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1. Introduction

This paper presents a full characterization of the equilibrium value set of a Ramsey
tax model. More generally, it develops a dynamic programming method for a class of policy
games between the government and a continuum of consumers.

Starting with the seminal paper of Kydland and Prescott (1977), there is by now a
large body of literature dealing with reputation and credibility of government policies (see,
for example, Chari and Kehoe (1990, 1993a, 1993b), Persson, Persson and Svensson (1987),
Rogoff (1989), and Stokey (1989, 1991)). A main concern of this work is to determine, for
example, the extent to which the government can credibly borrow money and/or commit
to maximal levels of capital taxes. Most of these papers have partially adapted dynamic
programming techniques developed for repeated games, to deal with a situation involving
strategically anonymous players, and (sometimes) stock variables. Because of the heightened
complexity associated with the state variables and the continuum of agents, most papers
have dealt with drastically simplified models and have restricted attention to rather crude
punishment strategies.

One of the main thrusts of the paper by Kydland and Prescott (1977) was that the
inability of governments to commit to policies made the application of optimal control tech-
niques to the government’s optimization problem inappropriate. One must instead examine
policy in the context of a dynamic game. Thus, the approach of Abreu, Pearce and Stacchetti
(1986, 1990) is a natural starting point for a full analysis of most policy games. Atkeson
(1991) and others have already demonstrated that strategic dynamic programming can in
principle incorporate the presence of state variables (such as stocks of capital or debt) and

can yield useful characterizations in special cases. More generally, tractability becomes a



major concern.

A direct extension of Abreu, Pearce and Stacchetti’s results to the macro policy game
setting would require that each consumer (in the continuum of agents in the economy) be
assigned a continuation value after each history, in such a way that these values provide
incentives for conforming to equilibrium behavior, even once a consumer has the “wrong”
level of personal assets because she did not conform in the past. In general this produces a
problem that is prohibitively complex, either for the derivations of interesting properties or
for numerical computations.

We propose instead a much simpler accounting system, wherein we only keep track
of the “marginal value of capital” of an “honest” consumer and use the “convexity” of the
consumers’ dynamic consumption problem to neglect completely the incentives of dishonest
consumers. The crucial observation is that since each agent (other than the government) is
anonymous and does not affect the path of prices, for any given price path, the household’s
problem, unlike that of the government, can be treated by standard optimal control theory.
By selectively incorporating Euler conditions into the strategic dynamic programming frame-
work, we wed two technologies that are usually considered competing alternatives. The result
is a dramatic simplification of the problem.

The specific model we consider is a one-sector growth model with capital and labor,
as well as a public good which must be financed by distortionary taxes on capital and labor.
The government is unable to commit to future tax rates. Any tax policy by the govern-
ment produces a dynamic economy, and associated with each tax policy there is a Walrasian

equilibrium. In a similar model, Chari and Kehoe (1990) propose a method for checking



whether a government’s tax policy is the outcome of a symmetric sequential equilibrium:!
in every period the government should not be able to improve the total future welfare of a
representative consumer by a change in the current period’s tax rates, if this is then followed
by the worst sequential equilibrium of the ensuing subgame. There are two difficulties with
this approach. First, it assumes that one can easily construct a worst equilibrium. For many
interesting models (in particular, for ours), a worst equilibrium is not easy to obtain. Second,
this method provides no guidance on how to generate candidate tax policies. The method is
very effective if all one wants to do is to check whether the first-best solution can be sustained
in equilibrium.

In contrast, our method deals directly with the whole set of equilibrium values. We
are then able to characterize second-best tax policies when first-best policies are unattainable
because the discount factor is not sufficiently high. Another advantage of our approach is
that it allows us to examine the credibility of the punishments used in equilibrium. In
particular, we investigate the steady state of second-best equilibria. A celebrated result of
Chamley (1986) and Judd (1985) states that with full commitment, the optimal capital tax
rate converges to 0 in steady state. In our anonymous game (without commitment), when the
first-best tax policy is not sustainable in a sequential equilibrium, if the second-best policy
leads to a steady state in the limit, the capital tax rate remains bounded away from 0. The
limit steady state maintains a constant capital stock k°. It turns out that the limit steady
state policy is a worst sustainable policy in the economy where the consumers’ initial capital

stock is k*. This may seem paradoxical at first: Why should the continuation of a best

!Chari and Kehoe (1990) call such an equilibrium a sustainable equilibrium. We prefer to keep the termi-
nology from game theory, as the class of anonymous “games” investigated here can be viewed as an extension
of the standard class of dynamic games.



sustainable policy be a worst sustainable policy? We show that, starting with the capital
stock k£°, the limit policy is in a sense both a worst and a best sustainable policy. It is a best
equilibrium policy subject to the constraint that the resulting marginal value of capital in
the first period is above a certain critical level, but it is a worst policy if the government is
free from such a constraint. The critical level of the marginal value of capital is such that,
starting with k*; if the agents expect the same marginal value of capital in the second period,
their savings match the capital depreciation, and the level of capital is back to k° at the end
of the period.

Finally, we extend the algorithm proposed by Abreu, Pearce and Stacchetti (1990) for
infinitely repeated games with a finite number of players to our current dynamic anonymous
game. We have implemented the algorithm on the computer and explicitly calculated the
equilibrium value correspondence for various parameter specifications. Conklin and Judd
(1996) propose a similar algorithm for dynamic games with a finite number of players. While
they use an “internal” approximation to the value correspondence, our computer implemen-
tation uses an “external” approximation.

Two other papers deserve particular mention. First, independent work of Chang (1998)
considers a monetary model without a physical state and derives methods similar to those
developed here. Second, the work of Benhabib and Rustichini (1997) characterizes the best
equilibrium of a similar game without commitment using non-recursive methods.

We introduce the model and the assumptions in Section 2. Section 3 characterizes
the Walrasian equilibria of the dynamic economy where the government tax policy is fixed
(but not necessarily stationary). In Section 4 we modify the game and introduce a public
randomization device. This is a standard modification to ensure that equilibrium value sets
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are convex and thus avoid some technical difficulties. In Section 5 we define a sequential
equilibrium for our anonymous game and extend the dynamic programming tools developed
by Abreu, Pearce and Stacchetti (1990) for repeated games. We thus are able to characterize
the equilibrium value correspondence. In Section 6 we study the steady state of second-best

equilibria. Section 7 presents an example, and Section 8 concludes.

2. The Game

We consider a dynamic game with a benevolent government and a continuum of iden-
tical households, represented by the interval [0, 1].> There is a single consumption good that
is produced with a constant returns to scale technology. If capital and labor per capita are K
and L, then output per capita is f(K, L). At the beginning of every period ¢, each household
is endowed with 1 unit of labor-leisure, and the government chooses the capital tax rate 7y,
and labor tax rate 7, in the interval [7,7]. Then the households simultaneously choose their
labor input. Given the aggregate capital (invested in the previous period) and labor input,
the market determines competitive prices for the consumption good (numeraire), capital, and
labor. Finally, each household independently chooses consumption and the amount of the
good it stores (capital) for production in the next period. Capital fully depreciates each
period,® and the totality of tax revenue is used by the government to finance a public good
period by period.

If a household consumes the stream {(¢;, c;, G¢)}i2, of labor, consumption good, and

2The interval [0, 1] is endowed with the standard Lebesgue measure.
3We make this assumption to keep the analysis simple; our results can be extended to the case where the
depreciation rate is less than 1 and investments are irreversible.



public good per capita, then its total discounted utility is

S8 fult e) + 9(G).

t=0

where 3 € (0,1) is the discount factor. All households have the same preferences. House-
holds are strategically anonymous; that is, their individual actions cannot be observed, and
the government can only react to its own past actions and to past distributions of consump-
tion, capital and labor, all of which are publicly observed. The government’s objective is to
maximize the total discounted utility of a representative household.

Let I'(kg) denote the dynamic game between the government and the households when
all the households, except perhaps for a subset of measure 0, are endowed with initial capital
of kg. Since we restrict attention to symmetric strategy equilibria (where all households make
the same choices along the equilibrium path), we will not need to explicitly consider situations

where at the beginning of a period there is a nontrivial distribution of capital.
Assumptions: The following assumptions will be in force throughout the paper:

(A1) 0<r<7< 14

(A2) g: Ry - Rand u:[0,1) x Ry — R are continuously differentiable, g is concave and

increasing, and u(, ¢) is concave (jointly in ¢ and c¢), increasing in ¢, and decreasing in

. Moreover, g(0) = 0, and there exists U, € R such that for all £ € [0,1) and ¢ € R,

uc(0,0) < U., inf wu.(l,c) >0, and wue(0,0)=0.

