A TWO=-PERLCY PORTFOLIOC PROLLEM THW A
BAL.ANCEZ SHEET CONTZXT

Thomas M. Supel®
Aoril 1976
Working Paper: #8§

Rsch. File: #2351

“Senior Lconomist, Federal Reserve Laak of Minneapoiis. Thie pavear is
based largely on Ghapter 1TI of the auther's Za.D. disscercatice [T1Z].

el

The views are those of the zuthor znd do not gecessarily refle
s che Fzderzl Reserve Bank of Mianeanolis or the Federal

e zutiior woule like tc '
and Prestcn Miller for their heipfus comments, bat retailn:

s.bhilily for renaining errors.

i Sk




A TWO-PERIOD PORTFOLIO PROBLEM IN A
BALANCE SHEET CONTEXT

Thomas M. Supel#®
Federal Reserve Bank of Minneapolis

May 1976

Abstract

Previous work on discrete time portfolio selection models
encompassed (a) transaction's costs, and (b) uncertainty about cash
flows during the first (and only) period. This paper extends these
models by considering uncertainty about asset yields in the second
period and the optimal strategy for portfolio selection over a two-
period horizon. Among the implications are i) the optimal initial
portfolio is, in general, diversified and contains more short—term
assets than the myopic investor's portfolio, and ii) the shape of
the mean-variance locus ensures diversification for all (two-moment)
types of investors, except certain forms of risk lovers. Other partial
derivatives are investigated.

*Thomas M. Supel
Research Department
Federal Reserve Bank of Minneapolis
Minneapolis, Minnesota 55480



In a recent journal article, Roger N. Waud [19] presents a
wmodel in which it is possible for risk—neutral investors, risk lovers,
and plungers as well as risk averters to exhibit portfeolio diversifying
behavior. This result is achieved in a model in which the only source
of uncertainty is the net outlay of the individual; and, from a methodological
point of view, Waud's conclusions are drawn from a particular specification
of his general model.lj

With respect to Waud's paper, this paper has two purposes.
First of all, it is an extension of Waud's model in two directions: it
extends the time horizon to two periods, and includes uncertainty about
the return of the assets. Secondly, it employs a methodology similar to
Waud's, but also utilizes Monte Carlo solutions in addition to numerical
solutions. These generalizations permit a stronger statement of Waud's
conclusions; namely, in the mean-variance space, the particular specification
of the model that is analyzed produces portfolio diversification for all
nonnegative sloping indifference curves, and makes diversification
pessible for downward sloping indifference curves.

Bevond its relation to Waud's model, the purpose of this paper

is to extend a common form of single-period discrete time models into a

lehis methodology is used because the complexity of the model
makes closed form solutions (and standard techniques of analysis) virtually
impossible, and has been used previously, e.g., Porter [13] and Supel
[15].

*Senior Economist, Federal Reserve Bank of Minneapelis. The
views are those of the author and do not necessarily reflect those of
the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
The author would like to thank John Kareken, Neil Wallace, and Preston
Miller for their helpful comments, but retains responsibility for remaining
BTTOrs.



two-period setting.gf By this extension, transactions costs become even
more important because the investor must consider the cost of adjusting
to the portfolio that is optimal for the second period as well as the
single-period cost of liquidation to cover shortfalls in cash flows.
Also, the two-period framework permits the explicit consideration of the
probability distribution of asset yields in the second period, and it is
this feature that fundamentally alters the mean-variance opportunity
locus vis-a-vis the single-period models.

Within a two-period context the concept of "riskyness" is even
more ambiguous than it is in a single-period setting. Is a bond which
matures with certainty at the end of the second period, but which has a
highly uncertain capital value at the end of the first period riskier
than a short-term security which matures with certainty at the end of
the first period? Clearly the variance of the portfolio returns over
both periods will depend on the probability distribution of net cash

flows and short-term ylelds in the second period.

2/

—'While a review of the extensive portfolio theory literature
is beyond the scope of this paper, a few of the more directly relevant
citations should be made. The classic works of Tobin [16] and Markowitz
[6] utilize properties of the utility function to explain portfolio
diversification when faced with uncertain asset returns. This model has
been developed in enormous detail, and has been extended into a multi-
period setting by, for example, Mossin [9]. Preceding Waud [19],
Morrison [8], Poole [12], Porter [13], and Frost [3] developed single-
period models where the distribution of net cash flows plays a key role
in determining asset allocations. The Frost model is particularly
interesting because of the way it deals with initial conditionms.
Multiperiod models have been developed by Wolf [20] and Daellenbach and
Archer [2]. The Daellenbach and Archer model takes the probability of a
cash shortage as exogenous, and net cash flow is the only source of
uncertainty. The Wolf model contains no transactions costs for switch-
ing securities, and the results are independent of the distribution of
cash flows--a result at odds with the conclusions of this paper. Finally,
the paper by Miller and Orr [7] is representative of the literative
dealing with the application of an inventory "policy of simple form" to
explain transactions balances when cash flows are uncertain.
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The model developed in this paper is basically an inventory
type of model which considers yield uncertainty, cash flow uncertainty,
and transaction costs. The combination of future rate uncertainty and
transactions costs converts the portfolio problem into an interesting
dynamic programming problem. With transactiuvns costs in the model, it
is possible to remove either future rate uncertainty or the uncertainty
about cash flows and still explain diversification; but without trans-
actions costs, the interesting multiperiod problems reduce to a sequence
of one-period problems (except when the investor is certain that future
short yields will be larger than future lony yields).

Since the model encompasses rate uncertainty and transactions
costs, it deals simultaneously with both transactions and speculative
motives for holding money and other assets. It produces diversified
portfolios, and deals explicitly with yield moments other than means
without assuming declining marginal utilitv of income. In this paper
only a two-period planning horizon is assumed. This is sufficient to
allow comparison between the solution implied by dynamic programming for
the two-period investor, and the result derived for the one-period, or
myopic, maximizer. The investor with the two-period planning horizon
tends to hold a more short-term assets than the myopic investor because
of the potential transactions costs involve ! in adjusting the porttolio

in the second period.
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Section I below provides a detailed discussion of the model
and its underlying assumptions; the next section describes the extent
to which a solution of the model can be pursued without making specific
assumptions about the stochastic structure of the problem; section III
discusses portfolio implications of the model under the assumption of
independent and uniformly distributed random variables; and the final
section provides a review of the purpose and extent of the paper. Although
the conceptual framework developed here has a number of applications,
for purposes of discussion, the balance sheet studied is taken to be

that of a single bank so that uncertainty about cash flows is synonymous

with deposit variability. A three-part appendix is available upon request
to the author which provides a detailed solution to the two-period problem,
an analysis of the robustness of the solution to certain key assumptions,
and the BASIC language computer program which generated the solutions

used in the paper.
I. The Model

The modelgj developed in this paper takes as its starting point
the following balance sheet that might be faced by a single bank at a

particular point in time t_:

0
o
e Dy
R
E,
L

This model has its roots firmly embedded in the work of Tobin.
The balance sheet interpretation is taken largely from [17]; also see Tobin's
discussion of the multiperiod investment problem in [18], pp. 37-47. The
paper by Pierce [11] is also an excellent discussion of many of the issues
explicitly considered here, and the papers by Gramley and Chase [4], and
Kareken [5] emphasize the importance of the entire balance sheet to port-
folio decisions.



