to interpret P_{jt} as the sectoral price index. Given the relative size λ_m of the manufacturing sector, the aggregate price index P_t (also referred to as the GDP price deflator) is defined as:

$$P_t = P_m^{\lambda_m} P_s^{1-\lambda_m}$$

The aggregator's demand for each good $Y_{jt}(f)$—or equivalently total household demand for this good—is given by

$$Y_{jt}(f) = \left[\frac{P_{jt}(f)}{P_{jt}} \right]^{-\frac{(1+\phi)}{\phi}} Y_{jt}$$

for $j \in \{m, s\}$ and $f \in [0,1]$.

Each differentiated good is produced by a single firm that hires capital services $K_{jt}(f)$ and a labor index $L_{jt}(f)$ defined below. All firms within each sector face
the same Cobb-Douglas production function, with an identical level of total factor productivity A_{jt}:

$$Y_{jt}(f) = A_{jt}K_{jt}(f)^{\alpha_j}L_{jt}(f)^{1-\alpha_j}$$

(5)

Capital and labor are perfectly mobile across the firms within each sector, but cannot be moved between sectors. Furthermore, each sector’s total capital stock is fixed at K_j. Each firm chooses $K_{jt}(f)$ and $L_{jt}(f)$, taking as given the sectoral rental price of capital P^d_j and the sectoral wage index W_j, defined below. The standard static first-order conditions for cost minimization imply that all firms within each sector have identical marginal costs per unit of output (MC_j), which can be expressed as a function of the sectoral labor index L_{jt}, as well as the sectoral wage index, capital stock, and total factor productivity:

$$MC_{jt} = \frac{W_{jt}L_{jt}^{\alpha_j}}{(1-\alpha_j)A_{jt}K_{jt}^{\alpha_j}}$$

(6)

Note that real marginal cost (deflated by the sectoral price index) can be equivalently expressed as the ratio of the sectoral real wage to the marginal product of labor:

$$\frac{MC_{jt}}{P_{jt}} = \frac{W_{jt}}{P_{jt}^{\alpha_j}MPL_{jt}}$$

(7)

$$MPL_{jt} = (1-\alpha_j)A_{jt}K_{jt}^{\alpha_j}L_{jt}^{-\alpha_j}$$

(8)

We assume that the prices of intermediate goods are determined by staggered nominal contracts of fixed duration (as in Taylor, 1980). Each price contract lasts four quarters, and one-fourth of the firms in each sector reset their prices in a given period. Thus, individual producers may be indexed so that every firm with index $f \in [0,0.25]$ resets its contract price $P_{jt}(f)$ whenever the date is evenly divisible by 4; similarly, firms with index $f \in [0.25,0.5]$ set prices during periods in which mod(t,4) = 1, and so forth. Whenever the firm is not allowed to reset its contract, the firm’s price is automatically increased at the unconditional mean rate of gross inflation, Π. Thus, if firm f in sector j has not adjusted its contract price since period t, then its price i periods later is given by $P_{jt+i}(f) = P_{jt}(f)\Pi$.

When a firm is allowed to reset its price in period t, the firm maximizes the following profit functional with respect to its contract price, $P_{jt}(f)$:

$$\mathcal{E}_t \sum_{i=0}^{3} \psi_{t+j+i}(1+\tau_{pj})\Pi P_{jt}(f)Y_{jt+i}(f) - MC_{jt+i}Y_{jt+i}(f))$$

(9)

The operator \mathcal{E}_t represents the conditional expectation based on information through period t and taken over states of nature in which the firm is not allowed to reset its price. The firm’s output is subsidized at a fixed rate τ_{pj}. The firm discounts profits received at date $t+i$ by the state-contingent discount factor c_{t+j+i}; for notational simplicity, we have suppressed all of the state indices from this expression. Let γ_{t+j+i}.
denote the price in period t of a claim that pays one dollar if the specified state occurs in period $t + i$; then the corresponding element of $\gamma_{t,i}$ is given by $\gamma_{t,i}$ divided by the probability that the specified state will occur.

By differentiating this profit functional with respect to $P_{jt}(f)$, we obtain the following first-order condition:

$$\mathcal{E}_{t} \sum_{i=0}^{3} \psi_{t,i} \left[(1 + \tau_{pj}) \Pi P_{jt}(f) - (1 + \theta_{pj}) MC_{jt+i} \right] Y_{jt+i}(f) = 0 \quad (10)$$

Thus, the firm sets its price so that the sum of its expected discounted nominal revenue (inclusive of subsidies) is equal to the price markup factor $(1 + \theta_{pj})$ multiplied by the sum of discounted nominal costs. We assume that production is subsidized to eliminate the monopolistic distortion in each sector; that is, $\tau_{pj} = \theta_{pj}$ for $j \in \{m, s\}$. Thus, in the steady state of the model, prices are equated to marginal cost in each sector, or equivalently, the sectoral marginal product of labor is equal to the sectoral real wage, as in a perfectly competitive economy.

