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Abstract

General competitive analysis is extended to cover a
dynamic, pure-exchange economy with privately observed shocks to
preferences. In the linear, infinite-dimensional space containing
lotteries we establish the existence of optima, the existence of
competitive equilibria, and that every competitive equilibrium is
an optimum. An example illustrates that rationing and securities

with contrived risk have an equilibrium interpretation.



General Competitive Analysis in a?
Economy with Private Informationt

Edward C. Prescott and Robert M. Townsend

Introduction

The last decade has witnessed a virtual explosion in the
economics of private information and moral hazard. Models using
private information constructs have now gained prominence in many
of the substantive areas of economics, including monetary eco-
nomics, industrial organization, finance, and labor economics.
Yet despite these advances, or indeed because of them, we believe
there is a need for an alternative, complementary approach--the
extension of modern general equilibrium theory to such environ-
ments. In this paper then we extend the theory of general eco-
nomic equilibrium of Arrow, Debreu, and McKenzie, among others, to
a prototype class of environments with private information and
examine again the role of securities in the optimal allocation of
risk-bearing. We consider in particular pure-exchange economies
with the usual mltiple commodity (intratemporal), borrowing-
lending (intertemporal), and insurance (uncertainty) motives for

trade but assume that households experience privately-observed,

.lehis paper is a revised version of "On Competitive
Theory with Private Information" presented at the University of
Chicago, Columbia University, Cornell University, Northwestern
University, Yale University, the summer meetings of the Econo-
metric Society in Montreal, and the NBER Conference-Seminar on the
Theory of General Equilibrium at Berkeley in February 1980.
Helpful comments from Truman Bewley, Charles Wilson, the partici-
pants of these seminars, and anonymous referees are gratefully
acknowledged. We also thank the National Science Foundation and
the Federal Reserve Bank of Minneapolis for financial support and
accept full responsibility for any errors as well as the views
expressed herein.
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period-by-period shocks to preferences (see Section 2). For that
class of economies we establish the existence of Pareto optimal
allocations (in Section 3) and the existence of competitive equi-
libria in markets for securities of a certain kind (in Section
4). We also establish (in Section 5) the first fundamental wel-
fare theorem, that competitive equilibrium allocations are Pareto
optimal. The second fundamental welfare theorem, that the optima
can be supported as competitive equilibria, does not hold suggest-
ing difficulties of price-decentralization in economies with ex
ante private information.

The class of economies we consider in this paper is
large. That is, we consider economies in which the distribution
of (privately-observed) shocks in the population is the same as
the probability distribution of shocks for each individual house-
hold. We also require that households with the same shocks be
treated ex ante in the same way.gf That is, following the Arrow
(1953) and Debreu (1959) treatment of uncertainty, a household's
allocation is indexed by that household's shock (type). In this
way, there is no aggregate uncertainty, and the general equilib-
rium feasibility constraint is a simple vector of linear inequali-
ties. But since shocks are privately observed, not all shock-
contingent allocations that satisfy the feasibility constraint are

achievable. In addition, the allocations mst be such that it is

E/The reasons why we did not introduce names was that it
would be notationally cumbersome and analytically difficult and
would have no econometric implications. With randomness in the
allocation ex ante there can be different outcomes for ex ante
identical, from the point of the econometrician, agents.
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not in the interest of households to misrepresent their types.
This is accomplished by the imposition of additional conditions
wvhich, following Hurwiez (1972), are termed incentive-compati-
bility constraints.ij S5till, the space of allocations that spec-

ify achievable c¢onsumptions contingent upon privately-observed

shocks proved toc be an inappropriate commodity space for general
competitive analysis. Even though the underlying utility func-
tions are concave, the space of shock-contingent consumption
allocations restricted by the incentive-compatibility constraints,
in general, is not convex, and there can be gains from introducing
lotteries. Consequently, the linear commodity space employed 1In
the analysis here is the space of shock-contingent sighed-mea-
sures, a linear space which contains the needed shock-contingent
lotteries.

Lotteries have been used in game theory to make spaces
convex, following the seminal contribution of wvon Neumann and
Morgenstern (1947). They have been used extensively in the social
choice field for similar reascons. &nd they have been used in
various economic models to discriminate among agents with private
information. But lotteries have not been used in classic, general
equilibrium, competitive analysis, to be best of our knowledge.
This is surely because the natural spaces are already convex, and

there is noc need for themmkj

éjThe works of Myerson {1979) and Harris and Townsend
(1977) (1981) provide the Jjustification for these additional
constraints.

-EfThe use of signed measures in general competitive
analysis is not new. Mas-Colell (1975), and subsequently others,
have exploited them in the study of economies with a continuum of
differentiated products.
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Though abstract, we think that this exercise may prove
useful in the positive economics of private information. The
highly abstract, Arrow-Debreu, state-contingent analysis has
proven to be an invaluable tool in the study of economies with
publicly-observed shocks. It has proven to be particularly useful
in determining whether a highly limited set of security and spot
markets are sufficient to expleit all the gains from trade. When
this is the case, one is certain that the results do not hinge
upon arbitrary exclusion of security markets but rather only upon
assumptions concerning preferences, endowments, technologies, and
the information structure. In any event, one gains a better
understanding of existing arrangements. In an analogous way, the
constructs of the paper may prove useful in verifying for a par-
ticular set of contractual or institutional arrangements and
economic environments that there are no potential gains from
instituting other arrangements. We also hope these constructs
might help us to better interpret reality.