£'€l0,1)

4Tt is possible to choose 7 < 0. But our model does not allow for the possibility of the government
borrowing or lending, and thus the government’s revenue must be nonnegative in every period. Hence, if
T < 0, the government could, for example, subsidize labor with revenues from the capital tax. However, this
introduces an additional difficulty, which we have preferred to avoid. Since tax rates are announced before
the households make their decisions, it is possible that when the government is prepared to subsidize labor
(or capital), it doesn’t collect enough tax revenue to keep up its promise. Thus, to allow for 7 < 0, we would
have to choose some form of rationing for those contingencies.
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(A3) f: R%2 — R, is strictly concave and homogeneous of degree 1 and is continuously
differentiable in the interior of R2. For all (k,¢) € int(R2), f(0,¢) = f(k,0) = 0,

fr(k,£) > 0 and f,(k,¢) > 0. Moreover, for all ¢ € [0,1],
llgir% fr(k, ) =00 and klim fr(k,€) = 0.

The assumption that 7 < 1 precludes a particularly bad equilibrium. If 7 = 1, the
households may think after a deviation by the government that the government intends to
impose capital taxes of 100% next period. With those beliefs, they would optimally choose to
make no capital investments, which in the case of full depreciation would result in a capital
stock equal to 0. Then, by (A3), output would be 0 in every future period, and what taxes
are eventually imposed by the government would be irrelevant: the economy would cease
to exist. Although this bad outcome satisfies the sequential equilibrium requirements, we
believe it is not plausible. Intuitively, one feels this equilibrium lacks renegotiation-proofness.
In the absence of any straightforward generalization to dynamic games of the definition of
renegotiation-proofness in repeated games suggested by Pearce (1987), we simply eliminate
this equilibrium by imposing a gross upper bound on capital tax rates.

In assumption (A2), u,(0,0) = 0 is required to ensure that in equilibrium, labor and
consumption are positive. The condition u.(¢,0) < U, guarantees that for the household’s
optimization problem, any path of (labor, consumption, investment) that is locally optimal
also satisfies a transversality condition (see Lemma 4 below). Thus, local optimality is suffi-
cient for global optimality. The function u is assumed to be continuously differentiable only
in [0,1) x R, to allow for the possibility that as £ — 1, either u(,c) or u,(¢,c) tends to
—oo. However, we require that the marginal utility of consumption for a fixed ¢ is uniformly
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bounded away from 0 for ¢ € [0,1).

Assumption (A3) implies that in a competitive equilibrium, the firm(s) operates at
zero profits, and thus it is unnecessary to specify ownership. It also implies that competitive
prices in a period are completely determined by the supply of capital and labor. Thus, if in

period ¢, the capital and labor per capita are respectively K; and L;, then

Pkt = fk(Kta Lt) and Doy = fe(Kt, Lt)-

The second part of (A3) implies that for any fixed £ € [0, 1], there exists k such that f(k, £) > k
for all k < k and f(k, () < k for all k > k, and the graph of f(+,€) crosses the 45 degree line
at k. The standard Cobb-Douglas production function satisfies (A3).

DEFINITION: Let k be the maximal sustainable capital stock in steady state. That is, k is
the solution of the equation & = f(k,1) (when labor supply is maximal). k also represents
the maximal possible output when the initial capital is no more than k.

Unfortunately, the first part of (A2) (that marginal utility of consumption at ¢ = 0
is bounded) rules out some commonly used utility functions. We need this assumption in
Lemmas 3 and 4 below. However, these lemmas also hold under different assumptions. For
example, we can show that their conclusions are valid for the following pair of utility and
production functions:

v

1 -4
Flk0) = Alak? +(1—a)l?]s (A>0,0<a<1,p<0),

u(l,c) = o)+ (0 <y <1),

where v : [0,1) — R is a decreasing, concave function, with lim, ,; v({) = —oco. (Note that

when p =0, f(k,0) = Ak“(*~.)



In this paper we study exclusively symmetric strategy profiles, where all households
choose the same actions (along the equilibrium path). A symmetric strategy profile for I'(ko)
is a pair of strategies o = (0¢,0¢). For each ¢, the strategy o for the government specifies
(Tkts Ter) € |7,7)? as a function og(t) of the publicly observed history h'=! := (hg, ..., h 1),

where
hs == (Tks:Tes, ls, Csy ksi1), s=0,...,t—1.

(When ¢ = 0, h~' = () is the empty history.) In this notation, ({,,c,, ksy1) specifies the
average values of labor, consumption, and saving at date s. Similarly, the strategy o¢ for the
households (or consumers), specifies ¢; and (¢, ki11) as a function of the expanded histories
(R Tty Ter) and (R*™Y Th 4, Tos, Drt, Pot) Tespectively, where (pg, pes, 1) is the competitive
price vector for capital, labor, and the consumption good in period ¢. The choices available

to the household are limited by the nonnegativity constraints and the budget constraint:

0 S gt S 1, 0 S Ct, 0 S kt+1, and

e+ ki1 = (1 = Trp) ke + (1 — Toe) el

Let Y(ko) = X (ko) x (ko) denote the set of all symmetric strategy profiles for T'(ko).
A strategy profile o € X(kg) inductively generates a unique outcome path (or trajec-

tory) {(The, Tox, b, 1, kei1) 152, for the economy as follows. For each ¢ > 0, let

(Tht, Teg) = oq)(h™) and ¢ := 001(t)(ht_1,7'k7t,7'47t),
Pkt = fk(kt7£t) and Dot = fe(k’nft%
(Ct7 k’t+1) = 0c2 (t) (htil, Tty Tet, pk,t7p€,t)7 and
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t._ t—1
h' = (h aTk,tyTE,tagtaCtykt+1)-

The marginal value of capital associated with o is

O (ko, o) := (1 = Tip) fr(ko, Lo)uc(fo, co).

This represents the increase in the household’s utility had it started with an additional unit
of capital and spent all the additional income on consumption in period 0. The value of o

(that is, the government’s normalized total discounted payoff) is®

O (ko, o) Zﬂt (Ce, ct) + 9(TraPrike + Toepeils)] -
t=0

Finally, we let ®(ko, o) := (®c(ko, o), ko, 0)).

As formulated above, a symmetric strategy profile is an incomplete specification of
the strategies for the government and households. First, it does not specify behavior for
a household that has deviated in the past and thus may have a different level of capital
than the other households. Second, by specifying the history in terms of past mean levels of
consumption, labor, and capital, we are not allowing the government’s strategy to depend on
deviations by households which affect an observed distribution but not its mean. However,
our analysis concerns sequential equilibria only, where multiple deviations are irrelevant for
checking the incentives of the players. Since a deviation by a single household is unobservable
by the government (and the other households), it does not change the public history, and thus
it does not change the future behavior of the government or the other households. Hence,

when checking the incentives of a deviant household, we will assume that the outcome path

5The normalization translates the discounted sum of payoffs into a weighted average, with weights (1—3)3"
that add up to 1. This makes the value of o comparable with the payoffs received in any period and simplifies
our notation below. However, we do not normalize the payoffs of the household because with normalization,
the marginal value of capital would have to be multiplied by the factor (1 — 3).
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(in particular, taxes and prices) remain the same and that the deviant household optimizes
its future intertemporal choices given its own capital stock. It is precisely the inability of a
household to unilaterally change the history that allows us to express its incentive constraints
with appropriate Euler conditions. Similarly, simultaneous deviations that affect observable
distributions but not their means are irrelevant, and, without loss of generality, we can restrict
attention to strategies that only react to the type of histories we have specified. Further, we
could restrict attention to strategies that only depend on the past history of government’s
decisions and define h, to be just (74,7,5). However, we keep our original notation as a
simpler bookkeeping device.

A household makes its decision of labor input immediately after knowing the tax
rates. While no household sees itself as affecting the wage rate or the rental rate of capital,
the common choice of labor input determines these values, and thus the household budget
set regarding the consumption/savings decision as well. However, since the government does
not get to move between the households’ decisions of labor input and the households’ con-
sumption/savings decisions, it will be convenient sometimes to view the strategy o¢ for the
household as if it determined (¢, ¢, kiy 1) simultaneously as a function of (A1, 714, 74,). In
this case we will simply write (4, ci, kiy1) = oc(t) (W™, T, Ter)-

The following technical lemma will be useful to obtain several bounds. We will assume
later that the initial capital stock ko is less than or equal to k. In this case, the lemma
establishes that the sequence of capital stocks {k;} generated by any symmetric strategy

profile is uniformly bounded above by k.

LEMMA 1. Let o be a symmetric strategy profile for I'(kp), with outcome path
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{(Tht, Tews ey e, kei1) 1520 Then, ky < max {ko, k} for all £ > 1.

Proof. Consider the situation where every household spends all its time working and reinvests
all the output it gets (that is, it consumes nothing). Obviously, the sequence of capitals (per
capita) {K;}:2, generated by this process bounds the sequence {k;}:°, generated by o. That

is, 0 < k; < K;. By (A3), we also have that for each t > 0,
Ky = f(K;, 1) < max {K;, k} < max {Ko, k}.

