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Abstract

Most firms begin very small, and large firms are the result of typically decades of persis-
tent growth. This growth can be understood as the result of some form of organization
capital accumulation. In the US, the distribution of firm size k has a right tail only slightly
thinner than 1/k. This is shown to imply that incumbent firms account for most of aggre-
gate organization capital accumulation. And it implies potentially extremely slow ag-
gregate convergence rates. A benchmark model is proposed in which managers can use
incumbent organization capital to create new organization capital. Workers are a specific
factor for producing consumption, and they require managerial supervision. Through
the lens of the model, the aftermath of the Great Recession of 2008 is unsurprising if the
events of late 2008 and early 2009 are interpreted as a destruction of organization capital,
or as a belief shock that made consumers want to reduce consumption.
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1 Introduction

Between December 2007 and December 2009, the US civilian employment-population ra-
tio fell sharply from 62.7% to 58.3%. As of December 2018, it has recovered to only 60.6%.
If the gap between trough and peak is shrinking at a constant rate, this implies a half-life
of about 9 × ln(2)/ ln(4.4/2.1) = 8.4 years. Why is it taking so long for employment to
recover? This paper argues that such a slow recovery is a robust implication of a model of
the aggregate economy with heterogeneous firms that grow by accumulating some sort
of organization capital.

The distribution of employment across US firms is very skewed. Although there are
as many as 6 million employer firms, about half of aggregate employment is accounted
for by the roughly 18,000 firms with more than 500 employees. And the 1,000 or so firms
with more than 10,000 employees account for nearly a quarter of aggregate employment.
To a first approximation, the distribution of employment size k of US firms is Pareto with
a right tail that behaves like k−ζ , with ζ ≈ 1.1, just inside the ζ > 1 region where the
mean of a Pareto distribution is finite (the ζ ↓ 1 limit is known as Zipf’s law). Most new
firms start out with only a few employees, and it took the largest firms in the US economy
decades of rapid and persistent growth to reach their current size.1

These facts are consistent with a very simple model of firm size: there is a constant
flow f of new firms that start with size k = 1, grow at some rate g, and exit randomly
at a mean rate ε > g. An easy calculation, reported in Section 3, shows that this yields
ζ = ε/g > 1. Furthermore, this process of firm entry, growth, and exit implies that the
aggregate sizeKt evolves according to dKt = −εKtdt+(gKt+f)dt. That is, the aggregate
mean reversion rate is ε − g = (1 − 1/ζ)ε. Holding fixed ε, this implies slow aggregate
convergence precisely when ζ > 1 is close to 1, when the size distribution of firms is
thick tailed. In particular, Zipf’s law implies no aggregate convergence at all. In the US,
firm entry and exit rates are around 10% per annum, and so the implied aggregate mean
reversion rate is ε − g ≈ (1 − 1/1.1)0.1 ≈ 0.01. This implies a half-life of almost 70 years.
Even longer half-lives emerge when not all exit is random (Luttmer [2011]).

Obviously, the US economy recovers more quickly from recessions than suggested
by this simple calculation. But this account of firm growth and aggregate convergence
conveys an important intuition: entry, exit, and non-stationarity at the level of individ-
ual firms very naturally lead to cross-sectional distributions that are stationary and thick
tailed, and to slow aggregate convergence.2 This paper builds on this observation by in-

1These facts are well known. See Luttmer [2010] for sources and a survey of some explicit models.
2Not unlike in Penrose [1959], surviving firms in this economy keep growing. This is in contrast to, for

example, Atkeson and Kehoe [2005] and much of the large literature that follows the tradition of Hopen-
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terpreting firm growth as organization capital accumulation (abstracting from physical
capital) and allowing the flow of entrants f and the rate g at which firms choose to accu-
mulate organization capital to respond to the state of the economy. The convergence rate
of the economy is then characterized in terms of factor supply elasticities, factor share
parameters, and curvature parameters.