As noted, our general analysis allows for more than one
underlying consumption good and more than one consumption date and
thus allows the usual intratemporal and intertemporal motives for
trade. We recognize, though, this level of generality may make it
difficult to interpret the constructs we have developed in the

paper.—5—/ Thus, we present in Section 6 a simple example econony

EjDespite the apparent generality, the analysis is
limited in two ways. First, we do not allow for random, pri-
vately-observed shocks to endowments, though we suspect our analy-
sis can be extended in that direction. Second, we do not allow
for statistical dependence in the preference shocks, so that
agents have private information on the probability distribution of
future shocks at the time of initial trading. Current efforts in
Prescott and Townsend (1980) indicate that extensions of standard,
competitive analysis to such environments are not straightforward.
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with one consumption good and one consumption date and focus
entirely on uncertainty and the insurance motive for trade. For
this economy, the competitive equilibria are characterized by
insurance contracts with options, the exercise of which is pri-
vate-information dependent. In addition, the equilibrium con-
tracts incorporate contrived randomness, even though all agents
have convex preferences. We argue that such contrived randomness
is not wunusual, being consistent with casual observations on
security markets and the state-contingent analysis of Arrow and
Debreu. We also show that a simple institutional arrangement with
random allocation of "excess demand" achieves the competitive
equilibrium allocation, suggesting that at least some apparent
disequilibrium phenomena can be interpreted as institutional or
contractual arrangements that support equilibrium allocations.
(This last section is virtually self-contained and may be read

before the more general analysis of the paper.)

2. The General Securities Model

Imagine an economy with a continuum of agents and £
commodities. Fach of the agents has an endowment vector ey ? 0 in
each period t, t=0, 1, ..., T. Letting cy denote the nonnegative
consumption vector in period t, each agent has preferences over
consumption sequences as described by the utility function

{2

E Ule, ;0. )
Et=0 P
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Here E 1is the expectation operator with respect to the random
variables c; and Gt (the latter random variables will be described
momentarily). Each single-period utility function U(-,et} is
continuous, concave, and increasing and is defined for Ct > 0.
The parameter Bt is interpreted as a shock to individual prefer-
ences at the beginning of period t, observed only by the indi-
vidual agent. For simplicity parameter Bt is assumed to take on
only a finite number of values; that is, for each t, et € O where
© has n elements. Fraction E A(Gt) of the population have shock
realization (60,81,...,8T).t=oThe individual agents at the be-
ginning of time O know their own 8, but have no basis for fore-
casting their future Bt, except that they know the fractions of
the population that will realize each shock sequence. Conse-
quently, by symmetry, the predictive probability distributions of
a given agent for its future preferences shocks are identically
and independently distributed, with A(8) for 8 € © being the prob-
ability that Bt = B.éj We note that the class of economies under
study is quite similar to those studied by Gale (1979) and Lucas
(1980).

What 1is the appropriate commodity space for a given

economy? One approach is to follow Arrow (1953) and Debreu (1959)

§jIn assuming the agents knows only what the distribu-
tion of the parameters in the population will be, we avoid measur-
ability problems. There are problems in going in the other direc-
tion, from independently and identically distributed random vari-
ables on the continuum to measurable samples spaces, which neces-
sitate a redefinition of the integral (see Bewley and Radner

(1980)).
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and index consumption Cy for each individual by (91,...,9t), the
individual's specific history. There is a problem with this
approach, however. There may be incentives (gains) for agents to
enter into lotteries even though they are all risk averse. In the
example of Section 6, lotteries are needed for optimal and equi-
librium allocations. All of this arises because of the space of
shock-contingent consumption allocations restricted by the incen-
tive constraints is not convex. The following simple version of
the model demonstrates this nonconvexity.

Suppose T = 1, ey = 0, and £ = 1 so there is consumption
of the single good only in period t = 1. Suppose also that the
set © = {1,2}. For the shock-contingent indexing approach let
c(8) for 8 = 1, 2 denote consumption in period one of a 6-type
agent. The expected utility of allocation (c(1),c(2)) in period

zero is then
A(1) ule(1),1) + a(2) u(c(2),2).
There will be truthful revelation of shock (types) only if
(2.1) U(e(1),1) > U(e(2),1)
(2.2) u(e(2),2) » U(e(1),2).

These are the appropriate incentive-compatibility constraints
which insure a type-one agent weakly prefers c(1) to c¢(2) and a
type-two agent weakly prefers c(2) to c(1). To see that (2.1) and
(2.2) do not define a convex set consider allocations (c(1),c(2)')
and (c¢(1),c(2)") that both satisfy constraint (2.1) with equality,

that satisfy constraint (2.2), and that have c(2)' # c(2)". Given
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the strict concavity of U(e,1), any convex combination of these
two allocations violates constraint (2.1).

With consumption lotteries contingent on 8, the noncon-
vexity is overcome. Suppose for simplicity that the underlying
commodity space is finite; that is, ¢ can be one of a finite
number of possible bundles in C. Then let the vector x(6) be a
random assignment to each agent of type 0, where x(c,8) is the
probability of bundle c. Then a shock-contingent random alloca-
tion (x(1),x(2)) can be achieved in a direct-revelation mechanism
with truth-telling only if

Yy Ule,l)x(c,1) > § U(c,1)x(c,2)
ceC ceC

E U(c,2)x(c,2) » ): U(c,2)x(c,1).
ceC ceC
These conditions are the random analogues of (2.1) and (2.2).
These conditions are linear in the x(c,0) and therefore constitute
convex constraints. Finally, the expected utility of the shock-
contingent lotteries x = (x(1), x(2)) is

w(x,8) =a(1) § ule,1)x(c,1) +Ar(2) ) Ule,2)x(c,2).

ceC ceC
It is linear in x so the utility function is concave in that
argument. This, incidentally, is true whether or not the under-
lying utility functions U(-,B) are or are not concave.

