
Chapter 1 

Borrowing Constraints and 
Transactions Costs 

In this chapter and the next, we will discuss models in which there exist mar­
ket incompleteness and other market frictions.1 There are several reasons for 
examining such models. We have already seen that different versions of the rep­
resentative consumer model have been unable to rationalize such asset pricing 
anomalies as the equity premium puzzle, the average real risk-free rate puzzle, 
and the behavior of the term premiums. In a representative agent model, all 
asset returns are driven by a common stochastic discount factor which sug­
gests that, to some extent, stocks and bonds should tend to move together.2 

Yet the empirical evidence appears to be at odds with this requirement. By 
introducing market incompleteness, borrowing constraints, and other sorts of 
frictions, this close link can be broken. 

The first topic we consider in this chapter is analyzing the equilibrium al­
locations and prices in an economy with idiosyncratic risk. We examine two 
cases: one in which markets are complete and the other in which borrowing 
constraints with asymmetric information so that markets are incomplete. Our 
discussion follows Scheinkman and Weiss [?]. We examine the complete mar­
kets case to highlight the role that ex ante heterogeneity plays in the economy. 
In the borrowing constraint model, idiosyncratic income risk is nondiversifiable 
because these shocks are not publicly observed. Hence agents have limited op­
portunities to borrow against future income and cannot totally insure against 
all types of risks. Using this framework, we characterize the equilibrium in a 
model with heterogeneous consumers and borrowing constraints. 

'This chapter was written to be included in the text Dynamic Choice and Asset Markets. 
with Pamela Labadie, 1994. Academic Press. The material was developed jointly by Pamela 
Labadie and myself. I have posted this chapter because I believe that the material retains 
its relevance and originality. If you make use the material in your work, please provide the 
appropriate citation. 

2 This point has been explored by Barsky [?]. among others. 
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2 Borrowing Constraints and Transactions Costs 

This model also has implications for the behavior of individual consump­
tion and leisure/labor supply allocations. Even in the absence of aggregate 
shocks, the model generates random fluctuations in aggregate output, the labor 
input, and the relative price of the asset that is traded in equilibrium. An­
other implication is that the cross-sectional distribution of nonhuman wealth 
is an important determinant of aggregate economic activity. By contrast, 
representative consumer models imply that fluctuations in aggregate unem­
ployment arise solely from the intertemporal substitution of labor and have 
been rejected in alternative tests based on aggregate data. (See, for example. 
Mankiw, Rotemberg and Summers [?], Eichenbaum, Hansen and Singleton [?], 
and Altug [?], among others.) 

In Section 7.2, we present a model with bid-ask spreads and review the 
literature associated with transactions costs. A s the final topic of this chapter, 
we present a method for calculating volatility bounds for the intertemporal 
MRS in consumption when there are borrowing constraints and transactions 
costs. These volatility bounds provide a nonparametric method for examining 
the restrictions of dynamic asset pricing models without specifying consumers' 
utility functions or explicitly characterizing the equilibrium. 

1.1 A Model with Idiosyncratic Risk 

We start our discussion with the paper by Scheinkman and Weiss [?]. For 
consistency with the remainder of the material, we present a discrete-time 
version of their model. Because we wish to appeal to the law of large numbers 
in describing the aggregate properties of individual risk, we will introduce 
individual risk based on Feldman and Gilles [?). 

Assume that there is a countable infinity of agents and that the index set 
of agents is A = {1.2,...}. Let u denote the probability measure defined over 
A such that u(A) = 1. Let B C Abe an infinite subset consisting of type 1 
agents'* and assume that u(B) = a where a is the proportion of agents that 
are type 1. Let Bc be the infinite subset of agents that are type 2 such that 
u{Bc) = 1 - a. 

Uncertainty is introduced through a productivity shock. A stochastic pro­
cess is a collection of random variables {s(t,ui),t € T} defined on the same 
probability space ( f i ,F,P) , where T = {0,1,2,...} and s : T x £2 - * S. For 
a fixed w € Q, s(-,ui) is the sample path or the realization. For a fixed t € T, 
s(t, •) is a random variable. Let F be the transition probability function which 
is assumed to have the Feller property Let the state space be S = {1,2}. To 
conserve on notation, we let s<(u>) = s(t,ui). 

We now relate the aggregate uncertainty and individual risk through the 

' Examples of infinite subsets are the set of even numbers {2,4.6....} or a Fibonocci 
sequence {1,2,3,5,...} in which the (i+1) element equals the sum of elements i and i-1. 
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productivity shock. Each agent, whether a type 1 or type 2, has time-additive 
preferences over consumption and leisure streams. An agent can produce one 
unit of the consumption good per one unit of labor when he is productive, 
but he may suffer random spells of nonproductivity. In the absence of ex ante 
heterogeneity, agents become differentiated from each other as a result of their 
histories of productivity. Define a function 6 : S -> {0,1} indexed by a € A. 
Assume that if = 1, then 

. . . J 1 if a€ B ,, 
= { 0 otherwise, ( U ) 

while if s,(w) = 2, then 

. / 1 if a e Bc . 9> 
= ( o otherwise. ( L 2 ) 

The production function for an agent of type i is 

1ft = M t , (1.3) 

where ti is the labor supply. 
A typical type i consumer has preferences over stochastic sequences {cy, £^t} 

of the form 

U i = ^fl0t[U(ci,t) - WWM)]J • (1-4) 

We make the following assumptions on preferences. 

Assumption 1.1 (i) Let U : 3?+ —» 3?+ be concave, increasing, and thrice 
continuously differejitiable with U'" > 0, and that 

lira U'(c) = +oo, lim U'(c) = 0. 
C-.0 c—oo 

Also assume that -U"(c)c/U'(c) < 1 and -U"'/U" is decreasing, 
(ii) Let W : [0, L)-\ • 3?+ be continuous, strictly increasing, thrice continu­
ously differentiable, and convex with W(0) = 0, W'(0) = 0 and l im^_/, W'(£) = 
oo. 

The assumption that —U"(c)c/U'(c) < 1 ensures that the substitution effect 
is greater than the income effect. The assumption that —U"'/U" is decreasing 
implies that the utility function U displays decreasing absolute risk prudence. 
The concept of absolute risk prudence is studied by Kimball [?]. Decreasing 
absolute risk prudence implies increasing absolute risk aversion when agents 
are strictly risk averse. 

When a type i agent is productive, he chooses the labor input to maximize 
his expected discounted present value of utility, trading the gain in the utility 
of consumption made available by producing against the disutility of labor. 
An unproductive agent chooses t = 0 to avoid any disutility from labor. 
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1.1.1 Complete Contingent Claims Equi l ibr ium 

We will discuss the complete markets case in two ways. First, we describe the 
equilibrium allocations under the assumption that all trades are made at time 
zero. In the second case, we provide a sequential definition of the equilibrium. 
For the sequential equilibrium, we describe several schemes. The first is to 
allow borrowing while the second is to treat each type of individual as a firm 
issuing claims on its output stream. 

In our discussion below, we assume that W(i) = I. In equilibrium, all 
agents of the same type will be identical and so we will describe the behavior 
of the representative type i agent. A l l variables are expressed as per-capita. 

At time zero, all agents trade in the market for claims to consumption and 
labor supply contingent on state ui at time t. In other words, define {J-f}fix as 
an increasing sequence of (ralgebras generated by {s s(w), s < t}. Agents trade 
for claims contingent on a given history {ss(u)),$ < t} for all w € ft. Here 

V), Q is the set of sample points, T' D Tt for all t is the set of possible 
events, which are subsets of fl. T is closed under the taking of complements 
and countable unions. 

Define as the price of a right to delivery of 1 unit of consumption in 
state u) at time t for all t and for u 6 $2. In a complete markets equilibrium, 
a representative type i consumer maximizes 

0 0 . 

E{U'\F0] = Y, / PPMu)) - eu{u)]V(<Lj) (1.5) 

subject to the single budget constraint 

£ / lft(«)(cM(«) - ^ ( " W M M F W < 0, (1.6) 

and the constraints that Cj,,(u>) > 0 and ell%tt{ui) > 0. Notice that in (??) and 
(??), we integrate over all possible realizations u> and sum over time. 

The equilibrium allocations must also satisfy the market-clearing condi­
tions, which indicate that the consumption of the two types of individuals at 
any given date and in a given state must equal the total amount produced at 
that date and in that state. More precisely, 

a c M ( w ) + (1 - a)c 2, ((w) = 

of luM^uM + (1 - a)02,t(w)*2,t(w). (1.7) 
Now let us characterize the complete markets equilibrium. Let A* denote 

the Lagrange multiplier associated with the budget constraint for a type i 
agent. The first-order conditions with respect to Cj,((u>) and ti,t(u>) for an 
agent of type i are 

PWMw)) = \iPt(u), (1.8) 

0- - Ai0w(w)pt(w). (1.9) 
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When = 1, the first-order conditions for agent i imply that A; = 
0l/pt(oj), and £ / ' ( C J , J ( W ) ) = 1. Define the function g as 

g(x) = (UT1(x), 

which is well-defined because marginal utility is strictly concave. Define c as 
c = 5(1). The consumption of an agent i with = 1 (a productive agent) 
equals c. When st(u>) = i, the price satisfies pt(u) = 0l/Xi. Notice that A, 
does not vary over time or over realizations OJ. 