3.2 Households and Wage Setting

We assume that a continuum of households is indexed on the unit interval, and each household supplies differentiated labor services. Within every household, a fixed number of members v_m work exclusively in the manufacturing sector, while the remaining v_s members work exclusively in the service sector. All members of a given household $h \in [0,1]$ who work in a given sector $j \in \{m, s\}$ have the same wage rate $W_{jt}(h)$ and supply the same number of hours $N_{jt}(h)$. As in the firm's problem described above, it is convenient to assume that a representative labor aggregator (or "employment agency") combines individual labor hours into a sectoral labor index L_{jt} using the same proportions that firms would choose:

$$L_{jt} = v_j \left[\int_0^1 N_{jt}(h) \frac{1}{\theta_{wj}} \, dh \right]^{1-\theta_{wj}} \quad (11)$$

where $\theta_{wj} > 0$. The aggregator minimizes the cost of producing a given amount of the aggregate labor index, taking the wage rate $W_{jt}(h)$ for each household member as given, and then sells units of the labor index to the production sector at unit cost W_{jt}:

$$W_{jt} = \left[\int_0^1 W_{jt}(h)^{1-\theta_{wj}} \, dh \right]^{-\theta_{wj}} \quad (12)$$

It is natural to interpret W_{jt} as the sectoral wage index. The aggregator's demand for the labor hours of household h—or equivalently, the total demand for this household's labor by all goods-producing firms—is given by

$$v_j N_{jt}(h) = \left[\frac{W_{jt}(h)}{W_{jt}} \right]^{\frac{1}{1-\theta_{wj}}} L_{jt} \quad (13)$$
In each period, the household purchases \(Y_{mt}(h) \) units of durable goods at price \(P_{mt} \), and \(C_t(h) \) units of services at price \(P_{st} \). To generate a source of demand for money, we assume that services must be purchased using cash balances, while durable goods can be purchased using credit. The household’s stock of durable goods \(D_t(h) \) evolves as follows:

\[
D_{t+1}(h) = (1 - \delta) D_t(h) + Y_{mt}(h)
\]

where the depreciation rate \(\delta \) satisfies the condition \(0 < \delta < 1 \).

The household’s expected lifetime utility is given by

\[
\bar{E}_t \sum_{j=0}^{\infty} \beta^j \bar{W}_{t+j}(h)
\]

The operator \(\bar{E}_t \) here represents the conditional expectation over all states of nature, and the discount factor \(\beta \) satisfies \(0 < \beta < 1 \). The period utility function \(\bar{W}_t(h) \) is additively separable with respect to the household’s durables stock \(D_t(h) \), its services consumption \(C_t(h) \), the leisure of each household member, and the household’s nominal money balances \(M_t(h) \) deflated by the aggregate price index \(P_{st}(h) \):

\[
\bar{W}_t(h) = U(\bar{D}_t(h)) + S(C_t(h)) + V(N_{mt}(h)) + Z(N_{st}(h)) + M\left(\frac{M_t(h)}{P_{st}(h)}\right)
\]

In particular, the household receives period utility \(U(\bar{D}_t(h)) \) from its current durables stock net of adjustment costs, \(\bar{D}_t(h) \):

\[
U(\bar{D}_t(h)) = \frac{[\bar{D}_t(h)]^{1-\sigma_m}}{1 - \sigma_m}
\]

where

\[
\bar{D}_t(h) = D_t(h) - \phi \frac{(Y_{mt}(h) - \delta D_t(h))^2}{D_t(h)}
\]

and the parameters \(\sigma_m > 0 \) and \(\phi \geq 0 \). The remaining components of period utility are given as follows:

\[
S(C_t(h)) = s_n \frac{[C_t(h)]^{1-\sigma_s}}{1 - \sigma_s}
\]

\[
V(N_{mt}(h)) = v_m \frac{[1 - N_{mt}(h)]^{1-\chi_m}}{1 - \chi_m}
\]

\[
Z(N_{st}(h)) = v_s \frac{[1 - N_{st}(h)]^{1-\chi_s}}{1 - \chi_s}
\]

\[
M\left(\frac{M_t(h)}{P_{st}(h)}\right) = \frac{\mu_0}{1 - \mu} \left(\frac{M_t(h)}{P_{st}(h)}\right)^{1-\mu}
\]

where the parameters \(s_n, \sigma_s, \chi_m, \chi_s, \mu, \) and \(\mu_0 \) are all strictly positive. We will utilize \(U_t(h) \) to denote the derivative of \(U(\bar{D}_t(h)) \) with respect to \(\bar{D}_t(h) \), along with similar
notation for the derivatives of each of the other components of the household's period utility.

Household h’s budget constraint in period t states that consumption expenditures plus asset accumulation must equal disposable income:

$$P_{mt}Y_{mt}(h) + P_{st}C_{st}(h) + M_{t+1}(h) - M_t(h) + \int \gamma_{t,t+1} B_{t+1}(h) - B_t(h)$$

$$= \nu_m(1 + \tau_{wm})W_{mt}(h)N_{mt}(h) + \nu_s(1 + \tau_{ws})W_{st}(h)N_{st}(h) + \Gamma_{mt}(h) + \Gamma_{st}(h) - T_t(h)$$

(23)

Financial asset accumulation consists of increases in money holdings and the net acquisition of state-contingent claims. As noted above, $\gamma_{t,t+1}$ represents the price of an asset that will pay one unit of currency in a particular state of nature in the subsequent period, while $B_{t+1}(h)$ represents the quantity of such claims purchased by the household at time t. Total expenditure on new state-contingent claims is given by integrating over all states at time $t + 1$, while $B_t(h)$ indicates the value of the household’s existing claims given the realized state of nature. Labor income in each sector is subsidized at a fixed rate $\tau_{w,j}$. Each household owns an equal share of all firms and of the aggregate capital stock, and receives an aliquot share $\Gamma_{j,t}(h)$ of each sector’s profits and rental income. Finally, each household pays a lump-sum tax $T_t(h)$ to the government.

