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ABSTRACT

Unit root tests against trend break alternatives are based on the premise that the dating of
the trend breaks coincides with major economic events with permanent effects on economic
activity, such as wars and depressions. Standard economic theory, however, suggests that
these events have large transitory, rather than permanent, effects on economic activity. Con-
ventional unit root tests against trend break alternatives based on linear ARIMA models
do not capture these transitory effects and can result in severely distorted inference. We
quantify the size distortions for a simple model in which the effects of wars and depressions
can reasonably be interpreted as transitory. Monte Carlo simulations show that in moderate
samples, the widely used Zivot-Andrews (1992) test mistakes transitory dynamics for trend
breaks with high probability. We conclude that these tests should be used only if there are
no plausible economic explanations for apparent trend breaks in the data.
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1. Introduction

Since the work of Perron (1989) and Rappoport and Reichlin (1989), tests have been
developed for the null of a unit root against the alternative of a trend stationary process with
permanent changes in the trend, or trend breaks. Allowing for a break in the trend function
often alters the outcome of tests for unit roots. Unit root tests against trend break alternatives
now play an important role in time series analysis of macroeconomic data. Exhibit 1 shows
that a variety of time series have been studied by many researchers using these procedures.
These tests also have been used to pretest for unit roots in VAR models, as in Evans’ (1989)
study of unemployment and output dynamics.?

There has been a general tendency in the applied time series literature to associate
any major economic event with potential trend breaks. In fact, unit root tests against trend
break alternatives are based on the premise that the dating of the trend breaks coincides with
major economic events with permanent effects on the level of economic activity. This basic
view relating major events with underlying trend breaks dates back to Perron (1992):

“The estimated dates of break ... yield interesting conclusions about the identification
of events that had a permanent effect on the levels of economic activity” (p. 144). In
particular, the dating of the breaks is “associated with major events [emphasis added] that
had a permanent effect on the behavior of the series creating a major change in intercept
..., a change in the slope function ...; or generally a combination of these events occurring
around the same date” (p. 147).

In this paper, we argue that major economic events will generate important transitory
movements in endogenous variables. In sharp contrast to the conventional view in the liter-

ature, this type of transitory movement is not adequately captured by the standard linear



ARIMA model. We show that researchers who rely on the linear ARIMA model will not
be able to correctly identify these transitory dynamics. The inability to correctly identify
these dynamics has serious implications for statistical inference. In particular, we find that
these transitory dynamics can lead to rejection rates of the unit root null that far exceed the
nominal size of the test.

For many aggregate time series, such as U.S. per capita gross national product (GNP),
the estimated break dates coincide with wars or the Great Depression. Standard macro-
economic theory suggests that these events will have large transitory effects on aggregate
variables such as GNP. For example, it is generally accepted that the substantial increase in
output that occurred during World War II was the result of a huge temporary increase in
government purchases brought about by the war effort. Between 1940 and 1945, government
purchases rose over 400 percent, and real output nearly doubled over the same period. Imme-
diately following the end of the war, in 1946, government spending fell by 75 percent, and real
output declined sharply. This response of output to large temporary government spending
shocks is consistent with both Keynesian models and neoclassical models. (See Barro (1981),
Wynne (1989), and Ohanian (1997).) Similarly, the considerable decline in output associated
with the Great Depression has been interpreted by many economists as a temporary response
to a significant reduction in the money stock. (See, for example, Friedman and Schwartz
(1963).) Figure 1 plots the log of real per capita GNP (y;) in levels and in first differences.
The substantial fluctuations in output during these two periods are clearly seen in this figure.

The view that some of the variation in GNP during the 19091970 period (the Nelson-
Plosser (1982) sample) was transitory and that these transitory fluctuations could be substan-

tial is not explicitly modeled under the null of unit root tests against trend break alternatives.

2



In this paper, we propose a simple statistical model that captures the idea that the sharp
fluctuations in output that occurred during the Great Depression and World War II can rea-
sonably be interpreted as transitory in nature. Our model generates time series as the sum
of a latent random walk with drift and occasional large transitory movements driven by a
regime-switching model. The regime switches are fully endogenous. Given our interest in
large transitory movements in output during the Great Depression and World War II, the
regime switches follow two independent Markov chains modeled after these two episodes in
U.S. data.

We demonstrate that a process that is the sum of an integrated component with drift
and an occasional large transitory component will generate data that in finite samples will be
very difficult to distinguish from a trend stationary process with a trend break. In particular,
the large temporary fluctuations in output that occur during wars and depressions may give
the appearance of a change in intercept or trend slope or both in a trend stationary process.
This demonstration suggests that in practice, unit root tests against trend break alternatives
will tend to overreject the null.

To quantify the importance of these distortions for applied work, we conduct a Monte
Carlo experiment. We study the rejection rates of the widely used Zivot-Andrews (1992)
unit root tests for data generated from various unit root processes without trend breaks, but
with occasional large transitory movements. Our main finding is that the Zivot-Andrews
asymptotic test is strongly biased in small samples, with rejection rates as high as 60 percent
at the 10 percent level for the data generating process (DGP) with transitory components and
rejection rates as high as 35 percent for a pure random walk with drift DGP. Small-sample
test statistics, which are rarely used in practice due to computational requirements, reduce
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this bias, but they do not eliminate the problem for the DGP with transitory components.

Other authors have argued that tests for unit roots may be sensitive to the nature
of the DGP. Perhaps most prominently, Schwert (1987, 1989) shows that standard ADF
tests overreject the unit root null if the true model is an ARIMA (0,1,1) model with an MA
coefficient close to —1. Since the growth rates of many macroeconomic time series do not have
MA coefficients near —1, however, many researchers have dismissed the notion that transitory
dynamics in their data can interfere with statistical inference. Our study demonstrates that
this practice can be a serious mistake.

There are fundamental differences, however, between our study and Schwert’s point:
We focus on trend break tests, not on tests against trend stationary alternatives. Our DGP is
substantially different from Schwert’s linear ARIMA model and can result in severe inference
problems not foreseen by Schwert. The problem we study cannot be identified with the
diagnostics that work for Schwert’s problem. And procedures that result in correct inference
in his problem do not in ours. Indeed, our results indicate that fundamental changes are
needed in the application and interpretation of unit root tests against trend break alternatives.