In the Kydland and Prescott [1982] tradition and beyond, recessions are most often at-
tributed to negative aggregate productivity shocks. Here instead, a recession is triggered
by a destruction of organization capital, or by news that the stock of organization capital
is below its long-run steady state. In a Cass-Koopmans economy with an elastic supply
of labor and standard preferences, a low capital stock tends to result in high investment
that is made possible by a combination of both low consumption and high employment.
High employment is the opposite of what characterizes recessions. This paper avoids this
familiar difficulty by making a distinction between managers and workers, and recogniz-
ing that they are not used with the same intensity in producing consumption and new
organization capital. Workers are assumed to supply labor that can only be used to pro-
duce consumption goods, under the supervision of managers. This makes workers a
specific factor for the consumption sector of the economy. Managers, on the other hand,
can divide their time between two different tasks: overseeing workers and producing
new organization capital. The need for managerial supervision means that fewer work-
ers can be employed when managers find it more profitable to produce new organization
capital.3

In the model, managers can produce new organization capital by replicating existing
organization capital, which leads to incumbent firm growth, or by using a fixed factor
(scientists, certain locations, say) to create new organization capital from scratch, inter-
preted as entry. The equilibrium f and g will be above their steady state levels when the
organization capital stock, worker employment, and aggregate consumption are below
their steady states. This endogenous response of organization capital accumulation to the
level of the capital stock ensures that, even in the ζ ↓ 1 limit, the economy recovers at
a strictly positive rate. The Zipf limit ζ ↓ 1 arises when labor and managerial services
inputs are abundant relative to the fixed factor required for firm entry. Although entry
rates remain positive in this limit, the contribution of entry to new employment becomes
negligible relative to the contribution of incumbent firm growth. The Zipf limit produces

hayn [1992] and Hopenhayn and Rogerson [1993]. Without any post-entry dynamics at all, aggregate con-
vergence rates would depend only on how entry and exit rates respond to the state of the economy.

3Many authors use the Greenwood, Hercowitz, and Huffman [1988] preference specification to eliminate
the wealth effect on labor supply. Jaimovich and Rebelo [2009] add habit persistence to make this device
consistent with balanced growth.
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a good approximation to the observed firm size distribution, and the rate of convergence
of the economy varies continuously as ζ ↓ 1. The question therefore arises: what governs
the speed of adjustment of the ζ ↓ 1 economy?

Detailed analytical answers to this question can be given with the help of two strong
parametric assumptions. One is the common simplifying assumption that flow utility
is a logarithmic function of consumption and additively separable across consumption
and leisure. The second assumption is that consumption is produced using organization
capital and team services, with a technology for team services that is Leontief in labor and
managerial services. Everything else is non-parametric. In particular, there are separate
roles for factor share parameters and elasticities of substitution (curvature parameters).

A low aggregate stock of organization capital implies fewer opportunities to replicate
organization capital, but replication will also be more profitable. There are non-generic
(pivotal) combinations of parameters for which the aggregate supply of managerial ser-
vices used to produce new organization capital turns out to be independent, locally near
the steady state, of the aggregate stock of organization capital. This means that the quan-
tity of managerial services used to replicate each unit of organization capital scales with
the reciprocal of the aggregate stock of organization capital. It is easy to see that the rate
of convergence is then equal to the product of the depreciation rate of organization capi-
tal and the factor share of managers in replicating organization capital—this factor share
is just the elasticity of g with respect to managerial services used to replicate each unit
of organization capital. A 10% depreciation rate and a factor share of 70% then imply a
half-life of about 10 years. Not surprisingly, lowering the curvature of g relative to this
benchmark scenario speeds up the economy.

