NOTES ON SEQUENTIAL Oligopoly

V. V. Chari and Patrick J. Kehoe*

Working Paper 372

October 1987

NOT FOR DISTRIBUTION
WITHOUT AUTHOR APPROVAL

*Both Federal Reserve Bank of Minneapolis and University of Minnesota.

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. This paper is preliminary and is circulated to stimulate discussion. It is not to be quoted without the authors' permission.
A Sequential Move Oligopoly Game

Two firms, labelled 1 = 1, 2, play a sequential move Cournot (quantity-setting) game. In each period \(t, t = 0, 1, \ldots \), firm 1 moves first and picks an output level \(q_{1t} \). Than having seen \(q_{1t} \), firm 2 moves and picks an output level \(q_{2t} \). We call \(q_{it} \) the action of firm \(i \) at time \(t \). We assume \(q_{it} \) is a member of the action space \(A_i \) for all \(t \). The period \(t \) payoff to firm \(i \) when actions \(q_{1t} \) and \(q_{2t} \) are taken is

\[
\pi_{it}(q_{1t}, q_{2t}) = P(q_{1t} + q_{2t})q_{it}
\]

where \(P(\cdot) \) is the industry demand function. We assume \(P(q) \) is differentiable, monotonically decreasing in \(q \) on a finite interval \([0, m]\) and that \(P(q) \to 0 \) as \(q \) increases to \(m \) and \(P(q) \) equals zero for all \(q \geq m \).

A strategy \(\sigma_i \) for firm \(i \) is a sequence of functions \(\sigma_{i1}, \sigma_{i2}, \ldots \), one for each period \(t \). The function for period \(t \) determines player \(i \)'s actions as a function of the actions taken by both players times before time \(t \). Let the history faced by player 1 at time \(t \) be denoted \(h_{1t} \) where

\[
h_{1t} = (q_{11}, q_{21}, \ldots, q_{1t-1}, q_{2t-1}).
\]

That is, \(h_{1t} \) records the output levels of both players in all periods before \(t \). Let \(H_{1t} = \{h_{1t}|q_{is} \in A_i \text{ for all } 1 \leq s < t\} \). In period \(t \) player 2 moves after having observed the current output \(q_{1t} \) produced by player 1. Thus the history facing player 2 at time \(t \) is \(h_{2t} = (h_{1t}; q_{1t}) \). Let

\[
H_{2t} = \{h_{2t}|q_{1s} \in A_1 \text{ for } 1 \leq s \leq t \text{ and } q_{2s} \in A_2 \text{ for } 1 \leq s < t\}.
\]

A strategy \(\sigma_i \) for player \(i \) is a sequence of functions \(\{\sigma_{it}\}_{t=1}^{\infty} \) where \(\sigma_{it} : H_{it} \to A_i \). Let the strategy space of player \(i \) be

\[
\mathcal{S}_i = \{\sigma_i = (\sigma_{it})_{t=1}^{\infty}|\sigma_{it} : H_{it} \to A_i\}.
\]
Let $\sigma = (\sigma_1, \sigma_2)$ and $S = S_1 \times S_2$. We need to define payoffs over strategies. We first define payoffs over outcomes. An outcome path q^0 is a collection of actions for both players, one each t. That is $q^0 = \{q_{1t}, q_{2t}\}_{t=1}^\infty$. The payoff to firm i under outcome path q^0 is

$$V_i(q^0) = \sum_{t=1}^\infty \delta^t \pi_i(q_{1t}, q_{2t}).$$

Likewise, the payoff to firm i from t onwards under the outcome path q^t from t onwards is

$$V_{it}(q^t) = \sum_{s=t}^\infty \delta^{s-t} \pi_i(q_{1s}, q_{2s})$$

where $q^t = (q_{1t}, q_{2t}, q_{1t+1}, q_{2t+1}, \ldots)$.

Given any history h_{1t} a strategy vector $\sigma_1(\cdot|h_{1t})$, $\sigma_2(\cdot|h_{2t})$ generates an outcome path from t onward, which is inductively defined as,

$$(1.4) \quad q_{1t} = \sigma_1(h_{1t}|h_{1t})$$

$$(1.4) \quad q_{2t} = \sigma_2(h_{2t}|h_{1t}) \text{ where } h_{2t} = (h_{1t}; q_{1t})$$

$$(1.4) \quad q_{1t+1} = \sigma_1(h_{1t+1}|h_{1t}) \text{ where } h_{1t+1} = (h_{1t}; q_{1t}; q_{2t})$$

$$(1.4) \quad q_{2t+1} = \sigma_2(h_{2t+1}|h_{1t}) \text{ where } h_{2t+1} = (h_{1t}; q_{1t}; q_{2t}; q_{1t+1}), \text{ and soon.}$$

Payoffs over strategies $\sigma_1(\cdot|h_{1t})$, $\sigma_2(\cdot|h_{2t})$ are given by

$$V_{it}(\sigma_1(\cdot|h_{1t}), \sigma_2(\cdot|h_{2t})) = \sum_{s=t}^\infty \delta^{s-t} \pi_i(q_{1s}, q_{2s})$$

where $q^t = (q_{1t}, q_{2t}, q_{1t+1}, q_{2t+1}, \ldots)$ is defined by (1.4).

Let $S_i(h_{1t})$ denote the set of strategies for player i from t onward, given history h_{1t}. That is

$$(1.6) \quad S_i(h_{1t}) = \{\sigma_i(\cdot|h_{1t}) = \{\sigma_{1s}(\cdot|h_{1t})\}_{s=t}^\infty \mid \sigma_{1s}(\cdot|h_{1t}); H_{1t}; A_1\}$$
where \(H^{s}_{1t} = \{ h^{s}_{1t} = (q_{1t}, q_{2t}, \ldots, q_{1s-1}, q_{2s-1}) | q_{ir} \in A_i \text{ all } t \leq r < s \} \). Let \(S_{2}(h_{2t}) \) be defined in an analogous fashion. We then have

Definition. \(\sigma = (\sigma_1, \sigma_2) \in S \) is a subgame perfect Nash equilibrium if for each \(t = 1, 2, \ldots \). The following conditions hold: for each \(h_{1t} \in H_{1t} \).

\[
V_{1t}(\sigma_1(\cdot|h_{1t}), \sigma_2(\cdot|h_{2t})) > V_{1t}\left(\sigma'_1(\cdot|h_{1t}), \sigma_2(\cdot|h_{2t})\right)
\]

for all \(\sigma'_1(\cdot|h_{1t}) \in S_{1}(h_{1t}) \) where \(h_{2t}' = (h_{1t}', \sigma'_1(h_{1t}|h_{1t})) \) and for each \(h_{2t} \in H_{2t} \).

\[
V_{2t}(\sigma_1(\cdot|h_{1t}), \sigma_2(\cdot|h_{2t})) > V_{2t}(\sigma_1(\cdot|h_{1t}), \sigma'_2(\cdot|h_{2t}))
\]

for all \(\sigma'_2(\cdot|h_{2t}) \in S_{2}(h_{2t}) \).

Notice that in each period \(t \) player 1 is a "Stackelberg leader" in the sense that player 1 when considering a deviation to some \(\sigma'_1(\cdot|h_{1t}) \) takes account of the fact that the action he adopts at \(t \), say \(\sigma'_1(h_{1t}|h_{1t}) \), will affect the action taken by player 2 by affecting the history that player 2 confronts when it is his turn to move.