
June 2020

FEDERAL RESERVE BANK OF MINNEAPOLIS QUARTERLY REVIEW QR
On Using SIR Models to Model 
Disease Scenarios for COVID-19

Andrew G. Atkeson



FEDERAL RESERVE BANK OF MINNEAPOLIS

Quarterly Review  Vol. 41,  No.1

ISSN 0271-5287

https://doi.org/10.21034/qr.4111

This publication primarily presents economic research aimed at improving policymaking 
by the Federal Reserve System and other governmental authorities.

The views expressed herein are those of the authors and not necessarily those 
of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

SENIOR VICE PRESIDENT AND DIRECTOR OF RESEARCH: Mark L. J. Wright
EDITOR: Juan Pablo Nicolini
ARTICLE EDITOR: James Holt
TECHNICAL SUPPORT: Shawn Hewitt

The Quarterly Review is published by the Research Division of the Federal Reserve Bank of Minneapolis.
This has become an occasional publication; however, it continues to be known as the Quarterly Review for citation 
purposes. Subscriptions are available free of charge. To subscribe to the journal and be automatically notified whenever 
a new issue is published, please sign up at https://www.minneapolisfed.org/economic-research/

Quarterly Review articles that are reprints or revisions of papers published elsewhere may not be reprinted without the 
written permission of the original publisher. All other Quarterly Review articles may be reprinted without charge. If 
you reprint an article, please fully credit the source—the Minneapolis Federal Reserve Bank as well as the Quarterly 
Review—and include with the reprint a version of the standard Federal Reserve disclaimer (italicized above). Also, 
please send one copy of any publication that includes a reprint to the Research Division of the Federal Reserve Bank 
of Minneapolis.



On Using SIR Models to Model Disease
Scenarios for COVID-19∗

Andrew G. Atkeson†

University of California, Los Angeles
Federal Reserve Bank of Minneapolis

1 Introduction

In the face of the rapidly growing COVID-19 pandemic, public health experts are using a
wide variety of models of its progression to generate scenarios that are being used to guide
decisions about severe mitigation measures on economies worldwide.1 While experts in
the field of public health have previously debated the economic costs and public health
benefits of these disease mitigation measures in the face of an influenza-type epidemic,2

macroeconomists (with Rowthorn and Toxvaerd 2015 and McKibbin and Roshen 2020
being prominent exceptions) had not previously considered the feedback between disease
progression and economic activity during an influenza pandemic under different public health
and economic policy scenarios. This has now changed. To make sense of this public health
and economic crisis, economists are building a large number of models with epidemiological
and macroeconomic blocks.3

This paper is intended to introduce economists to a simple SIR model of the progression
of COVID-19 to aid understanding of how such a model might be incorporated into more
standard macroeconomic models. An SIR model is a Markov model of the spread of an
epidemic in which the total population is divided into categories of being susceptible to
the disease (S); actively infected with the disease (I); and resistant (R), meaning those that
have recovered, died from the disease, or have been vaccinated.4 The initial distribution of
the population across these states and the transition rates at which agents move between
these three states determine how an epidemic plays out over time. These transition rates
are determined by characteristics of the underlying disease and by the extent of mitigation
and social distancing measures. This model allows for quantitative statements regarding
the tradeoff between the severity and timing of suppression of the disease through social
distancing and the progression of the disease in the population.

∗This paper is a substantially revised version of Federal Reserve Bank of Minneapolis Staff Report #595 and
NBER working paper #26867. All errors are mine.
†Please send corrections or suggestions to andy@atkeson.net.
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Sample applications of the model are provided. Special attention is given to the determi-
nants of the peak fraction of agents actively infected with the disease (the peak prevalence of
the disease) and the fraction of the population that is ultimately infected with the disease
(the cumulative disease burden). The peak prevalence of the disease is of interest because
of concerns about overloading the health care system, while the cumulative disease burden
is of interest because of its connection to the overall loss of life and labor input due to the
disease.5

This paper extends Atkeson 2020b in discussing the analytical solutions developed by
Harko, Lobo, and Mak 2014 and presented in Toda 2020 for the peak prevalence of the disease
and the cumulative disease burden when the transmission rate of the disease is held constant.
Analytical formulas allow systematic study of the extent to which temporary mitigation
measures could reduce subsequent peak prevalence of the disease and the cumulative disease
burden.6 I present conditions under which temporary mitigation measures simply postpone
the peak prevalence and cumulative burden of the disease or make it possible to reduce peak
prevalence and the cumulative burden of the disease.7 The central finding here is that it is
possible to reduce the disease’s peak prevalence and cumulative burden through a policy of
temporary disease mitigation that leads a substantial fraction of the population to become
resistant to the disease before the mitigation policy is lifted permanently.8

This potential for temporary disease mitigation efforts to permanently affect disease
progression underlies the finding in the rapidly emerging literature on the optimal control of
COVID-19 through mitigation measures that costly mitigation measures such as lockdown
should be applied later rather than earlier in the evolution of the epidemic.9

This paper extends Atkeson 2020a in discussing an approach to estimate the SIR model
for the purpose of forecasting the evolution of the epidemic going forward. The estimation
approach discussed here builds on ongoing work with Karen Kopecky and Tao Zha in
Atkeson, Kopecky, and Zha 2020. I compare this structural approach for estimation and
forecasting with an SIR model with noteworthy reduced-form forecasting approaches.10

This estimation approach does not get around the fundamental problem discussed in
Lourenco et al. 2020, Atkeson 2020a and Stock 2020 of identifying key parameters of the
model from time series data on deaths from the disease if good testing data on the number
of active infections and immune agents is not available. So the estimation and forecasting
results presented are conditional on outside estimates of the fatality rate and recovery rate of
the disease.

In comparing estimation and forecasting methodologies based on the SIR model versus
reduced-form empirical models, I focus in particular on a stylized version of the widely cited
model developed by researchers at the Institute for Health Metrics and Evaluation (IHME)
at the University of Washington.11 See also Linton 202012 for a similar reduced-form
forecasting approach. I explore the underlying reasons why these reduced-form forecasting
models tend to produce forecasts for cumulative deaths that are more optimistic than those
of the structural SIR forecasting models based on different implicit and explicit assumptions
made about the future course of the disease’s effective reproduction number under these two
approaches.13 In short, the reduced form approach used by the team at IHME assumes that
the effective reproduction number will continue to decline going forward while prominent
forecasts using structural models assume that this number will remain the same or even rise
as social distancing policies are relaxed. I show that a simple SIR model implies that if the
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transmission rate of the disease as measured by its effective reproduction number were to
rise, then a second wave of the epidemic would quickly appear.

This paper introduces this basic epidemiological model and its quantitative implications
as follows.

In section 2, I present the equations of a basic SIR model. I derive the standard conditions
under which an epidemic grows or dies out in the population. I use these conditions to frame
the options for mitigating a highly contagious disease like COVID-19.

In section 3, I review the analytical solution of the model with constant parameters. In
section 3.1.1, I use this analytical solution together with numerical illustrations to review
how the disease’s peak prevalence and cumulative burden depend on model parameters.
These calculations illustrate how permanent mitigation of transmission of the disease allows
one to reduce the peak prevalence of the disease (“flatten the curve") and the cumulative
burden of the disease over the long term. Following Toda 2020, in section 3.1.2, I then use
these analytical results to consider the impact of temporary mitigation measures followed by
a period of umitigated or partially mitigated transmission of the disease at a constant rate.
Finally, in section 3.1.3, I illustrate the benefits of delayed temporary mitigation in a specific
numerical example.

In section 4, I discuss the sources of data used to choose the parameters of the model. In
section 5, I discuss reduced-form and structural approaches to estimating and forecasting the
progress of the epidemic. I use a structural approach to construct several scenarios for the
epidemic going forward based on a back-of-the-envelope estimation of the model. In section
6, I conclude.