If the technology for producing consumption happens to be Cobb-Douglas, then, apart
from the subjective discount rate, the only additional parameter that matters for the speed
of convergence is a residual factor supply elasticity: the elasticity of managerial services
available to produce organization capital with respect to the managerial wage weighted
by the marginal utility of consumption. In the model, this elasticity is determined by het-
erogeneity in ability and occupational choice (as in Roy [1951]), and by managers shifting
between the task of supervising workers and the task of replicating organization capital.
The effect of this elasticity on the speed of convergence interacts with the curvature of g.
A more elastic residual supply of managerial services speeds up the economy if and only
if the curvature of g is below 1. Intuitively, if there were an army of potential managers
waiting in the wings to spring into action whenever the stock of organization capital takes
a hit, then recoveries could well be quick. But that would be the case only if an incipient
rise in managerial services available for replicating organization capital does not quickly
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lower the rewards from replicating organization capital.
Under an additional separability assumption about the supplies of labor and manage-

rial services, replacing the Cobb-Douglas technology in the consumption sector with a
technology that has a lower elasticity of substitution speeds up the economy.4 In a quan-
titative benchmark reported in the paper, this elasticity is 0.6, making the factor share of
organization capital a decreasing function of the ratio of capital to team services. This
implies a high capital share when the capital stock is low, creating strong incentives to
produce more organization capital. Relative to a Cobb-Douglas technology, this shortens
half-lives by about a year and a half.

To show that a belief shock in this type of economy can produce an equilibrium tra-
jectory that looks like a recession, the economy is augmented with an outside asset. The
outside asset never produces any dividends, but households hold the mistaken belief that
it will produce significant dividends in the future. Households feel wealthy and choose to
consume more than they would without the outside asset. This results in high real inter-
est rates and crowds out the accumulation of organization capital. Managerial resources
are directed towards overseeing workers as they produce the consumption goods that
households want. Consumption and worker employment are high. When the mistaken
household beliefs are corrected, the bubble bursts. Because of the earlier crowding out of
investment, the stock of organization capital is now below its new steady state. Consump-
tion drops and managers are redirected towards producing new organization capital. But
workers are a specific factor for the consumption sector, and their employment drops
along with consumption. Because workers account for most of the labor force, overall
employment also drops. During the recovery that follows, consumption, employment,
and worker and managerial wages all rise towards their new steady state.

Related Literature The connection between the thickness of the right tail of the firm
size distribution and the aggregate convergence rate of an economy was first pointed out
in Luttmer [2012]. Gabaix et al. [2016] use the same idea to explain why the simplest
random growth model cannot account for the fairly rapid changes observed in the US
earnings and wealth distributions. The current paper remains focused on firms, and on
the speed with which an economy recovers from a recession. The distinction between in-
dividual and aggregate convergence rates is somewhat reminiscent of the Granger [1980]
model of long memory. But Granger [1980] was aggregating a fixed population of hetero-
geneous stationary stochastic processes, while here firm histories are non-stationary, and

4This is also true in the usual Cass-Koopmans economy. Jones and Manuelli [1990] produce long-run
growth (no convergence) by assuming a very high elasticity of substitution.
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the population of firms is constantly changing as a result of entry and exit.
The observation that recent recessions seem to give rise to slow (some argue “jobless”)

recoveries has received significant attention.5 In particular, organization capital is a key
factor in the account of Koenders and Rogerson [2005]. But the underlying firm dynamics
in their model is too simple to make contact with the evidence on how firms grow and
the resulting thick-tailed stationary size distributions.

A recovery in this paper is not an exogenous improvement in productivity, but a pe-
riod when the economy accumulates more organization capital. This is related to the idea
that recessions can be a good time to reallocate resources from less productive producers
to more productive producers, resulting in a quality improvement in the stock of organi-
zation capital.6 This quality margin plays no role here, and the model does not predict
high levels of reallocation across firms in the depths of a recession. Instead, when man-
agers switch to the task of replicating existing organization capital, marginal workers who
cannot contribute to this task are sidelined. They return to the labor force only gradually
over time, as the stock of organization capital rises towards its steady state.

Outline Section 2 lays out the economy. Section 3 describes the steady state implications
for the firm size distribution. The circumstances in which this size distribution approxi-
mates Zipf’s law are given in Section 4. Section 5 characterizes the speed of convergence
and contrasts the effect of a belief shock in this economy to what happens in conventional
models of adjustment costs. Section 6 shows how an asset bubble that bursts can produce
a recession followed by a slow recovery.