An unproductive agent (one with Oj,t(u>) = 0) chooses (j,t(w) = 0 and 
sets consumption to satisfy 0tU'(cjit(uj)) — XjPt(ui). Substituting in the price 
Pt(w), which we related earlier to the multiplier for the productive agent A,, 
we have 

0tU'(cj,t(w)) = 0'Xj/Xi, (1.10) 

so that the consumption of the unproductive agent satisfies 

ht=9(Xj/Xi). (1.11) 

We now look at the market-clearing conditions. For any t,uj such that 

acitt{u) + (1 - a)c2,t(iu) = ag(l) + (1 - c*).g(A2/Ai) 

= aei,t(u). (1.12) 

For any t.uj such that #2,((w) = 2, market-clearing requires 

accu(u) + (1 -a)c 2 , ( (u; ) = ag(Xi/X2) + (1 - a)g(l) 

= (l-a)e2,t(w). (1.13) 

To proceed further, we make a simplifying assumption. Assume that the 
random variable .Sf(u>) is i.i.d and that the probability that st(u)) = 1 is TT S O 
that the probability that S((w) — 2 is 1 — IT. The expected present value of 
lifetime earnings of a type 1 agent are 

£ / R ( w ) 0 l l t M ' u M = 
t=0Jil 1-0 Ai 

where we have substituted pt{u>) = 0l/X\ for t > 0. The expected present 
value of the type 1 agent's consumption stream is 

1 7T0(1) , 1 
0 f^Jn 1-0 Xi 1 -

( 1 _ ,W>j A, 

Equating the two expressions and using the market-clearing condition (??) to 
solve for t\ — g{\), we have 
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We can repeat the same steps for a type 2 agent; this results in 

a W A , \ / 7T \ A 2 / A 2 

Define x = A i / A 2 ; then the equilibrium condition (??) becomes 

VzW^W*) . (1.16) 
a / \x 

We now consider an important case corresponding to the complete market 
equilibrium studied in Scheinkman and Weiss. Suppose that 7r = 1/2 and that 
a = 1/2. Then each period half of the agents are productive and each type of 
agent expects to be productive with the same probability as any other agent. 
Under these assumptions, a stationary solution is A] = A 2 = 1. In this case, 
individual a £ A consumes a constant amount equal to c at all dates and in 
all states. Output is constant and equal to 2c. Prices are also constant and 
the real interest rate r satisfies 

E ' ( — ) = T 4 - = * 
V Pt J 1+r 

This is the case of complete insurance in which the opportunities to pool 
risks enable all agents to consume a fixed amount regardless of the particular 
realization ui which determines their earnings stream. 

Suppose now that TT = 2/3 but retain the assumption that a = 1/2. Then 
each period, one half of the agents are productive just as before. But now 
notice that the expected present value of the lifetime earnings for a type 1 
agent is greater than that of a type 2 agent. Equation (??) now becomes 

±g(x)x = g(±y (1.16) 

Suppose utility displays constant relative risk aversion so that U'(c) = c~~*. 
Then the solution is x = {\)2*''• The real interest rate 7-i when type 1 agents 
are productive = 1) is 

' = TT0 + 0(1 - 7T)X, 
1 + ri 

and the real interest rate r 2 when type 2 agents are productive ( s<(w) = 2) is 

— J — =nx0 + 0(l - TT). 
1 + r 2 

Hence both agents experience fluctuations in consumption over time, depend­
ing on the realization of the random variable. The economy experiences aggre­
gate fluctuations in output, prices and real interest rates because agents are 
no longer indentical in expected present value of expected lifetime earnings. 
There is no market incompleteness here and risks are pooled. 
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When agents have the same discounted present value of labor income, then 
they can borrow and lend to smooth consumption to an extent that the agent's 
consumption is no longer dependent on the particular time path of his wealth. 
When agents are no longer identical in expected present value, the ability of 
each agent to smooth consumption is affected. When 7r = 2/3, agent 1 is 
better off with fluctuating consumption than in the case where consumption 
is constant at c. The same result would hold if IT = 1/2 and a ^ 1/2. In that 
case, although any individual agent expects to be productive with the same 
probability as any other agent, the proportion of agents that are productive 
varies so that aggregate output fluctuates because of the concentration of the 
productivity shock. 

A feature of the complete market equilibrium that emerges in both of 
the examples considered above is that the marginal rate of substitution for 
consumption and at any future date and state is equated across consumers. 
To see this, consider the ratios of (??) for any dates t and r, with r > t, and 
any possible realized state w € fi: 

Since this condition holds for any state, it also holds in expectation. For 
simplicity, let r = t + 1. Then: 

Thus, Tf varies in equilibrium if there is ex ante heterogeneity among agents, 
which translates into ex post heterogeneity. It will also vary if there are ag­
gregate shocks in the economy. In the next section, we consider a sequential 
interpretation of the complete markets equilibrium, and describe how to derive 
the stochastic discount factor used to value risky payoffs. 

1.1.2 Sequential Equil ibrium 

Instead of assuming that all trades take place at time 0 in terms of contin­
gent claims, imagine instead that agents make their consumption and labor 
decisions sequentially. We discuss two cases. First we permit borrowing and 
lending. This can take place through a financial intermediary or by transac­
tions among individual agents. We then look at the case where a household 
issues an equity share which is a claim to some portion of its earnings. When 
the household is productive, it pays a dividend to shareholders while when it 
is not productive, no dividend is paid. 

In all cases, we search for a stationary equilibrium. 
Borrowing and Lending 
Suppose that borrowing and lending are permitted. Assume that there is a 

l3'U'(c,A^)) Pt(u)' 
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durable and nondepletable asset that is fixed in per-capita supply at one unit. 
The asset is bought and sold at a real price qt at time t. Let za<t, where a € A, 
denote the asset holdings of agent a at time t. If a G B then agent a is a 
type 1 and a type 2 otherwise. Let denote the holdings of the asset by the 
representative type i agent at the beginning of time t. 

The supply of the asset is fixed at unity. Thus, market-clearing requires 
that 

axi,t + (1 - a)s2,t = 1 (1-17) 

We can determine x2 if we know x\ so that we need only keep track of the 
per-capita asset holdings of one type of agent. We will find it convenient later 
on to let x be the vector (x\, x%) and to let the state of the system be described 
by the pair (x,s). 

The representative type i agent, for i = 1,2 chooses stochastic sequences 
{ci,t-Ji,t} to maximize 

^ -4,*]}, (i-i8) 

subject to the set of constraints 

2i,t+i - Zi,t = (Vi,t ~ Ci,t)/qt, (1-19) 

Vm = OiistWu, (1.20) 

* M > 0 , C j l t > 0 , (1.21) 

and given the initial distribution of the asset, which satisfies 

1 = 0X1,0 + (1 - Cl).X'2,0-

We will assume that all agents of the same type are identical so that in equi­
librium z„ = x\ if a € B and z„ = x2 otherwise. We allow z and x to be 
negative; this can be interpreted as a debt (or borrowing). Let be the 
multiplier associated with the constraint. The state variables clearly consist 
of s and the vector x. The state of an individual agent depends on his asset 
holdings z„ and the system state variables, (x,s). 

We now set this up as a dynamic programming problem. The problem is 

Vi{z,x,s) = max \U{c) - t + 0 [ Vi(z',x',s')F{s,ds')} (1.22) 
{c,e,z'} Js 

subject to the constraints (??)-(??) and the law of motion for x. We assume 
that z € Z = [—z, z] where 1 < z < oo, I € [0, L] where L < oo, and c € [0, Y] 
where Y < oo. The upper bound Y can be justified by setting Y = 2L which is 
the maximum possible output that could be attained. Also assume that Xi € Z 
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for i = 1,2. Define S = Z x S. Let Q be the set of functions q : S —• 3?+ such 
that {9 : 0 < <j(x, s) < 00, (x, s) € 5. 

Notice that if q(x, s) is strictly positive, then the set of values {c, I, z'} 
satisfying (11 - 11) can be denoted 4>(z, x, s); this set is compact and convexed-
valued. If q is continuous, then under assumption (??), <t> is continuous in s. 
Let V be the space of bounded, continuous, real-valued functions V%(z,x, s) on 
Z x 5 with the norm ||V*|| = sup |Vj(z,x,s)\. Given any continuous, strictly 
positive price, it is straightforward to show that there exists a unique value 
function satisfying (??). This summarizes the information we need for the 
individual agent a S A. Let us define an equilibrium for this economy. 

Definition 1.1 A stationary equilibrium is a set of functions q : ZxS —» R+, 
Cj(z,x,s), £i(z,x,s), and z , (z,x,s) , defined on Z x S and measurable with 
respect to Tt, such that 
(i) £i(z,x,s), ti(z,x,s), and z,(z,x,s) solve (11) subject to the constraints 

Recall that if we know x\, then we can determine x2 from the market-clearing 
condition (??). Without any loss of information, we can define £,(x,-,s) as 
the equilibrium multiplier on the constraint (??) for the representative type i 
agent when the average holdings of the durable asset by the type i agents at the 
beginning of the period is Xj. The pair (x,,.s) completely describes the state 
of the system. Similarly, let Cj(x,, s) denote the equilibrium consumption for 
the representative type i agent, and let ^ ( X J , S ) denote the equilibrium labor 
supply. Finally, let denote the partial derivative of the value function with 
respect to its first argument, or y?i(xi,s) = V/(x , ,x , s). 

The equilibrium first-order conditions for the representative type i agent 
are 

(1.23) 

and 

at/i + (1 = aci(zi,x,s) + (1 - a )c 2 (z2 ,x ,s ) , 

where yt- = &i(s)li(zi,x,s), and 

(Hi) the laws of motion for the system variables x evolve as 

x't = Zi(xi,x,s), i = 1,2. 