With classical general equilibrium analysis (in finite
dimensional spaces), there is no need for lotteries for the con-
straints sets are convex and the utility functions concave.
Relaxing either of these assumptions results in the possibility of

gains from lotteries.
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We now return to the more general model and prepare to
establish the existence of Pareto optimal and competitive equilib-
rium allocations and the optimality of competitive equilibria
using a commodity space that contains consumption lotteries. To
simplify the notation, however, we assume T = 2; this is the
smallest T that fully illustrates the nature of the analysis.
Alse, for technical reasons we also assume that e, >0, that
consumption is bounded, 0 < ¢y < b, and that the U(+,8,) are
strictly increasing. Finally, for notational convenience, let 0 =
{1,2,...,n} and denote 80 by i. This is convenient for we now may
refer to agents of type i, i=l,...,n classified by their initial
shock.

There are obvious generalizations to the model we ana-
lyze. There can be statistical dependence in the Bt, t » 1, as
long as there is independence from the initial parameter 0qe
There can be nontime-additive-separable utility functions, dis-
counting, observable heterogeneous characteristics, and nontrivial
production technologies. We did not seek generality in order to
focus on private information, and how general competitive analysis
can be extended to include it.

To begin the formal analysis, denote the underlying
consumption possibilities set by C = {caRzz 0< c < bl. Let the
commodity space L be the space of 1 + n + ne-tuples of finite,
real-valued, countable-additive set functions on the Borel subsets
,92)}91.92ee], 29

1

is the measure on the period naught consumption good wvector, the

of C. For element z = [ZO’{Zl(el)}BlsG’ {22(6

21(91), of which there are n, are measures on the period one
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consumption vector conditioned upon 61, and 22(61,92), of which

there are n2, are measures on the period two consumption vector

conditioned upon both Bl and 62. The space L is linear, a prop-

erty which is needed for standard general competitive analysis.

2

Further, the space L contains the space P of 1 + n + n“—tuples of

probability measures or lotteries on Borel subsets of C, which are
needed for the reasons noted above.

The consumption set and preferences are defined first.
For x € P, the utility functional for a type i is the expected

utility,

)

(2.3) Wix,i) = [ U(c,i)xo(dc) + ) 1(91) | U(c,el)xl(dc,el
]

1

+ ) A(e,) y x(e,) / U(c,8,)x,(de,0,,6,).
G 8

1 2

2

Not all x € P satisfy the incentive compatibility conditions so
these functionals are defined only upon a subset of P. At period
t = 2, an agent must weakly prefer x2(81,02) if his type is

(6,,685)s Thus,
1**2

) 8., 6,.,0'€0

(2.4) fU(c,Ge)xzfdc,Bl,Ga) > fU(c,ez)x (de,8,,84) 6., 8,,0}

2

is a necessary condition for a point to be in the consumption
possibility set. Given (2.4), the period t = 1 incentive com-

patibility requirement is

x.(de,0.,6,)

(de,8,) + Z A(6,) [ ule 195

2

(2.5) [ ule,8)x, c,0,)x,

)x,.(dec,0',8,.)

> [ U(c,ﬁl)xl(dc,ei) + g A(BE) [ U(c,8 o 1485
2

2



.

'
6., 0J € O.
If asked in period t = 1 to choose a member of {xl(el),
{x2(el’s2)}}’ the representative agent would weakly prefer the
pair (xl(el),{xe(el,ee)}) if his shock is actually 8;. Let X =

{xeP: x satisfies (2.4) and (2.5)}. The set X L is the con-

sumption set of the representative agent. Given any x e X, pref-

erences of type i are ordered by W(x,i). A point x° € X is a
satiation point in X for agent i if W(x,i) < W(x®,i) for all x ¢
Xe

The endowment of agent i in each period t is a #-dimen-
sional vector et >0, ey € C. So let £ be that element of P such
that £, puts all mass on e, 51(81) puts all mass on e; for each
6, € 0, and £,5(81,8,) puts all mass on e, for 6,0, € 0.

We now have a pure exchange economy defined by the
population fractions A(i), i € @ = {1,2,...,n}, the linear space
L, the common consumption set X L, the common endowment £ € L,
and preferences W(e+,i) defined on X for every agent of type i, i €

el

An implementable allocation for this economy is an n-

tuple (xi) with x; € X for every i which satisfies the resource

1
2,1/

constraints in each period t, t = 0, 1,

(2.6) Zl(i) [ c xio(dc) < e,

1

1/1n (2.6)-(2.8), the integration is coordinate wise and
the weak inequality holds for each of the £ coordinates.
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2:7) IAME) ] AM8y) [ e x;(de,8,) < e
it Bl

(2.8) IA(i) ] ACey) § a(e,) [ e x,,(de,0,,8,) < e,
i N 0,

and which satisfies a prior self-selection constraint
(2.9) Wix;,1) > w(wj,i) 15 .3 @& B

Thus we assume that fraction xiO(B} of the agents of type i in
period zero are assigned an allocation in Borel set in period
zero, and similarly for x;,(B,8;), x;5(B,8;,65). Here then all
agents of type 1 have chosen lottery X350 in periocd zero, and so
on. The prior self-selection constraint captures the idea that an
allocation (xi} can be actually implemented only if each agent of
type i reveals his true type by the choice of the bundle X5 from
among the n-tuple (x;).

An implementable allocation (x;) is said to be a Pareto
optimum if there does not exist an implementable allocation (x:!L)

such that
(2.10) W(xlf_,i) b W(xi,i) $ =1, By sway B
with a strict inequality for some 1i.

3. Existence of a Pareto Optimum

To establish the existence of a Pareto optimum for our
econonmy, it is enough to establish the existence of a solution to
the following problem of maximizing a weighted average of the

utilities of the agent types; this is maximized
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Ei w(i) W(xi,i)

where 0<w(i) <1, ) w(i) =1
i

by choice of the n-tuple (xj), x; € X, subject to the resource

i
constraints (2.6)-(2.8) and the prior self-selection constraint
(2.9). To establish the existence of a solution to the Problem we
make use of the theorem that continuous real-valued functions on
nonempty, compact sets have a maximum.