2 The Specific Factor Economy

Organization capital is taken to be a type of capital that can be used simultaneously to
produce consumption and more organization capital. But the technologies for produc-
ing consumption and new organization capital are different. Labor is a specific factor for
the consumption sector, while managerial services are used in both sectors. Heteroge-
neous ability and comparative advantage determine the aggregate supplies of labor and
managerial services.

5Notable examples are Bachmann [2012], Berger [2016], Fukui, Nakamura, and Steinsson [2018],
Jaimovich and Siu [2015], and Koenders and Rogerson [2005].

6See Caballero and Hammour [1994], Davis and Haltiwanger [1992], and Hall [1991], to name only a few
well-known examples. For a skeptical view, and more on the history of this idea, see Barlevy [2002] and
Moscarini [2001]. Barlevy [2007] describes a model of long-run growth, with fixed costs and externalities,
in which R&D investment is pro-cyclical.
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2.1 Households

There is a size-Λ continuum of identical infinitely lived households who consume and
supply primary factors of production. Each household is made up of a heterogeneous
continuum of members with types indexed by h = (hc, hu, hv, hw) ∈ R4

++. The distri-
bution of types in each household is assumed to be time invariant and denoted by Ψ.
Time is continuous, and household preferences are recursive and additively separable
across time. The contribution of a type-h household member to flow utility at time t is
hc ln(Ct(h)) + hu(1 − ιt(h)), where Ct(h) is flow consumption and ιt(h) ∈ {0, 1} is a la-
bor market participation decision (some of the ιt(h) = 0 choices could also be interpreted
as public-sector employment). It will be convenient to normalize the mean of hc to be
equal to 1, so that the marginal utility of household consumption is going to be 1/Ct

when Ct =
∫
Ct(h)Ψ(dh). The distribution Ψ is also assumed to be sufficiently smooth

that the employment lotteries proposed in Rogerson [1988] are not needed.7 Household
preferences over flows of consumption, labor, and managerial services are then

U(C,L,M) =

∫ ∞
0

e−ρt (ln(Ct)− V (Lt,Mt)) dt,

where ρ is strictly positive, and where V (L,M) is the household disutility from supplying
L units of labor and M units of managerial services,

V (L,M) = min
(ιv(·),ιw(·))∈{0,1}2
ιv(·)+ιw(·)≤1

∫
hu[ιv(h) + ιw(h)]Ψ(dh)

s.t.
∫
hwιw(h)Ψ(dh) ≥ L,

∫
hvιv(h)Ψ(dh) ≥M.

Households can earn w̃t per unit of labor and ṽt per unit of managerial services, both
measured in units of consumption per unit of time.

Households are endowed with an equal share of the assets in the economy, and mar-
kets are complete. As a result, every household will consume the same amount of con-
sumption Ct and supply the same amounts of labor and managerial services. The risk-
free rate in this economy is related to per capita consumption growth via the usual Euler
condition rt = ρ+ DCt/Ct.

7The large family construct used here can be decentralized, with intricate risk-sharing arrangements. See
Chang and Kim [2007] for an economy with smooth heterogeneity in labor productivities and incomplete
markets.
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2.1.1 Factor Supply Curves

Let λt denote the marginal utility of wealth of the typical household at time t. The poten-
tial earnings of a type-h household member are max{ṽthv, w̃thw}, and it is optimal for this
household member to participate in the labor market if and only if λt max{ṽthv, w̃thw} ≥
hu. The smooth heterogeneity assumed here means that ties do not affect aggregate factor
supplies. Since λt = 1/Ct, this can also be written as max{vthv, wthw} ≥ hu, where

(vt, wt) = (ṽt, w̃t)/Ct

is the vector of marginal utility weighted factor prices. Throughout the rest of the paper,
“factor prices” or “wages” will always refer to these marginal utility weighted prices. The
resulting per capita supplies of labor and managerial services are then

L(vt, wt) =

∫
hwι [wthw > max {hu, vthv}] Ψ(dh), (1)

M(vt, wt) =

∫
hvι [vthv > max {hu, wthw}] Ψ(dh). (2)

The fact that these supply curves only depend on the marginal utility weighted factor
prices relies heavily on the assumption that households are identical. Without such an
assumption, aggregate factor supplies would depend on the equilibrium distribution of
wealth across households—a potentially important complication that is abstracted from
here. The following assumption and lemma summarize the important properties of (1)-
(2).