RR, = required (legal) reserves

R = reserves or loans which mature in one periodE
L = loans which mature in T period where T > 2

DO = deposits

E0 = equity capital

The assets (other than required reserves) are distinguished pri-
marily by their maturity dates. However, it is convenient to view the asset

5/

R as what Tobin< calls '"defensive assets."

These are assets which are
often referred to as primary or secondary reserves or "liquid" assets, and
include cash, excess reserves, federal funds loans, deposits in other banks,
and securities such as Treasury bills which are acceptable collateral for
discounting purposes. The L-assets may also be viewed as consols. This
model does not attempt to segregate the total holdings of defensive assets
into those held for transactions purposes and those held for investment
purposes. Indeed, one of the advantages of the balance sheet model is that
there is no need to make this distinction.

Since required reserves are always equal to kDo,éj where k is the
legal reserve ratio, there are two decisions for the bank to make in estab-
lishing its initial balance sheet -- R and L. These variables are purposely

left unsubscripted in order to emphasize the fact that they are the decision

L
Although a "period" is never explicitly defined, a working
interpretation might be one reserve period.

Tebin [27]; p. 2.

This formulation ignocres the fact that required reserves are
now established on a lagged basis.
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variables. The problem of this bank is to decide on the optimal values of
R and L subject to the constraints, definitions, and optimality criteria
described below.

The modus operandus of this bank is to first decide on its balance

sheet at t.. For purposes of this analysis, it is assumed that there are

0
1/

no transactions at this bank between the discrete points in time.~ At tl
(the end of the first period and beginning of the second period), the bank
obtains a new set of data, described below, and may adjust its balance sheet
if it so desires. At t, (the end of the second period) it is assumed that
all assets become worth their face value and could be converted to cash
without transactions costs.gf

The bank earns a (coupon) rate of rg; on the one-period asset (R)
during the first period, and the face value of each unit of this security

is $1. There is no default risk so that on n dollar investment in R at to

means that the bank will have cash of $(l+rRl)n from this investment at t,

with certainty.

One-period assets may be purchased at t, for $1 per unit, but the

1

coupon attached to them now yields a rate of Thoe This rate is revealed to

19 but at tO it is unknown except for its cumulative distribu-

tion function (c.d.f.)Q which is defined on the interval [wl, w2] where

the bank at t

w, > 0.

l_

TThis assumption, of course, becomes less realistic as the length
of the period increases. If a period was defined as one business day, the
assumption would not be at all unrealistic. For then the bank would not
need tc be concerned with intra-period deposit depletions because it could
simply draw overdrafts on its Federal Reserve account and cover them with
end-of-the-period asset adjustments or borrowings.

8The critical part of this assumption is that, at ty» the investor
acts as if loans will have some fixed (nonrandom) value at tys which might

be interpreted as an expected value. Using a value other than 1 simply alters
the capital gains part of the formula for Z below, but does not alter the
fundamental nature of the problem. Assuming T > 2 permits this broad inter-
pretation, and would easily permit analysis of the model with respect to the
expected price of L at t2.
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The T-period asset (L) also has a t, price of $1 per unit, but
it has T coupons attached each of which are wcrth $r1. T-reriod assets
are distinguished from one-period assets primuarily by the fact that the
price (Pl) of the T-period asset at t. is uncertain at t_. At t. the bank

1. 0 0
knows the c.d.f. of Pl to be ¢ which is defin< on tie interval [¢1,¢2]
where ¢, > Q.
Loans may also be purchased at tl, tut now <cich dollar will buy
1/Pl units of L. Since, by assumption, each .:oit wi.. be worth $1 at t
a capital gain (or loss) of 1-P, is incurred i.iring the second period so

that the rate of return on L during the seccond period is

r. + (1-Pl)

Z =
1
Note that if Pl is large enough, the rate of r~turn ' n loaus /7) in the
second period becomes negative, and there ir- sy, wpaltnb bl i
the model to prevent this from happening. @ rprei, - o oo oa 'real” rate

might be one reason for omitting the constrairt; but pragmatically, it is
unlikely that the constraint would alter the implications of the model for
once Z is below rR2 the size of 7 is largely  -relevari because the Inveustor

would never buy loans at tl.

Loans in this model are -describea b charac sris’ice usunl l]
attributed to less "liquid" types of assets. ‘hese acsets, in additicn to
price uncertainty, are generally considered t have & less well developed
secondary market.gf Consequently, it is assur:d that a transaction cest
of b per unit is incurred only when leans (L) ure soll at t,y where 0 - © -

It is convenient to think of b as a bid-asked spread, so that the
transactions cost involved in nurchasing the .isset becomes part of the

(net) return measured in T -

9This is relative to the "liquid" asset R. Cf. Tobin [18]., p. 3.
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The level of deposits (Dl) which the bank will realize at t) is
also unknown at t,. except for its c.d.f.A which is defined on [Gl, 5.1

0 2

8
where 1 > 0.

The joint distribution of the three random variables in the model
is initially assumed to be of the form

P., D;) = G(

(1) Flrpss Pys Dy Tro»

Pl)ﬂ(Dl).

That is, D. is assumed to be independent of r and P. which are jointly

1 R2 1

distributed by G.

Profits in this model are defined as the change in equity over a

given period,égf or
9 =B -5
(2) Q, = By - By
Q =Ep - EO = Ql Q-

It is assumed throughout this paper that the utility function of
the individial bank is a linear function only of two-period profits (Q),
and that maximization of expected utility is the optimality criterion.ll/
Thus, expected utility is maximized whenever expected profits are maxi-

mized. The case of the myopic investor who looks only at Ql is also inves-

tigated below.

OWe ignore all distinctions between capital gains and ordinary
income that a bank might make for tax purposes -- Cf. Wolf [20]. Also,
see Klein's argument that this distinction is not theoretically relevant
in his comment on Tobin [18], p. 287.
llAlthough the use of a quadratic utility function seems to be
more appropriate for portfolio analysis, it appears that the implications
of this model are reasonably robust with respect to any risk aversion kind
of utility function. This is because the portfolio which yields the highest
mean is guantitatively close to the portfolio with the smallest variance
-- at least for parameter sets in the neighborhood of those investigated
in this study. Cf. Supel [15] appendix E.
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Since profits in the second period enter the utility function, and
since action taken at to may affect second-period profits, it is necessary

for the bank to establish an investment strategy for tl in order to estab-

lish the optimal balance sheet at t Maximitution of the expected value of

oi
Q in (2) is essentially a dynamic programming :robliem so that the solution
technique for that type of problem can be ap; '+ *0 ‘he problem of deriving

the investment strategy at t Use is made ¢: the principle of optimality

1°
which states that "An optimal policy has the jroperty that whatever the

initial state and initial decisiuns are, the :emaining decisions must con-

stitute an optimal policy with regard to the tate reculting trem the tirst
decision.";g/

Having chosen R and L at to, the nuew state of nature is determireld
by the values of the random variables Dl’ rR;. and EJ. The eash poesition
the bank at tl, other than required reserves, -ur.o.ct. of i (which matures
by definition) plus the cash flocw rRIR + TLL' Cash I reeded at tl to cover

deposit depletions other than those covered by required reserves, i.e.,

K(D,~Dy) where K = 1-k. If cash holdings at ' are a' lesct as great as cuik

needs, then the bank is not forced to do any: .ng. [hat s, if
() D>D-l[R+r E+r L] =n
1- "0 K Rl L
then the bank need not alter its portfolioc (' - the ¢ooond period unless it
3 13/ : « 14 4 i - i R 3 o
sc desires.=— The right hand side of inequs ity is fixed atl the time
of the initial balance sheet decision and ser & to i-fine o which reprozen:.
12
Bellman [1], p. 24.
13 : ) . 7 . T g B
a assumes economic & ining in vni. rosedr wie L finiti s g
as an index of the portfolic +:.4 by the fact rnat it «stablishes trat level
of depcsits which must be achieved before unnecessary transactions costz

are incurred. A further interpretation of it: role in the model is given
in section III.
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the lower bound to which deposits may fall before the bank must sell loans

in order to maintain its legal commitments. When Dl < o, the amount of cash
that must be raised by the bank through sales of L is K(a—Dl).