To do this, we use the weak topology on the space of
signed measures. Let the topology on L be the weak topology. The
underlying commodity space C is a compact subset of Rﬂ, a separa-
ble metric space, and so the set of probability measures P D> X is
compact with respect to this topologyrgj As the resources con-
straint (2.6)-(2.8), the prior self-selection constraint (2.9),
and constraints (2.h)-(2.5) are all defined relative to integrals
of bounded continuocus functions, the constraint set is closed. It
is, therefore, compact because it is a closed subset of the com-
pact set P. The constraint set is nonempty for x; = £ for all i
is feasible. As continuous real-valued functions on nonempty
compact topological spaces achieve a maximum, a Pareto optimum is
guaranteed to exist.

The above argument relies heavily on the compactness of

Crgf In fact this assumption is crucial. By modifying the ex-

ample of Section 6 where C is not compact we have produced an

§jSee Parthasarthy (1967), Theorem 6.4, Chapter 2.

9/Mas-Colell (1975) also assumes the underlying com-
modity space is compact.
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environment in which one can get arbitrarily close to but not
attain the utility of a full-information optimum; for that en-

vironment then a Pareto optimum does not exist.

4. Existence of a Competitive Equilibrium

In this section, we establish that our economy can be
decentralized with a price system, that is, that there exists a
competitive equilibrium. We accomplish this task by introducing a
firm into the analysis, with a Jjudiciously chosen (aggregate)
production set. We then follow the spirit of the proofs used by
Bewley (1972) and Mas-Colell (1975) for establishing the existence
of a competitive equilibrium with a continuum of commeodities.
Various approximate economies are considered, with a finite number
of commodities. Existence of a competitive equilibrium for these
economies is established with a theorem of Debreu (1962). One
then takes an apropriate limit.

Let there be one firm in our economy with production set

Y ¢ L, where

Y = {yeL: (4.1), (4.2), and (4.3) below are satisfied}:

(4.1) [e yolde) < 0

(h.2) Ee A(elJIc yl(dc,ﬂl) <0
1

(4.3) Ee A(el)Ze A(6,)fc y,(de,6,,8,) < O.
1 2

To be noted here is that the components of the y € Y are signed

measures and thus each is a way of adding. A negative weight
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corresponds to a commitment to take in resources and positive
weight corresponds to a commitment to distribute resources. Thus
in (4.1), for example, the term fcjyo(dc) should be interpreted as
the net trade (sale) of the jth consumption good in period zero.
Inequality (L.1) states that as a clearing house or intermediary,
the firm cannot supply more of the consumption good than it ac-
quires. When indexed by the parameter 6, a component of y should
be interpreted as a commitment to agents who announce they are of
type 8. The production set Y, it should be noted, contains the
zero element of L and also displays constant returns to scale.
Following Debreu [1954] we define a state of our economy
as an (n+l)-tuple [(xi),y] of elements of L. A state [(xi),y] is

n

said to be attainable if X; € X for every i € @, y € Y, and E

i=1

l(i)xi =y = E. Now suppose a state [(xi),y] is attainable. Then

setting y = ) A(i)xi - £ in (4.1)-(4.3), one obtains the resource
i

constraints (2.6)-(2.8). Similarly, given any n-tuple (x;), x: €

i 52

X, satisfying the resource constraints (2.6)-(2.8), define y by

=] l(i)xi - &, and then y € Y. Thus there is a one-to-one
i

correspondence between attainable states in the economy with

production and allocations in the pure exchange econony satisfying

the resource constraints. An attainable state [(xi),y] is said to

be a Pareto optimum if the n-tuple (xi) satisfies (2.9) and there
does not exist an attainable state [(xi),y'] which satisfies (2.9)
and Pareto dominates, that is, satisfies (2.10). Again there is a
one-to-one correspondence between optimal states and optimal

allocations.



- 16 -

A price system for our economy is some real-valued
linear functional on L, that is, some mapping v: L + R. More

will be said about price systems v in what follows, but we may
2) components, each of which is a

10/

note here that v will have (l+4n+n

continuous linear functional relative to the weak topology.
That is, given some z € L, then

v(z) = [fy(c}zy(de) + ] [f)(c,0,)z,(dc,8,) +

94

g g [£5(c,0,,8,)z,(dc,0,,0,)
172

where the functions fy(e), fy(+,8;), f5(+,8,,65) are (bounded)
continuous functions on C. (See Dunford and Schwartz, [1957],
Theorem 9, p. 421.)

We now make the following

Definition: A competitive equilibrium is a state [(x%),y*] and a

price system v¥ such that

(i) for every i, x¥ maximizes W(x;,1) subject to x; € X

and v*(xi) < v¥(E);

(ii) y* maximizes v*(y) subject to y € Y; and
n

(iii) 7§ Mi)xl ~ y* =&,
i=1

An outline of our proof for the existence of a competi-

tive equilibrium for our economy is as follows. First, the under-

10/sue also Mas<Colell (1975).
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lying commodity space C is restricted to a finite number of
points, the nodes of a mesh or grid on C. In this restricted
econony a countably-additive, real-valued set function is com—
pletely defined by an element of a Euclidean space, with dimension
equal to the dimension of the restricted C. The linear space of

these restricted economies is the 1 + n + n2

cross product of the
Euclidean space. Consumption sets, preferences, endowments, and a
production set may be defined on this space in the obvious way.
The existence of a competitive equilibrium for the restricted
economy is then established using a theorem of Debreu (1962).
Then, letting the grid get finer and finer, one can construct a
sequence competitive equilibria for economies which are less and
less restricted. A subsequence of these competitive allocations
and prices converges, and the limiting allocations and prices are
shown to be a competitive equilibrium for the unrestricted econ-
omy. We now give a more detailed argument.