2 A Basic SIR Model

The model is as follows.
The population is set to N . At each moment of time, the population is divided into three

categories (states) that sum to the total population. These states are susceptible S, infected
I , and resistant R. Agents who are susceptible are at risk of getting the disease. Agents
who are infected are contagious and may pass on the disease to others through some form of
interaction with susceptible agents.14 Agents who are resistant are not at risk of getting the
disease because they have immunity built up from a vaccine, have immunity from previous
experience with this or similar diseases, or they have died. In this specification of the model,
we assume that immunity is permanent so that being resistant R is an absorbing state.15

We normalize the total population N = 1, so all results regarding S, I , and R should be
interpreted as fractions of the relevant population.

The initial distribution of the population across these states at time t = 0 is given by
S0 > 0, I0 > 0, and R0 ≥ 0. For a new disease such as COVID-19, we assume that all
agents are at risk of getting the disease, so that R0 = 0, S0 is very close to one, and I0 is a
small number corresponding to the initial cases of the disease transmitted to humans either
from some animal source (as in Wuhan) or introduced into a country or region through travel.

These fractions of the population evolve over time as follows:

dSt/dt = −βtStIt,

dIt/dt = βtStIt − γIt,
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dRt/dt = γIt.

Since all of the parameters in these equations are positive, agents flow only in one direction,
from the state S to the state I and then to state R.

Note as well that we treat the evolution of the population as deterministic. This may be
appropriate once the disease has infected a large number of individuals, but at the early stage
of an epidemic with a small number of infected agents, it is more appropriate to think of
the evolution of the number of infected agents as stochastic because of the small number
of these agents. We abstract from that issue here, but it is of substantive importance if one
contemplates the possibility of completely eliminating the disease (driving It from a positive
number to zero).

The parameters of the model can be interpreted as follows.
The parameter γ governs the rate at which agents who are infected become resistant

(transition from the state I to the state R) and hence stop transmitting the disease. I refer
to this parameter as the recovery rate. Because there is no cure for a viral disease such as
COVID-19, this parameter is considered a fixed parameter determined by the biology of the
disease.16

The parameter βt is the rate at which infected agents spread the virus to (or “shed" the
virus onto) others. I refer to this parameter as the transmission rate. This parameter is a
reduced-form parameter that is impacted by the biological disease transmission mechanism,
the rate at which agents bump into one another in the course of their daily activities, and
the extent to which agents use prophylactics in their meetings. This parameter can thus
be impacted by mitigation measures such as social distancing, hand washing, the use of
masks, and so on. Because of changes in the biological disease transmission mechanism,
this parameter is also subject to natural, or apparently random, fluctuations over time and
across space.17

Note in the first two equations governing the flow of agents over time from the state S
to the state I , we assume that the transmission of the disease from infected to susceptible
agents is mitigated through random and uniform matching of agents in the population, as
indicated by the term St in those two equations. That is, we interpret βt as capturing the
rate at which an infected agent interacts with and sheds virus onto agents of any kind in the
population.18 Under the assumption that infected agents’ interaction with other agents is
random and uniform, the the rate at which an infected agent meets a susceptible agent and
sheds virus onto that agent is given by βtSt. This assumption that the transmission of the
disease is mitigated by random and uniform matching is a very stark one maintained here for
simplicity, and there is a great deal of research on the question of how the precise nature of
interaction between agents of different types, together with mitigation policies targeted at
reshaping the specific nature of interactions, may shape the transmission of a disease.19

The following notation is useful in developing results regarding the solution to the model.
I define the ratio of parameters βt/γ to be the normalized transmission rate. It is standard

to refer to the value of the normalized transmission rate at the start of the epidemic, before
any mitigation measures and use of prophylactics are undertaken, as the basic reproduction
number of the disease. We denote this basic reproduction number by R0. This parameter
corresponds to the parameter cited in many news and academic studies.20

I refer to the term Rt as the effective reproduction number of the disease at date t.
This effective reproduction number is the ratio of the rate at which infected agents infect
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susceptible agents when the the disease has progressed for some time to the recovery rate
of infected agents. In the model, we assume that the effective reproduction number of
the disease is given by the product of the normalized transmission rate and the fraction
of agents who remain susceptible to the disease, Rt = (βt/γ)St/N . Thus, in the model,
the effective reproduction number of the disease can differ from the basic reproduction
number for two reasons. First, as discussed above, the normalized transmission rate βt/γ
may vary over time with changes in the transmission rate βt, through either steps undertaken
to mitigate the transmission rate of the disease or through naturally occurring changes in
its transmission. Second, the effective reproduction number falls as the fraction of agents
remaining susceptible to the disease St/N falls.

With this notation, we can restate the equations of the model in terms of the effective
reproduction number as

dSt/dt = −RtγIt, (1)

dIt/dt = (Rt − 1) γIt, (2)

dRt/dt = γIt. (3)

This reformulation of the model equations in terms of the effective reproduction number
is useful for measurement of the effective reproduction number from data on either the
growth of active cases or cumulative deaths.

We are interested in the cumulative burden of the disease, measured as the fraction of
the population ever infected with the disease. We denote this fraction at date t as CBt. The
initial value of this fraction is equal to the fraction initially infected I0. This fraction grows
over time according to

dCBt/dt = −dS/dt = RtγIt. (4)

The long-run cumulative burden of the disease is given by

CB∞ = I0 + S0 − S∞. (5)

where S∞ is the limit of St as t goes to infinity.

We denote the fatality rate from the disease by ν and the cumulative number of fatalities
by Dt. That is, ν is the fraction of agents who are newly resistant because they died.21 We
set the initial number of deaths to D0 = 0. From equation (3), the death rate per unit time is
given by

dDt/dt = νγIt. (6)

Cumulative deaths are then counted by integrating this death rate over time.

The following properties of the solution of the model are standard.

1. Model steady-states have I = 0. If I = 0, then any combination of S and R that sums
to N is a steady-state.

2. From equation (2), if It > 0, then dIt/dt ≤ 0 if and only if Rt ≤ 1. Thus, the
steady-states reached from an initial value of I > 0 must have

St ≤ γ/βt. (7)
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3. The growth rate of the log of the number of active cases is given by

d log I

dt
= (Rt − 1) γ. (8)

Note from equation (2) that if the population is distributed across states such that the
condition (7) is satisfied for values of the normalized transmission rate equal to the basic
reproduction numberR0, then any initial infection rate I0 > 0 would die out monotonically
over time. In this case, we say that this population has herd immunity to the disease, since
initial infections do not spread further. Note that herd immunity can be achieved either if
the disease infects enough agents to reduce the fraction of agents remaining susceptible
S/N to a low enough level relative to the normalized transmission rate so that condition
(7) is satisfied or through the use of a vaccine to directly convert enough agents from the
susceptible state S to the resistant state R. In the context of this model, in the absence of a
vaccine, the only option to reduce the infection rate I when the population does not have
herd immunity is to take mitigation steps to reduce the normalized transmission rate to a
level consistent with condition (7), as determined by the current distribution of agents across
states.

3 An Analytical Solution of the Model with a Constant Transmission Rate

In this section, I review the analytical solution of the model with constant parameters
developed by Harko, Lobo, and Mak 2014 and presented in Toda 2020. This analytical
solution is useful in at least two dimensions. First, we can use the solution, together with
initial conditions corresponding to the start of this epidemic (S0 close to one, I0 positive but
close to zero, and R0 = 0), to study how the shape of the epidemic, in terms of the disease’s
peak prevalence and long-run cumulative burden of the disease, depends on the normalized
transmission rate βt/γ if it is held constant atR0.

Second, we can use the solution, together with arbitrary initial conditions, to study
how the epidemic might evolve following an initial period of mitigation that is lifted if the
normalized transmission rate is held constant after that time. For this second application,
we will consider initial conditions with the fraction of agents who are resistant R0 > 0,
corresponding to the state of the population after an initial period of evolution of the
epidemic. The idea here is that after some initial period with temporary mitigation, the
epidemic progresses from that point on with the normalized transmission rate equal to a
constant. Thus, we see that a temporary period of mitigation can impact long run outcomes
only through its impact on the state of the population at the end of the period of mitigation,
taken here as the initial condition for the model of the remainder of the epidemic.