At tl, the state of nature is revealed to the bank, and conse-

quently, only one asset (other than required reserves) is held during the
second period -- except for the special case described below. The bank now
holds Rl in cash and Ll in loans on which it can earn Teo and Z respectively.
Applying the principle of optimality, the bank will choose to hold Rl in

defensive assets if r > 7, otherwise it will switch R, into loans. Because

R2 1
transactions costs are incurred in switching loans into defensive assets,
14
rpo must be greater than X for this to be a profitable move,— where
x=2+D
1-%

is the total opportunity cost of switching loans into reserves. When

Z <r_,, <X, the bank will maintain the status quo portfolio of whatever it

R2
ended the first period with -- allowing, of course, for loan sales that are
necessitated by deposit depletions. The entire strategy is summarized in
Table I.

By following the sequence of balance sheets determined by the
optimal strategy, the two-period profit function (@) is derived and presented
in Table II where the cases of Table II correspond to the cases of Table I.

Each branch of the profit function may be interpreted generically as con-

sisting of earnings on the initial balance sheet (W), plus earnings in the

14
If X dollars worth of loans were transferred into defensive

assets, the net increase in profits (y) would be

b= T, (A=b2) = Za. = b,

@, g - Z+b _
Then T > 0 if and only if Tro > P X
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Table I

Strategy at t

1
Contingency Action
Dl >, Teo © Z - swit
rR2 > X swit te
< < stn 11
Z __rR2 < X
Dl <@, ng < Z ! hold »nly L
rR,_, ¥ z swit ‘i L tc i
2= Tro <X : stat .5 quo

Table 11

Two-Period Profit (G=' -F .

Case:

I: w - }:!]7_ + KZDI
II: W - &L - Karp, + KU ..

IIT: W - Eurk“ + Er

IV: W - KX + EXD

VI: W - EaX + X7

where W = ., ® 0P L

I1T

Iv
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second period on deposit deviations from a. The latter term, K(G-Dl),

reflects the cash flow that must be allocated at t,, and earnings on this

1°
term reflect gains or losses which accrue to the bank because of its decision
on the magnitude of a. The term £ reflects the equity adjustment which must
be made because of capital gains and transactions costs which were actually
incurred in switching from loans to defensive assets as well as the earnings
on defensive assets in the second period.

From Tables I and II and equation (1) we may now write expected

two-period profits (Q) as

§_ . (L 5, 9, rw
(L) Q‘:J? 2J (I)ap:rjejefg(mm?

a -¢1 wy o ¢l X
5. (b (X o (6. (2

+[2 2[ (III)dF+I JQI (1V)ar
% Wy 4 Oy 9y Tuy
o b W (T

+I 2J2(V)dF+J Jgj (VI)dF
&y 29y <X 8y 9 &

were the integrands correspond to the cases of Table II. And the optimization
problem of the bank may be stated as

(5) max Q
R, L, o

5.t (1) R+L=ICDO+EO

(ii) Env = KDy = TpL - (1+rp )R

(iii) R, L >0
where (i) and (iii) are the balance sheet constraints and (ii) is the defini-
tion of a. Because of the solution method adopted below it is convenient at

this point to ignore (iii) and state the problem as
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(6) max Q
R, L, o
s.t. (i) R =3[(1-r,)KD. - r.E. - Ko
v L 0 L0
(31) L = 2r_ KD + (1+r. )T + Ko
v 'R1 0 R1 "0 ‘
where v = 1 + rRl - rL-

In order to show that & two-pericd investcor may hold a different

portfolio than a one-period investor, it is necegsary to explicitly consider

the one-period or myopic profit function.géj in the context of this model,
a myopic investor who disregards decisions tc¢ ote made [n the future will
base his balance sheet decision at to only on the leral censtraints that
might prevail and ignore the portfolio allocation decisions at tl. Thus the
myopic investors' profit function (Ql) is

L= tmBaaml= (l-Pl)L, LD, 2

(1) Ql = bt =L

IT = 2, R+l = (1-F) )L = ——=

I* 4 AL “ <2

where case I represents the profit outcome when cash flow is large enough
to cover deposit depletions, and case I1 reprs c¢nts the profit outcome whern

securities are sold only in the amount necess .y tu cover reserve shortages.

II. The CGeneral Solut:

To find the optimal balance sheet [+ the *w -perici prohienm, we
first solve for the optimal a and then determi:» the taulancc sheet rom the
constraints of (6). Writing the ~xpected proiit furction '.) in extonsive

form, and substituting in the constraints of () we have

15Cf‘. Mossin [9].
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and
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Q = vy + Ve - KIla + K12

ro ¢2 X o ¢2 X
- Ka J J XdF + K J f J XD.dF
w

KD E

r
Rl 0 0
. (1+rL—IO) + v (2rL+rLrRl—(l+rRl)IO)

- K
vy = fer e, -1

—
|

8 b rw
_f2 B

i

The optimal value of o is then determined by setting the derivative of

(8) equal to zero and solving for @. Thus, @ is that value of o which

satisfies the equation

(9)

§_ . (2 R D ¢ a b X
[22] mre2]2] rpare| [2]
a ‘o @ T g 0E §_ “d

w

1 1 1 1 1 1
5 o) W & ¢ W
- l(21‘ . - ( & ( & f e EAF - v [ - ( 2 [ & r_ dF) = 0.
v L "R1 s j¢ X 5 ¢ X R2
1 1 1 1

We assume throughout this paper that F has a continuous density f.
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The derivation of a as represented by equation (9) has required

no particular assumption about the independence of D_, Pi’ and r
1§

the intractability of (9) can be alleviated

that D, is independent of r

1 and Pl, 1.8 Ehnt

R2

this assumption, a is determined by

(10) bl = b3a(a) =
cr
(11) &= WL

Pg
where

b. = %[2r - r_ . - h - v(h_+h +hh};

Ro" However,

v a larye extent by assuming

) o

faoctors as in (1), With

3. L Rl 2 31
b3 = h5 e g h6 - hl - hh
and
_ % P _ % s i
hl = Z2dG hD = . 7 = J rRQJG
6. (X 6 R
h; = 2 r_.dG M & { 2 ( = i REsLN
' s 7 R2 5 J¢ J J=
1 : s by, TR
Solution (11) is, of course, well efined only when 0 < b, b..

and there are insufficient constraints in tih: mo

is the case. It is clear, however, that L. U v

conditions for a maximum are always satisri:

el to guarantee that sucn
trat the second order

muc, 1f an interndl soly-

tion to (11), exists, it is a maximum. By = inter.d ahdivay
value of & such that él o< S0 IT By » nE ¥ en uid te ma
as small (large) as possible sut jcct Lo the . lance ~heet an: nonnegativity

constraints on R and L.
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It should be noted that an internal solution for &« is not a suffi-
cient condition for a diversified portfolio in the sense that both R > 0 and
L > 0, although it is a necessary condition.