More specifically, if Ko < k, the sequence {K;} increases monotonically to k, and if Ko > k,

the sequence decreases monotonically to k. n

For each t > 0, let H(kq,t) denote the collection of all (¢ 4+ 1)-period histories h* that
can be generated by some symmetric strategy profile o of I'(kg). It is also convenient to
define H(ko, —1) := {0} and H(ko) := U2 _; H(ko,t). For any h' € H(ko,t), let k(ko,h")
denote the current capital stock after history h'. That is, if h* = (hg,...,h) and hy =
(Thots Tens Ues Cty ki), then k(ko, ') = keyq. If ¢ = —1, then x(ko, 0) = ko.

A strategy profile o induces after any history h' € H(kg,t) a (symmetric) strategy

profile o), € X(k(ko, h')). For all s > 0, h*~! € H(k(ko,h'),s — 1), and (Tkt,Tes) € [T,7)%,

ogln(s)(h*Y) == ogt+s)(h A

O-C|ht (S) (hs_lu T]C,t+87 TZ,t—i—s) = oc (t + S) (ht7 hs_lu T]C,t—‘rsu Te,t+s)-

That is, o], generates in period s, after history h*~!, the same actions as the strategy o

generates in period t + s, after the history h! followed by the history h*~1.
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3. Walrasian Equilibria

In this section we characterize the Walrasian equilibrium of the dynamic economy in
which a tax policy is arbitrarily specified. Although in our game the government does not
have this commitment power, along the equilibrium path, the households act as if the govern-
ment had established such a policy. Thus, considering arbitrary policies 7 = { (71, Te.t) }520
produces an auxiliary problem that is useful in characterizing the sequential equilibria of
['(ko). This auxiliary problem allows us to focus entirely on the intertemporal incentives of
the household.
DEFINITION: A tax policy 7 = {(Txs, Tex) }520 18 feasible if (T4, 7er) € [z, 7)* for all ¢ > 0.
DEFINITION: Let I'y (Ko, 7) denote the dynamic Walrasian economy where each household
is endowed with £ in period 0, and the government tax policy is fixed at 7. A symmetric
Walrasian equilibrium for 'y (ko, 7) is a sequence { (¢, ¢t, k1), (Prt, Pet)) Fooo of consumption

bundles and price vectors such that

Pkt = fk(ktagt)a Dy = fé(ktagt)v

for all ¢ > 0, and the consumption sequence { (¢, ct, ki11) }+>0 solves the following optimization

problem

(P)  max)_ Su(ly,c)
t=0
st. 0 S ét S 1, 0 S Ct, 0 S kt+1, and

¢t + ki1 = (1 — e )prake + (L — 7or)pecle, t>0.

Since the prices are uniquely determined by the marginal productivity of capital and
labor, sometimes we will omit them and simply specify a Walrasian equilibrium by the con-
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sumption sequence { ({, ¢t, kiv1) 1520

It appears that for a household to be able to make its optimal choices of consumption
and investment in period ¢, it needs to correctly anticipate what the other households will
do in all future periods (including ¢), because the household needs to anticipate current
and future prices for labor, capital, and consumption. The future values of taxes and prices,
however, affect current decisions only to the extent that they affect the next period’s marginal

value of capital

miy1 = (1 - Tk,t+1)pk,t+1uc(€t+1, Ct+1)-

That is, correctly predicting the current prices (pg:,pr:) as well as next period’s marginal
value of capital, m;; is sufficient for the household to make optimal period ¢ decisions.
Given capital k;, and predictions for (pg, pes) and myyq, a household’s time ¢ problem over

(ly, e, ki) can be stated as

(P) max  u(ly, ¢) + Pmyyike
st. 0 S ét S 1, 0 S Ct, 0 S kt+1, and

ct+ ke = (1— Tk,t)pk,tkt + (1 — Té,t)pé,tgt

In (P,), the variable ¢, can be eliminated using the budget constraint. Then, problem (F;)

can be rewritten as follows:

()  max  u(ly, (1 — Tee)prike + (1 — To)pesle — kigr) + Brmgpi ke
st. 0</, <1, and

0 < kir1 < (1 — Tie)prike + (1 — Tor)peils.
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Denote by F'(ki, Tk, Ters Mit1, Prt, Pey) the set of all feasible pairs (¢4, k1) for problem
(P;) (with ¢; eliminated).% Clearly, F'(kt, Tk.t, Tet, Met1, Pk, Pet) 18 always a compact, convex
polyhedron with nonempty interior (by (A1) and (A3)). Since u is concave, problem (F;) is

convex, and a necessary and sufficient condition for (¢;, k1) to be optimal is that

(FOC) [ue(ly, i) + uc(le, ) (1 = Teg)ped (0 =€) + [—uc(le, o) + Brua](k = Keir) <0
for all feasible (¢,k) € F'(ky, Tk, Tops Mut1, Phts Det), Where

¢t = (1 — 7o) prike + (1 — Too)peile — ke

DEFINITION: Let T3, (K¢, Th.t, Ter, Mir1) be the static (one-period) economy where each house-
hold has an initial capital stock k, and the government imposes taxes (7j;, 7s¢). The
household chooses consumption bundles (¢, ¢, ki1 1) and receives utility w(fy, ¢¢) + By 1k
(that is, the utility function is linear in the end-of-period capital stock k;;1). The vector

(e, cty kv, Prs per) 1s a (static) equilibrium for T, (ki, Tre, Tor, mey) if

Pt = fk(ktuét)u Do = fe(kt7£t)7 and

(¢ty £y, keyq) solves problem (F;).

Let WE(k¢, T, Te4, mus1) denote the collection of all Walrasian equilibria of the static econ-

S
omy FW(kt7 Tkt Tt mt-i-l)'

It is immediate to see that {((¢:, ct, k1), (Drt, Det)) 120 18 @ Walrasian equilibrium of

®With abuse of notation, sometimes we will say that (¢, ct, key1) is in F(ke, Trt, Toty Met1, Pt Pot) if
(ft, kt+1) S F(k‘t, Tkt Tet, mt+1,pk,t,pe,t) and ¢; = (1 - Tk,t)pk,tkt + (1 - Te,t)pe,tft - kt+1.
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Iw(ko, 7) only if for each t > 0,

Mey1 = (1 — Thp1)Prpr1Uc(beg1, 1)  and

(gtv Ct, ktJrla Pkt pé,t) € WE(ktv Tkt Tet mtJrl) .

The optimality conditions for a static equilibrium are exactly the Euler conditions for
problem (P). The next three lemmas establish the converse.

The argument requires us to find a uniform upper bound on the marginal value of
capital at any period for all Walrasian equilibria. This upper bound allows us to show that a
certain transversality condition is satisfied. To construct such a bound, we first need to find
a lower bound £ > 0 such that if 7 is any feasible tax policy and ky > k, then the capital

stock trajectory of any Walrasian equilibrium of 'y (kg, 7) is bounded below by k.

LEMMA 2. There exists £ > 0 such that for all kg € [k, k] and feasible tax policy 7, each

Walrasian equilibrium { (¢, ¢;, ki11) }22 of T'w (ko, 7) satisfies ;1 > k for all ¢ > 0.

The proof of Lemma 2 is deferred to the Appendix. In what follows, we will only
consider initial endowments above the minimum capital associated with Walrasian equilibria,

and below the maximal sustainable capital:

(A4) ko € [k, F].

LEMMA 3. There exists m < oo such that for all ky € [k, k] and feasible tax policy 7 =

{(Thts Tet) }220, every Walrasian equilibrium { (¢, ct, k1) }2o of T'w (Ko, 7) satisfies

my = (1 — Tk,t)fk(kt; ft)uc(ft, Ct) S m for all ¢ 2 0.
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Proof. Since f(k,l) = fu(k,O)k + fo(k, )¢,

>

1)

fulkpy < 100 I

[~

By assumption (A2), u.(¢;, ¢;) < U.. Hence, we can choose

m = (1—1)k/E|U..

LEMMA 4. Given a feasible tax policy 7 = {(7x+, Trt) }i2 and an initial capital stock Ky €
[k, k], suppose that the sequence {((Ly,Ci, Kii1), (Prt,Pes)) 520 is such that for each t,

(Ltu Ct7 Kt—‘rlupk,tu pf,t) S WE(ktu Tk,t7 Tf,t7 mt+1)7 Where

mepq = (1 - Tk,t+1)fk(Kt+17 Lt+1)uc(Lt+lu Ct+1)-

Then {(L, Ct, Ki11), (Drts Det) 152 1s @ Walrasian equilibrium of 'y, (Ko, 7).