Nominal wage rates are determined by staggered fixed duration contracts, under assumptions symmetric to those stated earlier for price contracts. In particular, the duration of the wage contract of each household member is four quarters. Whenever the household is not allowed to reset the wage contract, the wage rate is automatically increased at the unconditional mean rate of gross inflation, Π. Thus, if the wage contract of the household member has not been adjusted since period t, then the wage rate i periods later is given by $W_{j,t+i}(h) = W_{j,t}(h)\Pi^i$.

In every period t, each household h maximizes its expected lifetime utility with respect to its choice of consumption, its holdings of money, and its holdings of state-contingent claims: subject to the demand for its labor, equation (13), and its budget constraint, equation (23).

The first-order conditions for services consumption and holdings of state-contingent claims imply the familiar “consumption Euler equation” linking the marginal cost of foregoing a unit of services consumption in the current period to the expected marginal benefit in the following period:

$$S_t = E_t \left[\beta (1 + R_{mt}) S_{t+1} \right] = E_t \left[\beta (1 + \Pi) \frac{P_{mt}}{P_{mt-1}} S_{t+1} \right]$$

(24)

Thus, sectoral profits $\Gamma_{j,t}(h)$ are determined by the following identity:

$$\int \Gamma_{j,t}(h) \, dh = \int [1 + \tau_j] P_{j,t}(f) Y_{j,t}(f) - W_{j,t} L_{j,t}(f) \, df.$$
where the risk-free real interest rate R_{st} is the rate of return on an asset that pays one unit of services consumption under every state of nature at time $t + 1$, and the nominal interest rate I_t is the rate of return on an asset that pays one unit of currency under every state of nature at time $t + 1$. Note that the omission of the household-specific index in equation (24) reflects our assumption of complete contingent claims markets for consumption (although not for leisure), so that each type of consumption is identical across all households in every period; that is, $C_t = C_t(h), Y_{mt} = Y_{mt}(h)$, and $D_t = D_t(h)$ for all $h \in [0, 1]$.

The first-order condition for durable goods expenditures can be expressed as

$$Q_t S_t' = E_t \left[\beta (1 - \delta_t) Q_t S_{t+1}' + \beta (1 + \phi \frac{\Delta D_{t+1}}{D_t} Y_{t+1}' - \phi \frac{\Delta D_{t+1}}{D_t} Y_t' \right]$$ \hspace{1cm} (25)

where Q_t denotes the relative price ratio P_{mt}/P_{st}.

In any period t in which the household is able to reset the wage contract for its members working in the manufacturing sector, the household maximizes its expected lifetime utility with respect to the new contract wage rate $W_{mt}(h)$, yielding the following first-order condition:

$$E_t \sum_{i=0}^{3} \beta^i \left((1 + \tau_{wm}) \frac{P_{mt}(h)}{P_{m,t+i}} Q_t S_{t+i}' + (1 + \theta_{wm}) V_{t+i}'(h) \right) N_{m,t+i}(h) = 0$$ \hspace{1cm} (26)

where E_t here indicates the conditional expectation taken only over states of nature in which the household is able to reset its manufacturing wage contract. Similarly, in any period t in which the household is able to reset the wage contract for its members working in the service sector, the household maximizes its expected lifetime utility with respect to $W_{st}(h)$, yielding the following first-order condition:

$$E_t \sum_{i=0}^{3} \beta^i \left((1 + \tau_{ws}) \frac{P_{st}(h)}{P_{s,t+i}} S_t Z_{t+i}'(h) \right) N_{s,t+i}(h) = 0$$ \hspace{1cm} (27)

where E_t here indicates the conditional expectation taken only over states of nature in which the household is able to reset its service-sector wage contract.

We assume that employment is subsidized to eliminate the monopolistic distortion in each sector; that is, $\tau_{wj} = \theta_{wj}$ for $j \in \{m, s\}$. Thus, the steady state of the model satisfies the efficiency condition that the marginal rate of substitution in each sector equals the real wage, as in a perfectly competitive economy.