Although solution (11) is much simpler than (9), the problem of
tractability still remains because of the number of parameters in the model.
In order to analyze the partial effects of the various parameters on the
optimal portfolio it is further assumed that all the random variables are
independent and uniformly distributed over their specified ranges.gé/ The

following section presents an analysis of the model under this assumption,

and the appendix describes the solution method.

IIT. Specific Solutions

In order to make inferences about the model, we use parametric

o~

deviations from the set S where

(12) S = {DO = 100, K = .9, rp = .05, §, = 50, 62 = 110, ¢l 5 9,
¢, = 1.1, w = .02, w, = .12, b = .1, Ej = 103 .
The convention 8" =S ~ g = z_ will be used to denote the para-

meter set S” which is identical to S except that z = ZO' Making general
qualitative inferences from such a procedure as this may be questionable,
but all of the experiments done so far indicate that this is an acceptable
vrocedure. Except for the myopic case, all of the discussion in this sec-

tion deals with two-period problems, and all of the changes discussed should

be interpreted in the sense of partial derivatives.

l6For a discussion of this assumption see Supel [15] pp. 12L-129.

The assumption of complete independence between Tro and Pl as opposed to

complete dependence in the sense that 2 = r appears to bias the portfolio

j=ie
in favor of the short-term asset; but it is not clear that the effects of
changes in the various parameters should be seriously altered.
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The loan rate (rL) was purposely excluded from & because much of
the analysis is in terms of the loan offer function (LOF), that is, the
number of loans the bank would like to have in ite ; stfolic glven & and
a particular loan rate. Given a particular M, ivhe bank's cemand for
defensive assets is determined by the balance sheet constraint.

Some of the principle results derived from this model are as
follows:

(a) Figure I shows the LOF generated from the parameter set 5,
and illustrates the basic properties of the @ =i {vr both the cne-nericd
and two-period maximizer.gz/ The myopic inv::ter generally holds more lcans
than the two-period investor except in the cuse that they both hold non-
diversified portfolios. In the extreme case, it is possible to show that
for certain parameter sets the myopic invest » will ruld enly Icans while
the two-period maximizer holds cnly defensiv: ::z:i.

It may also be shown that when yie o in -:. o6 ona period are
*

* *
RO 7 , and X ), 1nen the two-pericd investor

known with certainty (say r
holds the same portfolioc as the myopic investor -- except for the case when
* * . . .
Z < rRZ' In other words, given transactions costs in the model, it
is the uncertainty about future rates that generates the dynamic programming
problem and not the uncertainty about cash flow.
(b) Transactions costs are criti~ = ¢ G e de) for 1f b o=

the model is incapable of generatiing divers:. .o o vhads A B Epproastes

zero, the LOF becomes more elastic. And =5 U incresccs, 2 higher loan rate

lTAlthough it is net - ious beenn I govkoe ot dhe Hgepar
the LOF is convex in the diver:ilied range, &.:. 1 i et ial iy of Lhe Zanes
form inferred by Pierce [1l], p. 1099.
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is necessary to induce the bank to hold a given quantity of loans because of
the higher penalty incurred if there are depusit shortfalls.
(c) The impact of deposit variability on *ie cptimal portfcliic
derived from this model is consistent with < 1w @ & rezitigating this
. 18/ s ; . , o W
issue,~— namely, the variance cf the deposit distrinuticn alene is insuffi-
cient informetion to infer whether the bank with a small variance will hold
more loans than a bank with a large variance. The eflect of a change in the
variance of the deposit distribution on the : ~tfcli ecan be seen from egua-
19/

tion (11).—~ If A is uniform, this equatic: becomes

& =6, + bh(ao-al)

1
where
3
A change in the variance of Dl’ with the mear unchang«d, means that él and
62 are changed by the same amount. Thus, i = 2. then . {and herce, i;

is unchanged. For bh < k5, an increase in ti. variance o ieposits results
in fewer loans; but if bh > Y, an increase i: the verianu. of deposits will
actually result in an increase in the desire: rn2ldings of loans by the bank.

The reason for this phenomenon centers on the interpretation of the rele oY

@ in the model. Since the prefit function ( leven:izc on a4, the rcle of
o is te position the profits fur~tion over - vpehobdl Bty wegs I Iuond
way as to make the weighted aver.se (expect. ol £ Rrofits W o meinia,

According to (11), the optimal way is when t!  1robetility that deposits are

less than 4 equals bh' But when by > 5, an ‘:orease in the variance of

8See Poole [12], znu :lso Forter - 13].

lg’l‘he argument which f-llows can bt
(11) without the necessity of the assumpticn
not depend on the assumption of independencs
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means that this probability has fallen; whence, g and the optimum quantity of
loans must increase to maintain this probability at bh'

Figure II illustrates the effect of an increase in the variance

*
of Dl on the LOF. The two curves intersect at that loan rate (rL) which
makes bh =% and also ¢ = ﬁ-, the mean of Dl' If ﬁi is large as determined
by

-— *

then the intersection point is to the right of the maximum quantity of loans
permitted by the balance sheet constraint; and, starting from an internal
solution, an increase in deposit variance would always result in a decline
in the quantity of loans desired by the bank.

(d) Starting from an internal solution, the derivatives of the
constraint equations in (6) show that a marginal increase in reserve require-
ments results in a decrease in holdings of both assets. The condition that
a 3.500 is sufficient to insure that loans decline more than defensive assets.

(e) An increase in the mean of P. shifts the LOF to the right,

1

but there is also a clockwise rotation; an increase in the variance of Pl
shifts the LOF to the left also with a clockwise rotation. This simply
says, when the coupon return is high, uncertainty about capital losses
becomes less relevant to the bank.

(f) Increases in the mean and variance of ro, each shift the
LOF in the same way -- to the left with a clockwise rotation. The fact
that holdings of long-term assets diminish as uncertainty about the
yield on short-term assets in future periods increases is essentially

consistent with the result of Scott [14! in explaining the Availability

Doctrine. In the context of this model, an increase in the variance of
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Fpo means that more defensive assets should be held in the first periecd in
=
order to be in a position to capitalize on the higher values of Tpo that

now have positive probability. Of course, more lower values of Tpo also
have positive probability; but this is largely irrelevant because for

low values of Tpo the optimizing strategy requires that only loans are held
in the second period.

(g) In examining scale effects on the optimal portfolio, the
question arises as to the proper definition of scale. Since defensive
assets are held largely to protect against the penalties of deposit deple-
tions, marginal increases in capital (ED) will go into loans; but marginal
increases in the initial deposit level (DOJ will go mainly into defensive
assets.ggj

An alternative way of examining scale effects is to let all the
size parameters (DO’ 61, 62, EO) increase by the same (percentage) amount.
In this case, optimal quantity of loans increases by the same (percentage)
amount so that the loan/deposit ratio (L/DO) remains invariant. Also,
the standard deviation grows proportionately so that the coefficient of
variation remains invariant. The variance of deposits, however, increases
more rapidly than the scale increase. This suggests that the proper
"variability" variable in empirical estimation of LOF's is the standard

21/

deviation.—/

OThese results are derived by differentiating the balance sheet

constraints in (6) noting that @ is independent of EO and DO. The deriva-
. diE . . . .
tive E%—-ls in fact negative because of the larger cash flow that results at
0

tlfrom increasing loans.