Proof. All we need to show is that {(L;, C;, Ki1)}2, solves the household dynamic con-
sumption problem (P). For this it is sufficient to show that the sequence satisfies the cor-
responding transversality condition. Let {(, ¢, k1) 152, be any feasible sequence; that is,
(byyce, k1) € F(kyy Ty Togs Miy1, Dy, Peg) for each t > 0. From the necessary and sufficient

condition (FOC) for (P,) we have that

UZ(Lh Ct)(gt - Lt) + Uc(Lt; Ct)[(l - Té,t)pé,t(ét - Lt) - (k’t+1 - Kt+1)]
< —Bmyr (ki1 — Kiq),
and if we add wu.(Ly, Cy)(1 — Trt)pri (ke — K;) = my(ky — K;) to both sides of this inequality,

we obtain

Uz(Ln Ct)(gt - Lt) + Uc(Ln Ct)(ct - Ct) < mt(kt - Kt) - ﬁmt+1(kt+1 - Kt+1)~
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Also, the concavity of u implies that

'U/(gt, Ct) S U(Lt, Ct) —I— 'U,g(Lt, Ct)(gt — Lt) —I— U’C(Ltv Ct)(Ct — Ct)

Therefore
o) T
D = Zﬁt[u(&n Ct) - U(Ln Ct)] < TIEIC}OZﬁt[mt(kt - Kt) - ﬁmt+1(kt+1 - Kt+1)]
t=0 t=0

. T+1 . T+1
= lim 3 mT+1(KT+1 - kT+1) < lim 8" " mp 1 Krga,
T—o0 T—o00

because ky = Ky, and myy; and kpyq are nonnegative. From Lemma 3 we have that m; <m
for all t. Since Ky < k, Lemma 1 implies that K; < k for all t. Therefore, m,K; € [0,mk] for

each t, and we have the transversality condition
lim ﬂTmTKT =0.
T—o0

Hence, D < 0, and the sequence {(L¢, Cy, Ki41) }52, solves problem (P). 1

4. Public Randomization

We now consider the full game, where the government chooses (744, 7,,) at the begin-
ning of period ¢. In addition, we now introduce a public randomization device. In every period
t, before the government makes its choice of tax rates, the government and the households
observe the outcome of a random variable X; with a uniform distribution in the interval [0, 1].
The random variables {X;} are serially uncorrelated and independent of any choices made
by the government or the households. The expanded game with public randomization and
initial capital stock kg is denoted by I't(kg), and T'f(ky, () denotes the subgame of T'ft(k)
that follows after an outcome zy € [0, 1] of the random variable X,, before the government
makes its move in period 0. Although the random variables are payoft irrelevant, they can
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be used as coordination devices to synchronize the government’s and the households’ moves
and beliefs, in a similar fashion as sunspot equilibria.
We introduce the public randomization device to avoid a certain technical difficulty.

Without it, the sets
{ ®(ko, o) | o is an equilibrium of T'(ko) } C R?, ko € [k, k],

may fail to be convex. Lemma 5 in Section 5 states that the corresponding sets for the game
['%(kq) are all convex. Our analysis in Section 5 is facilitated by this property. If the sets
above were convex, the public randomization device would be superfluous. Indeed, in that
case the corresponding sets for the game with public randomization would coincide with those
above.

The history of the game needs to be expanded to record the outcomes of the random
devices, and similarly, a strategy must be allowed to react to the random outcomes. The
publicly observed history up to the beginning of period ¢ is now h'"! = (hy, ..., h;_1), where

hs == (s, Ths, Tes, Us, Csy kst1), s=0,...,t—1.

A symmetric strategy profile for T'f(ky) is a pair of strategies ¢ = (0¢,0g), where for
each t, (Tre,Ter) = og(t) (WY ) and (b, ¢, kiv1) = oc(t) (R 2y, Try, Tor), and both
oc(t)(h, x;) and o (t) ('™, 24, Ty, To+) are measurable functions of ;.

The (stochastic) outcome path {(Tx¢, 7oy, by cr, kei1) 152, generated by a symmetric
strategy profile is now a sequence of measurable functions where for each ¢,

Thts Tots by €ty Kepr 2 [0,1]77 — Ry,

The actual realizations (744(z"), 7¢4(2"), le(2), et (2"), ki1 (2')) in period ¢ are random since
they depend on the sequence of random outcomes z* = (zq, . .., 7).
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Finally, we need to distinguish between the expected marginal value of capital and

expected value of a symmetric strategy before and after the realization of the random outcome

Xo. Let
(I)g(k’o,xo,d) = (1 — Tk,o(xo))fk(k’o,go(Io))uc(&)(,fo),Co(xo)) and
D& (ko, wo,0) :=  E|[(1—=B) D6 [ulle, ct) + g(Thuprike + Teaperls)] | o

t=0

be respectively ¢’s marginal value of capital and expected value, given the outcome x, of X
(the former is deterministic once z is known since it only depends on time 0 variables). The
corresponding expected marginal value of capital and expected value of o at the beginning

of T'®(ky) (before the realization of x,) are
1 1
D (ko, 0) ::/ OL(ko, m0,0) dvg and gk, o) ::/ OL(ko, w0, 0) dg.
0 0

Let YR(ky) = YE(ko) x BE(ky) denote the set of symmetric strategies for I'?(kg), and
Y (ko, z0) = XE(ko, 20) x LE(ko, ) denote the set of symmetric strategies for I'#(kg, zg).
Now, a feasible tax policy 7 = {(Trs, Tet) 52, is a sequence of measurable functions
(Thts Teg) = [0, 1] — [7,7]%, ¢ > 0, that select a pair of tax rates for each sequence of real-
izations x' = (zo, . ..,x;) of the random device. Denote by T'H.(ko, 7) the Walrasian economy
where each household is initially endowed with £y, and the government tax policy is given by 7.
A Walrasian equilibrium for I'ff, (ko, 7) is a sequence of functions {((¢:, ¢z, ki11), (Pt Pet)) 1520

such that

Pre(at) = fulke(z 1), 6(2"),  pes(a’) = folke(z1), b(2")),
for all ' € [0,1]*"! and ¢ > 0 (when t = 0, ko is not a function), and the random consumption
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sequence { (¢, ¢, ki) } solves the stochastic optimization problem

(P%) max FE iﬂtu(ét(xt),ct(xt))
st. 0</l(2) <1, 0<c(x"), 0<kyi(z"), and
co(@') + kppa(2) = (1= 7 (2"))pre (") ke (2") + (1 = To(2))pes (') €o(2")

for all z* € [0,1]*"! and ¢ > 0,

where the expectation is over all sequences {z;}. As in the economy without public random-
ization, prices are uniquely determined by capital and labor inputs, and therefore we will
sometimes omit them in the specification of a Walrasian equilibrium.

Given functions 7y ¢, pr.+, £, and ¢; on [0, 1] for period ¢, the marginal value of capital

after a sequence of random outcomes z? is
my (1) = (1 = Toe(2"))pre (2" )ue(le(2"), co(2)),
and the expected marginal value of capital (before z; is known) is
i—1 LRy
my (') ::/0 my(z") dxy.

Suppose that in period ¢ (almost) all households have initial capital K; and the sequence z* has
occurred. If the government fixes the tax rates at (7 ¢, 7¢) and a household has initial capital
k; and expectations (py.¢, pet, Met1) (Where all the parameters (7x ¢, Tot, Pit, Pet, Mut1) depend
on '), the household will choose (¢;(z), ¢;(z"), kiy1(2")) so as to solve the same problem (P)
we defined earlier for the game without the random device. Put differently, without public
randomization, the parameter m;,; represents the linear payoff to holding capital at the end
of the period. With public randomization, the parameter m;,; represents an expected end-
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of-period payoff. But since this payoff is linear, the household faces the same optimization
problem ().

Lemmas 2-4 can be easily extended to the model with public randomization. Their
proofs follow the same logic as their deterministic counterparts and are omitted.
LeEMMA 2. There exists k& > 0 such that for all ky € [k, k] and feasible tax policy 7, every
Walrasian equilibrium { (£, ¢;, kiy1) }52, of T (ko, 7) satisfies kyy1(z') > k for all ¢ > 0 and
zt e [0,1]4+,
LeEMMA 3. There exists i < oo such that for all kg € [k, k] and feasible tax policy 7, every
Walrasian equilibrium { (£, ¢;, ki 1) }52, of T (ko, 7) satisfies mf(x?) < M for all ¢ > 0 and
zt € [0,1]¢+L,
LEMMA 4'. Let K, € [k, k] be an initial capital stock and 7 = {(74, 7¢.) 122, be a feasible tax
policy. Suppose that {(L¢, Cy, Kit1, Prt, Do) }ioo 1S such that for each ¢ > 0, (L, Cy, Ki41):

0,1]""! — R, and for all z* € [0,1]",
pri(x') = fu(K(a' ™), Li(a")), pey(z') = fo(Ki(a'™"), Li(2")), and
(Lala), Cule'), Kria(0), (). pas(a) € WEKL &) a0, eolat) mea (@),

where

1
mt+1($t) = /0 (1- T/c,t+1(xtﬂ)p/c,tﬂ(xtﬂ)uc(LtH(xtﬂ)a Ct+1($t+1))d$t+1-

Then, {(L¢, Cy, Kty 1, Dty Pet) }520 18 @ Walrasian equilibrium of T'ff, (Ko, 7).
We will use the same symbols defined for the game without public randomization to
denote the corresponding entities in the game with public randomization. For example, for

any symmetric strategy profile o of (k) and history h', o], denotes the strategy induced
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by o after that history. In addition, if zo € [0, 1], o|,, will denote the strategy induced in the

proper subgame I'%(kg, zg).