3.3 Fiscal and Monetary Policy

The government’s budget is balanced every period, so that total lump-sum taxes plus seigniorage revenue are equal to output and labor subsidies plus the cost of government purchases:

$$M_t - M_{t-1} + \int_0^1 T_t(h) \, dh = \int_0^1 \tau_m P_{mt}(f) Y_{mt}(f) \, df + \int_0^1 \tau_s P_{st}(f) Y_{st}(f) \, df$$

$$+ \int_0^1 \tau_{wm} W_{mt}(h) N_{mt}(h) \, dh + \int_0^1 \tau_{ws} W_{st}(h) N_{st}(h) \, dh + P_s G_t,$$
where G_t indicates real government purchases from the service sector. Finally, the total output of the service sector is subject to the following resource constraint:

$$Y_{at} = C_t + G_t$$

(28)

We assume that the short-term nominal interest rate is used as the instrument of monetary policy, and that the policymaker is able to commit to a time-invariant rule. We consider alternative specifications of the monetary policy rule in our analysis, including both rules that can be regarded as reasonable characterizations of recent historical experience, and rules derived from maximizing a social welfare function.

4 The Welfare Function

In our subsequent analysis, we will provide a normative assessment of alternative monetary policy choices. The social welfare function we utilize is taken to be the unconditional expectation of the unweighted average of household utility functionals. Thus, recalling the utility functional of household h in (15), the social welfare function is given as:

$$SW = \int_0^1 E \sum_{r=0}^{\infty} \beta^r W_{t+r}(h) \, dh$$

(29)

In the appendix to this paper, we derive a second order approximation to the social welfare function, following the approach taken by Rotemberg and Woodford (1999), and Erceg, Henderson, and Levin (2000). It can be shown that the second order approximation to the social welfare function depends on the volatility of sectoral output gaps, and on the average level of cross-sectional dispersion in both contract prices and contract wages. In addition, the social welfare involves some additional second moment terms that arise because the output of the durables sector lasts for multiple periods, and because the stock of durables is costly to adjust.

5 Solution and Calibration

To analyze the behavior of the model, we log-linearize the model’s equations around the non-stochastic steady state. Nominal variables, such as the contract price and wage, are rendered stationary by suitable transformations. We then compute the

With Taylor-style fixed duration contracts, the price and wage dispersion terms can also be expressed in terms of the (time-series) variances of the contract price or wage of each cohort relative to the average price or wage level. These terms are the analogues of the (sectoral) price and inflation rate terms that would be implied by a Calvo-style price-setting assumption. While the latter framework has become very popular for considering normative issues in monetary policy, Calvo-style contracts imply a disproportionately large weight on the price term relative to the output gap term in the (approximate) social welfare function. We view this as a limitation. By contrast, fixed duration contracts imply more equal weights on the price and output gap terms, at least given reasonable assumptions about contract duration.
reduced-form solution of the model for a given set of parameters using the numerical numerical algorithm of Anderson and Moore (1985). Their procedure provides an efficient implementation of the solution method proposed by Blanchard and Kahn (1980).

5.1 Parameters of Private Sector Behavioral Equations

The model is calibrated at a quarterly frequency. Thus, we assume that the discount factor β = 0.993, consistent with a steady-state annualized real interest rate r of about 3 percent. We assume that the preference parameters σ_m = σ_s = 2, implying that preferences over both durables and nondurables exhibit a somewhat lower intertemporal substitution elasticity than the logarithmic case; these settings for the preference parameters are well within the range typically estimated in the empirical literature. The leisure preference parameters χ_m = χ_s = 3. The capital share parameters ω_m = ω_s = 0.3. The quarterly depreciation rate of the durables stock δ = 0.025, consistent with an annual depreciation rate of 10 percent. This choice is motivated by our specification of the durables sector to include both consumer durables and residential investment, which have annual depreciation rates of about 20 percent and 3 percent, respectively. The sectoral price and wage markup parameters θ_p = θ_w = θ_p_m = θ_w_m = 0.3. As noted above, price and wage contracts in each sector are specified to last four quarters. The share of the durables sector in both production and employment is set equal to 0.125, in line with the average share over the last forty years (this determines the preference scaling parameters υ_s and υ_m). The share of government spending in nondurables production is set to 0.25, implying that the government share of total output is a bit over 20 percent. Finally, as described below, we set the cost of adjusting the stock of durables parameter c_u = 600 in order to match the magnitude of the response of durable goods output to a monetary innovation.

5.2 Monetary Policy Rule

In our baseline specification, we assume that the central bank adjusts the short-term nominal interest rate in response to the four-quarter average inflation rate and to the current and lagged output gaps:

\[i_t = \gamma_1 i_{t-1} + \gamma_\pi \pi^{(4)}_t + \gamma_y y_t + \gamma_y y_{t-1} + e_t \] (30)

where the four-quarter average inflation rate \(\pi^{(4)}_t \) = \(\frac{1}{4} \sum_{j=0}^{3} \pi_{t-j} \), \(y_t \) is the aggregate output gap, and \(e_t \) is a monetary policy innovation; note that constant terms involving the inflation target and steady-state real interest rate are suppressed for simplicity. This form of the interest rate reaction function was estimated by Orphanides and Wieland (1998), who found that it provided a good in-sample fit over their 1980:1-1996:4 estimation period. We regard it as a reasonable (though admittedly very simple) characterization of the monetary policy rule in place in the Volcker-Greenspan
era. Using the estimated parameter values found by Orphanides and Wieland, we set \(\gamma_t = 0.795, \gamma_s = 0.625, \gamma_y = 1.17, \) and \(\gamma_k = -0.97. \)

5.3 Evolution of Real Shocks

Our model involves stochastic innovations to three exogenous variables: total factor productivity of durables output \((A_{mt}) \), total factor productivity of non-durable output \((A_{st}) \), and government spending that is exclusively comprised of non-durables output \((G_t) \).