Section 2 reviews the methodology of unit root tests against trend break alternatives.
Section 3 describes the statistical model. Section 4 describes the simulation design. Section
5 presents the findings of the Monte Carlo analysis and compares our work to Schwert’s in

more detail. Section 6 concludes.

2. Unit Root Tests Against Trend Break Alternatives
Many methodologies exist for unit root tests against trend break alternatives, includ-

ing, for example, those in Perron (1989), Rappoport and Reichlin (1989), Banerjee, Dolado,



and Galbraith (1990), Perron (1990), Balke and Fomby (1991), Perron (1991), Perron and Vo-
gelsang (1992a,b, 1993a,b), Park and Sung (1994), Stock (1994), Bradley and Jansen (1995),
Perron and Vogelsang (1995), Nunes, Newbold, and Kuan (1996), and Montanes (1997). The
early literature (for example, Perron (1989)) often determines the break points by inspecting
the data. Today it is widely accepted that break points must be estimated endogenously. In
this paper, we focus on the sequential break point selection tests developed by Zivot and An-
drews (1992). These tests are very similar to the methodology used by Banerjee, Lumsdaine,
and Stock (1992) and Perron (1997), and these tests are commonly used in applied work.?
They also have recently been extended by Lumsdaine and Papell (1997) to allow for multiple
trend breaks.

We consider three versions of the Zivot-Andrews tests that consider the same null
hypothesis of a unit root, but differ in the type of structural break considered under the
alternative. All tests assume that there is a one-time break under the alternative at date
TB. Since the break point is assumed to be unknown, the Dickey-Fuller statistic is defined as
the infimum of the sequence of the Dickey-Fuller statistics over all possible break points, not
including the end points of the sample. Let DU; = 1(¢t > T'B) and DT; = (t—TB)1(t > T B),

where t = 1,...,T and 1(.) is the indicator function.

e Model A allows for a one-time break in the mean of the deterministic trend (intercept

break),

e Model B allows for a one-time break in the growth rate of the deterministic trend (slope

break), and

e Model C allows for a simultaneous break in intercept and slope:
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k
Model A Ay, = p+ Bt +0DU + ay1+ 3 Dy + &
=1
k
Model B Ays = pp+ Bt + DT} + aye 1+ 3 Ay + &
i=1

k
Model C Ay = p+ Ot +0DU, +yDT, + ay 1+ > Ay + 4.
i=1

For all three models, we test Hy : @ = 0 against the one-sided alternative. We follow
Zivot and Andrews (1992) in determining the number of augmented lags k by Perron’s (1989)
sequential t-value procedure, starting with an upper bound of eight lags. Ng and Perron
(1995) establish that this procedure has better small-sample properties than information-
based lag order selection criteria.

The test rejects the null of a unit root if the minimum of the ADF statistic ¢, over
all possible break points T'B falls below its critical value at a given significance level. The
asymptotic critical values for t,, are taken from Zivot and Andrews (1992). Zivot and Andrews
(1992) also propose a small-sample extension of their tests that involves resampling the ADF
statistic under the null by fitting an ARIMA (p, 1, ¢) model to the data. The finite-sample

critical values of that test can be read off from the empirical distribution of ¢,,.

3. An Unobserved-Components Model with Occasional Transitory
Shocks

This section describes the statistical model underlying the DGP for the simulation
study. We base our analysis on the annual U.S. per capita output series (y;) of Nelson and
Plosser (1982) for 1909-1970. Large transitory responses in output to temporary government
spending shocks or to monetary shocks arise naturally in dynamic equilibrium models. In
principle, it is possible to generate data from a dynamic optimizing macroeconomic model

with regime switching in the decision rule coefficients. However, for tractability reasons and



to simplify the analysis, we focus on a univariate reduced form time series model that captures
the same features.

We treat World War IT and the Great Depression as random events that occur with
positive probability along the sample path. In the model, wars and depressions follow two
independent Markov chains modeled after World War II and the Great Depression. The
Markov chains will be specified in detail later in this section. Wars and depressions are
assumed to have only transitory effects. Let s1; denote the state underlying the war variable
w and s9; the state underlying the depression variable d. The variables wg;; and dgo; measure
the transitory effects of World War II and the Great Depression on output. They take on
nonzero values if the respective underlying state is activated and zero values otherwise.

Output () is assumed to follow a process that is the sum of a latent random walk with
drift (2;) and the two state-dependent transitory components wg; and dso;. The specification
of our model differs in important ways from standard outlier models in that the effects of
wars and depressions are not permanent by construction and in that the random walk is not

directly observable:

(1) Yo = 2+ Weir + dsx
e = Mt 21t &
sie = Y sy—1 + vy

d
S = 1% 5941 + 1y

jid . .
where g, © N(0, 02), v;, and u; are martingale difference sequences and II* and I1¢ are the

transition probability matrices associated with sy, i = 1, 2. (See Hamilton (1994).) Lowercase



letters denote natural logs.

The states si; underlying the transitory component wgy; are defined so that wars in
the model will have the same duration as World War II in the U.S. data. For the purpose of
this model, the World War II period is assumed to last six years, corresponding to the years
1941-1946 in the U.S. data. We include 1946 in the war period, since we are interested in the
transitory effects of the war on the level of economic activity. This is the year immediately af-
ter the war, in which government expenditures and output fell dramatically. For expositional
purposes, we discount the possibility of longer-lasting effects. Define the primitive states
s, € {W, P} corresponding to whether a particular year ¢ is a war year or a peace year. By
dividing the 62 observations of the Nelson-Plosser output series into overlapping blocks of
six consecutive annual observations, we can completely characterize the Nelson-Plosser data
by 12 states sy;, each consisting of six consecutive annual observations. For example, the
six-year period 1938-1943 is given by {P, P, P, W, W, W}, the period 1939-1944 is given by

{P, P, W, W, W, W}, and so on.