2
r"lThe- evidence in Murphy [10] indicates that the ccefficient of

variation is independent of deposit size, and thus lends support to the idea
of viewing scale in terms of a proportionate increase in all size variables.
Further his method of computing variability in terms of deviations from a
trend line seems to be more consistent with the concepts of this model than
other methods which have been advanced.
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(h) Finally, we note that this model implies that the proper
interest rate specification in a LOF is to treat each interest rate
individually and not as ratios or differences. In other words, two sets
of el and T will yield different optimal portfolios even though the

difference or ratio may be the same between the two sets. This model

and r

also implies that when the rate structure is raised, i.e., rRl L

raised proportionately, the optimal portfoliu shifts in the direction of the
longer maturity.

The mean-variance locus of two-period profits, shown in
Figure III, is computed for the parameter sc¢t S and the loan rate fixed
at rL = ,09. The means are computed exactly using the solution method
described in Section II, but the variances are each estimated via Monte
Carlo procedures from a sample of size 1000. With this sample size, a
95 percent confidence interval for the varia:ce is a band of + 0.5
around the estimated variance when the estim.ite is in the neighborhood
of 5.0.

Figure III shows that only when loans are in the range of
approximately 70 to 75 does the mean-varian: -+ curve have the properties
customarily ascribed to the choice set avail.ible to the investor, vig 3.
increasing variance along with increasing me . This range appears to
vary inversely with the variance of the return on the portfolio. For
example, a ceteris paribus decrease in the iriance of Pl would extend
the range of portfolios with directly relatcid means and variances.

The shape of the locuwx shown in Fioure TI1l permits the tollowing
inferences: (1) A wide varietv of attitudes toward risk can be consis-

tent with portfolio diversification. To the extent that this model
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captures actual mean-variance possibilities, observing portfolio diversification

alone, does not delimit investor attitudes toward risk in a significant
way; (2) in this particular example, had we imposed any utility function
with nonnegative risk aversion properties, the optimal portfolio would
contain loans of at least 70, but not more than 75. This suggests that
quantitatively similar portfolios are implied by both linear and nonlinear
(but risk averse) utility functions, but unfortunately, this inference
does not tell us anything about the comparative statics of the different
utility function; (3) if the risk of the portfolio is measured by its
variance of return over two-periods, then, for the example described

in Figure III, the riskiest portfolio consists entirely of defensive
assets. This is contrary to the intuitive notion that portfolios consist-
ing of short-term assets (e.g., Treasury bills) are less risky than
long-term assets (e.g., government bonds). O(f course, the point here is
that if the probability is small that two-jp«:iod asscts will have to be
sold at the end of the first period, then the variance of return from

holding this asset is likewise small.

IV. Summary
The purpose of this study was to ce:amine thie bolance sheet of a
bank in the context of a two-period uncertai:'y modei. In this regara, t
burden of portfolio diversification and adju. 'ment wnus piasced on the under-
lying economic and statistical structure of ‘he balance sheet and not cn the

particular form of the utility function.
The model has served t  delineate qualitative hypotheses concerning
a bank's portfolio which might be used as the basis for empiriecsl investiga-

tion. It has alsc served to identify such fuetors as lerngth of planning
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horizon, size of capital accounts, and deposit variability as important
considerations in comparing the customary loan/deposit ratios of banks.
While many of these concepts have been investigated individually in

previous studies, the balance sheet model has provided a unified frame-

work in which they can be investigated simultaneously.
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APPENDIX A Balance Cnect fonde

Because it was necessary to solve for first-period profits (Ql)
in order to analyze the myopic investor, the two-period profit problem was
actually solved by computing second-period profits (Qg) and then letting
Q = Ql + Qg' First-period profits are defined by (7), and second-period
profits are defined by Table A.1l.

From (7) and the uniformity assumption, the optimal o for the

myopic investor is determined by

(A.1) e, - eBA(a) = 0
or
-~ el
(a.2) o = 61 = (62-61)
3
where
o X E[M - v]
1 v 2
and
e =E.}—{.—
3 1-b°

fhe same conditions apply to the e's as on the b's of (11) discussed in the
text.

In order to compute algebraically expected second-period profits
(aé), it is necessary to account specifically for the regions of zero prob-
ability which are determined by the parameters of the probability distribu-
tions and the interest rates. Doing this in a systematic way requires the
specification of every possible case that will be considered. Treating 7
and X as functions of Pl, the computational problem arises because of the
variety of ways that these curves can lie in the set determined by [¢l, ¢2]

and [wl, wg] .

In order to state the general limits of integration, we define
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Table A.1

Second-Period Profits (EZ_EI)

(1+rL)(1+rR1)R

All =L - (l+rRl)R + KDO - LP1 + P]_

N iLF;+rL)L . K(l;rL)Dl ) Knl ) K(l;—rL)D0

1 1 1

A12 = (1+rR1)RrR2 + rLLrRZ + KDer2 - KDOrRZ + LPlrR2

- bLPer2 = bLP1
A13 = rLL + L - LP1 + (1+rR1)RrR2 + rLLrR2 + KDer2 - KDOrRZ
e i = RT3
A2 11,_1-% i T% - BLP) + 1P rp, - Karp, + KD rp, - bIP;rp,
where

if D, 2 g and r < Z

D. 2 and r > X

D. 2gand Z £ r_ < X

D, < g and r < X

D, < gqand r




06 = 27 () = i -
¢T = z'l(wl) = i : :2
bg = XHw,) = Ei—m%y
¢9 = x'l(wl) = TiéE;T;%GIT'

Since X > Z, and assuming that we always have ¢1 < ¢ there are

7°
18 different arrangements of these parameters which require different limits
of integration. These are listed in Table A.2 and the corresponding inte-
gration limits are shown in Table A.3. The general statement of expected
second-period profits may now be stated as in Table A.L, and the maximiza-
tion problem may be stated as in (6) of the text with aé substituted for Q.

Utilizing the integrals defined in Table A.5, the solution to the second-

period problem may be written

(A.3) £, = f3A(a) =

1
or
& £y
(A.L) a = 61 - ?—{62—61)
3
- K ” -
where £, = V[V(Mg-(l"'rL)Ig"'I (1+r )IT 8 M9+M9M5 L8711

3 9 8+g3M ghIQT) + (1+4r )(MT 115+119 3M8
et e h123+15'gh12h) e T T078315

-8, 155%8,Ipg) + (1-D)(IgM 1)) - (L) -1 41, )]




Table A.2

Possible Cases of Limits on the () and ¢ Integrals
Case:
I: g @ @7 Sy g S P> 99 5P,
IL: ‘gg = @1 Py S 9y B S Pp> By >0y
III: Pg < P> @y >y Wg scpl, g > ¥,
IVa: @ < @2 @7 SO ©1< g < V> P9 < Py
Ib: @ <@yr @7 <Py 97 < Vg <Pps = Py
Va: ) <@g <Py ®; SO Pg < Wg <Py Pg =@,
Vb: (p1<t96<¢’2:¢?5¢’2vCD—,<CI>85¢2:CP9SCPZ
Vlia: Yo S P> Py SV O <Pg = Pys Pg > O
VID: g <@ @ <@ @ <95 <P By > W)
VII: (pGSQpl,(p.,.)cpz, ® < Pg SO B9 >0,
VIELS:: iy < g <%ae M7 S0 g <0y = Vph Gy > 0y
VIIIb: Py <P < Py D7 S Py Py < Pg S Py Pg > Py
IX: @ <@g < @y ®; > @y Pp < g SOy B9 > O,
Xi @p <05 @) S0 g > ¥y @9 > Py
XI: g <@ ©7 > @y ©g > @5 O > @)
KL @ < 05 <Py 97 S0 Wy Xy 0y >0
XIII: cp1<(96<cp2, cp],>q,>2,q;s>c.02,c,pg>r,p2

X1v: P 2 ®y> other parameters irrelevant
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Table A.3

Special Cases of the Expected Value of Q2

Case X x,
P N
e =
I o,
IVa L e
Vb o @
a @ 9
oo %
Via ¢ o
VIb ¢ g
VIL ¢ @

VIIla @, o

VIIIb o o
X o %
X9 9
Xoop @

XI1 ® Pg
XIII cpl cpﬁ
XIv ®; P

Note that: X5 = min [x3, xa] and:

Also: X, <X, 2 g3

= 1 and 8, = 0

@2

@,

. < = =
and X, S x, = 8, 0 and B, 1

3

except for Case XIV when B3 = 8 = 0.