Let the initial conditions of the model be given by S0 > 0, I0 > 0, and R0 ≥ 0. Let the
recovery rate be given by γ, and let the normalized transmission rate be given by βt/γ = R0

and be constant over time.
The solution of the model for St, It, andRt is expressed in terms of a decreasing function

of time v(t) defined implicitly below. This solution is

St = S0v(t), (9)
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It =
1

R0
log v(t)− S0v(t) + 1−R0, (10)

Rt = −
1

R0
log v(t) +R0, (11)

with v(t) ∈ (0, 1] implicitly defined as the solution to

t =
1

β

∫ 1

v(t)

1

ζf(ζ)
dζ, (12)

where the function f(v) is defined on a domain (v∗, 1] by

f(v) = S0(1− v) + I0 +
1

R0
log v.

To understand the definition of v(t) in equation (12), observe that f(1) = I0 > 0 and
f(v) is strictly concave since

f ′′(v) = − 1

R0

1

v2
< 0.

We also have that f(v)→ −∞ as v → 0, so there is a unique value of v∗ ∈ (0, 1) such that
f(v∗) = 0. Moreover, f(v) > 0 for (v∗, 1]. This implies that v(t) is a decreasing function
of t, that it is equal to 1 when t = 0, and that it approaches v∗ as t goes to infinity.

We see from this analytical solution of the model that when the normalized transmission
rate is constant, the basic reproduction number R0 plays an important role in shaping the
model’s predictions for the shape of the progression of the epidemic in terms of the its peak
prevalence and cumulative burden. But this parameter does not determine the time scale of
the epidemic’s progression.22 The speed of the epidemic is determined by the time derivative
of v, which is obtained by differentiating the equation defining v(t) and is given by

−dv
dt

= βvf(v) = R0γvf(v).

We see that speed of the epidemic scales directly with the recovery rate γ, holding fixed the
basic reproduction number.

We now use these formulas to compute the model’s implications for the peak prevalence
cumulative burden of the disease. To compute the peak prevalence of the disease, observe
that from equation (2) and our discussion of herd immunity above, we have two possibilities.
In the first case, with herd immunity, if R0 ≤ 1, then from equation (2), the solution for
I(t) is declining over time for all t ≥ 0, so the peak prevalence of the disease is the initial
infection rate I0. In the alternative case, withR0 > 1, from equation (2), the peak prevalence
of the disease occurs whenR0St = 1 or, using equation (9), when v = 1/R0S0. Thus, from
equation (10), the peak prevalence of the disease is given by

Ipeak = −
1

R0
log (R0S0)−

1

R0
+ 1−R0. (13)
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To compute the cumulative burden of the disease, we compute the fraction of agents who
get infected in the long run. From equations (5) and (9), we have

CB∞ = − 1

R0
log v∗, (14)

where v∗ is given by the unique solution in (0, 1) of the equation f(v) = 0 or, equivalently,

1−R0 − v∗S0 +
1

R0
log v∗ = 0. (15)

3.1 Quantitative Implications of the Model with a Constant Transmission
Rate

I now use these formulas to study two types of disease scenarios of interest.
I first use these formulas to construct disease scenarios in which the disease is entirely

new to the population, so that initially there are no agents resistant to the disease (R0 = 0),
and the fraction initially susceptible S0 = 1− I0 is very close to one because the fraction
initially infected is very small. In using these formulas to obtain the model’s implications
starting from these initial conditions, we assume either that there is no mitigation of the
disease (so that Rt = R0 for all t ≥ 0) or that permanent steps are taken to lower for all
time the normalized transmission rate of the disease.

I then use these formulas to construct disease scenarios starting from initial conditions in
which some sizable portion of the population is resistant (so R0 � 0) and a non-negligible
fraction of the population is initially infected (I0 � 0). We can interpret scenarios starting
from these initial conditions as scenarios for the disease after an initial period of experience
with it under temporary mitigation measures.

I finally illustrate how, using scenarios of this kind, we can understand whether it is
possible to use temporary mitigation measures to alter the peak prevalence and cumulative
burden of the epidemic. I solve the model under assumptions of no mitigation and temporary
mitigation applied for 30 days, but at different points in the progression of the epidemic.
I show how temporary mitigation applied early has little impact on long run outcomes,
while the same temporary mitigation applied later can have a significant impact on long run
outcomes because of its impact on the state of the population when that temporary mitigation
comes to an end.

3.1.1 Disease Scenarios Starting with No Resistant Agents in the Population

I start by considering the quantitative implications of the model in the first case, with no
agents resistant to the disease to start and an initial importation of cases through travel equal
to I0 = 1/100000, or roughly 3,300 initial cases for a population the size of the United
States. I set the recovery rate to γ = 1/8, corresponding to infected agents’ being contagious
on average for eight days. I illustrate the model’s quantitative implications for the peak
prevalence and cumulative burden of the disease over the first 180 days of the epidemic,
when the normalized transmission rate of the disease ranges from βt/γ = 3.0 to βt/γ = 1.6,
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corresponding to a doubling time for active cases in the initial phase of the epidemic of 2.8
days and 9.2, respectively. I show results in figures 1 and 2.

Figure 1
Fraction of the population with an active infection over 180 days under different
values of βt/γ held constant over the entire six-month time period.

0 20 40 60 80 100 120 140 160 180
days

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t /  = 3.0

t /  = 2.8

t /  = 2.5

t /  = 2.2

t /  = 2.0

t /  = 1.8

t /  = 1.6

Note: The initial fraction of the population that is resistant is set to R0 = 0.

Note in Figure 1 that variation in the basic reproduction numberR0 = βt/γ results in
substantial changes in the peak prevalence of the disease, as indicated by equation (13) with
initial conditions R0 = 0 and S0 very close to 1. The timing of the peak in seen in Figure 1
slows down with reductions in the basic reproduction numberR0 because these reductions
imply a slower transmission rate per unit of time βt given our fixed value of the recovery
rate γ.

In figure 2, we see that the cumulative burden of the disease (shown here after 180 days)
exceeds half of the population in all of the numerical illustrations considered and is close to
one if the basic reproduction number for the disease is as high as three. These illustrations
suggest that unmitigated transmission of COVID-19 would result in a large cumulative
burden of the disease over a relatively short period of time.

What does the model imply for fatalities from the disease? The cumulative fraction of
the population that dies in the long run is given by D∞ = νCB∞. With estimates of the
fatality rate ν from COVID-19 in the range of one tenth of one percent at the low end to
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Figure 2
The cumulative burden of the disease as measured by cumulative cases as a fraction
of the population over 180 days under different values of βt/γ held constant over the
entire six month time period.
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Note: The initial fraction of the population that is resistant is set to R0 = 0.

one percent or more, the results in Figure 2 and the corresponding figures for the long-run
cumulative disease burden suggest that one would expect a substantial number of deaths in
the United States from unmitigated transmission of the disease: roughly 200,000 deaths at
the low end and several million deaths at the high end.

3.1.2 Continuation of Disease Scenarios Once There is a Substantial Fraction of Resistant
Agents in the Population

I next consider the quantitative implications of the model in the second case, in which the
population has an initial period of experience with the disease which leads to some fraction
of the population’s being resistant. Here, for illustrative purposes, I set this initial fraction to
R0 = 1/3. I set the other parameters of the model equal to their values considered above
(γ = 1/8, I0 = 1/100000, and values of βt/γ held constant at values ranging from 1.6 to
3.0).

In figures 3 and 4, I show the model’s implications for the peak prevalence and cumulative
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disease burden over the next 18 months. Here, I consider the peak prevalence of the disease
in the period after the initial period of experience with the disease which results in R0 = 1/3
of the agents’ being resistant. But I do count these initially resistant agents as part of the
cumulative burden of the disease.

Figure 3
Fraction of the population with an active infection over 180 days under different
values of βt/γ held constant over the entire six-month time period.
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Note: The initial fraction of the population that is resistant is set to R0 = 1/3.