* * * * * *
St St S1t—1 S1t—2  S1t-3  S1t—-4  S1t—5

1w w w w |44 w
2 P W w w w w
3 P P w w w w
4 P P P w w w
5 P P P P W w
6 P P P P P w
T P P P P P P
8§ W P P P P P
9 W W P P P P
0w W w P P P
1 w W w w P P
12 W W w w w P

Based on the Nelson-Plosser data, it is straightforward to determine the empirical
transition probabilities from sy; to si.41, conditional on the last six states sj,. We obtain the
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following transition probability matrix II" in terms of the states s;; and sy441.
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The states so; underlying dgo; are constructed in a similar way, so that depressions in
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the model will have the same duration as the Great Depression in the U.S. data. For the
purpose of the model, the Great Depression is assumed to last five years, corresponding to the
years 1929-1933 in the U.S. data. Define s, € {D, N} corresponding to whether a particular
year t is a depression year or a normal year. Then define 10 states sq;, each consisting of five
consecutive annual observations, such that these states completely characterize the observed

U.S. data.

* * * * *
2t Sor Sop 1 Soto2 Sor 3 Sor 4

= © 00 -1 O U W b
SoOoo==2=2=220
Sob=2=2=2=2=200
Co=2=2=2=2=2000
O=2=2=2=2=20000
2222200000

0

The corresponding empirical transition probabilities from so; to $o;11 are summarized

in the matrix IT%.
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of the model depends on the duration of the wars and
depressions or on the particular values adopted for the transition probabilities. For example,
we could easily have adopted a standard two-state Markov chain with one-period memory
instead. The reason for choosing this particular Markov chain model is that we want to rule
out the possibility of wars and depressions of longer or shorter duration than those in the

U.S. data. Our model is the simplest DGP which generates wars of the same duration as

World War IT and depressions of the same duration as the Great Depression.

4. Simulation Design

This section discusses the design of a Monte Carlo experiment to study the small-
sample behavior of the asymptotic and bootstrapped Zivot-Andrews tests. Our simulation is
based on the annual per capita GNP series of Nelson and Plosser for 1909-1970. We focus
on this series because it has been analyzed by several authors and is central to a number of
macroeconomic issues. We consider two basic DGPs for the Monte Carlo analysis.

The first DGP is based on the model (1) in Section 3. To generate data from (1), we
need to specify values for the drift (x) and innovation standard error (o) as well as the values
that wg; and dgo; take on if the war regime or if the depression regime is activated. These
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parameters are based on the Nelson-Plosser per capita GNP data. Under the null of the
Zivot-Andrews test, the data are difference-stationary, so we proceed by regressing the first-
differenced logged Nelson-Plosser data on a constant. The estimated drift () over the sample
period is 1.64 percent, with standard error 0.0084. The estimated residual standard error (6.)
is 0.0653. However, the presence of measurement error, in particular for the pre-1929 period,
and the possible presence of large transitory fluctuations during World War II and the Great
Depression suggest that this estimate of the innovation variance of the permanent component
is considerably inflated.®> We therefore recalculate 6. based on the residual standard error of
the same regression for annual postwar data. The revised estimate is 6. = 0.024.

The values of the transitory components do; and ws; are specified as the transitory
variation in output over the Great Depression (1929-1933) and World War IT (1941-1946) in
the Nelson-Plosser per capita GNP series. We approximate the transitory movements during
these episodes as the deviations from drift in the logged data over the periods 1929-1933 (for

the Great Depression) and 1941-1946 (for World War 1I):

2)  dear = 1(sy = D)(Ayr — 1)

wsy = sy, = W)(Ay, — ).

Figure 2 plots the observed sequences for dyo; and w,;. Since the focus of this exercise
is on the potential effects of occasional large transitory movements in the data on the perfor-
mance of the Zivot-Andrews test, we abstract from other sources of transitory fluctuations in
GNP, including the possibility of transitory fluctuations during World War I and the Korean

War. While our definition of the transitory component is not the only one possible, it is
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consistent with common interpretations of the data, and it conveys a reasonable sense of the
magnitude of the transitory movements in the data during these episodes.

Our main concern is that in small samples, large transitory movements, (wgy;) and
(ds2¢), may resemble trend breaks, leading conventional trend break tests to overreject the

null of a unit root. To verify this conjecture, we will generate data from the model in (1):

Yy = Z + Wt + ds?t
¢ = Pt 21+ &
sie = Y sy—1 + vy

d
Sor = II Sot_1 T+ Ug.

We will use our preferred parameter specifications

(3) g = 0.0164, o. = 0.024
(4)  dy = {0.0370,—0.1311,—0.1048, —0.1833, —0.0410} for s}, = D

(5)  ws; = {0.1228,0.0941,0.0937,0.0411, —0.0448, —0.1544} for s, = W

with IT* and II¢ as given in Section 3. We will refer to this DGP as DGP 1.
For comparative purposes, we also include results for a random walk with drift with

no transitory components. We will refer to this alternative DGP as DGP 2:

6)  yi=p+y-1+er

In this simple model, all shocks (¢;) have permanent effects. Since the data for DGP 2
are generated under the null hypothesis of the Zivot-Andrews test, the relative frequency of
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rejections can be interpreted as the size of the test. We use identical values of i and o, for
both DGPs (equations (1) and (6)) to isolate the effect of adding transitory components to
the random walk process.

In addition to the two unrestricted stochastic processes DGP 1 and DGP 2, we conduct
a sensitivity analysis in which we consider three restricted DGPs based on DGP 1, which
we denote DGP 3, 4, and 5. These restricted processes are designed to isolate the marginal
contribution of various factors to the performance of the Zivot-Andrews tests. These restricted
processes analyze the following effects: the timing of wars and depressions, the sequencing of
wars and depressions, and the number of wars and depressions.

In DGP 3, exactly one war and one depression occur in the sampling period. We
allow for independent draws of wars and depressions at random dates over the 1910-1969
interval as in DGP 1. However, to make the data in the Monte Carlo study more comparable
to the actual data, we only retain Monte Carlo draws with exactly one war and exactly
one depression, and we require that both events be included in the sampling interval in their
entirety. This means that the depression and the war can occur anywhere in the sample (with
the exception of the end points), but not necessarily in their historical order, and possibly
even at the same time.