5. Self-Generation

We now provide a formal definition of a sequential equilibrium for our policy game.
This is a direct adaptation of the same concept for standard dynamic games, and as stated
in the introduction, it is the same concept that Chari and Kehoe (1990) call a sustainable
equilibrium. We then introduce our strategic dynamic programming method, which combines
the Euler conditions deduced in Lemma 4’ with the self-generation technique of Abreu, Pearce
and Stacchetti (1990).
DEFINITION: A symmetric strategy profile o is a symmetric sequential equilibrium (SSE)

for T (k) if for any ¢ > 0, history h'! € H(ko,t — 1), and =, € [0, 1],

(1) ®E(ky,z¢, 0|pi—1) > PE(ky, 24, (0¢|pi-1,7y)) for all strategies v € BE(ky, x;) for the gov-

ernment, where k; = x(kg, h'™1).

(2) If {(Th. Ths: U5, Coy Koy 1) Fo2 is the stochastic outcome path of opi-1, and 7' := {(7},,

Tps) Yoo, then {(£,, ¢, ki, 1)}, is a Walrasian equilibrium of T'ff, (k¢, 7).

Although we have not defined an SSE for T'f(kg, zo) explicitly, since T'%(kg,xq) is
a proper subgame of I'(kg), the following characterization can be used as a “backward”
definition: o is an SSE of T'#(ky) iff |, is an SSE of I'*(kg, x¢) for each x4 € [0, 1].

Let h'! be an arbitrary history (not necessarily on the equilibrium path), k, =
Kk(ko, h'™), and 7" be the tax policy expected in equilibrium from that point on. Condi-

tion (1) of an SSE guarantees that the government will not wish to change 7’. Condition (2)
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requires that after h'~!, the households follow a Walrasian equilibrium of T'f},(k;, 7/). That
is, each household that starts with k; follows an optimal consumption-investment trajectory
(given 7" and what the other households do). Of course, a household with initial capital k # k;
may do better than (and will not follow) the Walrasian equilibrium. But this is irrelevant:
at the time the deviant household chose a consumption-investment bundle different from
that expected in equilibrium, it lowered its total expected utility, and along the equilibrium
path (when the government does not change the tax policy and the households follow the

corresponding Walrasian equilibrium), the deviant household will never recover the losses.

DEFINITION: The ex-ante and ex-post equilibrium correspondences are the set-valued func-
tions V : [k, k] — R? and V : [k, k] x [0,1] — R? that to each initial capital per capita kg

and outcome xg associate the sets

V(ko):= {®(ko,0)| o is an SSE for T'% (k) }

VE(kog,mo) :=  {®"(ko,20,0) | o is an SSE for T (ko, 2¢) }.

That is, V' (ko) is the collection of all the pairs (m,v) for which there exists an SSE o such
that m is its expected marginal value of investment for consumers in the first period and v

is its corresponding expected value for the government.

LEMMA 5. For every ko and zg,zf € [0,1], V¥(ko,zo) = VH(ko,zf) and V(ky) =
co (VE(kgy, o)), where for any subset X in a Euclidean space, co(X) denotes the convex

hull of X.

Proof. For every ko and zg,z € [0,1], V(ko,z0) = V*(ko,z}) because the subgames
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2 (kg, zo) and T'%(kg, zf,) are identical. For every xq € [0,1], an SSE o of T'#(kg) selects a con-
tinuation SSE 0|, € T'f(ko, zo) with value vf(x() and marginal value of capital m{t(x¢). That
is, (m&t(zo),v¥ (o)) € VE(ko, x0). Before the random outcome xq is known, the value of o for
the government is the expected value of v{¥(zy), and its marginal value of capital is the ex-
pected value of mf(xq). For any positive weights a;, i = 1,2, 3 that add up to 1, and any three
points (m;, v;) € VE(k, zo), partition [0, 1] into three intervals I;, i = 1,2, 3, so that A\(I;) = o
(here A denotes the Lebesgue measure). For each zg € I; choose (m(zo), vi(xo)) = (m, v;),

i =1,2,3. Then, ®(ko,0) = X a;(m;, v;), and by Caratheodory’s theorem, we have V' (ky) =

CcO (VR(IC(), Io)) [ |

Thus, V (ko) is convex for each ky. We also show below that V'(kg) is compact-valued,
and so, as we try to characterize the correspondence V', we restrict attention to value corre-

spondences.

DEFINITION: An arbitrary correspondence W : [k, k] — R? with compact and convex values

is called a wvalue correspondence. The graph of a value correspondence W is the set
graph(W) := { (k, (m,v)) | (m,v) € W(k), k€ [k, ] .

Let R := RU{+00, —cc}. For any value correspondence W, there exist two functions
W, W : [k, k] x R — R such that for each k € [k, k], (m,v) € W(k) iff W(k,m) < v <
W (k,m). Moreover, W (k,m) is concave in m and W (k,m) is convex in m. If for a given k
and m there doesn’t exist v such that (m,v) € W(k), then W (k,m) := +oc and W(k,m) :=

—o0. The graphs of the functions W (k,-) and W (k, -) trace respectively the lower and upper

boundary of W (k). Let [my, (k), mw (k)] and [vy (k), 7w (k)] be respectively the projections

25



of W (k) into the first and second coordinates. That is,

myy (k) == min{m | (m,v) € W(k)}
Moy (k) == max {m | (m,v) € W(k))
vy(k) = min{v]| (m,v) € W(k)}

Tw(k) == max{v|(m,v) e Wk)}.

We now turn to decomposing our dynamic game into a series of static games. Each
static game corresponds to the strategic problem between the government and the households
in a period (with appropriate expectations and modified payoffs).

Fix zy € [0,1]. Suppose that o is an SSE of I'®(k) (so that o|,, is an SSE of T'#(k, x))
which specifies that after z( in period 0 the government chooses (7, 7¢) and each household
chooses (¢, ¢, k) (if the government chooses (7, 7¢)). In addition, let hy := (xo, Tk, ¢, £, ¢, ky)
and (my,v;) = ®(ky,0|p) denote the expected marginal value of capital and expected
value of the continuation strategy ol € 3 (k,). Since o is an SSE of I'{(k), o4 is an
SSE of T'f(k, ), and therefore (m,v,) € V(ky). Obviously, the SSE o also specifies what
happens when the government adopts an unexpected tax policy for period 0 (that is, a tax
policy (74,7)) # (T, 7¢)). This might involve a continuation strategy especially tailored to
punish each possible deviation by the government in period 0. However, as in Abreu’s (1986,
1988) optimal punishment for firms in a cartel, without loss of generality we consider here
extreme punishments only. The incentive constraints that the SSE o must satisfy in period
0 imply several conditions on hg. When the value correspondence W is the equilibrium value

correspondence V', the following definition captures all the conditions for hq to be the period
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0 outcome of an SSE ¢ € L2 (k,zy) and for (m,,v,) to be the expected marginal utility of
investment and expected value (®c(k,o|p0), Pa(k,o|p0)) of the corresponding continuation

strategy o|po.

DEFINITION: A tuple £ = (74,7, 0, ¢, ky,my,v,) is consistent with respect to the value

correspondence W at endowment k € [k, k] if

(1) (4 e, ky, fu(k,0), fo(k,0)) € WE(k, Tk, T¢,my ), and

(2) ki €[k, k] and (my,v,) € W(k,).

The tuple’s marginal value of capital is

Uo(k, &) := (1 — 1) fr(k, Ouc(l, c),

and its corresponding value is’

ek, &) = (1= B) [ull,c) + g(tifu(k, Ok + Tofo(k, 0)0)] + Bu..
For each (7, 7)) € [1,7]?, let

ﬂ—W(ku T;w 7—2) =

S (U= 0l ) + gThfulh O 7ol £)) + A, )
o okly iy
s.t. (0, c k) e WE(k, 1), 7,,m'.).

Denote by M*(k,T),7;) an optimal choice for m/  and by WE*(k,7},7}) a corresponding

optimal choice for (¢,c' k). That is, (¢/,c, K, ,m! ) = WE*(k,1,7;), M*(k, 7}, 7;)) is an

"For a strategy profile o, we previously defined its value ®¢ (o) and marginal value of capital ®¢().
Although ® and W are similar functions, they are defined on different domains.
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optimal solution for the problem above. Define

Tw(k) = max my(k, 75, 7))

st. (1h,71)) € [r,7]%

The tuple £ is admissible with respect to the value correspondence W at endowment £ if it

is consistent with W at k and

(3) Wa(k, &) = 7w (k).