X7 %
9
L T
@
g @
®; g
Y 9
9 U
Ys %
Y7 93
Ys @
Yg ¥
®7 s
Pg P
¥ W2
$2 @
@7 @y
P @
P2 9
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Table A.4

Expected Second-Period Profits in the General Case

I I I AdF*I f I AudF

)
+j'2j'x5 ['wza dF + J‘ J‘ ,dF
a x, "X
) X, w 4} X X
2 7 2 2 5
+ [T AR+ [T A dF
fol x2 Z a X ml
62 X
+ g3j' _r J‘ A dF+g4‘f _[' [‘ A13dF
a X4 Z
a X, W, a X X
t[ [ [T Ay [ [T AydF
61 P W 61 X, Wy
@ s & P2
[ [T ApaF [ 7 [7A
& %, X 51 ¥ W
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Table A.5

Integrals Needed to Compute 62

X X X X
. B3 _ 2 _ o5 4l
L=["Prds 1,=[ pld’ I=["Pds 1, =] pld‘
®1 ® Lo
3 3 3 a(2)
I, = j; a(z)dg 1, = j P Q(2)dg I, = I P, dé
2 X2 *2
X w X i) X
5 Y 5 U 5
Ig = [ 7 [ % rppdmde Ig = [ [ “ P ro dodg Lo=J Pds
xa X x" X x4

X X X
.05 - f = 0 ax
I, =] a®des 1, =" Pamds 1,,=[ P, dé
X, X, X4
:pz x? x?
L,=["Pde 1o=["a@ds 1,,=[ " Pr0(2)ds
xs xz xz

%2 *7 M2 s
L= Pde Lg=[7[%rodde 1,9= [ a(0ds
x2 x2 Z 1:(8

x5 xs X 8

Ipo = .rx Pja®de 1, = j‘x [ rppdmde 1,, = fx P dd
8 i | Z
X8 X8 *g

I,=f amds 1, =["q@ds I, =["P0aXds
x? x? x7
X x, X ®

I =) P0@de 1,,=["[ r dode M =] P,d¢
% Ky & P

Mz = @(xz) M4 = @(xé) HS = Q(xs) M7 = Q("?) Ha = &(xa)
w

2
Mg = [ 7 rp,d0
s
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and
i 1 +
_ . L _ _ __b
R R T T T SRy~
= (1«1-1~L)I2 + M2 + I5 - (1+rL)IT - 118 - I2l

~8MgMg + g MM, - g I, 1.

Note that solutions (10), (A.1), and (A.3) are related by

by =& 5%

and

b3 = e3+ f3

which is demanded by the definition of profits and the linearity of

expectation.
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APPENDIX B

The purpose of this appendix is to investigate the implications
of the model when some of the more important assumptions are altered. We
are interested in the robustness of the model from two points of view:

(a) does the model still produce diversification, and (b) does the dynamic
programming nature of the problem remain in tact, i.e., does the two-period
investor hold a different portfolio than the myopic investor? Note that

the myopic solution is given in equation (A.2).

Bl. Certain Future Yields
Consider the situation where yields in the second period are

known with certainty at to, i.e. assume

*
YRo Tr2 %1 T %

and
_*_ —
Pl = Pl = ¢1 = ¢2
Then
1-p
5 r. + -
g =7 = L - 1
Pl
and
* Z*
+
Xsx =t



Using the definitions of Table II and the constraints of equation (6),

we have
* * * %
E=p #1l <« &5 - (1-b)PlrR2
and
= — K E i e
W v[(l+rL)rRl D0 + (2+rRl)rL D] + = o
= q + sa

where g and s are defined by this equation.
There are three cases to consider. From Tables I and II we
obtain the profit functions, and proceed to solve for the optimal port-

folio in each case.

* *

. <
Case 1: rR2 Z

* *
+ sa - KaZ + KZ D , D >«

1 il
Q= * % ;
q + sa - KaX +IQ(D1 ,Dl a
_ #* * * *e * ® (@
Q=q +sad-KZ a- (KX -KZ )as(a) + KZ D, + (KK ~-KZ )J DldA
8
1
49,
= = by bBA(u)
where
*
K(l+rL)(P -v) *
by = ¥ angd b3 = K(X -2 )

VP
p

Thus, the necessary conditions for diversification are

* -
< 1+ rRl rL

1-0D

1 # rRl - rL < Pl




B IT # y
* >
ase : rR2 X
Q= lq
aQ _
& -y
where
K *
bl = ;E(Pl

In this case there

* 1+
>

3 B _ * 5
T TR KDy *+ (L4rp) JEG)] + (s - 22 - Krp,)e + Krp, D)
* *
-V
bPl)(l+rB2)]

is no diversification, and only loans are held when

- I
TR1 L

51

and only defensive

1-D

assets are held when

% s
Pl < 1+ rRl rL
l1-1D
* * *
Case ITI: Z STpo S X
* Kr* D
+ . +
% % 8 < Kopa8 ey D 2o
Q= * *
- +
q + sa KX o KX Dl 5 D1 < qa
= ¥ — * ) ( * * ( * * ) o 5,
Q= (q+ KrR2Dl) + (s—KrR2 a - (KX -KrRQ)aﬁ(a) + (KX -Krp, J N
61
.y -1
- 1 3ﬁ(a)
K * *
= | - -r
where by v[(rL rR2) + (rL Rl)(l+rR2)]
* %
b3 = K(X -rR2)
In order that bl > 0, we must have
r* . 2rL - rRl
R2" 1+r,_ -1 °

Rl L
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b
And for E£ < 1, we must have
3
o o~ Im
+ - ]
i: rRl rL
or
w s, = |
Z* N 21"L R1 1 + I"L)b
+ -
LTy T Ey
* *

These conditions on X and Z imply that

+ -

% I req T

P. <

1 1-5b ?

* * *

and since Z i-rRE’ the condition on Z implies that

P*
+ — B

1> TR T T

Thus, the necessary conditions for diversification in Case III are the
same as those of Case I. However, the end points of Case III deserve

* *
special consideration. When Too = X , then the conditions of Case II
*

apply since b, = 0 and the bl‘s of both cases are the same. When TRo = Z,

3

then the conditions of Case I apply since the bi's are the same for both

cases.
From these solutions to the certain yield case, it can be shown

* *
R2 < Z will the two-period and myopic investors necessarily

that only when r
hold the same portfolio. In Case I, the necessary conditions for diver-
sification are the same for both investors, and, further, the ratio of
bl to b3 is the same for each type of investor even though the bi‘s are
different. In Case II, the two-period investor never diversifies, and
both investors need hold the same portfolio only if they both hold all

loans. The two-period investor holding only defensive assets implies

nothing about the myopic investor's portfolio. In Case III, the same



necessary conditions for diversification apply to both investors; but
they may hold different (diversified) portfolios, because the actual
portfolio distribution for the two-period investor is a function of
r;2 which is, by definition, ignored by the myopic investor.