In DGP 4, exactly one war and one depression occur in the sampling period, and the
depression precedes the war. This DGP builds on DGP 3 in that we are still restricting
ourselves to Monte Carlo trials with exactly one war and one depression, but in addition, we
are trying to preserve the order in which the depression and the war occurred in the U.S.
data. For that reason, we treat the entire sequence of events from 1929 through 1946 as one

event (with zeros imposed for the transitory component for 1934-1940 to make the results
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compatible with DGP 5), and we allow the sequence to start at random points in the interval
between 1910 and 1969. This means that the Great Depression and World War II can occur
anywhere in the sample (with the exception of the starting point and the end point of the
series), but that the depression will always precede the war by eight years as in the U.S. data.

In DGP 5, exactly one war and one depression occur in the sampling period, and the
depression and the war occur on the same dates as in the U.S. data. This DGP builds on
DGP 4, but in addition, we fix the dating of the depression and the war across all Monte
Carlo trials, so that it is exactly identical to the dating of the Great Depression and World
War II in the U.S. data. Thus, in each Monte Carlo trial, the Great Depression lasts from
1929 to 1933 and World War II from 1941 to 1946. However, we continue to draw permanent
innovations €; to the DGP throughout the sample period, including the depression and the
war. Thus, output realizations during these events are not fixed across Monte Carlo trials,
and the resulting time series {y;} may look quite different from the historical per capita GNP
series.

The five DGPs in our study are summarized in Exhibit 2. The number of Monte Carlo
trials is 1,000 for each DGP. We average the number of rejections of the Zivot-Andrews test
for Models A, B, and C across Monte Carlo trials and compare this number to the nominal
size of the test at the 1, 2.5, 5, and 10 percent significance levels. The Monte Carlo standard
errors for the rejection rates are 0.3, 0.5, 0.7, and 0.95 percentage points for the 1, 2.5, 5,
and 10 percent tests, respectively. We consider two sample sizes in our experiments. We
initially use a sample size of 62, which is the number of observations in the annual Nelson-
Plosser per capita GNP data. This sample size is fairly common in applied work. To gain an
understanding of how sample size affects the asymptotic tests, we subsequently conduct our
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experiments for a larger sample.

5. Simulation Results

A. Basic Findings

In this section, we report from our Monte Carlo simulation the behavior of the Zivot-
Andrews tests in small samples. Table 1 presents the rejection rates of the null hypothesis of a
unit root for Model A (intercept break), Model B (slope break), and Model C (simultaneous
slope and intercept break) under DGP 1 (1) and DGP 2 (6). For completeness, Table 1
also shows the corresponding rejection rates for the unit root tests against trend stationary
alternatives without breaks. Our simulation results for these processes for a sample of size 62
suggest that the asymptotic tests, which have been applied by nearly every researcher who has
used the Zivot-Andrews tests, routinely mistake the transitory effects of wars and depressions
for trend breaks. That result holds across all models and nominal sizes, but in relative terms,
the accuracy of the test deteriorates with higher significance levels. For example, at the
nominal 10 percent level, the test rejects the null of a unit root in favor of a trend break in
54 percent to 60 percent of all trials. At the nominal 1 percent level, the test rejects the null
in 23 to 28 percent of all trials. Moreover, the rejection rates are not sensitive to the type
of break considered. In addition, we find that there is considerable bias in the number of
rejections even in the absence of transitory dynamics. In the pure random walk model (DGP
2), the size distortions of the test against trend break alternatives are an additional 6 percent
to 17.5 percent higher, compared with rejection rates for the no-break alternatives. This
finding establishes that trend break tests have a tendency to overreject the unit root null in

small samples quite independently of the problems due to transitory dynamics we discussed
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earlier. The latter effect can be assessed by comparing the rejection rates for the no-break
model under DGP 1 and DGP 2. Table 1 shows that the transitory dynamics in DGP 1
individually are responsible for an increase in rejection rates of up to 22.7 percent. More
generally, of course, rejections may be due to both overfitting and the presence of transitory
dynamics. For DGP 1, Table 1 allows us to decompose the total increase in the rejection
rate into these two effects. The increases in rejection rates due to overfitting are between 50
percent and 104 percent of the size distortions due to transitory components. Thus, both

problems are tremendously important for applied work based on asymptotic critical values.

B. Sensitivity Analyses

Relative Size of Transitory Components and Permanent Shocks

Table 2 analyzes how sensitive these results are to changes in the magnitude of the
transitory component (measured in multiples of our preferred values of d and w). Clearly, the
number of rejections in general depends on the extent to which transitory effects dominate the
time path of the output series. That, in turn, depends on the size of the permanent innovations
(e;) (and, as we will show later, on the sample size). To test the robustness of our findings,
we vary the size of the transitory effects in multiples of 0, 1/2, 1, and 2 while holding fixed
the noise level as measured by the innovation standard deviation of the population process
(0.). Depending on the size of the transitory effect, the number of rejections varies from 33
percent to 76 percent. In all cases, the number of rejections increases with the ratio of the size
of the transitory effect to the noise level. These results show how important the existence of
transitory effects in the data can be for the performance of unit root tests against trend break

alternatives. Interestingly, even for the pure unit root case without any transitory dynamics
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(DGP 2), the rejection rates of the test are much too high. At the nominal 10 percent level,

the test rejects in 23 to 35 percent of all trials.

Pretesting for Unit Roots

Tables 1 and 2 demonstrate that the Zivot-Andrews test rejects with high probability
the null of a unit root test in favor of a trend break, even if the data do not contain such a
break by construction. However, these findings are based on the premise that no pretesting
has preceded the analysis. It seems reasonable to assume that many researchers would not
consider structural break alternatives if standard ADF tests already rejected the unit root
in favor of trend-stationarity. Such a view is consistent with the sequence of published work
on the Nelson-Plosser data series. This suggests that we conduct additional simulations
in which we mimic this practice by discarding all Monte Carlo trials for which standard
ADF tests reject the null of a unit root at the nominal 10 percent level (using interpolated
finite-sample critical values) and replacing them with new draws. As Nunes, Newbold, and
Kuan (1996) point out, the critical values compiled by Zivot and Andrews (1992) are no
longer valid once we recognize the existence of pretesting. Nunes, Newbold, and Kuan (1996)
propose a modification of the Zivot-Andrews test to account for data mining. However, their
modification has not been adopted in applied work, and here we are interested in the question
of how misleading the results of the Zivot-Andrew tests are in actual practice. It therefore
is useful to study the performance of the Zivot-Andrews tests the way they are currently
applied in the literature. Moreover, additional simulation results suggest that rejection rates
after pretesting are systematically lower than the actual rates by up to 18 percentage points

and hence can be regarded as a conservative lower bound to the true rejection rates.
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The results after pretesting are displayed in Table 3. The discussion focuses on the
nominal 10 percent level. We begin with DGP 1. That process differs from DGP 1 in Table
1 only to the extent that we discard apparently trend stationary trials and replace them with
new draws. As before, the number of wars and depressions in the sample is unrestricted.
Events can occur at any point in time and in any order. The result is a drop in the number
of spurious rejections from 54—60 percent to 34—46 percent after pretesting. Similarly, for the
pure random walk model, after pretesting, the rejection rates drop as low as 15-31 percent.