These three exogenous variables are assumed to follow a trivariate first-order VAR:

\[
\begin{bmatrix}
 A_{mt} \\
 A_{st} \\
 G_t
\end{bmatrix} =
\begin{bmatrix}
 \rho_m & 0 & 0 \\
 0 & \rho_s & 0 \\
 0 & 0 & \rho_G
\end{bmatrix}
\begin{bmatrix}
 A_{mt-1} \\
 A_{st-1} \\
 G_{t-1}
\end{bmatrix} +
\begin{bmatrix}
 \varepsilon_{mt-1} \\
 \varepsilon_{st-1} \\
 \varepsilon_{Gt-1}
\end{bmatrix}
\]

where the innovations are assumed to be i.i.d. with contemporaneous covariance matrix \(\Omega \). Note that we assume that the innovations to sectoral productivity may be mutually correlated, but are assumed to be uncorrelated with the innovation to real government expenditures. Using the estimates of Christiano and Eichenbaum (1992), we set the government spending persistence parameter \(\rho_G = 0.96. \) To calibrate the parameters determining the evolution of the technology shocks, we utilize the estimates of a bivariate process for productivity in durables and nondurables production given by Hornstein and Praschnik (1997). After translating these parameters to a quarterly frequency, we obtain \(\rho_m = \rho_s = 0.975. \)

Finally, our model includes a monetary policy shock \(e_t \) that is assumed uncorrelated with the real innovations.

6 Results

6.1 Properties of the Baseline Model

We begin by illustrating the responses of our baseline model to a monetary policy innovation, an innovation in aggregate total factor productivity, and an innovation in government spending, respectively. Impulse response functions to a monetary policy innovation are shown in Figure 3. The policy shock induces an initial rise in the short-term nominal interest rate (the measure of the policy rate in our model) of about 75 basis points, inducing a fall in non-durables output of nearly 0.3 percentage point. These responses are very close to those shown in the empirical VARs in Figures 1 and 2. Given the high sensitivity of the user cost of durables to the interest rate, the output of the durables sector is much more responsive to the interest rate change than the non-durables sector. The parameter determining the cost of adjusting the stock of durables is calibrated to match roughly an expenditure-weighted average response of the components of durables expenditure shown in Figures 1 and 2 (which suggest that durables are roughly five times as volatile as nondurables). Finally, equilibrium
in the market for durable goods requires that the rise in the user cost associated with the higher interest rate be offset partly by a fall in the relative price of durable goods.

Figure 4 compares impulse responses to a temporary aggregate productivity shock in the baseline model to the case in which prices and wages are fully flexible. Turning first to the case of full-flexibility, the shock induces a roughly proportional rise in non-durables output. If the user cost of durables remained constant, this rise in demand for the nondurable good would raise the demand for durables, causing demand to exceed the available stock (which is fixed in the period of the shock). Thus, the user cost of durables must rise. This rise in the user cost of durables is accomplished in part through a large and immediate rise in the relative price of durables, and in part though the expectation of a future capital loss on holding the durable (since the relative price is expected to fall in the future).

This sharp initial relative price adjustment is a key feature of the fully-flexible equilibrium: the relative price adjustment retards most of the increase in the demand for the stock of durables that would occur if relative prices remained constant. By contrast, with sticky prices in both the durable and non-durable goods sectors, there is a much smaller increase in the relative price of durables. The household's equilibrium demand condition for durables is satisfied through a much larger desired increase in the stock of new durable goods. Thus, while durables output and the relative price of durables both increase on the order of 1 percent in the flexible price equilibrium, the increase in output is nearly 10 times as large as the relative price increase in our baseline specification.

It is important to recognize that the presence of price rigidities in both sectors makes monetary policy unable to achieve the flexible price equilibrium. Attainment of the flexible price equilibrium would require both setting the real interest rate on nondurables (which falls in the case of this shock) and the path of the relative price of durables equal to their values under flexible prices; but this is infeasible given the assumed nature of price rigidities.

Figure 5 depicts impulse responses to a temporary rise in government spending in the nondurables sector. Under full-flexibility of prices and wages, the rise in government spending would induce an outward shift in labor supply in the non-durables sector due to a negative wealth effect (since government consumption is assumed to be wasted). While the output of nondurables rises (as shown), nondurables consumption contracts, which acts as negative demand shock to the demand for durables. Because sector-specific shocks have no effect on production in the other sector, implying that the path of durables is unaffected by the shock. equilibrium must be achieved solely through a fall in the user cost. Thus, the relative price of durables drops sharply in response to the government spending increase.

In our baseline model in which prices are sticky, producers of new durable goods adjust their prices downward much more slowly than under flexible prices. As a result, the user cost of durables falls by less than under flexible prices, inducing a contraction in the desired stock of durables (and correspondingly, in the flow demand). Thus, incomplete relative price adjustment causes a sector-specific shock to have spillover effects in the baseline model; moreover, equilibrium requires that the muted adjustment of relative prices be associated with much greater output volatility.
6.2 Alternative Monetary Policies

In this section, we begin by examining the performance of several alternative policy rules in which the policy instrument reacts only to aggregate variables. We then compare the performance of these aggregate rules to policy rules that include explicit sectoral variables (including the optimal rule under full commitment).