Thus, when future yields are certain, the model (because of
transactions costs) still generates diversified portfolios and also retains
its two-period nature except when r;2 g_z*. In other words, if an investor
is both (a) certain about future rates, and (b) certain that short-term

yields will be less than long-term yields, then, according to this model,

he should act myopically.

B2. Certain Deposits
Under the assumption that deposits are independent of the other
random variables in the model, the generic form of the expected profits

equation may be written as

o

(B.1) Q= cg *+ ca - ¢y [aa(a) - Jﬁ Dldﬂ].
1

While the coefficients for the two-period investor will be different from
those of the myopic investor, the generic form of the equation remains the
same for both problems. Now suppose deposits are certain, i.e., the

deposit distribution is defined by

0if a <D
ﬁ(a) =

1if & > D

e S e

Under this assumption, expected profits are defined by two linear segments

¥
s i 7 c,® if a < Dl

(B.2) Q=
[

+ D* ] . *
cytes 1] - [cl-c3 @ if a > D
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Equation (B.2) shows that if the necessary conditions (0 < ¢ < c3)
for diversification hold, then the expected profits function has the

* . *
. Thus « = D,. Further,

shape of an inverted V with a maximum at Dl 1

if the necessary conditions hold for both types of investors, then they
will hold the same portfolio because a and the constraint equations are
the same for both investors. If it is not the case that 0 < c, < c3
for at least one of the investors, then a specific analysis of the par-
ticular portfolios must be made for comparison purposes. However,
although this has not been proved rigorously for the general case, the
general results still seem to be (i) if the two-period investor holds
only loans, the myopic investor holds only loans, and (ii) if the two-
period investor holds only defensive assets, nothing is implied about
the portfolio of the myopic investor.

Thus the assumption of certain deposits still permits the
two-period balance sheet model to generate diversified portfolios, but
it destroys the interesting dynamic programming aspects of the original

model in the sense that if both investors hold diversified portfolies,

then those portfolios are the same.

B3. Zero Transactions Costs
A particular idiosyncrasy of this model is the result that when
there are no transactions costs, it does not necessarily follow that the
two-period investor will hold the same portfolio as the myopic investor
even though they both hold nondiversified portfolios. The reason for this
result is, essentially, that the random variable Pl enters the profit
equation in a ratio rather than a linear form -- and the expected value of

a reciprocal is not equal to the reciprocal of the expected value.
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To illustrate this problem, consider the case when there are no
transactions costs (b=0), and second-period yields on defensive assets are
certain (rRQ = r). Since there are no transactions costs, the portfolio

held in the second period is independent of the first period outcome and

hence of Dl' Thus, utilizing Table II, the profit function may be written
as
- KzZa + KZD, MR ED
(B.3) Q=
W - EL - Kro + KDlr if Pl > p
where
= R L
W rEl + 2rL
£+ (1+rL) - (l+r)Pl
and
_ 1+ Ty
PET+r
Letting K = 1 and EO = 0, then the maximization problem is
—  (So(P S51%2
max Q = J J (W - KZa + Kznl)dqada + J J (W - EL - Kra + KrDl)d¢d6
(o1 61 ¢1 61 P
(14r_)r..D 2r_-r._.)
k. W E L'"R1°0 " L "Rl 5
v v
= q + s
and
r..D
L = RLO . 1.
v v

where the constraints incorporate the balance sheet constraints on R and L
in terms of a.
Substituting the constraints, integrating with respect to uniform

distributions, and then differentiating yields the first order condition
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Q. ) p o (-0 (14r)(e-p)
(B.k4) da " 8- -a-_"-—*ln—-— + - T

3 ¢l ¢3 3

2 2
+ = -
2¢3v 63
Assuming that the myopic investor holds only loans (i.e. > >

1+ req” rL)’ the point of this exercise is to construct an example such

d
that the two-period investor holds only defensive assets (i.e. E§:< 0).

Suppose p = ¢ Then by appropriate manipulation of (B.4), it follows that

5*
aq . ..
o < 0 if

P
1. % 1
(B.5) n— > ————,
§370) 7 lbrp-rp

A set of values which satisfy inequality (B.S5) is:

¢l = 0.8 rRl = 0.19
¢2 = 1.2 r=20
rL =0,2

Thus, reducing transactions costs to zero eliminates diversifi-
cation in this model, but it is possible that the two types of investors
hold different (nondiversified) portfolios.

One way of avoiding this idiosyncrasy of the model would be

1) and to let r. be random in the second

to take P. as fixed (say P L

1 T
period. This formulation might be reasonable if, for example, the L-asset
were interpreted as a passbook savings account where the interest payment
varied from period to period. Taking r, as random rather than Pl would
also have the advantage of considerably simplifying the algebra of the

problem.
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APPENDIX C

The computer program given below is written in the BASIC language
for a time sharing consol. It should run without major alteration on any
machine accepting the BASIC language.

The notation of the program follows that of the text quite closely
and mnemonic translations are made where possible. Specifically, the fol-

lowing translations from the text to BASIC are used:

Dy = DO 4, = F1
K =K ¢2 = F2
ey = R1 wl =Wl
r = R2 w, = W2
61 = D1 b =B
62 = D2 EO = EO

The integrals of Table A.5 evaluated with uniform distributions, and the

xi's of Table A.3 translate directly into BASIC with the following exceptions:

Ii becomes J ) g = Y0, s A0

(i-9
and

Ii becomes K(i-lB)’ i=19, ..., 27.

The program denotes the coefficients e, and e, as 51 and 83, the

1 3

coefficients fl and f3 as S5 and S6 respectively, and b1 and b3 as Tl and T3.
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The bulk of the program is devoted to determining the
values of the xi's. After the coefficients are calculated, the
balance sheet is computed and printed in subroutine 1500. As
discussed in the text, profits in the second period are not
computed for ® > @T. In this case, "No Intersection" is
printed for both Ql and Q profits even though this consideration

does not apply to Ql.