(1.24) 

U'(*(X,3)) 
£i{Xi,s) 

1 
Oi{s)Zi(xj, s) 

q(x,s) 

pEMxls')] 
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The envelope condition is pi(xi,s) = U'(ci(xi,s))q(x,s). 
If 0i(s) = 1, then s)/q(x, s) = 1 and CJ(XJ, s) = c, where c was denned 

earlier. Suppose that agents of type i are productive while type j agents are 
not. Then the first-order condition for the representative type j agent is 

U'(cj(xj,s))=Zj(xj,s)/q(x,S) = | g * l f } 

where we have substituted q(x,s) = &(x i ,s) . It becomes apparent when we 
compare the first-order conditions for the sequential equilibrium with the con­
tingent claims equilibrium, that & = and that the price of the asset equals 
the Lagrange multiplier for the productive agent, which is independent over 
dates and alternative states of the economy. 

In the discussion above, the borrowing and lending takes place between 
individuals of different types. Instead of borrowing and lending, suppose that 
agents act as if they were firms and issue equities shares that are claims to 
their earnings stream. We will show that the allocation is the same as that 
under the borrowing and lending. 
Equities Trading 
We assume that there is one outstanding claim to each earnings stream. Let 
Zj(st) denote the shares to the j t h earnings stream in state .s( held by agent 
i. The share sells at the price Qj. The sum of shares satisfies 

axi,t + (1 - <*)4* = 1 - *»J = ! ' 2 - ( L 2 9 ) 

An agent of type i buys shares of the equity issued by agents of type j. 
The type i agent also issues shares and pays dividends. Agent i maximizes 
(??) subject to the current period budget constraint 

ci,t + Q\xU+i + QH,t+i < (Qt + diM,t 

+ (0{ + dj,tKt + Ktkt - di,t(a<t + (1 - a ) 4 t ) ' ( L 3 ° ) 

We have written this constraint assuming that the representative type i also 
buys and sells claims to his own earnings stream. To be consistent, we also 
assume that dividends equal output, or a\tt = Bi^t^t- We will see shortly 
that many of these terms will drop out. To start, we look for a stationary 
equilibrium in which x\t = ^ j + i and (??) is satisfied. There may be other 
stationary solutions, but we examine only this one because, as we will show it 
has a natural interpretation. Under these assumptions, the budget constraint 
becomes 

Cj,t < di,tA,t + djW.t- ( L 3 1 ) 

Let denote the multiplier associated with the constraint (??) for con­
sumer i. If St = i, then Oj(st) = 0 for j ^ i, and no output is produced by type 
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j agents so that djj = 0. The first-order conditions imply that when s< = 1, 
type 1 agents consume c, and type 2 agents consume g(&,t)- Recall that in 
the contingent claims equilibrium, the share of output consumed by a type 1 
agent when 6\ = 1 was c/6\t\ and the share consumed by type 2 agents was 

When #2 = 1, the share of output consumed by a type 2 agent was cjQi^i and 
the share consumed by type 1 agents was 

Setting the equity shares equal to the consumption shares, 

. , _ l - o g ( A 2 / A 1 ) 

0(1) 2 n 9(^1/^2) 

One can verify that this allocation is market-clearing and satisfies the first-
order conditions. To show that these distribution of shares, together with the 
implied consumption and labor supply allocations, can be used to replicate 
the complete markets equilibrium, merely set &,t(w) = \ipt(u) for each w e S l . 

The first-order conditions can be used to find expressions for equity prices 
as4 

Q{ = Et 

(1U'(Ci,t+l) • 
i,j = 1,2. (1.32) 

Under the complete markets assumption, consumers set their intertemporal 
MRS's equal to the common ration j>i+\(u;)/pt{uj). Since this ratio varies with 
u>, the price of a claim to type i's earning stream is the expected discounted 
value of that stream. We could introduce aggregate uncertainty into this setup, 
and allow for a production technology that yields an exogenous output stream 
{</,}. Then the price of a claim to this output stream would be determined as 
in (??), with the common intertemporal M R S used as the stochastic discount 
factor. 

We already studied the pricing of such claims in the representative con­
sumer pure exchange economy of Chapter 2. There the stochastic discount 
factor is equal to the random intrtemporal M R S of the representative con­
sumer and can be evaluated using a parametric specification of preferences 

4In this case, we use the budget constraint (??) with the last two terms equal to each 
other, and differentiate with respect to , for i.j = 1,2. 
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and aggregate or per-capita consumption data. Wi th incomplete markets, 
there is in general no common stochastic discount factor, and asset pricing re­
lations based on an intertemporal MRS evaluated with aggregate or per-capita 
consumption data are not valid. Likewise, market frictions such as short sales 
constraints and bid-ask spreads will alter the relationship between individual 
intertemporal MRS's and the common stochastic discount factor used to value 
random payoffs. The results of Luttmer [?] and He and Modest (?) suggest 
that we can construct volatility bounds for stochastic discount factors in the 
presence of various forms of market frictions, provided there exist a complete 
set of contingent claims. We describe their methods in a later section. For the 
incomplete markets case, we address the issue of characterizing the stochastic 
discount factor by analyzing a specific model with frictions. 

1.1.3 Borrowing Constraints 

R o m our review of the empirical evidence based on representative consumer 
models, we know that such models fail to account for the temporal behavior of 
asset returns due to the lack of correlation of aggregate consumption growth 
with asset returns. Thus, explaining the empirical facts requires that the link 
between the intertemporal M R S and asset returns be loosened. As we noted 
before, market incompleteness and borrowing constraints are frictions that 
can potentially accomplish this. In a later section, we discuss other types of 
frictions, such as transactions costs, that may have the same effect. 

Several authors, including Bewley [?] and by Mankiw [?], have noted that 
introducing market frictions can help to explain the equity premium. Mankiw 
uses a two-period model in which the risk-free rate is fixed and shows how the 
concentration of idiosyncratic shocks throughout the population affects the 
equity premium. Under certain circumstances, an cconometrician who uses 
per-capita consumption series and a representative agent framework wil l over-
predict the degree of risk aversion required to generate an equity premium of 
the magnitude observed. Hence, a potential explanation of the equity premium 
puzzle is that it is an artifact of the representative agent model. Problem 3 
below is based on the Mankiw paper. This point has been further studied by 
Weil [?] who also models the risk-free rate. Kahn [?] also develops a two-period 
model with moral hazard and imperfect risk sharing. 

There is a recent literature studying these issues using infinite-lived agent 
models. While the results are very preliminary, there appear to be some gen­
eral conclusions. In a model with no aggregate uncertainty and with i.i.d. 
shocks for individuals, Aiyagari and Gertler [?] have found in simulations that 
the borrowing constraints did not generate enough volatility of asset returns. 

J The Euler equation tests that we described in Chapter 4 typically assume ex ante het­
erogeneity among consumers but rely on the aggregation conditions specified by Rubenstein 
[?] in order to derive representations involving aggregate or per-capita consumption. 
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To improve their results, they also included transactions costs. This is sim­
ilar to the results of the papers by Heaton and Lucas [?], who work with a 
three-period model and incorporate transactions costs, short sales constraints 
and borrowing constraints. Telmer [?] develops a model in which there is both 
aggregate and individual uncertainty. While he is unable to prove formally 
existence and uniqueness of equilibrium, he does have a computational algo­
rithm which allows him to simulate the model. He finds that introducing a 
risk-free asset allows the agents to do a great deal of consumption smoothing. e 

Constantinides and Duffie [?] have pointed out that in most of these models, 
the idiosyncratic labor income shocks are i.i.d. and hence, transient so that 
the permanent income of agents is almost equal across agents despite imper­
fect risk sharing. Hence, the consumption smoothing opportunities afforded 
by a risk-free bond are almost enough to allow risk sharing and that this is 
the reason transactions costs and short sales constraint are needed. 

We now study equilibrium with incomplete markets and borrowing con­
straints. We first describe how to prove existence and uniqueness of the com­
petitive equilibrium for this model, and then study some of its implications. 
To construct the equilibrium, we start by fixing the marginal valuation func­
tion for the asset, which is equal to the Lagrange multiplier on the budget 
constraint. We then determine the price that clears the market, holding the 
Lagrange multiplier fixed. The market-clearing price that results is then held 
fixed as we solve for the marginal value function. The method of proof in this 
step follows that of Deaton and Laroque [?]. We then show that the marginal 
value functions are increasing and concave in the market-clearing price. In the 
final step, we show that there exists a unique price function that clears the 
market that is also used to construct the marginal valuation function. 

A l l variables are measured as per-capita. We retain the assumption that 
there is one unit of the durable asset. We will search for a stationary equilib­
rium. The state of the system at time t is described by the Markov process st 

and the distribution of the durable asset across the type 1 and 2 agents. As 
before, we assume that agents within a class - type 1 or type 2 - are identical. 
The proportion of each type of agent in the population is fixed. Let Xi denote 
the amount of the asset held by the average type i agent and let x be the 
vector {x\,X2)- At the beginning of the period, the distribution of the durable 
asset across agents satisfies 

1 = osci + (1 - a)x2. (1.33) 

The state of the economy is summarized by (x, s). 
The representative type i agent, for i = 1,2, chooses stochastic sequences 

"Other related papers are by Brown [?] and Danthine, Donaldson, and Mehra [?]. 
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{ci,t,ti,t} to maximize 

Eo^0'{U(Ci,t)- W(* M ) ] J , (1.34) 

subject to the set of constraints 

Zi,t+i~Zi,t = (Vi,t-Ci,t)/(lt, (1-35) 

Vi,t = Oi(st)kt, (1-36) 

the nonnegativity constraints 

Zi,t+i > 0, ei<t > 0, * , t > 0, (1.37) 

and initial conditions . T , , O = zi,0 with 1 — a^i.o + (1 — a)x2,o-
There are two features worth noting about this problem. First, it rules out 

complete insurance of idiosyncratic risk by ruling out the existence of prices 
to consumption contingent on any possible history {s,,(u>), s < t}. This can be 
described in terms of the underlying probability space. One possible reason 
for idiosyncratic risk to be uninsurable may be that the shocks to individuals' 
productivity are not publicly observable. Second, the above problem assumes 
thai individuals in this economy face borrowing constraints. The borrowing 
constraints are introduced through the constraint that the asset holdings of 
the consumer must be nonnegative at all dates and all states; i.e., Zi,t+\ > 0. 
Notice that if the agent is productive, he chooses both consumption and labor 
supply. Otherwise, he chooses only consumption. Also, when the agent is 
unproductive, he is able to consume a positive amount by running down his 
asset holdings. 