By comparing figures 1 and 3, we see that the continuation of the epidemic after an
initial period that led to one-third of the population’s being resistant to the disease features
much lower peak prevalence of the disease than we found when the epidemic started with no
one’s being resistant to the disease. This finding suggests that it is possible, through a policy
of temporary mitigation of disease transmission, to then relax those mitigation measures and
experience a substantially reduced peak prevalence of the disease in a second wave. This
is the case only if the initial period of disease transmission subject to mitigation measures
allows a substantial portion of the population to become resistant to the disease.

Perhaps more interesting, by comparing figures 2 and 4 showing the cumulative burden of
the disease over 180 days in our two scenarios, we see that it may be possible to substantially
reduce the cumulative burden of the disease through a policy of temporary mitigation of
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Figure 4
The cumulative burden of the disease as measured by cumulative cases as a fraction
of the population over 180 days under different values of βt/γ held constant over the
entire six month time period.
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Note: The initial fraction of the population that is resistant is set to R0 = 1/3.

disease transmission followed by a relaxation of those mitigation measures once a substantial
portion of the population has become exposed to the disease. I present corresponding results
for the cumulative disease burden in the long run (CB∞) computed using equation (14) in
Table 1. We see that there is indeed a permanent difference in the cumulative disease burden
in the two scenarios.

In addition, we see in figure 4 that this cumulative disease burden grows very slowly
if the normalized transmission rate is held to a level such as 1.6 or 1.8, so that, in those
cases, the difference in disease burden after 180 days is much more substantial than the
corresponding difference in the long-run disease burden shown in Table 1.

3.1.3 Choosing the Timing of Temporary Mitigation

The results from section 3.1.2 and Toda 2020 suggest that temporary mitigation may be
most useful in reducing peak disease prevalence and the cumulative burden of the disease
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Table 1
Long-run cumulative disease burden % of total population

βt/γ 1.6 1.8 2.0 2.2 2.5 2.8 3.0

No initial resistance 0.6420 0.7324 0.7968 0.8437 0.8926 0.9250 0.9405
1/3 initially resistant 0.4150 0.5425 0.6363 0.7070 0.7838 0.8375 0.8645

if it is applied later in the progression of the epidemic rather than earlier. When applied
later, it allows for the build-up of a substantial number of resistant agents in the population
before the temporary mitigation is relaxed. To illustrate this point, I show results for the peak
prevalence of the disease and the cumulative burden of the disease from a numerical example
comparing the progression of the epidemic with no mitigation, 30 days of mitigation applied
from days 20 to 50, and 30 days of equally effective mitigation applied from days 55 to 85.

In this numerical example, as before, I set the initial conditions as before to I0 =
1/100000 and the initial fraction resistant to R0 = 0. I set the recovery rate to γ = 1/8 and
the normalized transmission rate of the disease in the absence of mitigation to βt/γ = 2.5.
I assume that mitigation, when applied, reduces the normalized transmission rate of the
disease to βt/γ = 1.5, or to 60% of its unmitigated value. I solve the model under three
scenarios. In the first scenario, there is no mitigation. In the second scenario, mitigation is
applied for 30 days from t = 20 to 30. In the third scenario, mitigation is applied for 30
days from t = 50 to 80.

In figures 5 and 6, I show the actively infected fraction of the population and the
cumulative burden of the disease over 180 days for these three scenarios. We see in these
figures that temporary mitigation applied for 30 days starting on day 20 of the epidemic
simply delays the peak prevalence of the disease and the cumulative burden of the disease by
30 days relative to the case with no mitigation at all, while the same temporary mitigation
applied from days 50 to 80 substantially reduces the peak prevalence of the disease and has
a measurable impact on the cumulative burden of the disease. As indicated by the analytical
formulas above, the key difference between the two cases with temporary mitigation is
that in the case with temporary mitigation applied early, only a very small fraction of the
population is resistant at the end of the temporary mitigation period (day 50) while in the
case of temporary mitigation applied later, nearly 60% of the population is resistant at the
end of the temporary mitigation period (day 80).

Rachel 2020 provides useful intuition for this result regarding how the impact of tem-
porary disease mitigation measures on the peak prevalence of the cumulative burden of
the disease varies with the timing of the mitigation based on an examination of the phase
diagram of the SIR model. This phase diagram is presented as a plot with the fraction of
agents susceptible St on the x-axis and the fraction of the population actively infected It on
the y-axis, for all points of time t. Since the fractions of the population across states S, I ,
and R sums to one, we can characterize the current state of the system in terms of the current
fractions susceptible St and actively infected It, with the fraction resistant Rt computed as a
residual.

We present the solution of the model with different timing of mitigation shown over time
in figures 5 and 6 in this phase diagram in figure 7. The vertical line at S = 0.4 marks the
point that the population reaches herd immunity, since the basic reproduction number in
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Figure 5
Fraction of the population with an active infection over 180 days under different
temporary disease mitigation scenarios.
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Note: The normalized transmission rate is set to β/γ = 2.5.

this case is set toR0 = 2.5. The solution of the model under all three temporary mitigation
scenarios considered starts in the lower right hand corner of the diagram, with S0 close
to one and I0 close to zero. Absent mitigation, It rises and St falls over time as long as
St is above the line at 0.4 marking herd immunity, and It falls and St also falls over time
when St is below this level. This means that the long-run value to which St converges
in the lower right hand side of the diagram, equal to one minus the long-run cumulative
burden of the disease, is determined by the level of It when herd immunity is reached (or
when temporary mitigation ends, if that comes later). As we can see in the diagram, early
temporary mitigation has a negligible impact on the level of active infections when herd
immunity is reached, in comparison to the alternative of no mitigation at all. In contrast,
the same temporary mitigation applied later on in the progression of the epidemic does
substantially reduce the fraction actively infected when herd immunity is reached, leading to
higher long-run values of St and thus a lower cumulative burden of the disease.
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Figure 6
The cumulative disease burden measured as cumulative cases as a fraction of the
population over 180 days under different temporary disease mitigation scenarios.
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Note: The normalized transmission rate is set to β/γ = 2.5.

4 Measuring the Parameters of the Model

In this section, I discuss data used to measure the parameters of the model.
The model has the following parameters. There is the initial condition of the population

indexed by S0 and I0 (with the initial population resistant at R0 = 1−S0− I0), the recovery
rate γ, the basic reproduction number R0, and the evolution over time of the normalized
transmission rate βt/γ as it changes with mitigation and natural variation. These parameters
imply a path for the transmission rate βt and the effective reproduction numberRt depending
on the solution for the fraction of susceptible agents St at each date.

Consider first the measurement of the initial conditions for a new disease such as COVID-
19. We start from the assumption that there are no agents resistant to the disease, so R0 = 0.
As mentioned above, outside of Wuhan, the initial number of infected agents corresponds
to the number of cases of the disease introduced into the area through travel. As a fraction
of the total US population, this number is typically set to be quite small (on the order of
I0 = 1/100000).23
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Figure 7
A phase diagram showing the evolution of the fraction of the population actively
infected versus the fraction of the population still susceptible under three temporary
disease mitigation scenarios.
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Note: The vertical line in the figure marks the fraction susceptible at which herd immunity is achieved
S = 0.4 = γ/β with β/γ = 2.5

Now consider estimates of the recovery rate γ. There are a wide range of estimates of
this parameter taken from clinical observations of data such as the length of time agents
known to be infected shed the virus24 as well as data from contact tracing determining who
got sick when and from contact with whom.25 Estimates for COVID-19 continue to be
updated as new data come in.26 Values of γ between one-fourth and one-fourteenth are
considered in the literature, corresponding to an infectious period of four to 14 days on
average. In the numerical illustrations in this paper, I use γ = 1/8.

How do we measure the basic reproduction number of the diseaseR0? This is typically
done using data on the growth of the number infected in the early phase of the epidemic using
equation (8).27 For example, estimates of the doubling time of the number of active cases for
COVID-19 in the early stages of the epidemic are typically in the range of two to nine days.
From equation (8), the doubling time of active cases should be given by log(2)/(Rt − 1)γ.
Thus, with γ = 1/8, a doubling time of two days for active cases corresponds to an estimate
of the effective reproduction number of Rt = 3.77 and a doubling time of nine days for
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active cases to an estimate ofRt = 1.6. Note that at the start of an epidemic, the effective
reproduction number of the disease Rt should be close to the basic reproduction number
of the disease R0 if no mitigation steps have been taken and if the entire population is
susceptible to the disease.