The first restricted economy may be constructed in any
essentially arbitrary way by subdividing each of the % coordinate
axes of the commodity space C into intervals, subject to the
following restrictions. First, each endowment point e t=0,1,2,

mist be one of the nodes of the consequent grid. Second, letting

e e
0 t
(h-ll) cg > malx [m‘], Ct > max [m] for t =1, 2,

each point c:, t = 0, 1, 2 mst be one of these nodes. (We thus
suppose that the upper bound b of C is such that 0 < c¥ < b.)
Third, the element zero mst be an element of the consequent

grid. The first of these restrictions will mean the endowment
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points lie in each of the restricted consumption sets, and the

second will mean that no agent type can be satiated in its attain-

able consumption sets, given the resource constraints.

The second restricted econory is obtained from the first
by equal subdivision of the original intervals of the & coordinate
axes. The third is obtained by equal subdivision of the second,
and so on. In what follows, we let the subscript k be the index
number of the sequence of restricted economies. Note that the
length of each of the intervals goes to zero as k + =,

For the kth restricted economy let Ck be the restricted
underlying commodity space and Lk be the finite dimensional sub-

2 4 n + 1 mea-

space of L for which the support of each of the n
sures is CX. That is, let xp(c), the x;(c,8;) and the x,(c,8;,6,)
for ¢ € Ck each be the measure of {c}, the set containing the
single point c. Then the space Lk is finite dimensional and a
point is characterized by the vector {xg(c),x;(c,8,), and x5(c,0,,
92)}, c € Ck, 0,,6, € 0. Note that the integral of an integrable
function f: C + R with respect to a measure x on Ck is
(4.5) [£(c)x(de) = Z K fle)x(e).

¢ ceC

The consumption and production possibility sets for the
kth restricted econony are Xk = X Lk and Yk =Y Lk, respec-
tively. The integrals used in the definition of X, Y and W,
némely in (2.4)-(2.5), (4.1)-(L4.3) and (2.3), respectively, have

representations as finite sums over the elements of Ck. As ey, €

and e, belong to Ck, the endowment for econony k is Ek =E£ € Lk.
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As our linear space for the kth restricted econony is a

subset of Euclidean space, the price system is also an element of

the Euclidean space. Thus we may define a price system pk

{(p}(;(c)),(p?(c,ﬁl)),(p;(c,el,ee))}, ¢ e ck, 61,85, € ©, where each

component is an element of R.

Now let m be the least common denominator of the A(i), i
= 1, 2, ++s, n and consider the kth restricted finite economy
containing number A(i)m agents of type i and production set
mYk.—l-l'»/ Now restrict attention to an m-agent economy in which all
agents of any given type i mst be treated identically. Then

following Debreu (1962) we have the following

Definition: A quasi-equilibrium of the kth restricted finite
i k¥ k¥* : ¥
economy is a state [xi , Y | and a price system p* such that
z k¥* . k
(a) for every i, x; 1is a greatest element {xiex :
% % * * *
pk -xi<pk -Ek} under W(e,i) and/or pk . x? = pk .
ek = min p** o XK,

* * *
(8) P o myK = Max P& o myS

(v) } mA(i)x};* -
i

(8) ¥ # o.

A quasi-equilibrium is a competitive equilibrium if the first part

of condition (a) holds. In what follows we shall establish the

11/ye are assuming that each A(i) is rational. An
extension to arbitrary real A(i)'s would entail a limiting argu-
ment.
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existence of a quasi-equilibrium using a theorem of Debreu (1962),
and then establish directly that is also a competitive equilib-
rium. It is immediate that a competitive equilibrium for the kth
restricted finite economy is also a competitive equilibrium for
the original kth restricted economy with a continuum of agents (m
cancels out of conditions (B) and (y)).

We make use of the following theorem, as a special case

of Debreu (1962).

Theorem (Debreu): The kth restricted finite economy has a quasi-

equilibrium if

(2.1)  A(mX¥) N (-a(mxX)) = {0},
(a.2) Xk is closed and convex;
for every i,

(b.1) for every consumption x; in X?, there is a consumption in
Xk preferred to X4
(b.2) for every x! in Xk, the sets
- s " 2
{xiexk. w(xi,1)>w(xi,1)}
k

{xisxk: W(xi,i)<W(x£,i)} are closed in X*,

(b.3) for every xi in Xk, the set {xist: W(xi,i)>w(x£,i)} is

cConvexe.
(c.1) ({meX}+m¥®)  mxX 2 9,

(c.2)  ({e¥1+a(mx¥)) x¥ 2 g,
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(d.1) O e m Y%,

(d.2)  A(mx®)  A(mY®) = {0},

where A(H) is the asymptotic cone of set H, mH = {s:s=mh,heH},

and X? is the attainable consumption set for the 1th

type consumer
. th .
in k" restricted economy.