We now study the consumer's problem as a dynamic programming prob­
lem. The average type i agent who begins the period with asset holdings z 
solve 

Vi(z,x,s) = 

max fc/(c) - W(e.) + 0 [ Vi(z',x',s')F{s,ds') 
{c,e,z'} . Js 

(1.38) 

subject to the constraints (??) - (??) and the law of motion for x. We assume 
that z e Z = [0, z] where 1 < z < oo, I € [0, L\ where L < oo, and c e [0, Y] 
where Y < oo. Also assume that x,; € Z for i = 1,2. 

The equilibrium price is a function q : S —> K + such that {q : 0 < q(x, s) < 
oo,(x,s) € S}. Notice that if q is strictly positive, then the set of values 
{c, (., z'} satisfying (?? - ??), denoted 4>(z, x, s), is compact and convex-valued. 
If q is continuous, then under Assumption ?? , <f> is continuous in s. Let V be 
the space of bounded, continuous, real-valued functions Vi(z,x,s) on Z x S 
with the norm = sup|Vj(z,x, s)\. Given any continuous, strictly positive 
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price q, it is straightforward to show that there exists a unique value function 
satisfying (??). This summarizes the information we need for the individual 
agent a £ A. Let us define an equilibrium for this economy. 

Def in i t ion 1.2 A stationary equilibrium is a set of functions q : ZxS —»0?+, 
Ci(z,x,s), ii(z,x,s), and z , (z,x,s) , defined on Z x S and measurable with 
respect to Tt, such that 
(i) c , (z,x,s) , (j(z,x,s), and Zi(z,x,s) solve (??) subject to the constraints 
(ri)-cri); 
(ii) markets clear: 

1 = azi(zux,s) + (1 - a)z2(z2,x,s). (1.39) 

and 

ayi + (1 - ct)y2 = aci(zi,x,s) + (1 - a)c2(z2,x,s), (1-40) 

where & = $i(s)(i(zi,x,s), and 
(in) the laws of motion for the system variables x evolve as 

4 = Zi{xi,x,s), i = 1,2. (1.41) 

Recall that if we know xi, then we can determine x2 from the market-clearing 
condition (??). Without any loss of information, we can define £,(x,-, s) as the 
equilibrium multiplier on the constraint (??) for the representative type i agent 
when the average holdings of the durable asset by the type i agents at the be­
ginning of the period is Xj. The pair ( X J , s) completely describes the state of the 
system. Similarly, let c,(x,,s) = Ci(xi,x,s) denote the equilibrium consump­
tion for the representative type i agent, and let ^,(x,,s) = ^ ( X J , X , s) denote 
the equilibrium labor supply. Finally, let fi denote the partial derivative of 
the value function with respect to its first argument, or iptfe, s) = Vt'(xi, x, s). 

The equilibrium first-order conditions for the representative type i agent 

are 

- (L42) 

W(ei(xi,s)) = 0i(*Mx*>s\ (i.43) 
q(x, s) 

Zi(xi,s) = 0E.[i/nte,J)]+iH, (1.44) 

where p is the multiplier on the nonnegativity constraint for Zi,t+i so that pi = 
0 only if z^+i > 0. The envelope condition is <pi(xi,s) = U'(cj(xi,s))q(x,s). 
When 6t = 1, the agent always produces enough so that Zj,t+i > 0 and u = 0. 
When Bj = 0, the maximum that the agent can consume is c, = z,q. Hence 
the multiplier & obeys 

&(xi, s) = max [U'(xiq{x, s))q(x, s), BE&ix'j, s')] . (1.45) 



16 Borrowing Constraints and Transactions Costs 

Define the function h by 

h(k) = (WT\k) 

for k > 0 so that h : 5?+ —» [0, L\. Recall that the definition of the function g 
is g = (C/ ' ) _ 1 so that g : 3?+ -» [0 , f ]. Given (x,s), for fixed & > 0 and <? > 0, 
equations (??-??) are four equations (i = 1,2) in four unknowns (ci, 02,^1,^2) 
which are the value of the functions C J ( X J , S ) and ^(x,-, s) when & = £i(x8-,s) 
and a - g(x, s). The values ( C J , ^ ) satisfy c, = </(&/g) and 4 = h{9^i/q). For 
notational convenience, define the function H as 

tf(fc,0) = 9h(9k)-g{k). 

Propos i t i on 1.1 Under Assumption ??, H\ > 0 and i f i j < 0, wnere Hi de­
notes the partial derivative with respect to the ith argument. Also, l i m ^ o H(k, 9) 
—B = —00 and Unit—oc H(k, 9) = L. 

It is straightforward to verify these properties under Assumption ??. Notice 
that g is a function satisfying U'(g(k)) = k such that g'(k) = (U")~l < 0 and 
g"(k) = -U"'/(U")2 < 0. The function h satisfies W'(h{k)) = k. The solution 
(ci, (i) for i = 1,2 to equations (??-??) can be used in the budget constraints 
(??) to solve for the average asset holdings next period x\ of type i agents. 

So far we have established that for fixed (x, s) and given q > 0 and & > 0, 
equations (??) and (??-??) form a system of six equations in six unknowns. 
We now fix only the functions and determine the value of the price q such 
that markets clear; essentially we are adding one more equation and one un­
known. Substituting for x- into (??)and using (j = li(Xi,s), Ci — C J ( X J , S ) and 
6i = 9i(s), the market-clearing price satisfies 

1 = a + X ] (1-a) 
hh - c 2 

•I 
x2 

= 1 + a[0ili - Cl] + (1 - a)[92t2 - c2] 

Subtracting 1 from both sides and substituting H and taking as given the 
values & = £,(x,, s) for fixed Xj , s, the market-clearing price q > 0 satisfies 

aH(Z1/q,9l) = -(l-a)H(S2/q,92). 

We have the following result. 

(1.46) 

T h e o r e m 1.1 Under Assumption ??, for fixed x* € Z and s € S and given 
& = £t(xj, s) such that £j > 0, £/tere exists a unique solution q : Z x 5 x 3? + x 
5J+ —> 5t + i/iat is strictly positive and continuous. 

P R O O F . 

Under Assumption ?? , l im,_o H(£/q, 9) = L and l im 9_oo H(£/q, 9) — —B. 
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From Proposition ??, it follows that the left-side of (??) is decreasing in q and 
the right-side is increasing. At q = 0, linty_oo h(ip) = L and l im^,_ 0 0 g(il>) = 0 
so that l ini0_- ) o /)(?/>) — g(ip) = L. As q increases, h — g decreases. For each 
s G S, either B\ = 0 or #2 = 0 so that the labor supply is constant at zero for 
one type of agent. Hence, there exists a unique q solving (??). Because H is 
continuous in £, it follows that q is continuous in £. I 

It is straightforward to show by differentiation that q is increasing in both 
f l and Given £i{xi,s), define q(x,s) = g (x ,s ,£ i (x i ,s ) ,£ i (x i ,s ) ) . 

Next we hold q fixed such that 0 < q < 00. In our discussion below, we 
drop the index of the agent type for convenience. Let S = Z x S and define 
C(S) denote the space of continuous bounded functions defined on the state 
space and let T>(S) G C(S) be the subspace of continuous functions that are 
nonincreasing in their first argument. The space V(S) is a Banach space. 

We have the following lemma. 

L e m m a 1.1 Let £ G ~D(S) so that £ is nonincreasing in its first argument. 
Fix q G 3?+ such that 0 < q < oc. Let 0 G 5R+ and let the function G : 
3?+ x S —> 3?+ be defined by 

G{ip,x, s) = 

^U'(xq)q,l3lj(x+1-H(v/q,e)ys^ F(*,ds') ] • (1-47) 

Then G is nonincreasing in ip and x. Furthermore, \im,i,-.oG(ip,x,s) = 00 
and l i m ^ o o G(i>, x,s) = G> U > 0. 

P R O O F . 

The assumptions on £ and q ensure that G is nonincreasing in its first ar­
gument. An increase in ip increases H(>l!/q,9) which decreases £, hence G 
is nonincreasing in its second argument. As tl> —» 0, H(IJJ,9) = —B and as 
lim^—oc H(iJ},6) = L. As ip —> oc, H(ip,8) = L. Hence, 

G(x, s) = lim G(</>, x. s) = 0 f $(x + L/q, s')F(s, ds') > 0. 
<P—00 Js 

I 

Let q be fixed as before and let / be a solution to 

f(x,s)=G(f(x,s),x,s) (1.48) 

lax [u'(xq)q,0 jst(x+^H(f(x,s)/q,e),s'^ F(s,ds') 

max 

= max 

Define T\ as the operator that assigns the solution / to the function G so that 
/ = T\G. We have the following lemma. 
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L e m m a 1.2 Assume that £ 6 T>(S) so that G as defined in (11) satisfies the 
conditions of Lemma 11. For fixed q such that 0 < q < oo, let f : S —* 9?+ be 
the solution to (11). Then: 
i) There exists a unique f* € C(S) satisfying (11). 
ii) The solution function satisfies f € V(S) so that T\ : T>{S) -» V{S). 
Hi) Ifd > G2 for all (0,x,s), then T , G i > TXG2. 