As equation (8) makes clear, however, to use data on the growth of infections in the
initial stage of the epidemic to estimate the basic reproduction number of the disease R0,
we must also have data on the recovery rate γ. Thus, uncertainty in our measurement of the
recovery rate γ translates, in the early phase of an epidemic, into uncertainty in our estimate
of the basic reproductive numberR0.

Given the large uncertainty over estimates of γ and the wide range of case growth
rates observed across different regions, there is a great deal of uncertainty over the basic
reproduction number of COVID-19. Based on the observation that COVID-19 has grown
just about everywhere, it is certainly greater than 1. Many estimates of the basic reproduction
number of COVID-19 put it over 2 or 3 or even more. In the numerical illustrations above, I
use basic reproduction numbersR0 ranging from 1.6 to 3, corresponding to doubling time
for active infections at the start of the epidemic with recovery rate γ = 1/8 between 9.2 and
2.8 days.

An additional difficulty with measurement of the basic reproduction number of the
disease from early data on the growth rate of active infections arises if diagnostic testing
does not keep pace with the initial growth of the disease.28 In this case, one may wish to use
data on deaths due to the disease to measure the growth of the disease, under the presumption
that the growth rate of deaths due the disease is measured more accurately than the growth
rate of infections.29

One can measure the effective reproduction number from the growth rate of deaths as
follows.30 From equation (2), the evolution of the true number of infected agents is given by

It = I0 exp(γ

∫ t

0
(Rs − 1)ds).

From equation (6), we then have that

dD

dt
= νγI0 exp(γ

∫ t

0
(Rs − 1)ds),

where this time derivative of deaths is approximated in the data by the daily number of new
deaths. If we differentiate this expression again, we get

d2D

dt2
= νγ2I0 exp(γ

∫ t

0
(Rs − 1)ds)(Rt − 1).

Thus, we can get an estimate of the effective reproduction number of the disease at time t
from

Rt = 1 +
1

γ

d2D
dt2

dD
dt

. (16)
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Note that the term
d2D
dt2

dD
dt

corresponds in a discrete time model to the time derivative of the logarithm of the daily
number of new deaths.

5 Forecasting an Epidemic

In this section, I review two alternative methods for forecasting the progression of the
COVID-19 epidemic. I use this discussion to highlight the identification issues that arise
when one does not have adequate testing data to measure the number of actively infected or
recovered individuals31 and to outline a procedure based on work in Atkeson, Kopecky, and
Zha 2020 for using the SIR model to construct forecasts of the progression of the epidemic
going forward. I also relate this approach to the work of Fernandez-Villaverde and Jones
2020.32

The first method I review is reduced form. I base my discussion of this approach on
a stylized version of the widely cited model developed by researchers at the Institute for
Health Metrics and Evaluation (IHME) at the University of Washington. I discuss how one
can use the SIR model to directly interpret these reduced-form forecasts in terms of forecasts
of the effective reproduction number of the disease going forward. I use this discussion
to illustrate why the reduced-form forecasts of this kind tend to produce a more optimistic
forecast for cases and deaths going forward than the structural approaches considered next.

The second method I review makes full use of the structure of the SIR model.33 The
model is first fit to match data to date on deaths from COVID-19 in the same manner as
in the reduced-form forecasting exercises. But to generate forecasts, the full structure of
the SIR model is used to construct an estimate of the current distribution of the population
across states St, It and Rt and of the path of the normalized transmission rate from the start
of the epidemic to the current date. Scenarios for the future path of the epidemic are then
computed by solving the model going forward, based on assumptions about the impact of
disease mitigation efforts on the future path of the normalized transmission rate. I discuss
how the main difference in forecasts generated by these two methods is the assumptions
made implicitly or explicitly about the path going forward of the effective reproduction
number of the disease.

5.1 Reduced-Form Approaches

The reduced-form approaches followed by the team at IMHE and Linton 2020 are based
on the empirical observation that the number of daily new cases and deaths in those places
impacted early on by the epidemic (such as Wuhan and regions of Italy and Spain) that then
imposed mitigation measures has followed a hump-shaped pattern.34 The forecasts from
these models are predicated on the assumption that other regions experiencing the epidemic
and imposing social distancing measures later on should follow a similar hump-shaped
pattern of daily new cases and/or deaths.

The central idea behind these reduced-form approaches can be explained using a simple
version of the IHME model’s approach.35 This model assumes that the path of cumulative
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daily deaths beginning from some initial calendar date t0 is given by

Dt =
p

2

(
1 +

2√
π

∫ a(t−t0−b)

0
exp(−τ2)dτ

)
,

where the parameter p denotes the limiting number of deaths D∞, a is a growth parameter,
and b is an inflection point. This specification produces an implication for daily deaths
(approximated by the derivative of cumulative deaths) given by

dDt

dt
=

pa√
π
exp(−a2(t− t0 − b)2),

which peaks at time t = b+ t0 and then falls thereafter. Note that the implied growth rate of
the logarithm of daily deaths is given by

d2D
dt2

dD
dt

= 2a2(b+ t0 − t).

The model is fit to the available data on deaths between the initial date t0 and the current
date, then the assumed parametric form is used to project daily deaths beyond the current
date. This projection is based on the claim that this parametric form fits the data for locations
that are further along in disease progression. One can incorporate measures of the extent
and timing of mitigation in the estimation as covariates for the parameters p and b, based on
experience across locations.

Some argue that this approach produces optimistic forecasts, at least in comparison with
forecasts based on structural models. To illustrate the basis for this argument, I relate this
empirical specification for cumulative deaths to our SIR model as follows.

With a constant fatality rate ν, our SIR model implies that observed deaths are related
to active infections by equation (6), and equation (16) implies that the path of the effective
reproduction number over time implied by the parameters of this empirical specification for
cumulative deaths is given by

Rt = 1− 2a2

γ
(t− t0 − b).

That is, for our SIR model to replicate this pattern of cumulative deaths, the normalized
transmission rate βt/γ would have to vary over time so as to produce the path given above
for the evolution of the effective reproduction numberRt = βt/γSt over time.

Note then that this empirical specification implies that the effective reproduction number
falls linearly over time, not only in the period of estimation but also going forward beyond
the current period.36 Thus, in the context of a structural model, unless one assumes that
the current value of St/N is substantially below one, this is equivalent to assuming that the
impact of mitigation measures on disease transmission will continue to lower the transmission
rate over time rather than keep it stable or even allow it to rise. It is not clear that this is a
natural assumption regarding the impact of lockdowns or other disease mitigation measures
— that their impact on disease transmission would grow over time. One can see then that this
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forecasting procedure produces “optimistic" forecasts relative to a fully structural approach
based on the assumption that the normalized transmission rate will remain at some constant
value or even return to some increasing path.

5.2 A Structural Approach

I now consider model estimation and forecasting based on the full structure of the SIR model.
Conceptually, to use the full structure of our SIR model to generate forecasts for the

progression of the epidemic, we must identify the current state of the population in terms of
its distribution across states, St, It and Rt, and the path of the normalized transmission rate
going forward βt+s/γ for dates t+ s with s > 0. Once the state of the system is identified
and the normalized transmission rate forecast, then the model equations imply a path going
forward for the effective reproduction ratio Rt+s and the evolution of the state St+s, It+s
and Rt+s. To add a forecast of deaths from the epidemic, one can augment the model with
equation (6), which links daily deaths to the measure of active infections.

To use this approach, we must wrestle with the data problems inherent in measuring
the true number of infected and resistant agents with incomplete testing of the population
as discussed in Atkeson 2020a, as well as the difficulties with forecasting the path of the
normalized transmission rate. I discuss those issues here. I do so in the context of a specific
model estimation exercise presented next.

Assume that we have complete data on cumulative deaths Dt from dates t = t0 > 0 to
T , where t0 is the calendar date on which cumulative deaths Dt0 are equal to some threshold
(like 5 or 15 or 25) and T represents the current period. Assume that we also have data on the
first and second derivatives of cumulative deaths during this time period. These derivatives
are continuous time versions of data on daily deaths and the change in daily deaths. Assume
that we do not have data on active infections or resistant agents.