Condition (1) states that given the households’ beliefs regarding tomorrow’s marginal
value of capital (m, ) and the current tax rates established by the government, the households
respond optimally. Condition (2) requires that the continuation value v, together with the
marginal utility of investment m_ can be delivered by an SSE of the next period’s subgame
I'2(k,), in which the households start with the amount of capital k. they invest this period.
Condition (3) of admissibility is the government’s incentive constraint. When the government
announces unexpected tax rates (7}, 7;), the households’ beliefs are manipulated in the ensu-
ing subgame so as to yield the worst possible payoff for the government. Suppose this entails
the belief that the marginal utility of investment will be m/,, and that given this belief, each
household saves £, for production next period. Note that the choice of continuation value
v’ for next period does not affect the optimization problem of the households this period
(in particular, it does not affect the choice &’ of capital investment). Therefore, the worst

punishment must choose the continuation value o/, = W(k/,,m/,).%

8The only reason to require in the definition of admissibility that the correspondence W be compact-valued
is to guarantee that in condition (3), W (k_,m/, ) is attained. We could define admissibility for an arbitrary
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If W, and W, are two value correspondences, we write Wy C Wy if graph(W;) C

graph(Wy), that is, if Wy(k) C Wy (k) for all k € [k, k].

DEFINITION: For any value correspondence W, let B(W) denote the correspondence defined

by B(W)(k) =co(B(W)(k)) for each k, where
BEW) (k) := {U(k,&) | € = (T, Te,¢, 4, by, my, v, ) is admissible w.r.t. W at k }.

Further, a value correspondence W' is self-generating ift W C B(W).

Put simply, B(W)(k) is the convex hull of all points (m,v) for which there exists
an admissible tuple w.r.t. W at k with marginal value of capital m and value v. More
formally, let k € [k, k] and (m,v) € B(W)(k). Since B(W)(k) =co(BE(W)(k)), there
exist functions 7,7, ¢, ¢, ky,my, vy ¢ [0,1] — R such that for each € [0, 1], the tuple

(Ti(x), Te(x), (), c(x), ki (x), m4(z), v, (2)) is admissible w.r.t. W at k and

1
(m,0) = [ Wk, (72 7e, e, by 0, (2)) da
0

Moreover, the functions can be chosen to be measurable, and so the expected value is well
defined (see the proof of Theorem 1 in the Appendix).
For any value correspondence W and any k, the computation of Bf(W)(k) can be

divided into two steps. Let

A

BW)(k) :={V(k,&) | & = (Tk,Te,, ¢, ky,my, vy ) is consistent w.r.t. Watk }.

correspondence W, if we replace the definition of W (k, m) by
inf {v | (m,v) € W(k) }.

(Again here, we use the convention that inf () = +00.) This observation is used later in the proof of Theorem

3.
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Then, for all &,

Thus, consistency and the government’s incentive constraints are “separable”: the latter is
only required at the end to truncate, for each k, the set obtained when the constraint is
neglected. Let W’ = B(W). Then vy (k) = Tw (k). Moreover, the set B(W)(k) is often “flat
at the bottom,” and W'(k,m) = 7w (k) for all m € [m(k),m(k)].

The following theorem is an adaptation of the similar result proven by Abreu, Pearce
and Stacchetti (1986, 1990) for repeated games. For completeness, its proof is presented in

the Appendix.

THEOREM 1. (Self-Generation) If the wvalue correspondence W is self-generating, then

B(W)cCV.

The next theorem asserts that the map B transforms value correspondences into value
correspondences. Its proof, which is also relegated to the Appendix, uses the following prop-
erties of an arbitrary correspondence W. Let X C R® and W : X — R’ be a compact-valued
correspondence. If X is compact, then W is upper semicontinuous (usc) iff graph(W) is a
closed subset of R* x R? (see the Corollary to Theorem 7, Chapter VI of Berge (1963)).
Moreover, if W is usc, the image W (K) of any compact set K C R® is a compact set in R?
(see Theorem 3, Chapter VI of Berge (1963)). Since [k, k] is compact, these two properties
imply that for any value correspondence W, graph(W) is a compact subset of R? iff W is

usc.

THEOREM 2. If W is an upper semicontinuous (usc) value correspondence, then B(W) is a

30



usc value correspondence.
LEMMA 6. graph(V) is a bounded set.

Proof. Let o be any SSE of I''{(ky). The government’s income is always nonnegative, and a
household can choose not to work and not to save in every period and thus guarantee itself
a total payoff of at least v := u(0,0) 4+ ¢(0) in every period. On the other hand, a household
cannot get more than o := u(0, k) + g(7 k) in any period. Hence, v < ®¢(kg,0) <.

Now, ®¢(ko, o) > 0 because for each history h'~' and outcome z;, 74 ¢(h*™!, 2,) <7 <
1, the marginal productivity of capital is positive, and the marginal utility of consumption

is positive. Finally, Lemma 3 (Lemma 3') establishes the bound ®¢(ko, o) < m. Therefore,

graph(V) C [k, k] x [0,7] x [v,7], and graph(V') is bounded. 1

We are now in a position to present our second main result: the equilibrium corre-
spondence V' is the largest fixed point of the map B. That is, V = B(V), and W C V for

any self-generating value correspondence W.

THEOREM 3. (Factorization) The equilibrium correspondence V' is the largest fized point of

the map B. Moreover, V 1s a usc value correspondence.

Proof. Let cl(V') denote the correspondence whose graph is the closure of graph(V'). Since
graph(V') is bounded, graph(cl(V')) is compact, and cl(V') is a usc value correspondence.
Pick any SSE o of T'#(kg), and let (m,v) := ®(ko,0). For each = € [0,1], let
(Tk(z), Te(x)) = 0¢(0)(x) and (U(x),c(x), ki(x)) = oc(0)(z, Tk(z), 7e(x)). That is, hyg =
(,TK(z), Te(2), £(2), c(z), ki (x)) is the equilibrium outcome in the first period (when the

realization of the random public device is z). Also define (m, (z),vy(z)) = ®(ky(x),0|n,)-
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Then, the tuple £(z) = (Tx(x), To(2), £(2), c(z), ky(z), mi(x), vy (z)) is admissible w.r.t. V at

ko s and

(m, v) = /01 U(k,£(2)) da.

This implies that V' C B(cl(V)) (we need to use cl(V) instead of V, to make sure that
extreme punishment values can be delivered; see footnote 8). By Theorem 2, graph(B(cl(V)))
is compact, so cl(V) C B(cl(V)). That is, cl(V) is self-generating, and by Theorem 1, we
must have that B(cl(V)) C V. Therefore, cI(V) C V, and V has a closed graph. That is,

V = cl(V). Moreover, the previous inclusions imply that V' C B(V) C V,so V = B(V). 1

The previous theorem establishes that for each k € [k, k] and m in the appropriate
range, there exists an (worst) equilibrium o for I'*(k) such that ®¢(k,o) = V(k,m), and
thus the extreme punishments invoked in the definition of admissibility can be delivered in
equilibrium.

We finally extend the algorithm introduced by Abreu, Pearce and Stacchetti (1990)
for repeated games, to compute the equilibrium value correspondence. It is easy to see that
the maps B® and B are monotone. That is, if W and W’ are two value correspondences
such that W C W', then BE(W) c BE(W') and B(W) C B(W’). Suppose that W, is a
value correspondence such that V- C Wy and Wy D B(W). Construct the sequence of value

correspondences {W,,}>° , inductively as follows:
Wy = B(W,,) for alln > 0.

Then W,, D W, 41 D V for all n > 0. Since the sequence is decreasing (in the sense of set
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inclusion), it has a limit W,. That is, W, is the value correspondence defined by

Wao(k) = lim W, (k) = () Wa(k)

n—oo
n>0

for each k € [k, k]. By a simple limit argument, we can establish the following result.

THEOREM 4. W =V.

We use this algorithm to compute the solution of an example in Section 7. Some of

the implementation details are presented in the Appendix.

6. Best Equilibria and Steady States

We now study general properties of equilibria. In particular, we focus on best equilibria
(given an initial capital stock k& and marginal value of capital m) and on long run behavior.
As in Chamley (1986) and Judd (1985), we study the steady state of best equilibria and
compare it with the steady state of the optimal policy with commitment. Although our
model is simpler than that of Chamley, the steady state of the optimal tax policy (if it exists)
exhibits the same properties: the capital tax is 0. We will see that without commitment and
for intermediate values of the discount factor 3, the steady state of an optimal policy does not
have this property. Moreover, the steady state delivers an (m,v) pair which is at the bottom
of the corresponding V (k) set. That is, if k is the stock in steady state, then v = V (k, m).