However, the effective size for DGP 2 still far exceeds the nominal size.

Restricted DGPs

While the Monte Carlo simulation results just discussed are perfectly valid as an
indicator of the unconditional or average performance of the Zivot-Andrews test, they do not
necessarily tell us how likely it is that the evidence for a trend break in the actual U.S. per
capita GNP series is spurious. The reason is that our model can generate trials with possibly
many world wars and great depressions or, for that matter, none at all, whereas the U.S.
data are characterized by exactly one such event. We therefore proceed with a number of
simulations conditional on key features of the U.S. data. For example, to isolate the marginal
effects of the number of big events, in DGP 3, we consider Monte Carlo trials that include
exactly one war and one depression in the sampling interval. We also make certain that
these wars and depressions are included in their entirety in the sampling interval (excluding
the end points), just as in the U.S. data, and we pretest all trials. As a result, the number
of rejections in Table 3 rises slightly from 34 to 37 percent for Model A and from 45 to 46

percent for Model B, but jumps from 46 to 62 percent for Model C, close to the original result
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in Table 1.

To determine how sensitive these results are to the timing and sequencing of the
Great Depression and World War II, we conduct two more experiments. To investigate the
importance of the order in which the Great Depression and World War II occurred, in DGP
4, we define a new Markov chain model in which we treat the entire 1929-1946 episode as one
sequence (with zeros imposed for the years 1934-1940 to ensure compatibility of the results
with DGP 5). After pretesting and discarding multiple events, we find that, on average, the
sequencing of the events has little impact on the rejection rates. When we compare DGP 4
with DGP 3, the rejection rates rise slightly by about 6 percent for Model A and 3 percent
for Model B and fall by 5 percent for Model C. Finally, we consider the case in which the
dating of the Great Depression and World War II is fixed at the historical dates throughout
all trials. After pretesting, in DGP 5, the rejection rates rise even further to 54 percent for
Model B, drop slightly to 39 percent for Model A, and remain constant at 57 percent for
Model C.

To summarize, the results in Table 3 are consistent with several of the initial findings,
even after accounting for pretesting and possible restrictions on the DGP. First, asymptotic
tests always reject too often in small samples, and the distortions can be substantial. These
findings hold across all DGPs, although the behavior of the test is worse under DGPs that
include occasional large transitory components. For example, under DGP 2, the test for
Model B rejects the null of a unit root up to 30 percent of the time, and under the other
DGPs, the test for Model C favors the trend break hypothesis in six out of ten cases, even in
the absence of a break. Second, rejection rates increase relative to the nominal size while the
significance level is raised. For example, while the nominal 10 percent test typically rejects
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four to six times too often, the nominal 5 percent test rejects five to nine times too often, and
the nominal 1 percent test up to 27 times too often! Restricting attention to series containing
exactly one war and one depression can make some difference depending on the model used,
but does not alter the basic result. Moreover, the rejection probabilities are fairly robust to
the sequence and dating of the wars and depressions once attention is restricted to draws

with exactly one war and one depression in the sampling interval.

Large-Sample Results

So far, all results are based on the widely used Nelson-Plosser per capita GNP series
with a sample size of 62 annual observations. However, some studies use the asymptotic
Zivot-Andrews test for samples as small as 44 annual observations (Raj and Slottje (1994))
or 27 annual observations (Alba and Papell (1995)). In that case, the performance of the
test is likely to be even worse.® At the other extreme, one study by Sadorsky (1994) uses
as many as 169 annual observations on average tariff rates. It is reasonable to expect the
performance of the asymptotic structural break test to improve as the sample size becomes
large. To address this issue, we double the sample size to 124 observations and repeat the
experiments summarized in Table 3. This sample size roughly corresponds to the number
of annual observations currently available for per capita GNP. More importantly, it is larger
than the sample sizes typically used in the literature. Among all the studies we survey, only
three use more annual observations.®

The results of the experiments with 124 observations are presented in Table 4. The
performance of the asymptotic test improves, but the size distortions remain substantial.

Although the asymptotic test now seems to perform well for Model A under DGP 2, it
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continues to overreject for Models B and C under the same DGP, and for all models under
the other DGPs. For example, the nominal 10 percent test rejects up to five out of ten times
in the presence of transitory components (down from six out of ten times) and up to two
out of ten times for the pure integrated process (down from three out of ten times). At
the 1 percent level, the asymptotic tests rejects up to 26 times too often in the presence
of transitory components (down from 27 times) and up to two times too often in the pure

random walk case (down from six times).

Performance of the Bootstrapped Test Statistic

The evidence presented in Tables 1 through 4 suggests strongly that the asymptotic
Zivot-Andrews test is not reliable in sample sizes typically used in applied work. We therefore
proceed with the analysis of the bootstrapped version of the same test for the sample of size
62. These tests are rarely used in practice, because they can be computationally expensive. In
fact, of all the studies in our survey that use endogenous break point selection tests, only Zivot
and Andrews (1992), Sadorsky (1994), and Lumsdaine and Papell (1997) have bootstrapped
the test statistic, and the latter paper uses an unreasonably small number of replications to
reduce the computational cost. The computational burden of compiling small-sample test
statistics is even greater in the context of Monte Carlo simulation. We therefore restrict our
attention to DGP 4 (treating the entire 1929-1946 episode as one random event) and DGP
2 (random walk model) and focus on the nominal 10 percent test for the sample size of 62.
For each of the Monte Carlo trials, we fit an ARIMA model under the null and calculate the
bootstrapped critical values based on 1,000 bootstrapped replications of the Zivot-Andrews

ADF statistic.” For 500 Monte Carlo trials, the Monte Carlo standard error of the size
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estimate is 1.3 percent. More precise tests would require considerably more replications. For
example, to obtain stable tails of the bootstrapped distribution of the ADF statistic at the 5
percent level would require 2,000 bootstrapped replications. At the 1 percent level, at least
5,000 replications would be needed.