100 DO = 100

105 K = .9

110 Rl = .05

120 D1=50

125 D2=110

130 F1=.9

135 F2=1.1

140 Wl=.02

145 W2=.12

150 B=.1

155 EO=10

200 FOR R2=.04 TO «131 STEP .01
201 PRINT

202 PRINT" RL='" R2
300 C = 1-B

305 V = 1+R1-R2

310 V2 = 1+R2

315 F3 = F2-F1

320 Fa = 1/F3

325 W3 = W2-wl

330 W6 = 1/W3

335 W7 = Wé6x%F4

340 W8 = 1+W]

345 D3 = D2-DI

350 M1 = (F1+F2)/2

355 M9 = (Wi+W2)/2

360 DEF FNF(X) = (X-F1)/F3
365 F6 = V2/C1+W2)

370 F7T = v2/us8

375 F8 = V2/((1+W2)%xC)
380 F9 = V2/((1+W1)*C)

395 IF Fé6>F2 THEN 955

396 1F Fl1<=F7 THEN 400

397 PRINT "N@ INTERSECTION'
398 GO T 5000

400 1F F6>F1 THEN 700



- 43 -

405 IF F7>F2 THEN 615
410 IF F8>F1 THEN a70
415 IF F9>F2 THEN 445

420 X2 = F1
425 X3 = F7
430 X4 = F1
435 X5 = F9
440 GO TO 900
445 X2 = F1
450 X3 = F7
455 X4 = F1

460 X5 = F2

465 GO TO 900

470 IF F8>F7 THEN 530
475 IF F9>F2 THEN 505

480 X2 = F1
485 X3 = F7
490 X4 = F8
495 X5 = F9
500 G@ T@ 900
505 X2 = F1
510 X3 = F7
515 X4 = FB8
520 X5 = F2

525 G2 T@ 900
530 IF F8>F2 THEN 590
535 IF F9>F2 THEN 565

540 X2 = F1
545 X3 = F7
550 X4 = FB
555 X5 = F9
560 G@ TO 900
565 X2 = F1
570 X3 = F7
575 X4 = Fg
580 X5 = F2
585 G@ T® 900
590 X2 = F1
595 X3 = F7
600 X4 = F2
605 X5 = F2

610 GO T@ 900
615 IF F8>F1 THEN 645

620 X2 = F1
625 X3 = F2
630 X4 = F|
635 X5 = F2

640 GO T 900
645 IF F8>F2 THEN 675
650 X2 = F1



655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
B85
890
B95
900

X3
X4

XS =

GO
X2
X3
X4
X5
G@
IF
IF
IF
x2
X3
X4
X5
GO
X2
X3
X4
X5
GO
IF
IF
X2
X3
X4
X5
GO
X2
X3
X4
X5
GO
X2
X3
X4
X5
Ge
IF
X2
X3
X4
X5
Ge
X2
X3
X4
X5
IF
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305
910
914
920
925
930
935
940
945
950
955
95%6
957
958
959
960
961
962
1000
1005
1010
1015
1020
1025
1030
1035
1036
1040
1041
1042
1045
1050
t055
1060
1065
1070
1075
1080
1085
1086
1090
1095
1100
1101
1102
1105
1110
1115
1120
1125

X7
X8
G3
G4
GR
X7
X8
G3
Ga
G
X2=
X3=
Xa=
X5=
X1=
Xg8=
G3=
G4a=
I
12
13
14
15
16
17
18
I8
1%
19
19
J1
J2
J3
J4a
J5
Jé
J7
JB8
Jo
Jo
K1
K2
K3
K3
K3
K4
KS
Ko
KT
KB

o nn

-]
]

H

T@
F2
Fe
Fa
Fe
Fe
Fe
0

o

=
=1
=1

nuunn

=W

={
=K
=K

[ (I L | I [ I |}

O = X —_ 0 3
b oGy Wb
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=)
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1000

(Fas2)yx(x2t12-F112)
Fax(LOG(X2/F1 ¥

(F4/21%(X4t2-F1t2)

F4%CLPG(X4/F 1))

W7 (V2 (LAG(X3/X2))-WR*(X3-X2))

W (V2R (X3-X2)I-(WB/2IYR{(X312-X212))
WTk(VER(1/X2-1/X3)Y-WB%(LOG(X3/X2)))

(WT/72) % (W212- 1 )% (XD-X4)I-(VR212/Ct2)% (1 /X4~ 1/X5))

IB+CWT/72)(2%V2/Cy(LAGIXS/X4))

WT/72Y%L(WN2t2=-13/2)%(X512=-X4t2)

G- (WT/72)%(NV2t2/C12X%(LBOIXS/X4))

G+ (WT/2)Y%(2kVE/CI® (X5-X4)
(F4/23%(X512-X412)
WIR((V2/CI*(LBGIXS/X4) Y= WB*(X5~X4))
WTkC(V2/CIRIXE5-X4)~(WRB/2)%x(X51t2=-X412))
WTH((V2/CI R {1/ X4=1/X51=UB*(LBRG(X5/X4)))
(Fas/2y%(F212=-X512)

TR V2HLBG(XT/ X2~ WEBR(XT-X2))

W (V2K {XT-X23-(WB/2X%(XTt2-X212)3)
(F4/23%(XT12-X212)

(WTZ72) % (W22 13 (XT-X2)=-(NE123% (1 /X2=1/X7))
JO+(WT/2)%(2xV2I*(LBGIXT/X2)?

W7 C(VE/CI%(LOGIX5/XBI) )~ WEBx(X5-XE))
WTR(V2/C) (X5 XB)Y=-(WR/2)%(X5t2-X812))

W?2/72)%(N212/C12Y% (1 /XB-1/X5)

3=-tWT/72)%x(2ANV2/C)%(LLBGI(XS5/X8))

I+ (WTZ2)%(1-W1t2)r*x{X5~-X8)

(F4/21% (XB12=XT12)
WTx((VE2/CI®(LPGIXEB/XTII~WRBH(XB~XT))
WTR (V2 (LOAG(XB/XTIY-UB*(XB-XT7))
WT{(Y2/7C) % (XB=-XTI=-(WB/2)%(X812=-XT712))
WIk(V2x (XB-XT)=-(WB/2Y%(XB12-XT1t2))



1130
113t
1135
1140
1145
1150
1155
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1360
1370
1380
1390
1400
1410
1490
1500
1520
1530
1540
1550
1552
1560
1565
1566
1570
1580
1590
1592
15610
1611
1612
1640
5000
6000
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K9 = (WT/2)3%(((V212-(Ct2)%(V212))/Ct2)%(1/XT-1/X8))
K9 = KI=(WT/72)% (2% (V2-C*V2)/CI*(LBGIXE/XT)

M2 = FNF(X2)

M4 = FNF(Xa)

M5 = FNF(X5)

MT = FNF(XT)

MB = FNF(X8)

PRINTG1 ¢ *'3
S1 = (KZV)x(ME-V)

53 = (K*B)Y/C

Bt = &1

B3 = 53

G8 SUB 1500

S5 = Kk (M2=-V2%I2+]5-VPx]T7-168-M9)

S5 = SS5+K*(MI%MS5- J9-K3-GI*xMI*MB+GI*MI*kMT - GAXKI)
55 = S5+V2R(MT-~JE+K1+G3xME=GIkMT+G4%K 5+ 1 5-Go%kKE Ik (K /)
S5= S5+ (K/VX#A (=T 1=16=J8+J7-K2~G3*K4-G4xKT+GIxKE)
S5 = SS4(K/VIR(CH(I9+MO%JS)=-Ba(J1-J3+05))

S6 = (V2/CY%(1a4+J4)-M4~J2~(B/CY-V2xIZ+M2+]I5

S56 = 56-V2x17-J9-K3-GIkMIRME+GI*kMOEMT - G4%KT

56 = K*56

PRINT™G ¢ '3

Tt = S51+55

T3 = $3+56

Bl = T1

B3 = T3

G@ SUB 1500

G@ Te 5000

Ci=B1/B3

IF Bt<0Q THEN 1610

IF Cl1>1 THEN 1590
A=D1+C1xD3

L = (KxA+K*R1*DO+(1+R1YXEOI 7V
1IF L>K*DO+EQ THEN 1590
R = K#&DO+EQ-L
L=(INTC10%L+.5))/10
R={INTC10%R+.52)/10
PRINT "L = *"Ls R = "R
Ge T¢ 1640

L=K*DO+ED

GO To 1560

R = KxDO+EQ

L=0

Ge Te 1570

RETURN

NEXT R2

END