We first make an observation about admissible tuples £ at k (alternatively, about
SSE’s) such that U(k, &) is on the upper boundary of V (k).

Suppose that & = (7g, 74,4, ¢, ky,my,vy) is admissible w.r.t. V' at k. Since the gov-
ernment’s incentives are strengthened when its continuation value is increased, it is easy to

see that for all v, < 0, < V(ky,my), € = (T, 70,0, ¢, ky,my, 9, is also admissible w.r.t. V
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at k. It follows that if v = Ug(k, &) = V(k, m), where m = Ve (k, &), then vy = V(ky,my).
That is, if (m,v) = ¥(k,£) is on the upper boundary of V(k), then (m,,v;) must be on
the upper boundary of V' (k). Equivalently, this last observation can be stated in terms of
SSE’s. Suppose o is an SSE of T'#(k) such that ®(o) is on the upper boundary of V (k). Let
ho = (2o, Tk, Te,0, Lo, Co, k1) denote the equilibrium outcome of period 0 when the realization
of the random device is xo. Then, ®(ky, ols,) is on the upper boundary of V (k). Inductively
then, on the equilibrium path, all ®(kiyq,0|s,), ¢ > 0, are on the upper boundary of the

correspondence V' (for all sequences of random outcomes {z;}:°,).

DEFINITION: A steady state equilibrium for T'F(k*) is an SSE ¢ whose outcome path { (7,
Tots Uey €ty k1) 1520 18 stationary. That is, there exist (75,75, 6%,¢*) € [r,7]*> x [0,1] X [0, 00)

such that for all ¢ > 0 and z* € [0, 1]**,
(Tk,ta T@,tv gtv Ct, kt+1)(mt) = (7-27 7?7 657 CS? k,S)

Note that although the outcome path is not random (i.e., it doesn’t depend on the outcomes
of the public randomization device), o may use the public randomization device to support
“punishments” off the equilibrium path.

Suppose o is a symmetric strategy profile for T'f{(k*) whose outcome path is not ran-

dom. Let (m®,v%) = ®(k*, o), and for any z, € [0, 1], let

(13,7;) = 0¢(0)(xg) and (¢°,¢*, k%) = oc(0)(zo, T4, 77)-
Then, it is easy to see that o is a steady state equilibrium if and only if £* = (73, 77, €%, ¢*,
k*,m?® v®) is an admissible tuple with respect to V at k* such that k* = k* and (m?*,v®) =
U (k*, £°).
DEFINITION: &° = (7§,77,0%,¢°, k*, m® v®) is a steady state tuple if
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(i) (gs’cs’ks,fk(ks’gs%fé(ks,gs)) € WE(k;SaTzaTgamS)a and
(ii) (m*,v*) = ¥(k*,&%).

Since for a steady state tuple we do not impose admissibility (in particular, we do
not impose the government’s incentive constraint), steady state tuples are the solutions of a
(relatively) simple fixed point problem. If a steady state tuple is not admissible, it cannot be
sustained by a steady state equilibrium. However, in the game with full commitment, where
the government chooses a tax policy once and for all at the beginning of period 0, any steady
state tuple &* = (73,77, 0°,¢®, k*, m® v°) can be supported by a stationary tax policy where
(Tht,Ter) = (73, 7¢) for all t > 0. Clearly, since f(0,¢) = 0 for all £ > 0, there is a trivial
steady state tuple where k* = ¢°* = ¢* = 0.

For the next theorem, we now assume that 7 = 0.

THEOREM 5. Let o be an SSE for TH(ky). Suppose that ®¢(ko,0) = vy (ko) and that o
converges to steady state, represented by the tuple £° = (73, 75,0°,¢%, k*,m®,v®). Then £° is

a steady state tuple and either (1) T3, =0 or (2) v® = V. (k*,m*) = vy (k®).

Note that since ®(kg, o) is on the upper boundary of V' (k), along the outcome path,
®(kiy1,0|p,), t > 0, is on the upper boundary of the correspondence V. Thus, by continuity,
(m®,v*) is on the upper boundary of V(k*). That is, v* = V(k*, m*). When 7§ > 0, the
theorem asserts that v* = V(k°, m®). Therefore, in this case, (m®, v®) must be one of the two
intersection points between the upper and the lower boundaries of V(k*) (and thus, either
m® = my (k*) or m® = my(k*)). Moreover, the lower boundary must stay (weakly) above the

value V (k*, m®).
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Proof. 'To simplify the notation, we write the proof for the game I'(ky) without public ran-
domization. Alternatively, assume that the equilibrium value correspondence of the game
without public randomization is convex valued (and thus the randomization device is super-
fluous). For any (deterministic) outcome path h* = {(Ty., Tot, li, ¢, k1) }oo and any ¢ > 0,

let

Su(h) = (1= B) 3" Flulliess ) + 9(Gua),

where Gy = Ty fx(ki, C) ke + To fo(ke, €¢)le. Following Chamley, we can view the government
choices of taxes to be equivalent to the choices of after-tax wage w; and “interest rate” on

capital r;, where
1 + Ty i=— (1 — Tk,t)fk(ktu gt) and Wy = (1 — Tg,t)fg(k’t, ét)

We also use the standard notation of u,, and w,, for u,(¢;, ¢;) and u.(¢, ¢;) respectively. Then
(with a small abuse of notation):
O (ko,0) = max Sy(h*)
s.t (Ue,ce, kipr) € WE (ke re, we, (14 7e41)Uct41)

e+ ke + G < f(ke, )

Si(h*°) > 7y (k).
The first constraint requires that the trajectory of labor, consumption and savings constitutes
a Walrasian equilibrium of the dynamic economy that arises when the government fixes its
tax policy at 7. The second constraint is the government’s budget constraint, and the last is
the government’s incentive constraint. The latter says that what the government expects in
equilibrium from period ¢ onward has to be no less than the worst punishment value for the
game ['(ky).
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Suppose that the solution converges to the steady state represented by the tuple £* =
(13,75, 0%,¢°, k%, m®, v®). Then k* > k > 0. It is easy to see that ¢* > 0, for otherwise
f(k®,£%) = 0, which is incompatible with the government incentive constraint. Since k* > 0
and ¢° > 0, we must also have that ¢® > 0 (otherwise the consumer could increase his
utility by decreasing his savings). If /* < 1 (so that the consumer’s choices are “interior”),
the Walrasian equilibrium requirement for ¢ sufficiently large is equivalent to the first order

conditions
Ugy +Wwitley = 0, Uy = B(1+ Tt+1)Uc,t+17 and ¢ + ke < (L4 7))k + wily.

For simplicity, assume that the consumers’ trajectory is “interior” (the alternative
case, when £* = 1 can be dealt with in a similar fashion). Then, we can replace the Walrasian
equilibrium requirement by its corresponding first-order conditions to obtain

O (ko,0) = max Sy(h™)
s.t. Uy + witley =0
Uer = B(1 4+ reg1)Ue i
et + ki < (14 1)k + wily
e+ ke + G < f(ke, )
Si(h*°) > Ty (k).
Let v,3', 203", M3, w5, and 7,8" be the Lagrange multipliers corresponding to the five
constraints in period t. It is easy to see that the third and fourth constraints must be active
for all ¢ > 0. If the government’s incentive constraint in period ¢ is not active, then v, = 0

and the optimality condition associated with k; is

0=X_1—=ANB+71) + py_1 — 1B fiz
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Assume first that the government’s incentive constraint is not active in the limit, that

is, that
u(l®,¢®) + g(G*) > 7y (k).

Then, by continuity, S;(h*°) > 7y (k;) for all ¢ sufficiently large. In the limit, the second
constraint implies that 3(1 + r°) = 1. Therefore, in the limit, the optimality condition for
k; implies that 1 — S fi(k*, £*) = 0. The last two equalities imply that 1+ r® = fi(k*, %), or
that 7§ = 0. This is the Chamley result (and proof).’

Recall from Section 5 that for all & and W, vgu (k) = Tw(k). Since V = B(V),
Ty (k*) = vy (k). Thus, if the government’s incentive constraint is active in the limit, we

have

lim B(kir, o) = lim $(h%) = u(f”,¢") + g(G") = 7y (") = u(k"). 0

When the government’s incentive constraint is not active in the limit and the Chamley
result attains, £° must be the best steady state tuple. Whether the best steady state is
sustainable by an SSE depends on the discount factor # (and on 7 as well). In equilibrium,
the benefits of a deviation to a higher capital tax and lower labor tax in the first period,
for example, are compensated by a lower continuation value for the government. But if the

discount factor is low, the former effect dominates, and the government cannot resist the

temptation. In this case, the best steady state is not sustainable.