Table 5 presents the results for the bootstrapped test statistic after pretesting. The
bootstrapped test statistic clearly performs much better than the asymptotic test, but it
does not eliminate the size distortions. Moreover, the performance of the bootstrapped test
statistic is erratic. In the pure random walk case with no transitory components (DGP 2),
it does not reject the null often enough for Models A and B. The rejection rates are signifi-
cantly different from the nominal size at the 95 percent significance levels. With transitory
components in the data (DGP 4), the bootstrapped test tends to reject the null too often in
Models A and C. For Model C, the rejection rate is 23 percent, more than twice the nominal
size. For Model A, the distortions are less severe, but we can still reject the hypothesis that

the test is accurate at the 95 percent significance level.

C. A Comparison of Our Analysis with Schwert’s

Our study should not be confused with the very different work of Schwert (1987,
1989). Schwert shows that tests for unit roots against a simple trend stationary alternative
are sensitive to the assumption that the data are generated by a pure AR process. When
the process contains an MA component, the finite-sample distribution of the DF statistic
may be far from the tabulated distribution. Schwert shows that the ADF test tends to
significantly overreject the unit root null if the true model is an ARIMA (0,1,1) model with

an MA coefficient near unity. He also presents evidence suggesting that this distortion can
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be corrected by recalculating the critical values of the ADF test under the null of an ARIMA
(0,1,1) model.

While Schwert’s work is well known, applied researchers have abstracted from it. This
is largely because the growth rates of many economic time series, such as GNP, do not have
moving average roots near unity. For example, estimating an ARIMA (0,1,1) model for real

per capita GNP yields

Ay, = 0.0163 4 ¢; + 0.3066¢;_1, 0. = 0.0618.

The estimated coefficient suggests that the moving average root is far from —1, unlike
in Schwert’s analysis. Based on this evidence, it is understandable why applied researchers
have abstracted from the effect of moving average components. In fact, we conduct a Monte
Carlo analysis based on 1,000 trials from this ARIMA (0,1,1) DGP and find that for a sample
of size 62, the size distortion of the standard ADF test with conventional critical values is
only 5.8 percent for the nominal 10 percent level test.

The DGP we study differs considerably from Schwert’s basic linear ARIMA (0,1,1)
model, as do its implications for applied work. First, the motivation for, and nature of, the
transitory dynamics is very different. The motivation stressed by Schwert for linear ARIMA
models is aggregation and measurement error. The motivation for dynamics in this study
is that transitional fluctuations in endogenous variables arise naturally in equilibrium from
occasional shocks associated with events such as World War II and the Great Depression.

Second, while both DGPs contain transitory components, these components manifest
themselves in very different ways. In particular, procedures that can diagnose the problem

of MA components analyzed by Schwert fail to identify the serious problems with inference
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in our DGP. Estimating an ARIMA (0,1,1) model for our DGP yields a moving average
coefficient of about 0.3, which is roughly equal to that in the data. As a result, researchers
familiar with Schwert’s critique would fail to detect any warning signs of the problems of
inference we document. In fact, given the value of the estimated MA coefficient, those
familiar with Schwert’s analysis and related studies seem to have the view that there are no
important problems with inference arising from transitory dynamics. For example, Perron
and Vogelsang (1992a) conduct a Monte Carlo test of trend break tests using an ARMA (1,1)
process. For an AR coefficient of unity and an MA coefficient of 0.5, they find no evidence
of size distortions. For an MA coefficient of —0.5, there is some size distortion, but they find
that adding augmented lags corrects the problem. Even researchers who have not completely
dismissed Schwert-type problems (for example, De Haan and Zelhorst (1993)) flatly state
that using a large number of augmented lags protects them from the Schwert critique.

Third, although there is no evidence of a serious Schwert-type problem with this DGP,
there are other serious problems due to transitory dynamics. For example, the same ADF
test against the trend stationary alternative that has a size distortion of 5.8 percent for the
ARIMA DGP yields a size distortion of 30.1 percent for our DGP. Moreover, even if we
follow Schwert’s suggestion to recalculate the critical values of the ADF test under the null
of an ARIMA (p, 1,q) model, the test will continue to overreject the null in the presence of
occasional large transitory shocks. Bootstrapped versions of the ADF tests under the ARIMA
null hypothesis yield a rejection rate of just 8.5 percent for the ARIMA (0,1,1) DGP (with
a Monte Carlo standard error of 1.85 percent), but a rate of 17.7 percent for the DGP with
occasional transitory movements. Thus, the bootstrap removes the size distortions for the
ARIMA DGP, but it does not for our DGP.
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All of these findings highlight how important it is for applied researchers to understand
the effects of a few large transitory shocks on inference and the inability of standard statistical

procedures to diagnose the problem.

6. Summary and Conclusion

Allowing for a break in the trend function can alter the outcome of tests for unit roots.
Unit root tests against trend break alternatives are being used by many macroeconomists to
answer a variety of applied questions. These tests are based on the premise that the dating
of the trend breaks is associated with major economic events with permanent effects on
economic activity. We have argued that this assumption is not plausible for many aggregate
time series, such as U.S. per capita GNP, for which estimated break dates coincide with wars
or the Great Depression. There is considerable agreement among macroeconomists that major
events, such as the Great Depression and World War II, are likely to have large transitory
effects on economic activity. Standard unit root tests against trend break alternatives do not
explicitly model these occasional large transitory effects and, as a result, can give misleading
answers in practice.

To quantify how important these distortions are for applied work, we conducted a
Monte Carlo experiment. We proposed a simple reduced-form model that captures the idea
that there are occasional large transitory variations in output that reflect major events, such
as the Great Depression and World War II. Our model consists of the sum of a latent random
walk and a transitory component driven by a regime-switching model. By construction, this
process contains a unit root, but does not include any trend breaks. We studied the rejection

rates of the widely used Zivot-Andrews (1992) unit root tests for data generated by this
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process.