P R O O F . 

Under the conditions of Lemma 11, G(0,x,s) — 0 is continuous and strictly 
decreasing in 0. For a fixed (x, s), H(ip/q, 9) is increasing in 0. For G € V(S), 
let xb satisfy 

0 = G(ip,x,s) 

= max U'(xq)q,0JsZ(z + L-H{^/q,9),s^ F(s,ds') (1.49) 

Clearly the left-side is increasing in ib which, under the assumption that G € 
V(S). implies that the right-side is decreasing in ip. As tb —> 0, the left-side 
tends to 0 and the right-side tends to oo. As ip increases the left-side increases 
and the right-side tends to G. Hence, there exists a unique if> that satisfies 
(??). 

It also follows that 

max U'(xq)q,0Jj (z + -H(rb/q,0),s'^ F(s,ds') 

is continuous and strictly decreasing in ib. Therefore, / * is continuous and 
f*(x,s) is decreasing in its first argument. 

Suppose that G\ e V(S) and G 2 € V{S) and that G\ > G2 where 

Gi(ib,x,s) = 

[u'(xq)q,(3Js£i (z + ±H(tb/q,6),/) F(s,ds')j , max 

for i = 1,2. 
Let ip\ be the solution to the equation [0 = G\{ib\,x,s) — ib\] and let ip2 

be the solution to [0 = G2(xb2,x,s) — tb2\. It follows that 

Gi(ip2,x,s) - i\>2 > G2(ip2,x,s) - 02 = 0 

so that 

01 - 0 2 > G i ( 0 i , x , s ) - G 2 ( 0 2 , x , s ) . 

Therefore, /,* = TG\ > TG2 = / | . I 
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For a fixed 0 < q < oo, let the operator T 2 : V(S) —> V(S) be defined by 

e+1(x,s) = (T2C)(x,s) (1.50) 

= max U '(xq)q,0Jse ( s + I f f f ^ , /•••>.-// 
1 V <? 

We have the following theorem. 

T h e o r e m 1.2 Let 0 < cj < oo be fixed and let T 2 : T>(S) -»2>(S) be defined 
by (??). Under Assumption ?? , Ijj is a contraction. 

P R O O F . 

For an initial guess £° € it is clear that 

0 j f 4° (x + ^ ( 0 / 9 , 0 ) , s ') F(s , ds') 

is an element of T>(S) for fixed ip such that 0 < ip < oo. Under the conditions 
of Lemma ?? , the solution 

f*(x,s) = 

max U'(xq)q,0Jse (x + (x, .s)A/ ,0) , / ) F(s,<fc')] 

is an element of X>(iS). 
Let £1,62 G ̂ (<5) and assume that £1 > £ 2 . For fixed ip, it follows that 

max U'(xq)q,0 j f €1 (a:+ -ff(tf>/<Z. F(s,d«') 

U'(xq)qji [x + -qH^/q,9),8^ F(M*') ] . max 

Under the conditions of Lemma ?? , it follows that 

T2£i(x,s) = 

> max 

[y'(l<7)9,/3 Js€1 (* + i / / ( T 2 £ , A/, #),*') F(s,ds' 

\xq)q,0 (x + i t f ( T 2 6 / 9 , 0 ) , s ') F(s,ds') 

Hence, T 2£i > T 2 £ 2 so that T 2 is monotone. 
Let 0 < a < 00. To show that H has the discounting property, notice that 

0 + a)(x+ l-H((S + a)(x, s)/q,6),«') F(s,ds') 

- 0Js^ + a ) (* + ~qm{x' H ) l q ' 6 ) - *') F ( * ' r f S , ) 

< 0 jf £ ( x + i t f (£(x, *)/<?, 0 ) , / ) F ( s , d s ' ) + ^ . 
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so that Z2 has the discounting property. Hence, T2 has a unique fixed point 
C- • 

To find the equilibrium, the first step is to study the behavior of £* as a 
function of q. Before we can do this, we show that if U' is convex and W 
is concave, then £* is convex in x. The argument is basically as follows. We 
have established that there exists a unique fixed point in the space T>(S). If 
we start in the subspace of T>(S) consisting of nonincreasing convex functions 
and show that the operator T2 maps those functions into other functions in 
the same subspace, then, because of uniqueness, we know that the fixed point 
is a function that is convex in x. 

P r o p o s i t i o n 1.2 / / U'" > 0 and W" < 0, then £* is convex in x. 

P R O O F . 

Fix q such that 0 < q < 00. Suppose that £ S T>(S) and that £ is convex in 
its first argument. Then the function G defined in (??) 

G(ip,x,s) = max U'(xq)q, 0 js i (x + ^H(4>/q, 9), s ') F(s, ds')] 

is convex in (0,x). For fixed (tp,s), it is straightforward to verify convexity in 
x. To show that 67 is convex in tp, notice that 

^ jf ^n(x\s')H'Wq,9) + ( x ' ,s ' ) l -H"Wq,9) F{s,ds') > 0, 

where the convexity of U' and concavity of W are used to show that H" < 0. 
Because G is convex in (ip,x), the solution to [G{tb, s) — ip = 0] is also convex. 
Recall that T2£ is the solution ip to the equation G(ip, x, s) —0 = 0. Let 
A 6 [0,1] and let xt,x2 € X. Define ipx = T2$(xus) and ib2 = T 2 £(x 2 , s ) . 
Then G{ip\,x\,s) —ipi= G(ip2,x2,s) — ip2 = 0. Because G is convex, 

G(AT 2 £(xi ,s) + (1 - A ) r 2 ^ (x 2 , s ) , Ax, + (1 - A)x 2 ) 

- [AT 2^(x!, s) + (1 - A) r 2 £(x 2 , s)] < 0. 

Since G is decreasing in its first argument, it follows that T2£ is convex in x if 
£ is convex in x. I 

For fixed x,s, notice that x' = x + (l/q)H(£*/q) is a function of q; for 
notational convenience, we write x' = a(x,q, s). It follows that the fixed point 

is also a function of q\ to emphasize this, we will write = i1{q). If we can 
show how x' changes as 17 varies, we can determine how P. changes as q varies. 
The results are summarized in the next proposition. 

P ropos i t i on 1.3 Let 0 < q < 00 and let Q(q) = £* be a fixed point of T2 

where T2 is defined in (7?). Then £* is continuous, increasing and concave in 
1-
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P R O O F . 

For a fixed 0 < i[> < oo, notice that 

da{x, q, s) 
dq 

Hty/q) + ^HWq) < 0. 

For this to be true for the unproductive agent, we have used the condition 
—U"c/U' < 1 in Assumption ??. It follows that is increasing in q. 

Next, 

d2a{x, q, s) 
dq2 

q° 
0 
- H' + 

, , H"rl> 

'I 
+ H + 

2H'il> 
> 0 

because, under Assumption ?? , 

H»1> W \W" W"'l b" \U" 

1 (W")2 w ' ' W". (U")2 

V ' ' ~u~". 
>0. 

Hence x' is decreasing and convex in q. Because £* is nonincreasing and convex 
in x' and 

d$(x',s) dx' 
dq dx' dq 

= Suai(q,x, s)+tfan{q,x,s), 

it follows that £* is nonincreasing and concave in q; or iY > 0 and $2" < 0. 
I 

Although we have found a fixed point £* for a given q and determined the 
market clearing price q for given £i and £2, we have not shown that q = q. In 
fact, we must address the issues of whether a solution exists and if it exists, 
whether it is unique. F ix (x, s) and define the function Qi(q) = which 
expresses the fixed point £* as a function of q. Define the function v : [0,00) —» 
(0, oc) as the solution to 

Q » « $ § U ) ] + ( . - « > - 0. (1.51) 

For notational convenience, let H[ denote the partial derivative with respect 
to the first argument of H for an agent of type i. We have the following 
proposition. 

P ropos i t i on 1.4 Let v be as defined in (??). Under Assumption ?? , v is 
increasing and concave. 

P R O O F . 

Differentiating (??) with respect to q and solving for v', we have 

Ad) = aH Mq) 
1 HQ) 

+ (l-a)H: Mq) -1 

aH'&iq) + (1 - a)H2rt2{q) > 0. (1.52) 
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For notational convenience, define Ai = il'^q) — Sli{q)v'{q)/v(q). Then (??) 
can be written as aH[A\ + (1 — a)H'2A2 = 0. Differentiating the preceding 
equation with respect to q and simplifying, we have 

a [H'{(A,f + fljftf] + (1 - a) [H2'{A2)2 + Hffl] = 

Because H" < 0 and fi" < 0, the left-side is negative. The coefficient on v" is 
positive. Hence v" < 0. I 

We have the following proposition. 

P r o p o s i t i o n 1.5 Under Assumption ??, there is a unique fixed point q = 
u(q). 

P R O O F . 