7. An Example
In this section we present an example. With the algorithm described at the end of

Section 5 (see Theorem 4), which we have implemented on a computer, we find its equilibrium

9Judd (1985) proves a similar result in a continuous time model.
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correspondence. With a similar algorithm, we also find the value correspondence V* of the
game with commitment, when the government chooses its tax policy once and for all at the
beginning of period 0. Below we compare V (k) with V*(k) for a couple of values of the
initial capital stock k. We also find the corresponding steady state tuples and identify the
Chamley-Judd (or first-best) and second-best steady state outcomes.

In the example we have made the following choices:

ull,e) = 2v/e—(1—0"Y)? ¢(G)=2VG, and §=0.9,

flk, ) = k37 and &=0.05,

where ¢ represents the capital depreciation rate. As we explained in footnote 3, we make the
assumption of full depreciation (i.e., § = 1) throughout the paper for convenience only. Our
results also apply to the case § < 1.1 Finally, to reduce the size of the numerical problem, we
assume that values for 7, and 7, are restricted to be in the discrete grid {0,0.1,0.2,...,0.9}.
This can be viewed as an institutional constraint, where the government is not allowed other
intermediate values of taxes.

The equation k = (1 — §)k + f(k,1) gives us & = 104/8. But this upper bound is too
generous. We set instead k = 1.57 x 1.5 = 2.35; k = 1.57 is the largest capital stock that

can be sustained in steady state with full commitment (when 74, = 74, = 0 for all ¢ > 0).

10Gince investments are irreversible, the household’s problem must now include the constraint ki1 >
(1 — &)k for all ¢ > 0. The definition of the marginal value of capital is also different and more complex.
Recall that m; represents the increase in the household’s total utility when the capital stock k; is increased
by one unit. Basically, without full depreciation, m; = uc(ls, ¢z)[(1 — Tr.¢) fe(ke, €¢) + (1 — 6)]. This definition
is fine as long as capital investment in period ¢ is positive, or kep1 > (1 — §)k;. It assumes that at the end of
period ¢, an optimal choice for the household is to invest (1 — §) less, to return to the original capital stock
k¢4 for the next period. Thus, at the end of period ¢, the household increases its consumption by (1—§) plus
the additional income generated by the additional unit of capital stock. The actual definition of m; needs to
be more complex to account for the possibility that ki1 = (1 — 8) k.
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There does not exist such a direct formula to compute k. We have taken k = 0.034, which is
the (“smallest”) capital stock sustained in steady state with full commitment, when 74 = .9
and 7., = 0 for all ¢ > 0. We choose a grid for k& with 60 points uniformly spaced between k
and k.

Figure 1 (below) displays simultaneously V'(0.744) and V*(0.744). Obviously V (k) C
V*(k) for all k. Thus, V*(0.744) is the larger convex set depicted in Figure 1, and V' (0.744)
is the smaller set contained in it. The concave curve from (m,v) = (1.5,2.46) to (m,v) =
(2.4,2.45) represents the locus of all (m®, v®) such that £ = (75,75, 0%, ¢ k%, m*,v®) is a
steady state tuple with £* = 0.744. Figure 2 displays V*(1.18), V/(1.18), and the locus of all
(m?,v*) such that £° is a steady state tuple with k£* = 1.18. One observation, that holds in
all of our simulations, is that the larger is k, the smaller V (k) is relative to V*(k).

The value k = 0.744 is critical: for k > 0.744, the locus of steady states (m?®, v*) does
not intersect V' (k). That is, for & > 0.744 no steady state can be supported by an SSE (this
can be seen, for example, in Figure 2, where k = 1.18). For k = 0.744, the locus of (m?, v°)
pairs for steady state tuples is a curve whose leftmost point corresponds to the steady state
that attains when 74, = 0.38 and 7,; = 0 for all ¢ > 0, and the rightmost point corresponds
to the steady state that attains when 74, = 0 and 7,; = 0.54 for all ¢ > 0. The only point of
intersection between V'(0.744) and the curve represents the second-best steady state and is
attained when 7 = 0.29 and 74, = 0.23 for all ¢ > 0. This is the best steady state that can
be supported by an SSE. As stated in Theorem 5, this intersection coincides with the right

corner of V' (0.744), where the upper and lower boundaries of V/(0.744) intersect.
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Figure 1: Value Correspondences for k = .744
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Figure 2: Value Correspondences for k£ = 1.18

The first-best steady state is obtained when k = 1.18. In Figure 2, the locus of steady
states (m®,v®) is an upward sloping curve, whose rightmost point is on the boundary of
V*(1.18). The leftmost point of the curve corresponds to the steady state that attains when
Tkt = 0.17 and 744 = 0 for all £ > 0, and the rightmost point corresponds to the steady state
that attains when 7, = 0 and 74; = 0.28 for all £ > 0. The latter is the first-best steady
state, and in agreement with the Chamley-Judd result, capital taxes are 0. However, as can

be seen in Figure 2, none of the steady states for K = 1.18 can be supported with an SSE.
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8. Conclusion

We have elaborated a general method for studying dynamic games with anonymous
players. This class of games includes many standard “policy games,” where the government
chooses a policy (taxes, debt, or inflation) and there is a continuum of agents (households).
The method uses the idea that since each household’s actions are unobservable and do not
affect prices, the household’s intertemporal incentives can be captured completely by a single
parameter (the marginal value of capital in our model). Although we have developed these
ideas in the context of a dynamic game (with the capital stock as state variable), a similar
technique would apply to a simpler class of infinitely repeated anonymous games.

The high complexity of these games often makes it impossible to find analytic solutions.
However, the extension of the algorithm proposed by Abreu, Pearce and Stacchetti (1990)
produces a sequence of approximations to the equilibrium correspondence that converges
monotonically, and provides a practical method for constructing the equilibrium correspon-

dence.

9. Appendix
PROOF OF LEMMA 2: Let 7 = {(7x4, Tet) }52 be a feasible tax policy and {(¢;, ¢, k1) 1520
be a Walrasian equilibrium of 'y (ko, 7). We will show that there exists £ > 0 such that
ki1 > k whenever k;, > k, for all £ > 0. Since the proof is for an arbitrary feasible tax policy,
it is enough to check that if kg > k, then k; > k.

By contradiction, suppose that there exists a decreasing sequence {k§}°, with

lim, o k§ = 0, such that for each s there exist a tax policy 7° and a Walrasian equilib-

rium { (€7, ¢, k} 1) }520 of Iy (k§, 7°) for which & < 3.

42



Suppose first that liminf, . £3/k§ < oco. Then, there exists a subsequence for which
the above labor to capital ratio remains uniformly bounded above, and without loss of gen-
erality we can assume that along the subsequence, ¢§/kj — r, for some r > 0. Along that
subsequence, k§ — 0, which implies that ¢§ — 0. Since f, is homogeneous of degree 0, we

have that

fé(k&g(s]) = ff(lvég/kg) - fé(lvr) > 0.

Labor taxes are uniformly bounded above by 7 < 1, so after-tax wages in period 0 are
bounded below by (1 —7)f,(1,7)/2 > 0, say, for s sufficiently large. But since kj — 0 and
05— 0, ¢ < f(k§, €5) — 0. Hence, ug(£],c) — 0 by assumption (A2). Therefore, for any
positive constant -, along the subsequence, —u, (€5, ¢j) < v(1 —7) fe(1,7)/2, for s sufficiently

large. Let

7= f ol k),

which is positive by assumption (A2). (Recall that the budget constraint implies that k =

f(k,1) is an upper bound on consumption.) Suppose the household works a little harder in

period 0 and immediately consumes the additional income. Then its total utility increases

by
uc (€5, co) (1 — 75 0) fe(kg, £6) + we(€g, ) > (1 —7) fo(1,7)/2 + ue(£, c5) > 0.

This is a contradiction. Therefore, we must have that lims_ £5/k§ = oo.
Since k] < kg for all s, we also have that k; — 0, and the same logic as above implies

that limg o £5/k§ = cc.
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By assumption (A3), since f; is homogeneous of degree 0 and k§/¢) — 0, we have
Je(kg, €5) = fu(kg /65, 1) — oo.
Hence,
(1= m30) fu(kG, €5) = (1 = 7) fu(k, £5) = 2
for all s sufficiently large, and k] < k§ implies that
¢ = (1= 730) fu(kG, () kG — k7 = kg > 0.
Since k$ /05 — 0 as well, we also have
Fulks, ) = fu(k3/63,1) — oo.

Finally, u.(¢5,¢]) > v > 0, and by assumption (A2), u.(¢8,c§) < U.. This is a contradiction:
for large enough s, the household would prefer to save more in period 0 and consume the
additional income in period 1. Since ¢ > 0 the household can save more in period 0. For each
additional dollar it saves, its utility decreases by at most U, in period 0. However, in period 1,
each additional dollar invested increases the household’s utility by at least (1 —7) fx(k2, £5)7,
which tends to co as s — oo. 1

PrOOF OF THEOREM 1: By definition, for each k € [k, k] and (m,v) € B(W