Our results raise serious questions about the reliability of standard unit root tests
against trend break alternatives in small samples. We found that at the nominal 10 percent
level, the asymptotic Zivot-Andrews tests reject the null of a unit root in favor of a trend
break in up to 60 percent of all Monte Carlo trials. Even for the pure random walk model,
the test rejected the null hypothesis in as many as 35 percent of the trials at the nominal 10
percent level. The results are robust to several alternative specifications of the model. The
performance of the test improves with larger sample sizes, but we showed that even for rela-
tively large samples, the rejection rates of the asymptotic tests remain high. Computationally
expensive bootstrapped tests, which have been used rarely in applied work, are somewhat
more reliable, but still perform erratically.

The intuitive explanation for the poor performance of these tests is that occasional
large transitory movements in the data, such as the Great Depression and the expansion
during World War II, and genuine structural breaks in a trend stationary model are hard to
distinguish in small samples. It is possible that our results may be sensitive to the precise
measurement, of the transitory component in U.S. GNP. Our aim in this paper has not been
to precisely interpret a particular historical episode, but to furnish a plausible example of
how the Zivot-Andrews tests perform in the presence of occasional large fluctuations that
can be given sensible transitory interpretations. Regardless of the true size of the transitory
component, we showed that a slight modification of the statistical model consistent with the
standard economic interpretation of the data is sufficient to render the Zivot-Andrews tests
inaccurate in small samples.

We conjecture that recent extensions of the Zivot-Andrews tests to allow for multiple
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breaks (Lumsdaine and Papell (1997)) are likely to suffer from the same type of problem.
Our experience in this paper suggests that multiple-break tests would also tend to pick out
large movements in the data, such as those that occurred during the Great Depression and
World War 1II, as trend breaks. Another interesting extension of this research would be
to consider the behavior of the tests in the presence of transitional dynamics following large
shocks. In particular, both the Great Depression and World War 1T were periods of low capital
accumulation, which suggests that capital was low relative to its steady state following these
episodes. The neoclassical growth model of Solow (1956) predicts a temporary, but very
persistent, period of relatively fast economic growth until capital returns to its steady-state
growth path. This suggests that transitional dynamics following a large temporary shock
may appear to be a trend break in the data.

We conclude from our Monte Carlo analysis that the many applied researchers work-
ing in this area should use considerable caution in applying unit root tests allowing for trend
break alternatives in small and moderately sized samples. In particular, we have shown that
the evidence in favor of a trend break in the Nelson-Plosser per capita GNP series is likely
to have been spurious. Our findings suggest that many of the reported rejections of the unit
root hypothesis in the literature based on such tests may have been spurious as well. While
this paper has focused on the widely used Zivot-Andrews test, we conjecture that other trend
break tests will have similar problems in the presence of occasional large transitory move-
ments in the data. Our evidence against the trend break hypothesis does not imply that
there actually are unit roots in the data. Rather, it suggests that existing tests may not
be very informative in the sample sizes typically encountered in macroeconomics, unless the
possibility of occasional large transitory movements in the data can be ruled out a priori.
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Most importantly, we conclude that tests like the Zivot-Andrews test are likely to be useful
for some macroeconomic time series, but not for all series. Our analysis highlights the dan-
gers of automatically applying these tests to macroeconomic data and suggests that applied
researchers need to give careful thought to the nature of the exogenous events that may have
triggered permanent changes in economic growth and to alternative economic explanations
for possible trend breaks based on endogenous transition dynamics. We conclude that a
purely statistical analysis of the trend properties of economic time series is not sufficient. In
addition to the statistical analysis, researchers should consider whether there are important
shocks in the process, and economic theory should be used to understand how those shocks

can affect the endogenous variables under study.
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Notes

Tn some cases, allowing for structural breaks under the alternative reverses the con-
clusions of earlier VAR studies. (See Gamber and Joutz (1993) and Fernandez (1994).)

2See, for example, Raj (1992), Raj and Slottje (1994), Sadorsky (1994), and Serletis
(1995).

3Romer (1989) argues that after adjusting for data construction and collection methods,
the variability of pre- and postwar fluctuations is fairly similar.

“We also verify that the random walk model with drift is an adequate representation of
U.S. per capita real GNP in the postwar period. For the first five coefficients of the autocorre-
lation function of the first-differenced data, we cannot reject the null that the autocorrelations
are zero at conventional significance levels.

° Alba and Papell (1995, p. 267) conclude that they were still able to find strong evidence
against the unit root hypothesis, despite the short time span of their data. In contrast, our
simulation evidence suggests that their results may have been obtained because of the short
time span.

SWhile our analysis is based on annual data, some studies analyze postwar data with as
many as 160 quarterly observations or monthly data with close to 400 observations. However,
in practice, power considerations dictate the use of the data with the longest time span, and
postwar quarterly or monthly data are currently available for a span shorter than 50 years,
even fewer than our sample size of 62 annual observations. (For a similar argument, see
Perron (1992).)

"Zivot and Andrews allow a maximum order of five for p and ¢ in selecting the best-
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fitting ARIMA (p, 1,¢) model. In contrast, we impose a maximum order of three for both p

and ¢ because of computational considerations.
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Exhibit 1: Applications of Unit Root Tests Against Trend Break Alternatives

Nelson-Plosser data

tariff rates

real exchange rates

net exports

aggregate income inequality
regional dispersions of income
commodity prices

interest rates

unemployment rates
price level

inflation

money

velocity of money

U.S. postwar output

Perron (1989), Rappoport and Reichlin (1989), Perron (1991),
Zivot and Andrews (1992), Nunes, Newbold, and Kuan (1996),
Lumsdaine and Papell (1997), Perron (1997)

Sadorsky (1994)

Edison and Fisher (1991), Perron and Vogelsang (1992a),
Culver and Papell (1995)

Husted (1992)

Raj and Slottje (1994)

Carlino and Mills (1993), Loewy and Papell (1996)
Perron (1990)

Perron (1990), Perron and Vogelsang (1992b), Duck (1992),
Evans and Lewis (1995)