Each of these conditions holds for our restricted finite
econony . See Prescott and Townsend (1979) for the tedious but
straightforward argument. Thus the existence of a quasi-equilib-
rium is established. We now verify that the first part of condi-
tion (a) mist hold. In a quasi-equilibrium condition (B) holds,

%
i.e., there exists a maximizing element in vk given pk . It

*
follows that no component of pk can be negative. Also from

condition (8) not all components can be zero. Therefore at least

k*

*
one component of p- 1is positive. Maximizing pk * y with respect

to y in Yk one obtains

(L.6a) pg*(c) - wg ec=0 o & I

(4.6b) pﬁ*(c,el) - x(el)wl s+ c=0 -y 8, €0
(k.6c) pg*(c,ﬁl,ee) - x(el)x(eg)wg saEg oo, 8,,0, € 0
where the wi, t = 0, 1, 2 are nonnegative, £-dimensional vectors

of Lagrange multipliers. By virtue of the existence of a maximum
and the existence of at least one positive price, one of these

Lagrange multipliers is positive. Thus
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Kk Kk k K
P So=Ny ey Yy vey Rl e >0

since ey > 0, t=0,1,2. But the measure which puts mass one on the

zero element of the underlying commodity space for all possible

* *
parameter draws has valuation zero under pk « Thus pk . Ek

*
pE* + xK and the second part of the condition (a) cannot hold.

> Min
k*

Now X5 denotes the maximizing element for the ith agent

type in a competitive equilibrium of the kth restricted economy.

. k#*._ oo
For any i, {xi }k=0

is a sequence in the space of 1+n+n2 dimen-
sional vectors of probability measures on the underlying consump-
tion set C. This metric space 1is compact, so there exists a
convergent subsequence. Since there are a finite number of agent
types, it 1s thus possible to construct a subsequence of the
sequence allocations {(xki*)} which converges to some allocation
(xj). This limit, (x:), will constitute part of an equilibrium
specification for the unrestricted econony.

For every restricted economy k, the price system is
(4.6). Moreover, the price system may be normalized by dividing
through by the sum of all the Lagrange multipliers so that in fact
each Lagrange multiplier may be taken to be between zero and
one. Thus, one may again find a further subsequence of sequence
of vectors {1[:]:} which converges to some number [1].::} with com-
ponents between zero and one. Moreover, the Lagrange multipliers
in {w:} must sum to 1. In what follows then we restrict attention
to the subsequence of economies, indexed by h, such that for every

h* o

i, x0 ¥ x and for eve t ¢h+ ¢m
g g TV Ts Vg Ve

For each econonmy h the equilibrium price system is a

linear functional vh defined by
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(1) VG0 =T, pp (edxgle) + T 1 20 (e,0,)x(c,0,)
ceC Bl ceC

h*
* E z E kp2 (0,91,92)}(2(C,91,92)
Bl 92 ceC

h h
= Ly ¥g e xpled +1 a6y) ) ¥y« cox(e,8,)
ceC 6 ceC

+ 1 ale)} r(6,) ) kw; * ¢ x,(c,0,,8,).

61 62 ceC

Taking the limit as k + «, an equilibrium price system v. for the

unrestricted economy will be

(4.8) v (x) =g+ [ cxylde) +] Ao

hy

1)¢z T xlfdc,al)

+ 3 A(6)F Ao,y + [ o x,(de,6,,0,).
) %

Note that since the sum of the Lagrange multipliers is one, a

strictly positive number, v (£) > 0. Finally

(h.9) ¥y =L Al)x] - &
i

is an equilibrium output for the firm.
- 3 - - - - bad 0
The feasibility of the limiting allocation [(xi)iee,y ]

follows because both constraints X and Y are closed in the weak

#
topology. Given that vh(x? ) < vh(E), taking the limit as h goes

o, o &
to infinity yields v (xi) < v (§). All that remains is to show

that (i) there is no x; € X which satisfies the budget constraint

and for which W(xi,i) > W(fz,i) and (ii) there is noy € Y for

).

o0

which Vm(y) > vm(y
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The proof of (i) is by contradiction. If there is such

~

an X, then it is possible to select some h and x? € X h such that
h,_h
(€7)

-~

* -~
W(x?,i) > W(x? A)  ana vh(x?) % . IS will econtradich

3

*
X? as maximizing in the hth

restricted economy. To prove (ii),
the nonnegativity of the Y= implies all points belonging to Y,
that is satisfying constraints (4.1)-(4.3), have nonnegative value
with respect to the price system ve. Since budget constraints are
binding, that is vw(x?) - v (&) = 0, from (L4L.9) profits at y» are
zero. Hence, y® is profit maximizing. This completes the proof
of the existence of a competitive equilibrium.

It is readily wverified that for a one-period economy
(with period zero only) there need be no randomness in a competi-
tive equilibrium. Agents are risk averse, and the incentive-

compatibility conditions need not be imposed explicitly. In this

sense the work developed here reduces the standard competitive

analysis when the information structure is private but not sequen-

tial.

5. The Welfare Theorems

We now turn to the two fundamental theorems of contempo-
rary welfare economics and ask whether any competitive equilibrium
allocation is optimal and whether any optimum can be supported by
a competitive equilibrium. The first question has an affirmative

aNnswer.

Theorem 1: Every competitive equilibrium with state ((x?),y*) and

price system v¥ is an optimum.
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Proof: Suppose a feasible Pareto superior allocation ((x;),y)
existed. Then v*(xi) > v*(x?) with strict inequality for some
i. Multiplying by population fractions, summing over i, and using
linearity of v¥*, yields v¥(x) > v¥(x¥). Profit maximization
implies v*(y*) > v*(y). Thus, v¥(g) = v¥(x=y) > v¥(x¥*-y*) = v*(g)

which is the contradiction.

Debreu (1954) establishes that the following five assumptions are
sufficient to ensure that an optimum can be supported by a quasi-

competitive equilibrium.

(I) X is convex.
(II) For x', x" € X and i e 8, W(x',i) < W(x",i) implies
W(x',i) < W(x*,i) where x* = (1-a)x"+ax", 0 < & < 1.
(rrr) x, x', x" e X and i € ©, the set {aecl0,1]:
W(x%,1)<W(x,1)} is closed where x% = (1-a)x' + ax".
(IV) Y is convex.

(V) Y has an interior point.