Notice that if 

a II 
fli(fl) 

then v(q) < q, while if 

H ^ ( q ) 
II 

ih(q) 

>0, 

<0, + ( ! - « ) 

then v{q) > q. Recall that U'(xq)q is increasing in q and that 

(l/q)H(i>/q) 

is decreasing in q. Because U' is unbounded, we can show that for all c < c*, 
cU'(c) > U and U > 0. Notice that £ is bounded below by 0 and bounded 
above by some £. Hence as q —> 0, £* —» £/. Then, for some 0 < e < oo, as 
lim9_rji we have 

limta H 

= [a[ff(JZ/O,0i)] + (l-a)[ff(£//O ,02)] = Q L > 0. 

Hence i/(0) > 0. As q —* oo, £* is bounded and lim,—,*, U'(xq)q = oo. Recall 
that as v —* oo, —> L. We show that 

l im \a 
q—too 

+ ( l - a ) 

= n 
r (L N \ ' (L \\ 
H(—,9i) + ( l - o ) Hi—,92) + ( l - o ) 

. Voo J. 
= -IB < 0. 
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Hence there is some Q such that for q >Q, 

o. H ni(«) + ( l - o ) 02(«) 
,«2 < 0. 

Hence, ^(g) < 9 for 5 > Q. Because c(U) > 0, v' > 0, v" < 0 and there exists 
some Q such that v(Q) < Q, a fixed point exists and is unique. I 

The fixed point v(q) = q was constructed holding the state (x, s) fixed, 
so that we can define the function q(x,s). This function has the properties 
that markets clear and the fixed point of the marginal valuation function 
was constructed holding the function q fixed. This is the unique stationary 
equilibrium for which we have been searching. 

We now wish to study some of the implications of the equilibrium. Notice 
that in equilibrium, the first-order condition of a type i agent with respect to 
asset holdings can be written 

l=0Es 

U'(c,(x',s'))q(x',s') 
.U'{*(x,s)) q(x,s) 

which can be rewritten as 

0ES 

U'iaix'^')) 
U'(Ci(x,s)) 

<j(x, s) 
Es(q(x',s')) 

U'iaix'^')) 
1 - Cov s 0 

q(x',s') 
C/'( C i(x,s)) ' q(x,s) 

The covariance of the asset return with an agent's intertemporal marginal rate 
of substitution will depend on what type the agent is, and there is no reason 
to believe that agents will set the ex ante intertemporal M R S equal. This 
occurs because we have not introduced a risk-free asset into the model. As 
Scheinkman and Weiss note, introducing additional assets into the model may 
change this result. It is still the case, however, that the ex post MRS will be 
different across agents because of the limits to pooling risk resulting from the 
borrowing constraints. 

Another feature of the equilibrium is that the borrowing constraints do not 
bind in equilibrium. The argument goes as follows. Recall that we assumed 
l im c_o U'(c) = 00. For a fixed price 0 < q < 00, suppose that the constraint 
was binding for some agent so that f (x, s) = U'(xq)q, implying that c = xq. 
Then the multiplier next period when there is no savings and the agent is 
unproductive, which is always a possibility, is equal to 

t;(0,s') = max[U'(O)q',0EA{O,s")} = 00. 

In that case, 0E3£(O, s') = 00 so that £(x, s) = 00. If £(x, s) = 00, then for 
the first order conditions to hold, 

U'(c) = ~ 
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so that c = 0, which is a contradiction. Thus, the solution to equation (??) is 
satisfied with m = 0 and 

&(»,«) = 0Es{U'(ci(x'i,s,))q(x,,s')}. (1.53) 

This feature also arises in the models considered by Bewley [?] and Deaton [?]. 
Nevertheless, the nonnegativity constraint on the accumulation of nonhuman 
wealth alters the ensuing equilibrium because, as we showed in Section 7.1.2, 
allowing unrestricted borrowing yields allocations that are identical to the 
complete markets equilibrium. 

The intertemporal MRS of both agents are used to price the asset in equi­
librium. An econometrician using aggregated consumption data would not be 
able to evaluate the equilibrium Euler equation. One of the model's impli­
cations is that the distribution of asset holdings across consumers affects the 
asset price and output. Using this implication may provide a way of testing 
the model's restrictions. We postpone discussion of some of these issues until 
the next chapter. 

1.2 Transactions Costs 

During the process of buying or selling most assets, some kind of transactions 
cost is incurred. Often, these costs take the form of a difference between the 
price at which the asset is sold and the price at which it can be purchased, 
commonly known as the 'bid-ask' spread. Transactions costs can take other 
forms such as up-front fees on load mutual funds and brokerage commission 
costs. Aiyagari and Gertler [?] report that the ratio of the bid-ask spread to 
the price is .52% for actively traded stocks and that this ratio increases as firm 
size declines, reaching 6.55% for the average firm with assets under ten million 
dollars. For the buyer or seller, there are additional costs associated with 
managing a portfolio such as information costs and bookkeeping costs. For the 
financial intermediary, which may take the form of an exchange or an organized 
market, the fees, commissions, and the bid-ask spread paid by the buyer and 
seller of assets are charges for the services provided by the intermediary. Three 
kinds of costs faced by an intermediary have been emphasized in the literature: 
order processing costs, which can include research and information gathering 
costs and costs of providing financial counceling; inventory holding costs, which 
take the form of price risk because there may be a time lag between the time 
the dealer buys an asset and the time he sells it; and adverse information 
costs. Adverse information costs may be incurred when there is asymmetric 
information. Current prices may signal negative information about the value 
of the asset which changes its equilibrium price. If the dealer is the asset 
holder, then he may suffer a loss from the price change. A general discussion 
on the components of the bid-ask spread is by Stoll [?] and Glosten and Harris 
[?]. The inventory risk has been studied by Amihud and Mendelson [?] and 
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Stoll [?], among others, while the adverse information costs has been studied 
by Copeland and Galai [?]. Glosten and Milgrom [?] and Easley and O'Hara 

[?]• 
If the liquidity of an asset is measured by the cost of immediate execution of 

a transaction, then the quoted ask price can include a premium for immediate 
purchase and the bid price can include a discount for immediate sale. The bid-
ask spread can be interpreted as a measure of liquidity; the spread is smaller 
for more liquid assets. Several empirical studies, such as that by Amihud and 
Mendelson [?], have concluded that average risk-adjusted returns increase with 
their bid-ask spread. An empirical study of liquidity and yields is by Amihud 
and Mendelson [?]. 

Another type of cost affecting trading volume is a securities transactions 
tax. This type of tax has been considered in the U.S. and exists in many other 
countries; see the survey by Schwert and Seguin [?] and the article by Umlauf 
[?] for examples. Proponents of the tax argue that the tax would reduce 
excess price volatility caused by excessive speculation, generate tax revenues, 
and increase the planning horizons of managers; agruments for this sort of 
tax are contained in the articles by Stiglitz [?] and Summers and Summers 
[?]. The notion that there is excess volatility in financial markets becasue 
of destabilizing speculation is discussed by DeLong, Shleifer, Summers, and 
Waldman [?]. Critics of the tax proposal argue that it would increase the 
costs of capital, distort optimal portfolio decisions, reduce market efficiency 
and drive markets to lower tax countries; see the papers by Grundfest and 
Shoven [?], and Kupiec (?) [?], Rol l [?], Ross [?], Schwert [?] and the article 
by Grundfest [?] for examples. 

While there is an extensive literature studying transactions costs in asset 
markets, there has not been a great deal of work on the effects of these costs on 
equilibrium interest rates. One approach is to assume price processes and then 
derive the effect of transactions costs on optimal consumption and portfolio 
decisions. This is the approach taken by Constantinides [?], Duffee and Sun 
[?], Dumas and Luciano [?], among others. Grossman and Laroque [?] study 
optimal portfolio and consumption choices in the presence of an illiquid durable 
consumption good such as housing. In their model, optimal consumption is 
not a smooth function of wealth. It is optimal for a consumer to wait until 
a large change in wealth occurs before changing his consumption. A rise in 
transactions cost increases the average time between the sale of durable goods. 
They conclude that the standard consumption C A P M does not hold. 

Aiyagari and Gertler [?], Heaton and Lucas [?], and Vayanos and Vi la 
[?] are examples of general equilibrium models with transactions costs. The 
papers by Aiyagari and Gertler and Vayanos and Vi la have no aggregate uncer­
tainty although there is individual-specific risk. The Heaton and Lucas model 
has aggregate uncertainty but is a three-period model. They find that, if trad­
ing in some assets is costless, then agents substitute almost entirely away from 
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assets that are costly to trade. Agents would prefer to alter the composition 
of their portfolio rather than pay transactions costs or tolerate more volatile 
consumption. Because agents tend to specialize in holdings of assets that are 
costless to trade, they conclude that small changes in transactions costs do 
not have significant price effects. 

We do not attempt to construct a general equilibrium model here. To 
study the effect of transactions costs on trading volume and equilibrium as­
set prices requires the use of a model with heterogeneous agents, which has 
proven to be analytically difficult.7 Instead, a basic description of the dynamic 
programming problem faced by an agent is provided. 

1.2.1 A Model with B i d - A s k Spreads 

Suppose that there is a financial intermediary, such as an organized exchange 
who facilitates trade but charges a proportional fee in an amount depending 
on whether the client is buying or selling an asset. The fees may reflect the 
costs of processing the order, price risks associated with the transactions, and 
informational asymmetries. For simplicity, we assume that the profits of the 
intermediary are distributed lump-sum to the agents of the economy. At time 
t, agent i has random income y\ and holds a portfolio comprised of an equity 
share z\, which pays a fixed dividend d, and risk-free bonds issued by the 
government which sell at discount at price 1/(14- rt). If agent i sells an equity 
share, he receives the price qt(l — as) and if he buys an equity share, he pays 
the price qt(l + Oft). The difference in the prices at which the equity is sold 
and bought is the "bid-ask" spread, which equals 

qt(ab + a,,). 