Assumption 1 The type distribution Ψ has full support, a finite mean, and is sufficiently smooth
to ensure that V (L,M) is twice continuously differentiable.

Lemma 1 Suppose Assumption 1 holds. Then L(v, 0) = M(0, w) = 0 for all positive v and w.
Furthermore, the slopes of these supply curves satisfy

D1M(v, w) ≥ 0, D2L(v, w) ≥ 0, D2M(v, w) = D1L(v, w) ≤ 0.

In addition L(κv, κw) andM(κv, κw) are both increasing in κ > 0. This implies that own price
elasticities are larger in absolute value than cross price elasticities.

The symmetry follows because D2V (Lt,Mt) is symmetric and Lt = L(vt, wt) and Mt =

M(vt, wt) solve [wt, vt] = DV (Lt,Mt). These per capita factor supplies abstract from effort
and are completely driven by the numbers of household members who are at the margins
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between not working, supplying labor, and supplying managerial services. The only
household members who move in and out of the labor force with fluctuations in the state
of the economy are those who have both low hv/hu and low hw/hu.

2.2 The Technology for Producing Consumption

Consumption is produced using capital and the services of a team of managers and work-
ers. The technology for team services is Leontief. The input requirements for a unit of
team services are one unit of labor and β units of managerial services. In any equilibrium,
managerial and labor services will be used in exactly this proportion, and soLt = L(vt, wt)

measures both per capita labor and team services. The per capita output of consumption
is then Ct = F (Kt, Lt), where Kt is the per capita capital stock, and where F is a constant
returns to scale production function that is assumed to be smooth, strictly increasing in
both factors, and concave. Because of the logarithmic utility assumption, the production
function F will turn out to affect the dynamic properties of this economy only via the
factor share8

A(k) =
D2F (k, 1)

F (k, 1)
. (3)

This is the factor share of team services when Kt/Lt = k. The Leontief technology for
team services implies that the marginal utility weighted cost of a team is βvt +wt per unit
of team services. Equating the cost of a team with its marginal product and clearing the
labor market gives

(βvt + wt)L (vt, wt) = A

(
Kt

L(vt, wt)

)
. (4)

This determines wt given Kt and vt. It is easy to see that a destruction of capital has a
negative direct effect (that is, holding fixed vt) on wt and L(vt, wt) if A(·) is increasing.
This will be the maintained assumption.

Assumption 2 The production function F for consumption is strictly increasing in capital and
team services, sufficiently smooth, concave, and exhibits constant returns to scale. The implied
factor share of team services A(·) ∈ (0, 1) is non-decreasing.

The team factor share is increasing in Kt/Lt if F is a constant elasticity of substitution
(CES) production function with an elasticity strictly below 1. The function A(·) is con-
stant if F is Cobb-Douglas, and then the dependence of the right-hand side of (4) on Kt

vanishes. The capital stock can still affect wages and worker employment in that case,

8What is very special here is that F depends on labor and managerial services only through the team
services composite good. The Leontief assumption can be relaxed.
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but only indirectly through its effect on the price vt of managerial services. If β > 0, then
there are two such indirect channels: an increase in vt raises the cost of a team of managers
and workers, and it lowers the supply of labor because marginal households switch from
supplying labor to supplying managerial services. Only this second channel remains if
β = 0, and then (4) implies that vt and wt co-move, weakly. If the cross price elasticities
of L(vt, wt) andM(vt, wt) are also zero, then wt = w̃t/Ct and the supply of labor are both
constant.

Given (Kt, vt), the wage wt is determined by (4). So one can define

S(Kt, vt) =M (vt, wt)− βL (vt, wt) .