For property I, note that a linear combination of two probability
measures 1is again a probability measure, and that constraints
(2.4) and (2.5) hold under convex combinations. Properties II and
IIT follows immediately from the linearity of the objective func-
tion. Property IV follows from the fact that constraints (k.1)-
(4.3) hold under convex combinations. For property V pick a
degenerate element of L such that (4.1)-(4.3) hold as strict
inequalities.

But, with private information, these conditions along

with Debreu's argument (Theorem 2, 195&), does not ensure that
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every Pareto optimum can be supported by a quasi-competitive
equilibrium with an appropriate initial distribution of wealth.
It is true that a separating hyperplane exists such that y* maxi-
mizes wvalue subject to the technology constraint. It, however,
does not follow that x*iE necessarily minimizes value over the set
of point that yield utility to type i greater than or equal to
W(x?,i). Rather, x§ minimizes value over the set {xeX: W(xi,j) >
{xeX: W(xi,j) > w(x*i",,jJ all j}. For details, see Prescott and

Townsend (1979).

6. An Example

This section presents a simple example economy which
hopefully clarifies by illustration the definitions and concepts
that we have developed throughout the paper. For this economy,
the equilibria are characterized by contracts with options, the
exercise of which is private information dependent. In addition,
the equilibrium contracts incorporate contrived randomness even
though agents have convex preferences. For this example, all
agents are alike ex ante but not ex post. This greatly simplifies
the example, for by Theorem 1, the optima are the competitive
equilibrium allocations.

Following Becker and Lancaster, agents have a household
production function mapping a time endowment, a market-produced
consumption good ceR, and a private shock 6e®@ = {8;,05} into an
idiosyncratic, nontradeable household consumption vector. The
resulting indirect utility function is U: R, x © + R. The func-
tion U(c,8) is increasing, concave, and continuously differen-

tiable in ¢. Further, U' (W,ﬁl) = 0, and U(c,82) = aec where 92 >
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0. Thus households of type 6, are ex post risk averse and house-
holds of type 8, are ex post risk neutral. This somewhat extreme
assumption simplifies the analysis, but is not ecrucial. What is
needed is that there be differences in curvatures ex post.

Households know that fraction A(8) of the population
will experience shock 6. This is the only information they have
for forecasting. We assume that agents' subjective probability
beliefs are that the likelihood of being of type 8 is A(8). This
seems to be the only reasonable set of subjective beliefs for
someone in such an environment. Finally, all agents receive
endowment e of the consumption good with certainty and U'(e,el) <
5.

Our first task is to determine a Pareto optimum alloca-
tion for this economy. This could be done formally as in Section
3 by consideration of a linear programming problem in the space of
lotteries maximizing the expected utility for the representative
household subject to the incentive compatibility and resource
constraints. Here we find an optimal to a simplified problem that
takes into account the resource constraints only. We then modify
that incentive infeasible solution to obtain an allocation which
is both incentive and resource feasible and which yields the same
expected utility.

If 0 were public, an optimal allocation would be for
type 8, to consume c"l* and type 6, to consume 0*2" where ci and C;
are such that marginal utilities are equated across states and the
endowment is exhausted. Essentially, this is full insurance. But

this allocation is not achievable if 6 1is private information.
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Type 91 prefers the larger consumption c; to its allocation c{
(see figure). An equally good allocation, which is incentive
compatible, does exist but requires contrived randomness in the
allocation. If rather than receiving cg with certainty, type 82

receives c§ with probability a¥* = cglc§ and consumption O with
probability 1 - a¥, the expected utility of type 82 continues to
be 8205 as type 0, is risk neutral. Thus, both allocations yield
the same expected utility, as well as having the same per capita
consumption. Variable c§ can be selected sufficiently large to
insure that the expected utility of this lottery for type Bl is
less than the utility of the certainty consumption ci (as in the
figure). To summarize, the allocation for which type Bl indi-
viduals receive c§ with certainty and type 6, receive a lottery

that provides c§ with probability a¥* and 0 otherwise is an opti-
mum. Further, no allocation without lotteries is optimal.

We shall now argue that this optimum can be achieved in
a decentralized, competitive market for insurance contracts with
individually-affected and private information-dependent options.
Imagine, in particular, that households in the economy can buy and
sell contracts (make commitments) in some planning period
market. Clearly, unconditional promises to commitments cannot be
mutually beneficial. But households do want some insurance; that
is, they want commitments to be conditional on their own indi-
vidual circumstances, that is, on their own shocks 6. Of course,
these shocks are privately observed. Still, suppose an insurance

contract has options affected entirely by the household, once its

6 value is known. Then some trade may be possible. Of course,



utility}

3y

a'u(c

consumption
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the household would choose the option which is best given its
individual circumstances, and thus we may suppose without loss of
generality that options are such that the household announces its
individual shocks truthfully. Finally, we allow options to affect
random allocations of the consumption good.

More fomally, then, a household is imagined to buy in
the planning period market (say from a Walrasian auctioneer) an
insurance contract {x(c,8)}, ceC, 6e€0. (Here for simplicity we
suppose set C is finite, though the more general analysis of the
paper allows C to contain a continuum of values.) Under this
contract, the household is supposed to announce its actual shock 8
in the consumption period and receive c¢ with probability x(c,8)
(of course, 0 < x(c,8) < 1 and } x(c,0) = 1). The household can
choose any incentive—compatibleccontract it wants, with the re-
ceipts varying over ¢ in C and the probabilities varying between
zero and one inclusive that satisfies the budget constraint. A
price system {p(c,0)}, ceC, 0e® determines the cost of a con-
tracte. As for revenue, note that the household is effectively
endowed with probability measures £(c,8), 8e0, each putting mass
one on the endowment point e. These endowments are sold in the
planning period market. (Alternatively, one can view x(c,8) -
£(c,0) as excess demand.) In summary, the household can choose a
contract x(c,8) to maximize
(6.1) g A(8) § x(c,8)u(c,8)

c

subject to the budget constraint

(6.2) Y ¥ plc,8)x(c,0) < E E p(c,0)E(c,8)
8 c
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and subject to incentive-compatibility restrictions.