Consider the following thought experiment based on these assumptions. Imagine that
we fix parameters ν and γ governing the fatality rate and recovery rate of the disease. What
state of the population at date t0 and course of the time-varying normalized transmission rate
βt/γ from dates t0 to T would allow the model to match exactly the data on deaths from t0
to T ?

We have the following equations to work with in estimating these additional parameters
of the model. Note that we assume that these equations apply for all t > 0 but we have data
only on the level and derivatives of cumulative deaths from t ≥ t0. From (6), we have

It =
1

νγ
dDt/dt.

Using (3) and (6) together and the assumption that R0 = D0 = 0, we have that

Rt =
1

ν
Dt.

Using that the states must sum to one, we have

St = 1− 1

ν
Dt −

1

νγ

dDt

dt
.
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These equations then give the full path of the state of the population from dates t0 to T . Note
that the intuition behind these equations is straightforward. To determine the number of
resistant agents at time t, we simply use the observation that the level of cumulative deaths,
together with an estimate of the fatality rate of the disease, tells us how many agents are
resistant to the disease. To determine the number of actively infected agents at time t, we use
the observation that the level of daily deaths (the derivative of cumulative deaths), together
with an estimate of the fatality and recovery rates of the disease, tells us the number of active
infections. The number of susceptible agents at time t is then one minus these two quantities.

To recover the implied path of the normalized transmission rate, note that equation (16),
together with the death data, gives the following estimate for the path of the product of the
effective reproduction between dates t0 and T . This estimate, together with the estimate of
St above, implies that the path of the normalized transmission rate needed to exactly match
the deaths data for t ∈ [t0, T ] is given by

βt
γ

=
1 + 1

γ

d2Dt
dt2
dDt
dt

1− 1
νDt − 1

νγdDt/dt
.

This estimation procedure makes clear the identification problem in pinning down the
parameters ν and γ from deaths data alone. In particular, if we start with a prior for ν and γ,
we should not be able to update this prior based on deaths data alone, unless the estimates
above result in inadmissable values of implied It, Rt, or St (above 1 or negative) or some
implausible path for the normalized transmission rate βt/γ (such as a negative value).37

Putting aside this identification problem, if we are given outside estimates of the parame-
ters ν and γ, how might we then use the structure of the SIR model to construct a forecast
different from that offered by the reduced-form approach? In joint work with Karen Kopecky
and Tao Zhao in Atkeson, Kopecky, and Zha 2020, we outline the following four-step
procedure for doing so.

In step 1, estimate an empirical specification for cumulative deaths between dates t0
and the present that is twice differentiable. The empirical specification used in the previous
subsection is one possible specification, but of course, there are many others.

In step 2, use the best available information to choose parameters for the fatality and
recovery rates ν and γ, or a range for these parameters to be considered.

In step 3, we use the equations above to estimate the paths of St, It, Rt and the normalized
transmission rate βt/γ for which the model fits exactly the empirical specification for deaths
in step 1.

These steps then give a “best estimate" of the current state of the population and the path
that the normalized transmission rate has followed to date.

In step 4, construct a model-based forecast by specifying a path forward for the normal-
ized transmission rate βt/γ based on estimates of the impact of future mitigation on disease
transmission going forward and by solving the SIR model from this current state with this
assumed path of the normalized transmission rate.

With this procedure, one can estimate the structural model in as flexible a manner as
desired with regard to empirical specifications of the evolution of cumulative deaths to date.
One can then present a model-based forecast directly related to estimates of the progress
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towards herd immunity and the impact of future disease mitigation efforts.38

Consider the following back-of-the-envelope application of this procedure to data on
deaths for the United States as a whole from early April to early May 2020.39

Begin with an empirical specification for cumulative deaths in the United States between
the dates t0 corresponding to April 8, 2020 and T corresponding to May 8, 2020, given by

Dt = Dt0 + a(t− t0);

that is, model cumulative deaths over this time period as growing linearly through time. Note
that with this specification, daily deaths are constant

dDt

dt
= a,

and the second derivative of cumulative deaths is zero. In figures 8 and 9, I show cumulative
deaths and daily deaths in the data and this empirical specification of the model.

Figure 8
Cumulative deaths, April 8 to May 8, 2020, data and model
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Note: Data on deaths at various dates used in the exercise are taken from
https://www.worldometers.info/coronavirus/country/us/.
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Figure 9
Daily deaths, April 8 to May 8, 2020, data and model
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Note: Data on deaths at various dates used in the exercise are taken from
https://www.worldometers.info/coronavirus/country/us/.

To explore the implications of these data for the evolution of the state of the population
and for the normalized transmission rate, I use a recovery rate of γ = 1/8 and three values for
the fatality rate: ν = 0.005 as a baseline value, and ν = 0.01 and ν = 0.002 as alternative
values.

Consider first the implications of these parameter choices for the fraction of agents
currently infected. Since daily deaths are constant over time in our empirical specification,
we have that the fraction of agents actively infected is also constant over time, at just under
1% of the population in our baseline fatality rate, and just under 0.5% and 2.5% of the
population with our two alternative fatality rates.

In figure 10, I show the corresponding implications of the model for the fraction of
agents still susceptible . We see here that different assumptions about the fatality rate lead
to substantially different implications for the infection rate and the fraction of agents still
susceptible.

Consider finally the implications of this specification of the model for the evolution
over time of the effective reproduction number Rt and the normalized transmission rate
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Figure 10
Model-implied fraction of agents remaining susceptible to infection, April 8 to May 8,
2020
for three different fatality rates
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Note: The fatality rates considered are ν = 0.01, 0.005, 0.002

βt/γ. From equation (16), we have immediately that our linear empirical specification for
cumulative deaths over the past month implies an effective reproduction number equal to one
for that time period because the second derivative of cumulative deaths is equal to zero in this
specification. Thus, in this case, our model’s implications for the evolution of the normalized
transmission rate is simply given by 1/St, where St is shown in figure 10. Therefore, this
specification of our model implies that the normalized transmission rate has been rising
over the course of the past month. I plot this estimate of the evolution of the normalized
transmission rate in Figure 11.

I have now used the model and data on deaths over the past month to compute the state of
the population in terms of St, It, andRt, the evolution over time of the effective reproduction
numberRt and the normalized transmission rate βt/γ. To make forecasts of the evolution
of the disease, one must make a forecast of the evolution of the normalized transmission rate
going forward.
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Figure 11
Estimated normalized transmission rate April 8 to May 7, 2020
for three different fatality rates
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I consider two alternative scenarios.
First, one might conjecture that decentralized disease avoidance behavior would adjust

endogenously to rising or falling daily deaths and/or changes in the fraction of the population
currently infected leading these quantities to remain constant in equilibrium.40 Alternatively,
this outcome might be targeted by policy. For example, in Germany, the stated policy is to
tune mitigation steps to keep the effective reproduction number at or below one to avoid
overloading the health system.41 In either case, the effective reproduction number going
forward would remain at one, the normalized transmission rate going forward would rise
over time with 1/St, and the current pattern of linear growth of cumulative deaths and the
current constant fractions of the population actively infected would continue.

Under first scenario, the model forecasts many months of roughly 2000 daily deaths, with
an associated portion of the population actively infected at just under 1% of the population
in our baseline fatality rate, and just under 0.5% and 2.5% of the population with our two
alternative fatality rates. This linear growth of cumulative deaths and constant infection rate
would end only when the population reaches herd immunity, so that even with no mitigation
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efforts at all, the effective reproduction number would begin to fall below one. With a
normalized transmission rate of βt/γ = 2.5, this would occur in 470 days from May 8 with
our baseline fatality rate, and in 957 or 178 days from May 8 with our two alternative fatality
rates.

Alternatively, one might conjecture a second scenario going forward in which a relaxation
of policies regarding social distancing leads to an increase in the normalized transmission
rate to a level above that shown in figure 11 for the month from April 8 to May 8, 2020. For
example, one might conjecture that, going forward, the normalized transmission rate might
rise to a value in the range of 1.6 to 3, as considered in figures 1 to 4.