Notice that we make no attempt to explain the origins of the spread and 
instead treat aj, and as as parameters. We can view this spread times the 
number of transaction as the profit of the financial intermediary; let irj denote 
the per capita profit of the intermediary. This is described more fully below. 
Let st denote the vector of exogenous states variables that agent i needs to 
make a forecast of returns, dividends, income and consumption next period. 
The budget constraint of agent i at time t takes the form 

Vi.t + biit + zi,tdt - T ( - m a x { a b ( z M + i - z,,,), as(ziit - ziit+i)} 

+ *f,t > Ci,t + qt(zi<t+l - Zi,t) + ^ f t i . (1.54) 
1 + rt 

7It is possible to incorporate transactions costs in the production technology. For example, 
Marshall [?] incorporates money into a general equilibrium model assuming that holding real 
balances lowers the resource costs of consuming. 
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We set this up as a dynamic programming problem. The representative type 
i agent solves 

V{yi,Zi,bi,s) = max[U(ci) + 0EsV(y'i,z'i,b,

l,s')} (1.55) 

subject to constraints described below. Notice that the first-order conditions 
depend on whether the agent decides to buy, sell or hold the equity share Zj,j. 

To study the properties of the dynamic programming problem under trans­
actions costs, we split the problem into three subproblems. Define Va as the 
value of selling equity shares. The problem is 

Va(y, z, b, s) = max [U(c) + 0EsV(y', z', b', s')\ (1.56) 

{c,b>,z'} 

subject to (??) and the constraint 

2 > z'. (1.57) 

Next, define the value function if the agent decides to sell, Vft. The problem is 

Vh(y, z, 6, s) = max [U(c) + 0EaV{y', z', b', s')} (1.58) 
{C,6',J'} 

subject to (??) and the constraint 

z < z'. (1.59) 

Finally, the value of holding onto the existing equity shares, 

Vh(y,z,b,s) = max{U(c) + 0EsV(y',z.b',s')} (1.60) 
subject to 

b' 
. r <y + zd-T + irf. (1.61) 

We can then write the dynamic programming problem as 

V(y, z, b, s) = m&x[Vs(y, z, b, s), Vh(y, z, 6, s), Vb(y, z, 6, s)] (1.62) 

Under this formulation, we have still retained the recursive structure of the 
problem. As an example, we solve one of the subproblems. Consider the 
solution to Vs. The first-order conditions are 

U'(c) = £, (1.63) 

= 0E3V3(y'i,z'i,b'i,s% (1-64) 1 + r 

£sq{l-a3) - 0EsV2(y'i,z'iX^') + ns, (1-65) 
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where us is the multiplier attached to the constraint (??), and £ s the multiplier 
on the budget constraint. If (ia = 0, then the constraint is nonbinding and 

^q(l-aa) = 0EaV2^iM,$'), 

otherwise, 

^q{l-as)>0EaV2{y'i,z,

i,b'i,s1). 

We can derive a similar equation for the subproblem of buying the equity share 
with the result that 

^q(l+ab)<0EsV2(yl, z'iXs')-

which holds with equality of the constraint (??) is nonbinding. Notice that 
under this formulation, the function V denotes the value function assuming 
that the agent behaves optimally at all future dates. The slope of the value 
function with respect to equity shares is given, and the agent must choose the 
optimal course of action - buy, sell, or hold - in the current period. 

We can define an operator T by 

TVn(y,z,b,s) = 

max[Vs

n(y, z, b, s), V£(y, z, b, s), Vb

n{y, z, b, s)} (1.66) 

where V" is defined for i = s,b, h. Notice that T is monotonic. If W > V for 
all (y,z,b,s), then notice that TW > TV. Furthermore, T discounts. Each of 
the Vi is concave and the maximization operatior preserves concavity so that 
V is concave. 

Our discussion is incomplete in the sense that the agent takes as given the 
equity price function q and the return on the risk-free asset r. As we mentioned 
earlier, constructing an equilibrium with heterogeneous agents is analytically 
difficult. 

1.2.2 Volatility Bounds with Frictions 

In Chapter 4, we described how to derive the mean-standard deviation region 
for intertemporal MRS's that are used to price random payoffs in dynamic 
asset pricing models. We now extend this discussion to account for short sales 
constraints, transaction costs and borrowing constraints. As in in our earlier 
discussion, the volatility bounds we derive here can be used as a diagnostic 
tool for determining the class of asset pricing models that are consistent with 
asset market data. 

We derive restrictions for intertemporal MRS's with various forms of fric­
tions by using a sequential interpretation of the complete contingent claims 
equilibrium that we described in Section 7.1. Let's define qt+i(u))zt+i(u}) as 
the payoff on securities purchased at time t that is realized at time t + 1. 
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We assume consumers can purchase securities that pay off for each possible 
realization of the economy. Portfolios with such payoffs can be purchased at 
the price pt+\{oj)/pt(u>) in period t. Using this notation, notice that the sin­
gle budget constraint facing agent i can be written in terms of a sequence of 
one-period constraints: 

Ci,t(^)+Et 

P«+i(w) 
. Pt(w) 

(1.67) 

for t > 0 where £;(•) denotes expectation conditional on the history of shocks, 
{ss(u)),s < t}. We obtain the single budget constraint (??) by solving (??) 
forward, where we implicitly impose a condition that the value of limiting 
portfolio payoff goes to zero. 

Volatility bounds with frictions have been derived by Luttmer [?] and He 
and Modest [?] who consider different types of constraints. Luttmer considers 
a solvency constraint of the form: 

<7<+l(w)2;,t+lM > 0. (1.68) 

According to this constraint, any contingent contract that allows debt in some 
state of the world is prohibited. A weaker version of the constraint is employed 
by He and Modest who require that 

Ei P e + i M 
Pt(w) 

g ( + i(w)2i,, + i(a;) > 0. (1.69) 

This states that the value of the portfolio payoff today must be nonnegative. 
It does not preclude q~t+i(u>)zij+\ from being negative in some states of the 
world. We refer to it as the market-wealth constraint. We can show that the 
borrowing constraint in Scheinkman and Weiss is a market-wealth constraint. 
Consider the Kuhn-Tucker condition for the nonnegativity constraint, 2j,e+i > 
0 given by /ti,(2,-,e+i = 0. Using the first-order conditions (?? -??), this can be 
expressed as 

Et[)3U'(c^+i)qt+l - f / ' (c M )o ( ]2, , 4 + 1 = 0. 

Using the above result, we can substitute for qtZi,t+i in the budget constraint 
Zi,t+i - ziit = (OiJi,t - Ci,t)/qt as 

ct + Et 
HU'(cu+i) 

U'(a,t) 
<lt+\Zi,t+\ = OiJi.t + qtzt-

Since qt is strictly positive, the requirement that 2(,i+i > 0 is equivalent to the 
form of the market-wealth constraint (??) postulated by He and Modest. 

Now we analyze the implications of these constraints for individuals in­
tertemporal MRS's with complete markets. Let £i.t(io) denote the multiplier 
on the single-period budget constraints (??)• Using the same preferences as in 
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Section 10.1.1, the first-order condition with respect to the portfolio weights 
2 i , t+ iM imply that 

Et 
p<+iM 
Pt(w) 

= 0, 

where the elements of the vector fii,t(ui) equal zero if and only if the corre­
sponding elements of Zt£+i(u) are strictly positive. Substituting for &,*(<*>), 

/ ? i / ' ( C < i ( + 1 M ) P(+i(w) 

. M w ) 
(1.70) 

Let Ml denote the individual intertemporal MRS in the above expression 
and p the ratio of the contingent claims prices. Since we assumed complete 
markets in the construction of the payoffs of the traded securities, and given 
that both M' and p are nonnegative, we also have that 

Mi < p. 11.71) 

Thus, with solvency constraints, the individual intertemporal M R S is down­
ward biased relative to the market-determined stochastic discount factor that 
is used to value payoffs on one-period securities. For certain classes of utility 
functions (including exponential and power utility functions), we can show 
that the intertemporal MRS evaluated with per-capita consumption data also 
inherits this downward bias: 

M" < p (1.72) 

where M" = 0U'(ct+i{io))/U'(ct(w)), and U is a function of the average sub­
sistence levels, 7 , and per-capita consumption, Q . (See Problem 7.5 at the end 
of the chapter.) 

Now let us consider the implications of the less restrictive market-wealth 
constraint. Consumers can now form portfolios in addition to those described 
above. Let Z denote the set of one-period security payoffs with zero market 
prices, or equivalently, the set of excess returns. Any payoff in Z satisfies the 
market-wealth constraint. Furthermore, 

EklM'z] = Et\pz\ for z £ Z. (1.73) 

The payoff M'-pEt(pM')/Et(p2) has a zero market price, that is, Et[p{M%-
pEt(pM')IEt(p2))} = 0. Using this payoff for z in relation (??), we have 

M* = ir*p for ip1 = Et(pM')/Et(p2 (1.74) 

Furthermore, (??) implies that 0 <«/>'< 1. For the the power utility function, 
we can show that 

Ma = ilfip, (1.75) 
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where 0 < tpa < 1. (See Problem 10.5.) Recall that the market-wealth con­
straint is less restrictive than the solvency constraint. As the above results 
demonstrate, the less restrictive constraint imposes the more stringent pro­
portionality requirement on the aggregate intertemporal M R S . 