On the other side of the market, we suppose there are
firms or intermediaries who make commitments to buy and sell the
consumption good. A production-intermediation choice y(c,8), ceC
specifies the number of units of the bundle with ¢ units of the
consumption good which the firm-intermediary plans to deliver or
sell to the market for use by consumers announcing they are of
type 6. Thus, if y(c,8) is negative, there is a plan to take in
or buy resources. The production-intermediation set Y of each
firm-intermediary is defined by
(6.3) Y = {y(c,8),ceC,0e0: JA(8))cy(c,8)<0}.

0 8
In effect (6.3) requires that each firm-intermediary not deliver
more of the single consumption good in the consumption period than
it takes in. DNote that each firm-intermediary takes the coeffi-
cients in Y, the weights on different bundles, as given, beyond
its control. Note also that Y displays constant returns to scale,
so we act as if there were only one firm-intermediary.

The firm-intermediary gets credit or debits for its
commitments in terms of the price system p(c,8). The firm-inter-

mediary takes the price system as given and maximizes profits
(6.4) Y ) ple,8)y(c,0).
8 c

It is thus clear that the constant returns to scale specification
of the production set (6.3) delivers prices up to some arbitrary
normalization. In fact, expressing prices in terms of the con-

sumption good, the equilibrium price system p*(c,0) must satisfy
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p*(cse) = X(B)C

This corresponds to actuarialy-fair insurance.
The Pareto optimal allocation to support in this com-

petitive insurance market is

(6.5) x*(ci,el) = 1, x*(cg,e ) = w¥*, x¥®(0,8,) =1 - &%,

2

and x(c,0) = 0 otherwise.

Clearly, for an equilibrium we mst have y* = x¥ - . It is
easily verified under the price system p*¥ that x¥ solves the
household's problem and y¥* solves the firm-intermediaries' prob-
lem.

In this analysis, we use lotteries as an allocation
device. This may seem unusual, but we argue that it is not.
Indeed, one can mimic exactly the effects of a lottery by indexing
on the basis of a naturally-occurring random variable that is
unrelated to preferences and technology, provided that the random
variable has a continuous density. (Kenneth Arrow pointed this
out to us.) Such an arrangement would seem consistent with the
existence of the usual Arrow-Debreu securities or contingent
ccmmodities.l—e-/

We might argue further that devices which generate

lotteries or contrived risk may themselves be familiar. For

returning to our competitive market setup, suppose that a group of

12/cags and Shell (1981) have an example of an econony
with an equilibrium characterized by allocations being indexed by
an exogenous random variable that is unrelated to either prefer-
ences or technologies.
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households has entered into the contracts {x(c,8)} with a broker,
who himself acts as a firm intermediary, with terms of trade as
specified in the p*(c,ﬁ)-éﬁ/ That contract can be effected as
follows.

Agents are required to surrender their endowment e to
the brokers and then, subsequent to the revelation of the shocks,
individuals have the choice between two distribution centers. If

they choose the first, they are guaranteed c¥ units of the good.

1
If they choose the second they receive c§ units if it is avail-
able. Households choosing the second center are imagined to

arrive in a random fashion and to receive c¥* on a first-come,

3
14/

first-serve basis. All households know that the likelihood of

receiving c% if they choose center two is a¥*. Agents are not
permitted to recontract contingent upon whether or not they are
servedrlgj

Upon observing the number of unserved customers in the
second center, a casual observer might find the above-described

scheme somewhat unsatisfactory. Since some go away empty-handed,

the "price" mst be too low; that is, the potential allotment

Eﬁjln a literal sense, we would not expect to see the
highly-centralized arrangement with a Walrasian auction who calls
out prices until all markets are clear. We believe, though, that
such arrangements might predict well the outcome of an arrangement
in which the market-assignment process and price-determination
process are explicit.

lﬂjObviously, for the analysis of some queues, one wants
to take starting times as choice wvariables. For our purposes
here, we abstract away from such considerations.

}é/We thank John Bryant for pointing out this implicit
restriction.
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of c§ is too high. In fact, if the receipt were lowered to c¥,
all could be served.lé/ But, of course, the allocation achieved
by the above-described resource allocation scheme is private-

information optimal. The point is that the queue (rationing) is a

man-made device which induces the requisite artificial risk.

Concluding Remark

The essential difference between our private information
competitive analysis and the contingent claim approach of Arrow
and Debreu is that options are needed and these options are exer-
cised contingent upon private information. If we are to use
competitive analysis to explain the existence of contractual
arrangements with options, the exercise of which cannot be per-
fectly predicted given publicly-available information, such a
theory is needed. Given the wide use of such arrangements, we are
optimistic that this formulation will prove useful in substantive

economic analyses.

iéfOf course, this is not the only model of apparent
underpricing. In a provocative article Cheung (1977) argues that
apparent underpricing of better seats in theaters, so that they
fill up early on, is a way of reducing the costs of monitoring
seat assignments. But the theory developed here has something in
common with Cheung's, the use of apparent underpricing to discrim-
inate among potential buyers with wunobserved characteristics.
Such discrimination also underlies the model of credit-rationing
of Stiglitz and Weiss (1980), though they proceed in a different
way and draw somewhat different conclusions than the analysis of
‘Ehig ;gaper; see also, Akerloff (1970), Siglitz (1976), and Wilson
1980).
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