Holding fixedKt, this is a residual supply curve that determines the supply of managerial
services that can be used for anything other than producing consumption.

Lemma 2 The residual supply curve S(Kt, ·) of managerial services is strictly upward sloping.

This can be shown directly using the results of Lemma 1. A one-line proof follows from
an alternative characterization of the equilibrium based on (26) below.

2.3 The Technology for Producing New Capital

New capital can be produced in two ways. Managerial services can be used to produce
new capital from scratch. Using an aggregate of nt units of managerial services generates
an aggregate flow of f(nt) of new units of capital. The production function f is subject to
decreasing returns to scale. For example, it could be that managerial services have to be
combined with a special production location, and that these special production locations
are heterogeneous and in fixed supply. Or there could be a fixed supply of experts whose
inputs are needed for every start-up.

The second way capital can be produced is by replicating existing capital. One unit
of capital can be replicated using mt units of managerial services, at the average rate
g(mt). Capital is assumed to be homogeneous, and so the per capita output of new capital
produced by replication isKtg(mt). The production function g exhibits decreasing returns
to scale. Recall that the measure of households is Λ. The per capita stock of capital then
evolves according to

DKt = (g(mt)− δ)Kt +
f(nt)

Λ
. (5)

The production functions f and g are taken to satisfy the following assumption.
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Assumption 3 The production functions f and g are strictly increasing, strictly concave, and
smooth. Furthermore,

(i) f(0) = g(0) = 0,

(ii) the marginal products Df(n) and Dg(m) range throughout (0,∞).

Part (i) of this assumption implies that managerial services are essential inputs in produc-
ing capital. In particular, g(0) = 0 means that the type of autonomous growth of capital
that occurs in the AK economies of Jones and Manuelli [1990] and Rebelo [1991] cannot
happen here. Part (ii) serves to rule out corner solutions—there will always be some entry
and some replication.

2.3.1 The Price of Capital

This economy features joint production: the same unit of capital is combined, simulta-
neously, with labor to produce consumption, and with managerial services to replicate
capital. Both activities generate income that accrues to the owners of capital. Write q̃t for
the price of a unit of capital, measured in units of consumption. The usual asset pricing
equation says that

rtq̃t =

(
1− A

(
Kt

L(vt, wt)

))
Ct
Kt

+ max
m
{q̃t(g(m)− δ)− ṽtm}+ Dq̃t.

That is, the required return on a unit of capital comes in the form of earnings from pro-
ducing consumption, earnings from replicating capital, and capital gains.9 The first-order
condition for replicating capital is ṽt = q̃tDg(mt), and the first-order condition for produc-
ing capital from scratch is ṽt = q̃tDf(nt). Write qt = q̃t/Ct for the marginal utility weighted
price of a unit of capital. The first-order conditions for mt and nt are then

vt = qtDf(nt), vt = qtDg(mt). (6)

Combining the asset pricing equation for q̃t with the Euler condition rt = ρ+ DCt/Ct then
yields

ρqt =

(
1− A

(
Kt

L(vt, wt)

))
1

Kt

+ qt(g(mt)− δ)− vtmt + Dqt. (7)

As is standard, the optimality conditions for this economy also include a transversality
condition that requires e−ρtqtKt to go to zero as t becomes large.

9This asset pricing equation also applies when organization capital is accumulated in discrete unit in-
crements, randomly at the rate g(m), as in Klette and Kortum [2004] and Luttmer [2011].
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2.4 Equilibrium

The remaining equilibrium condition is the market clearing condition for managerial ser-
vices

M(vt, wt) = βL(vt, wt) +mtKt +
nt
Λ
. (8)

Fix a per capita capital stock Kt and a price of capital qt. Then the combination of the
consumption-sector equilibrium condition (4), the two first-order conditions for manage-
rial services inputs (6), and the market clearing condition (8) determines the factor prices
vt and wt, as well as managerial inputs mt and nt. With these variables determined as a
function of (Kt, qt), the two differential equations (5) and (7) then govern the evolution of
(Kt, qt) over time. Given an initial value (K0, q0), this pins down the trajectory of (Kt, qt).
The initial value of K0 is given. The transversality condition limt→∞ e

−ρtqtKt = 0 can be
used to determine q0.