Figure 6 shows the effects of a government spending shock under three alternative policies. These include the case of strict aggregate inflation targeting, strict aggregate output gap targeting, and the optimal rule under full commitment (which maximizes the social welfare function in equation (29)). The response of the sectoral output gaps is clearly very sensitive to the form of the monetary policy rule. The policy that succeeds in stabilizing aggregate price inflation keeps nondurables output much closer to potential than the alternative policies, and also induces a sharper decline in the relative price of durables. However, inflation-stabilization clearly induces much larger fluctuations in the output gap in the durables sector than the alternatives.

To understand these results, it is helpful to recognize that the policymaker must maintain a relatively tight monetary policy stance under inflation-targeting. Output in nondurables must remain close to potential to keep inflation in nondurables at a low positive level; moreover, the policy must exert a contractionary enough effect on production in the durable goods sector to generate the relative price adjustment required to keep aggregate inflation stable. The only way to achieve this objective is through keeping the real interest rate on nondurables much higher than under the alternative policies. In fact, the long-run real interest rate – which can be regarded as a forward-looking average of the short-term real rates shown in the figure – rises about as much as in the "full-flexibility" case. The larger increase in the real interest rate implies (via the demand function for durables) that either the stock of durables must contract more sharply, or that the relative price must fall by more than under the alternative policies. With prices sluggish to adjust, most of the burden of achieving equilibrium in the market for durables falls on a large downward adjustment in the flow supply of durable goods. Hence, output contracts much more substantially in the durable goods sector (generating only slightly more relative price adjustment in the process).

The alternative policy of aggregate output gap targeting allows a substantially greater rise in nondurables output above potential, and correspondingly a smaller negative output gap in the durables sector (due to the smaller real interest rate increase on the nondurable goods). This looser policy implies some rise in the aggregate price inflation rate, since it allows a higher rate of inflation in nondurables, and somewhat smaller fall in the relative price of durables. While this policy moves in the direction of the full-commitment rule, it is actually somewhat tighter than the latter. The full-commitment rule induces a somewhat larger positive output gap in nondurables, while implying considerably less volatility in durables. Impulse responses under the baseline monetary policy lie between the cases of strict inflation targeting and output gap targeting, as can be seen by comparing Figure 6 with Figure 5. We defer momentarily a consideration of the welfare consequences.
of the alternative policies.

Figure 7 shows impulse responses to an aggregate productivity shock under the
same set of alternative monetary policies. Inflation-stabilization turns out to be a
much "looser" policy than either aggregate output gap targeting, the full-commitment
rule, or the baseline monetary policy stance (as can be seen by comparing Figures 7
and 5). Clearly, the real interest rate on nondurables under inflation-targeting is
much lower than under the alternative policies, while output gap fluctuations in both
sectors are nearly an order of magnitude higher. These results depend importantly
on our model specification that includes both nominal wage and price rigidities. As
in a one sector model, the rise in productivity puts downward pressure on costs in
each sector if output remains close to (its new higher) potential; hence, price sta-
tibilization requires a positive output gap. In our two-sector model, the fall in the
real interest rate on nondurables associated with keeping aggregate inflation stable
induces a substantially larger rise in the relative price of durables than under the al-
ternative policies, and extremely large output boom in durables. By contrast, output
gap targeting appears to come remarkably close to the optimal full-commitment rule;
the latter only damps fluctuations in the output gap in durables slightly relative to
aggregate output gap targeting. The baseline monetary policy lies between the case
of inflation-targeting, and aggregate output gap targeting.

6.3 Welfare Analysis

Tables 3A, 3B, and 3C allow an assessment of the welfare costs of alternative poli-
cies using the quadratic approximation to the social welfare function as the relevant
measure of welfare. The welfare loss reported in column 3 for each policy can
be interpreted in terms of units of foregone consumption of the nondurable good
(multiplied by a constant scale factor). Welfare losses are reported for a one stan-
dard deviation innovation to government spending (Table 3A), aggregate total factor
productivity (Table 3B), and to productivity in services (Table 3C). We will also
subsequently consider welfare losses under the estimated distribution of shocks.

As suggested by the impulse responses, inflation-targeting induces a much higher
level of volatility in both sectoral output gaps in response to productivity shocks than
the alternative policies, and induces considerably larger fluctuations in the output gap
in durables in response to a government spending shock. Although social welfare
depends on both the sectoral price and wage inflation rates in addition to the sectoral
output gaps, the output gaps are much more variable than sectoral wage or price
inflation rates; accordingly, policies such as inflation targeting that lead to a high level
of volatility in sectoral output gaps perform very poorly using our welfare criterion.
Thus, inflation-targeting is associated with a welfare loss that is nearly double that of
the full-commitment policy in the case of a one standard deviation rise in government
spending (mainly because it results in a doubling of the volatility of durables output).
For either aggregate or sectoral productivity shocks, inflation-targeting causes output
gap volatility in both sectors to be several times larger than under the optimal policy,
resulting in welfare losses on the order of 5-10 times higher.