Perron (1990), Perron and Vogelsang (1992b)
Balke and Fomby (1991), Duck (1992)

Evans and Lewis (1995), Culver and Papell (1997)
Duck (1992)

Serletis (1995)

Perron (1989), Balke and Fomby (1991), Pischke (1991),
Christiano (1992), Zivot and Andrews (1992)

U.S. long-run output Banerjee, Dolado, and Galbraith (1990), Balke and Fomby (1991)

international output Banerjee, Lumsdaine, and Stock (1992), Raj (1992), Perron (1992),
De Haan and Zelhorst (1993), Alba and Papell (1995), Bradley and
Jansen (1995), Ben-David and Papell (1995), Ben-David,
Lumsdaine, and Papell (1995), Zelhorst and De Haan (1995),
Cheung and Chinn (1996), Perron (1997)



Exhibit 2: Summary of Data Generating Processes Used in Monte Carlo Study

A. Unrestricted Data Generating Processes 1 and 2:
DGP 1: Sum of random walk with drift and two transitory components

driven by independent Markov chains based on World War 11
and the Great Depression

DGP 2: Random walk with drift

B. Restricted Data Generating Processes 3, 4, 5:

Like DGP 1, but with the following additional restrictions:

DGP 3: Exactly one war and one depression in the sample period.

DGP 4: Exactly one war and one depression in the sample period, and
the depression precedes the war.

DGP5: Exactly one war and one depression in the sample period, and
the depression and the war occur on the same dates as in the U.S.
data.
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Figure 1: Nelson-Plosser Per Capita GNP Series (1909-1970)
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Figure 2: Transitory Components Measured as Percent Deviations from Drift
in Nelson-Plosser Per Capita GNP Series (1909-1970)
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Table 1: Rejection Rates of Asymptotic Unit Root Tests for T = 62 (in percent)

Nominal Size
DGP 1.0 2.5 5.0 10.0
No-Break 1 15.0 23.0 31.6 40.1
Model 2 3.0 5.2 9.1 17.4

Source: Based on 1,000 Monte Carlo trials.

Nominal Size
DGP 1.0 2.5 5.0 10.0
Model A 1 23.0 34.9 42.8 53.7
2 5.9 10.9 16.1 234

Source: Based on 1,000 Monte Carlo trials.

Nominal Size
DGP 1.0 2.5 5.0 10.0
Model B 1 25.7 35.0 46.7 59.1
2 8.1 14.3 22.2 34.9

Source: Based on 1,000 Monte Carlo trials.

Nominal Size
DGP 1.0 2.5 5.0 10.0
Model C 1 27.5 38.6 48.1 60.0
2 7.0 12.7 18.0 28.9

Source: Based on 1,000 Monte Carlo trials.




Table 2: Rejection Rates of Asymptotic Unit Root Tests for T = 62 (in percent)

Sensitivity Analysis
Nominal Size

Multiples of 1.0 2.5 5.0 10.0

Transitory

Effects

Model A 2 41.8 53.7 61.9 69.0
1 23.0 34.9 42.8 53.7
12 10.0 17.0 24.6 32.6
0" 5.9 10.9 16.1 23.4
Model B 2 39.5 49.3 59.5 70.3
1 25.7 35.0 46.7 59.1
v 14.7 22.9 31.4 45.8
0" 8.1 14.3 22.2 34.9
Model C 2 48.1 57.8 66.2 76.0
1 27.5 38.6 48.1 60.0
v 13.5 19.2 27.2 39.4
0" 7.0 12.7 18.0 28.9

Source: Based on 1,000 Monte Carlo trials.

" DGP1
DGP 2




Table 3: Rejection Rates of Asymptotic Unit Root Tests for T = 62 (in percent)
After Pretesting

Nominal Size

DGP 1.0 2.5 5.0 10.0

Model A 1 11.3 18.8 24.5 34.1
3 11.5 20.1 26.8 371

4 13.2 22.1 313 43.3

5 16.2 24.0 30.5 394

2 2.7 5.2 8.6 14.6

Source: Based on 1,000 Monte Carlo trials.
Nominal Size

DGP 1.0 2.5 5.0 10.0

Model B 1 18.1 253 355 45.2
3 14.3 21.6 31.5 46.1

4 16.6 24.8 36.3 49.2

5 239 32.6 41.5 54.4

2 6.8 12.4 19.8 31.2

Source: Based on 1,000 Monte Carlo trials.
Nominal Size

DGP 1.0 2.5 5.0 10.0

Model C 1 18.5 26.7 34.4 46.2
3 24.9 36.6 46.6 61.8

4 22.8 33.5 42.9 56.7

5 27.8 37.3 46.3 56.8

2 4.7 9.1 13.3 23.1

Source: Based on 1,000 Monte Carlo trials.




Table 4: Rejection Rates of Asymptotic Unit Root Tests for T = 124 (in percent)

After Pretesting

Nominal Size

DGP 1.0 2.5 5.0 10.0

Model A 1 16.0 234 28.1 34.2
3 9.0 16.0 20.3 31.5

4 7.2 13.3 18.9 28.4

5 9.6 15.1 20.0 26.4

2 0.9 3.0 6.0 10.6

Source: Based on 1,000 Monte Carlo trials.
Nominal Size

DGP 1.0 2.5 5.0 10.0

Model B 1 22.0 26.7 339 41.0
3 12.1 18.3 25.8 359

4 12.9 20.3 279 37.9

5 16.0 22.5 27.7 37.0

2 3.3 6.7 10.7 19.7

Source: Based on 1,000 Monte Carlo trials.
Nominal Size

DGP 1.0 2.5 5.0 10.0

Model C 1 26.6 34.2 40.2 47.4
3 12.5 19.3 26.7 38.1

4 14.0 21.5 29.7 40.5

5 17.4 25.1 314 40.0

2 3.1 5.7 9.5 15.6

Source: Based on 1,000 Monte Carlo trials.




Table S: Rejection Rates of Bootstrapped Unit Root Tests for T = 62 (in percent)

After Pretesting
10 Percent Nominal Size
DGP Model A Model B Model C
4 13.0 10.4 22.6
2 5.4 6.8 9.0

Source: Based on 500 Monte Carlo trials with 1,000 bootstrapped replications each.