I illustrate the forecast progression of the epidemic under such a scenario in figures 12
and 13. Specifically, given our baseline estimate of the fatality rate, our back-of-the-envelope
estimate of the fraction of the population susceptible, infected, and resistant on May 8, 2020
is S = 0.9425, I = 0.0448 and R = 0.0477, respectively. I then use the SIR model to
simulate the path of the epidemic going forward with a normalized transmission rate held
constant at a value in the range of 1.6 to 3.

Figure 12
Fraction of the population with an active infection over 180 days going forward from
May 8, 2020 under different values of βt/γ held constant over the entire time period.
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Note: The distribution of the population across states on May 8, 2020 is set to
S = 0.9425, I = 0.0448 and R = 0.0477.
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Figure 13
The cumulative burden of the disease as measured by cumulative cases as a frac-
tion of the population over 180 days going forward from May 8, 2020 under different
values of βt/γ held constant over the entire time period.
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Note: The distribution of the population across states on May 8, 2020 is set to
S = 0.9425, I = 0.0448 and R = 0.0477

In figures 12 and 13 we see that if, as conjectured in this second scenario, a relaxation of
social distancing measures were to lead the normalized transmission rate to rise to a level
in this range of 1.6 to 3, then a large second wave of the epidemic would appear relatively
quickly (in twenty to thirty days), with a peak prevalence and cumulative burden of the
disease much higher than has been experienced to date. These forecasts under this second
scenario for the normalized transmission rate of the disease going forward are driven by the
simple logic of the SIR model that diseases with high normalized transmission rates (high
basic reproduction numbers) and low numbers of agents initially resistant spread quickly
through the population and, in the end, infect a very large fraction of that population.
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6 Conclusion

Several lessons can be drawn from this review of the properties of a simple SIR model of the
progression of COVID-19.

First, as shown in figures 1 and 2, a researcher who applies a simple SIR model to
construct scenarios for an epidemic that is new to a population will be driven to conclude
that, absent significant intervention, the peak prevalence and cumulative burden of the disease
will be very high if, in the early stages of the epidemic, the data show a a rapid recovery
rate for infected individuals and a rapid growth rate of active infections and daily deaths.
This is because, in the SIR model, there is no inherent force to slow the rapid growth of the
epidemic other than the acquisition of herd immunity by the population as a whole.

Second, as shown in figures 5 and 6, an SIR model implies that temporary mitigation
measures (either mandated or undertaken in a decentralized fashion) applied early on in the
progression of the epidemic do little to change the peak prevalence and cumulative burden
of the disease. Such early temporary mitigation measures simply postpone the progression
of the epidemic by the length of time that such temporary measures are imposed.

In contrast, as also shown in figures 5 and 6, well-timed application of temporary
mitigation measures can have an impact on the long-run peak prevalence and cumulative
burden of the disease. The logic of this result, as shown in figures 3, 4, and 7, depends on the
impact that well-timed temporary mitigation measures might have on the fraction of agents
resistant (or equivalently, actively infected) when the population reaches herd immunity. If
such measures result in the population having few actively infected agents when it reaches
herd immunity after these measures are lifted, then the cumulative burden of the disease is
reduced as the epidemic dies out more quickly.

Third, as shown in section 5, estimated reduced-form and structural SIR models of an
epidemic should result in similar implications for the progression of the epidemic to date in
terms of the evolution of the fractions of the population susceptible, actively infected, and
resistant and for the evolution of the effective reproduction number of the disease to date.

Where these two estimation and forecasting approaches differ is in the forecast generated
regarding the evolution of the epidemic going forward. Reduced-form models, in projecting
forward based on estimated empirical specifications for data on deaths or cases, make implicit
assumptions about the evolution of the effective reproduction number of the disease going
forward. One prominent version of this model, developed by the team at IMHE, implicitly
assumes that the effective reproduction number of the disease will continue to fall over time.
Structural SIR models do not impose such an implicit assumption about the evolution of the
transmission of the disease going forward. Instead, explicit scenarios for the evolution of the
normalized transmission rate of the disease going forward must be constructed.

I have considered two such scenarios using a back-of-the-envelope estimation of an
SIR model for COVID-19 for the United States here. In one scenario, I conjecture that the
effective reproduction number of the disease will continue to hover around one as it has
done from early April to early May. Under this scenario, we should expect active infections
and daily deaths to remain roughly constant and cumulative infections and deaths to grow
linearly for many months to come. Under a second scenario, I conjecture that relaxation of
social distancing policies will lead to an increase in the transmission rate of the disease back
to levels more in line with those seen in the early phase of this epidemic. Under this second
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scenario, we should expect to see a potentially dramatic second wave of the epidemic that
then ends in a few months.

To finish up, I briefly discuss scenarios for the evolution of COVID-19 in the coming
years if immunity is temporary, rather than permanent as is assumed in the standard SIR
model. To account for temporary immunity, one can introduce a new parameter that governs
the rate at which agents transition from the stateR (resistant) back to the state S (susceptible).
This modification of the model changes the dynamics of the disease substantially, allowing
for multiple waves of infection in the population.42 This modification also changes the
calculus of optimal policy. See, for example, Rowthorn and Toxvaerd 2015.

The scenarios for COVID-19 based on temporary immunity outlined in Kissler et al. 2020
have the disease recurring on a seasonal basis every year, or every two years, for the next
several years. The simulations shown in this article suggest that we may be dealing with
COVID-19 for a long time to come.

Notes

1. See, for example, https://www.nature.com/articles/d41586-020-01003-6.
See Cobey 2020 for a useful summary of issues connected to applying these models to COVID-19.

2. See this story in the New York Times regarding the decision in 2006 to advocate social distancing
as a disease mitigation measure for influenza pandemics: https://www.nytimes.com/2020/
04/22/us/politics/social-distancing-coronavirus.html. See also the dissent
from that decision in Inglesby et al. 2006 based on the uncertainties regarding the effectiveness of
this measure and its economic costs https://assets.documentcloud.org/documents/
6841076/2006-11-Disease-Mitigation-Measures-in-the.pdf.

3. See, for example, Alvarez, Argente, and Lippi 2020, Berger, Herkenhoff, and Mongey 2020,
Baskozos, Galanis, and Di Guilmi 2020, Chudik, Pesaran, and Rebucci 2020, Eichenbaum, Rebelo,
and Trabant 2020, and Glover et al. 2020. See Eksin, Paarporn, and Weitz 2019 for work by
epidemiologists to build and sequentially estimate a model of behavioral feedbacks in an SIR model.

4. The model was first developed in Kermack and McKendrick 1927. Here, I consider a model in
which agents cannot get the disease again once they have transitioned into the R state. It is not yet
clear whether this assumption is correct for COVID-19.

5. The scenarios considered here should not be considered definitive forecasts. They are intended
only to allow the reader to see how a model of the progression of the epidemic might be applied to
economic analysis of COVID-19 and to allow readers trained in economics to begin conversations
with public health experts in this area.

6. See also Rachel 2020 for analytical formulas for the impact of disease mitigation on peak
prevalence of the disease and the cumulative burden of the disease.

7. Barro 2020 uses data from the 1918-19 Spanish Flu pandemic to argue that temporary mitigation
measures reduced peak disease prevalence but did not impact total mortality over the long run.

8. This finding differs from that in Atkeson 2020b, because in that previous paper, I did not consider
a scenario with temporary disease mitigation that allowed for anything more than a negligible fraction
of agents in the population to become resistant to the disease.

9. See, for example, Alvarez, Argente, and Lippi 2020, Rachel 2020, and Toda 2020. See Abakuks
1972 for an early application of optimal control to the study of epidemics. See also Farboodi, Jarosch,
and Shimer 2020 and Kruse and Strack 2020.

10. I also relate this estimation and forecasting method to the structural estimation and forecasting
model of Fernandez-Villaverde and Jones 2020.