As suggested by the impulse responses, aggregate output gap targeting markedly
reduces sectoral output gap volatility relative to inflation targeting. Accordingly, aggregate output gap targeting results in much smaller welfare costs than inflation-targeting for all of the shocks considered. The table shows that aggregate output gap targeting does induce somewhat higher volatility in durables output than the optimal rule, while overly damping variation in the nondurables sector. Thus, there would be some gain to a rule that damped variation in the output gap in the durables sector. But although aggregate output gap targeting does not take account of sectoral output dispersion explicitly (as does the full commitment rule), the level of sectoral output dispersion implied by such a policy turns out to be quite low given the magnitude and nature of the shocks considered. Thus, the benefits of a rule that takes into account that squared sectoral gaps matter in the welfare function is quite modest: welfare improvements of shifting to the optimal rule range from 5 percent in the case of an aggregate productivity shock, to 15 percent in the case of a government spending shock.

Table 4 indicates that aggregate output gap targeting in fact performs very well relative to the full commitment rule given the empirical distribution of the three real shocks in our model (to productivity in each sector, and to government spending). In particular, the loss under aggregate output gap targeting are only on the order of 10 percent given the observed distribution of shocks. Thus, while it is clear from examining the individual shocks in Table 3 that aggregate output gap targeting induces somewhat excessive volatility in durables output relative to the optimal rule, the losses of associated with a simple policy of output gap targeting given the historical distribution of shocks do not appear large. However, we emphasize that the benefits of a sectoral rule - such as the full commitment rule or even a simple approximation that includes a reaction to sectoral output gaps - is quite dependent on the distribution of the shocks. For example, in our model calibration, government spending shocks are effectively very small, since government spending is a small fraction of GDP, and is not very volatile. With significantly greater variation in the shocks, the benefits of shifting to a rule including reaction to sectoral variables would increase markedly.

The baseline (or estimated) rule - which is intended to provide a simple description of historical U.S. monetary policy - implies sectoral output gap movement in response to shocks that is roughly a weighted average of the extreme cases considered. The baseline rule induces considerably greater volatility in both of the sectoral output gaps in response to productivity shocks than either the full-commitment optimal rule, or aggregate output gap targeting. Thus, losses under the baseline rule are roughly double what occurs under the optimal rule in the cases of the productivity shocks, as seen in Tables 3B and 3C (while losses in the case of government spending shocks are smaller). The tables indicate that even a “modified” Taylor Rule, which puts a coefficient of unity on both inflation and the (true) output gap, is associated with welfare losses about as large as under the baseline estimated rule. By extension, monetary policy rules that put a larger relative weight on inflation than the modified Taylor Rule induce greater sectoral output volatility, and hence are associated with higher welfare losses (as suggested by our consideration of the case of strict inflation targeting); whereas rules that place a larger weight on the aggregate output gap lead
to improved outcomes.

Finally, given that in practice the concept of “flexible price” potential output utilized in our model is not observable to the central bank, it is interesting to consider an alternative rule that targets a weighted average of price and wage inflation. Tables 3 and 4 report results for a wage-price inflation rule in which the coefficients are chosen to minimize the unconditional welfare function given the historical distribution of shocks. This hybrid rule performs nearly as well as aggregate output gap targeting, implying losses that are fairly small relative to the full-commitment optimal rule. However, it is important to caution that computing the optimal parameters of the hybrid rule does depend on underlying structural parameters (including the duration of contract prices and wages) Hence, as in the case of aggregate output gap targeting, it remains an open question about how such rules would perform given plausible uncertainty about the underlying structural parameters, the structure of the behavioral model, and the distribution of underlying shocks.
Table 3A. Welfare under Alternative Policies: One Standard Deviation Shock to Govt Spending

<table>
<thead>
<tr>
<th>Policy</th>
<th>sdev(g_{ur})</th>
<th>sdev(g_s)</th>
<th>Welfare Loss</th>
<th>Loss cp to Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Commitment</td>
<td>0.54</td>
<td>0.15</td>
<td>0.39</td>
<td>0</td>
</tr>
<tr>
<td>Inflation Target</td>
<td>1.25</td>
<td>0.02</td>
<td>0.75</td>
<td>92.3</td>
</tr>
<tr>
<td>Output Gap Target</td>
<td>0.74</td>
<td>0.11</td>
<td>0.45</td>
<td>15.4</td>
</tr>
<tr>
<td>Estimated Rule</td>
<td>0.91</td>
<td>0.06</td>
<td>0.50</td>
<td>28.2</td>
</tr>
<tr>
<td>Wage-Price</td>
<td>0.88</td>
<td>0.07</td>
<td>0.46</td>
<td>17.9</td>
</tr>
<tr>
<td>Taylor (true gap)</td>
<td>0.96</td>
<td>0.06</td>
<td>0.92</td>
<td>136</td>
</tr>
</tbody>
</table>

Table 3B. Welfare under Alternative Policies: One Standard Deviation Shock to Aggregate Productivity