Cochrane and Hansen [?] describe in detail how to compute the boundary 
of the mean-standard deviation region for intertemporal MRS's or stochastic 
discount factors that satisfy (??) and (??) in the case of two limited liability 
securities. They consider quarterly value-weighted stock returns on the N Y S E 
and T-bil l returns. Let x denote a random vector formed by stacking these two 
returns, and let P+ denote the cone of random variables or limited-liability 
payoffs that can be constructed from constant-weighted portfolios of these 
returns: 

P+ = {p:p = cx for c 6 3?2,p > ()}. 

Define the region of stochastic discount factors that satisfy (??) by B+. It 
turns out the region B+ is an expanded version of the region S+ that we 
calculated in Chapter 4 for any intertemporal MRS or stochastic discount 
factor satisfying the the asset pricing relation without a solvency constraint, 
or short sales constraints. We can also construct a region, denoted W+ for the 
set of random random variables M" such that the proportionality restriction 
in (??) holds. W+ is also an expanded version of S+, but it is smaller than 
B+. 

The mean-standard region for random variables or stochastic discount fac­
tors that satisfy (??) can be constructed by using two so-called edge portfolios, 
denoted pi and P2- Any other payoff in P+ is a convex combination of these 
edges with nonnegative portfolio weights. Since the original two returns have 
nonncgative payoffs, each edge has a positive portfolio weight on one of the 
securities and a nonpositive weight on the other. Let us normalize these edge 
payoffs so that their price is one, that is, E(ppi) = E(pp2) = 1, and order 
them so that E(pi) > E(p2). 

The boundary of B+ has three segments. To see how the first segment 
arises, notice that for any constant discount factor M" such that 0 < M" < 
l/E(pi), the inequalities in (??) are satisfied, that is, 

E(MaPi) < E(WH) = 1, i = l,2, 

Let o~(M) denote the standard deviation of some stochastic discount factor 
M. Then there is a horizontal segment at a(Ma) = 0 from E{Ma) = 0 
to E(MA) = \/E(p\). Furthermore, as long as the constant discount factor 
M" is strictly less than \/E(p\), the inequalities in (??) will be strict. When 
M" = l/E(p\), (??) will hold with equality for p i . The second segment begins 
at this point. 

Now consider the mean-standard region region for the set of (strictly posi­
tive) stochastic discount factors that correctly price p\. Following the notation 
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of Chapter 4, we denote this region Notice that the point (1/E(pi) ,0) 
is on the boundary of this set because the constant discount factor \/E{p\) 
prices p\ correctly. Also, it is easy to see that any other frontier random vari­
able for will also be on the boundary of B+ provided (??) is satisfied for 
P2- In other words, any M1 on the boundary of 5J1" such that 1 = E(Mlp\) 
will also be on the boundary of B+ provided E(Mlpi) < E(pp2). Thus, we 
follow the right boundary of S , + until we find a frontier discount factor that 
prices p2 correctly. 

The third segment of the boundary for B+ coincides with the mean-
standard deviation region of stochastic discount factors, S ' + , which correctly 
price both p\ and P2- Thus, we can find the minimum variance random vari­
ables M such that E(Mpt) = 1 for i = 1,2. For these random, (??) wil l hold 
with equality for all possible payoffs in P+. 

To construct the boundary of W+, multiply both sides of (??) by some 
payoff x. Taking expectations (first conditional on the information set at 
time t, and then unconditionally), we obtain E{Max) = E(tp")Q where 
0 < E{tpa) < 1 and Q is the price of the random payoff x. Thus, for any 
M" satisfying (??), we can find a stochastic discount factor Ma/E(ipa) that 
prices the payoffs x correctly. Since the mean and standard deviation of ran­
dom variables that are scale multiples the same scaling, we can construct the 
stochastic discount factors in W+ by scaling the discount factors in S+ by 
arbitrary numbers between zero and one. We have reproduced table 4.1 from 
Cochrane and Hansen to illustrate the various regions. 

1.3 Exercises 

7.1 Consider an economy populated by equal numbers of two types of con­
sumers. The preferences of consumers of type i,i = 1,2, over stochastic 
streams of consumption and labor hours are defined by 

oo 
£ 0 £ t f ' ( l o g ( x j ) - n ; ) > 

(=0 

where 0 < 0 < 1, c\ > 0, n\ > 0 and £o( ) denotes expectation conditional on 
information at time zero. 

Consumer of type i at date t can transform one unit of time into rru units 
of date t consumption good. The JT« are identically and independently dis­
tributed over time with 

Pr(nit = 1) = 1/2 = Pr(nit = 0). 

•K\t and TT2t are not independent. If one type is productive (i.e. 7Tjf = 1), then 
the other type is unproductive (i.e Ttjt = 0 for j j= i). Thus, 7ri ( +W2t = 1 for 
all t. 
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a) Find the consumption and labor allocations of type i = 1,2 if there 
exists a full set of contingent claims markets. 

b) Suppose there is not a complete set of contingent claims markets. In­
stead consumers may trade in a single asset, the quantity of which has 
been normalized to one. Initially, type 1 consumers hold yo units and 
type 2 consumers hold 1 - yo units. There is a borrowing constraint in 
that individuals' asset holdings must be nonnegative. Let {qt} denote 
the stochastic process for the price of the asset. 

Specify the first-order conditions that type i's consumption, labor sup­
ply, and asset holdings must satisfy. 

c) Suppose an econometrician uses the average real return on a risk-free 
nominal bill to measure the rate of time preference. Comment on this 
procedure in light of your answer to part (b). 

7.2 There are types of consumers, three states of the world. Each agent is 
endowed with one unit of labor in each state and each period. The following 
table relates output per unit of labor of consumer i = 1,2 in state of the world 
j = 1,2,3: 

Output might be stored by individual consumers at no cost and the utility 
function of consumer i is given by 

fib - t o ) , 
t=\ 

where £b(-) denotes expectation conditional on information at time 0 and 
la denotes the amount of labor used in the production of the consumption 
good. States are i.i.d. and n\ = 7r.s = .25 and TT2 = -5, where Tti denotes the 
probability of state i in any period. 

a) Find the consumption and labor supply allocations of type i = 1,2 if 
there exists a full set of contingent claims markets. Characterize the 
behaviour of aggregate consumption in equilibrium. 

b) Find the autarkic allocations. 

c) Using your answers to parts a) and b), discuss whether an econo­
metrician can use aggregate consumption data in order to determine 
whether markets are complete or not, if s/he does not know the form 
of the production technology. 



34 Borrowing Constraints and Transactions Costs 

7.3° Suppose that agents live two periods and that per-capita consumption 
takes one of two values, /x or (1 — <b)u. where 0 < <p < 1, with each state occuring 
with probability 1/2. At time zero, agents choose their portfolio. At time 1, 
the uncertain endowment is realized, the payoff on the portfolio is made and 
then agents consume. The portfolio pays —1 in the bad state and 1 + 7r in the 
good state where n is a risk premium. 

Assume that all agents are identical. The representative consumer maxi­
mizes EU(c). Let R denote the expected payoff on the portfolio so that the 
first-order condition is E(RU'(c)) = 0 which can be written as 

(1 + ir)U'(ix) - U'((l - <j>)(i) = 0. 

Let U = c ' - V ( l - 7 ) -
Solve for the risk premium n under this assumption. 

7.4 We now introduce heterogeneity and incomplete markets. Agents are 
identical ex ante but not ex post. In the bad state assume that the fall in 
aggregate consumption equal to <j>u. is concentrated among a fraction A of the 
population. This implies that in the good state, which occurs with probability 
1/2, the agent consumes p. and the portfolio pays 1 + 7r. In the bad state 
the portfolio pays -1 and his consumption is ji with probability 1 — A and 
(1 - 0/A)/i with probability A. 

a) Derive the first-order condition and the premium 7r. 

b) Show that the premium depends not only on the size of the aggregate 
shock <p but also on its distribution within the population. 

c) Assume that utility is constant relative risk aversion and show that 
an decrease in A increases n (so the more concentrated the shock the 
larger the premium). 

7 .5 9 Agents live for 2 periods and preferences are u(ci) + v{c2). The first 
period endowment is certain and equal to j/ i- The second period endowment 
is random with y > 0. A l l agents face the same distribution. Agents in 
period 1 are identical ex ante but not ex post. He assumes that there is no 
aggregate component to second period endowment uncertainty. Agents are 
also endowed with XQ trees, the dividend d\ > is known but next period's 
dividend dis random. The two sources of risk are independent. 

a) Using the fact that agents are ex ante identical, find an expression 
for the equilibrium expected (gross) rate of return on equities and the 
equilibrium (gross) risk-free rate. (For simplicity, re-scale utility such 
that w'(di +2/0 = 1.) 

"This problem is based on Mankiw [?]. 
"This problem is based on Weil [?]. 
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b) Show that an analyst who uses aggregate data to fit this model data 
will overpredict the magnitude of the risk-free rate and the equilibrium 
expected equity return if and only if v'" > 0. 

c) Show that if v(-) exhibits decreasing absolute risk aversion (so that 
—v"(c)c/v'(c) is decreasing), and decreasing absolute risk prudence 
(so that —v"'(c)/v"(c) is also decreasing), then an analyst who uses 
aggregate data to fit the model will understate the magnitude of the 
equity premium. 

7.6 Show that the volatility bound in (??) hold for the following utility func­
tions: 

U(a) i)/(i a), a > 0, (1.76) 

U(d) exp(-o(cj - 7 1 ) ) Q > 0 . (1.77) 

Let 7 ' = 0 in (??), and show that (??) holds with 
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