11. See the working paper discussion of the IMHE forecasting model here: http://www.healthdata.org/
sites/default/files/files/Projects/COVID/RA_COVID-forecasting-USA-EEA_
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042120.pdf. See also a similar model developed at the University of Texas-Austin at https://
covid-19.tacc.utexas.edu/media/filer_public/87/63/87635a46-b060-4b5b-
a3a5-1b31ab8e0bc6/ut_covid-19_mortality_forecasting_model_latest.pdf.

12. See updated forecasts at http://covid.econ.cam.ac.uk/linton-uk-covid-cases-
predicted-peak.

13. See https://reichlab.io/covid19-forecast-hub/ for a comparison of forecasts
from a variety of epidemiological models.

14. Note that the precise nature of the interaction required to spread the disease depends its the
natural transmission mechanism. Some diseases such as HIV or Ebola require direct exchange
of body fluids; others are transmitted through a fecal-oral mechanism. COVID-19, like influenza,
is transmitted through droplets or aerosol expelled by infected agents and taken in by susceptible
agents either by getting them on their hands and touching their face or through breathing them in.
A regularly updated discussion of the transmission mechanism for COVID-19 is available here:
https://www.who.int/news-room/q-a-detail/q-a-coronaviruses.

15. It is unclear whether exposure to COVID-19 leads to long-lasting immunity to the disease.
Rowthorn and Toxvaerd 2015 is an early study of the optimal mitigation of diseases with temporary
or no immunity. Kissler et al. 2020 provide a model of the recurrence of COVID-19 in coming years
under different scenarios for the length of time for which those who have had the disease remain
immune.

16. Many diseases have an initial period during which an agent is infected but not contagious. This
is referred to as a latency period and is modeled by adding a state E between S and I , as in Atkeson
2020b. We abstract from that here. Note that the latency period is distinct from the incubation period,
which is the time between exposure to the virus and the appearance of symptoms. It appears that
COVID-19 can be transmitted before symptoms appear.

17. Seasonal influenza is an example of a disease whose transmission rate regularly fluctuates with
the weather. The Spanish Flu of 1918-19 came and went in three big waves in the spring and fall of
1918 and the spring of 1919. It is not fully understood what drove the changes over time in the trans-
mission rate of that disease. The available data on COVID-19 indicate that its transmission rate widely
varies across different geographies. See https://www.cidrap.umn.edu/sites/default/
files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf for a care-
ful discussion of natural fluctuation in transmission of similar diseases. See https://www.nytimes.com/
2020/05/03/world/asia/coronavirus-spread-where-why.html for a discussion
of geographic variation in transmission of COVID-19.

18. Note that in this simple model, we do not differentiate between the roles of infected agents
with mild and severe cases in spreading the disease. Clearly, the severity of the disease may impact
the spread, particularly since the very sick are likely to stay at home or go to the hospital. Research
into the question of the extent to which those who are infected but asymptomatic spread the disease
is ongoing. See, for example this research in Science: https://science.sciencemag.org/
content/early/2020/03/24/science.abb3221.

19. To mark the anniversary of the 1918 Spanish Flu epidemic, in 2018, the BBC recruited a
large number of volunteers to track their movements and whom they met and in what locations.
These data were stratified on many dimensions and were then used to simulate the spread of a
flu pandemic in the UK population. See https://www.sciencedirect.com/science/
article/pii/S1755436518300306 for an epidemiological model based on that detailed data
on social interactions, and see this article for an updated version of the social interaction matrix used in
that model https://www.medrxiv.org/content/10.1101/2020.02.16.20023754v2.

20. The use of the notationR0 to denote the basic reproduction number and the letter R to denote
the fraction of agents who are resistant is an unfortunate choice, but it is standard. See, for example,
https://mathworld.wolfram.com/Kermack-McKendrickModel.html.

21. For the purposes of this paper, I assume that this death rate is constant and thus independent of
the stress placed on the health care system at points of peak infection. That assumption is clearly
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incorrect. Evidence from Wuhan, Italy, and New York City suggests that the fatality rate from
COVID-19 is much higher in periods of peak infection.

22. Note thatR0 is a ratio of two rates per unit time and hence is not denominated in units of time —
a slow moving disease such as HIV and a fast moving disease such as COVID-19 could both have the
same normalized transmission rate and hence the same peak prevalence of the disease and cumulative
disease burden.

23. See https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-
in-us.html for an estimate by the CDC of the number of cases of COVID-19 that are travel re-
lated in the United States. There is considerable uncertainty about this number. See https://
www.nytimes.com/2020/04/04/us/coronavirus-china-travel-restrictions.html
for data on the large volume of travel from China to the United States in the early part of 2020 and
https://www.nytimes.com/2020/05/07/us/new-york-city-coronavirus-outbreak.html
for information about how travel from New York to other parts of the country may have seeded
outbreaks across the United States.

24. See, for example, https://www.nature.com/articles/s41591-020-0869-5.
25. See, for example, https://wwwnc.cdc.gov/eid/article/26/7/20-0282_article.
26. See, for example, this pre-print in Nature: https://www.nature.com/articles/s41586-

020-2196-x.
27. See Wallinga and Teunis 2004 and Chowell, Nishiura, and Bettencourt 2007 for discussions of

how to estimate the effective reproduction number from case data.
28. In the United States, during April, the number of diagnostic tests being conducted every day

is growing, at best, at a linear rather than exponential rate. Time series data on tests performed are
available here: https://covidtracking.com/data/us-daily.

29. See https://www.economist.com/graphic-detail/2020/04/16/tracking-
covid-19-excess-deaths-across-countries for a discussion of the extent to which
data on deaths due to COVID-19 are accurately measured. Also see https://www.cdc.gov/
nchs/nvss/vsrr/covid19/tech_notes.htm for provisional estimates of excess mortality
in the United States.

30. Thanks to James Stock for pointing out this calculation.
31. This discussion substantially extends Atkeson 2020a.
32. I abstract from their additional state to keep the model in the SIR framework. See updates of

their results at https://web.stanford.edu/~chadj/Covid/Dashboard.html.
33. There are a large number of more complex forecasting models based on a structural approach.

See, for example the description of the Columbia University Mailman School of Public Health
Model at https://www.medrxiv.org/content/10.1101/2020.03.21.20040303v2, or
the model used by COVIDActNow described at https://data.covidactnow.org/Covid_
Act_Now_Model_References_and_Assumptions.pdf.

34. See https://www.endcoronavirus.org/countries for plots of the pattern of active
case counts across many countries.

35. The specific procedures implemented in the IMHE model are described here: https://
www.medrxiv.org/content/medrxiv/suppl/2020/04/25/2020.04.21.20074732.DC1/
2020.04.21.20074732-2.pdf.

36. Clearly, at some point, this implied effective reproduction number becomes negative, which
is inadmissable. This observation implies that this functional form for cumulative deaths cannot be
reproduced by our SIR model with any set of parameters and time varying transmission rate βt.

37. In their updated paper Fernandez-Villaverde and Jones 2020 use a procedure for estimating
their model closely related to the one described here. In earlier versions, they imposed the assumption
that the transmission rate of the disease declines over time because of mitigation from an initial high
level to a lower level during the estimation period at a rate determined by a parameter λ according to

βt = exp(−λt)β0 + (1− exp(−λt))β∗.
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The estimation procedure outlined above does not add this restriction to the estimating model.
38. See Gupta et al. 2020 and Chudik, Pesaran, and Rebucci 2020 for useful studies on which

forecasts of future transmission of the disease might be based.
39. Data on the level of deaths at various dates used in the exercise are taken from https:

//www.worldometers.info/coronavirus/country/us/.
40. See, for example, Eksin, Paarporn, and Weitz 2019 and https://johnhcochrane.blogspot.com/

2020/05/an-sir-model-with-behavior.html.
41. See https://www.wsj.com/articles/germanys-r0-coronavirus-experiment-

11588115565 and an explanation of this policy by Chancellor Merkel: https://youtu.be/
22SQVZ4CeXA.

42. See, for example, this discussion of the patterns of infections for COVID-19 that might be based
on analogies to influenza pandemics: https://www.cidrap.umn.edu/sites/default/
files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf.
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