<table>
<thead>
<tr>
<th>Policy</th>
<th>sdev(g_{ur})</th>
<th>sdev(g_s)</th>
<th>Welfare Loss</th>
<th>Loss cp to Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Commitment</td>
<td>0.97</td>
<td>0.22</td>
<td>3.25</td>
<td>0</td>
</tr>
<tr>
<td>Inflation Target</td>
<td>6.99</td>
<td>1.23</td>
<td>34.1</td>
<td>949</td>
</tr>
<tr>
<td>Output Gap Target</td>
<td>1.18</td>
<td>0.17</td>
<td>3.41</td>
<td>4.9</td>
</tr>
<tr>
<td>Estimated Rule</td>
<td>2.35</td>
<td>0.25</td>
<td>7.64</td>
<td>135</td>
</tr>
<tr>
<td>Wage-Price</td>
<td>1.43</td>
<td>0.14</td>
<td>3.44</td>
<td>5.8</td>
</tr>
<tr>
<td>Taylor (true gap)</td>
<td>2.41</td>
<td>0.17</td>
<td>9.31</td>
<td>186</td>
</tr>
</tbody>
</table>
Table 3C. Welfare under Alternative Policies:
One Standard Deviation Shock to Services Productivity

<table>
<thead>
<tr>
<th>Policy</th>
<th>sdev(g_M)</th>
<th>sdev(g_s)</th>
<th>Welfare Loss</th>
<th>Loss cp to Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Commitment</td>
<td>1.31</td>
<td>0.39</td>
<td>3.59</td>
<td>0</td>
</tr>
<tr>
<td>Inflation Target</td>
<td>6.74</td>
<td>0.91</td>
<td>26.8</td>
<td>647</td>
</tr>
<tr>
<td>Output Gap Target</td>
<td>1.86</td>
<td>0.27</td>
<td>3.97</td>
<td>10.6</td>
</tr>
<tr>
<td>Estimated Rule</td>
<td>3.06</td>
<td>0.19</td>
<td>7.55</td>
<td>110</td>
</tr>
<tr>
<td>Wage-Price</td>
<td>2.24</td>
<td>0.19</td>
<td>4.10</td>
<td>14.2</td>
</tr>
<tr>
<td>Taylor (true gap)</td>
<td>3.16</td>
<td>0.11</td>
<td>9.00</td>
<td>151</td>
</tr>
</tbody>
</table>

Table 4. Welfare under Alternative Policies:
Estimated Variance-Covariance Matrix of Shocks

<table>
<thead>
<tr>
<th>Policy</th>
<th>sdev(g_M)</th>
<th>sdev(g_s)</th>
<th>Welfare Loss</th>
<th>Loss cp to Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Commitment</td>
<td>1.22</td>
<td>0.41</td>
<td>4.79</td>
<td>0</td>
</tr>
<tr>
<td>Inflation Target</td>
<td>6.37</td>
<td>1.30</td>
<td>32.7</td>
<td>583</td>
</tr>
<tr>
<td>Output Gap Target</td>
<td>1.86</td>
<td>0.27</td>
<td>5.25</td>
<td>9.6</td>
</tr>
<tr>
<td>Estimated Rule</td>
<td>2.81</td>
<td>0.30</td>
<td>9.21</td>
<td>92.3</td>
</tr>
<tr>
<td>Wage-Price</td>
<td>2.37</td>
<td>0.19</td>
<td>5.53</td>
<td>15.4</td>
</tr>
<tr>
<td>Taylor (true gap)</td>
<td>2.81</td>
<td>0.24</td>
<td>11.0</td>
<td>130</td>
</tr>
</tbody>
</table>
7 References

Figure 1
Empirical Response to Monetary Policy Shock: Components of Durable Expenditures
(± 2 standard errors)
Figure 2
Empirical Response to Monetary Policy Shock: Disaggregated Price Indices
(± 2 standard errors)

Consumer Durables + Residential Inv.

Other GDP Components

Price Index of Cons. Durables + Resid. Inv.

Price Index of Other GDP Components

Commodity Price Index

Federal Funds Rate
Figure 3
Baseline Model Dynamics: Monetary Policy Shock
Figure 4
Baseline Model Dynamics: Aggregate Productivity Shock

- Durables Output
- Non-Durables Output
- Real Interest Rate (Non-Durables)
- Relative Price of Durables
Figure 5
Baseline Model Dynamics: Government Spending Shock

- Durables Output
- Non-Durables Output
- Real Interest Rate (Non-Durables)
- Relative Price of Durables

Annotations:
- Baseline Model
- Flexible Prices & Wages
Figure 6
Policy Rule Comparison: Government Spending Shock

Durables Output

Non-Durables Output

Real Interest Rate (Non-Durables)

Relative Price of Durables

- Optimal Policy Rule
- GDP Price Inflation Targeting
- Output Gap Targeting
- Flexible Prices & Wages
Figure 7
Policy Rule Comparison: Aggregate Productivity Shock

Durables Output
- Optimal Policy Rule
- GDP Price Inflation Targeting
- Output Gap Targeting
- Flexible Prices & Wages

Non-Durables Output

Real Interest Rate (Non-Durables)

Relative Price of Durables