2.5 Alternative Formulations

The notion of “organization capital” adopted here is abstract. It can be made more explicit
by taking capital to be discrete at the micro level. One unit of capital could then be a
blueprint that can be used at the same time by only one team or a few teams of managers
and workers, or in only a restricted number of geographical locations. And g(·) can then
be interpreted as a Poisson arrival rate that describes the rate at which blueprints can be
replicated. Models of customer capital (e.g., Steindl [1965], Luttmer [2006], and Gourio
and Rudanko [2014]) have a very similar structure, as does the model of blueprint capital
in Luttmer [2011].

Search and Matching Models of the Labor Market Or a unit of capital can be a job, as
in Diamond-Mortensen-Pissarides models of search and unemployment. In conventional
implementations of such models, the technology for producing this type of capital is most
often one that uses consumption goods as an input. This is as if g(m) = 0 and f(·) takes
consumption goods rather than managerial services as an input. The organization capital
in this paper can be interpreted as “jobs” as well, but the labor market is frictionless.
Delays come from creating jobs, not from finding the workers to do those jobs. As will
become clear, g(·), not f(·), plays a central role in determining the dynamic properties of
this economy.
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Long-Run Growth A easy way to introduce long-run growth is to replaceCt = F (Kt, Lt)

by Ct = ztF (Kt, Lt) with zt growing exponentially. The formulation of preferences en-
sures that the supplies of labor and managerial services are constant when consumption
and factor prices grow at a common rate. Because zt only affects the output of consump-
tion goods, growth is balanced even though production functions need not be Cobb-
Douglas. Much richer formulations, in which capital quality is heterogeneous and growth
is endogenous, are possible, but beyond the scope of the current paper.

Monopolistic Competition It is possible to re-interpret Kt as the number of goods in an
economy with monopolistic competition and a technology for producing differentiated
commodities that is linear in team services. If Ct is a symmetric CES composite good of
differentiated commodities, with an elasticity of substitution greater than 1, then the A(·)
in (4) is a constant equal to 1 minus the reciprocal of the elasticity of substitution. The
resulting economy is isomorphic to a competitive economy in which F is Cobb-Douglas.
Everything that follows for the competitive Cobb-Douglas economy applies. For more
general but still symmetric preferences over differentiated commodities, the elasticity of
the demand curves faced by individual producers will depend only on the number of
goods Kt. The function A(·) in (4) is then no longer a function of the capital-labor ratio
Kt/L(vt, wt), but of the number of goodsKt only. This makes a difference for the dynamic
properties of this economy. A detailed analysis is left to future work.

3 The Firm Size Distribution

This economy will be shown to have a unique steady state, with (mt, nt) = (m,n), and
both f(n) and δ − g(m) positive. That is, existing capital is replicated at a lower rate than
the depreciation rate δ, and capital produced from scratch makes up the difference.

The flow f(n) of new capital produced from scratch can be interpreted as a flow of
new firms, each with one unit of start-up capital. Firms then grow by replicating capital.
Because the allocation of capital across firms does not matter, an arbitrarily small transac-
tion cost is enough to keep all capital produced directly or indirectly from the initial unit
of start-up capital within the same firm. From (5), note that K = f(n)/[Λ(δ− g(m))] in the
steady state. The contribution of firm entry to aggregate capital accumulation is thus

f(n)/Λ

g(m)K + f(n)/Λ
= 1− g(m)

δ
∈ (0, 1).

So the contribution of entry will be small precisely when δ − g(m) > 0 is close to zero.
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Of course, even though new firms contribute very little to aggregate capital accumulation
upon entry, their subsequent contribution as incumbents can be very large.10

Suppose now that the capital embodied in firms can depreciate in two distinct ways:
incumbent firm capital depreciates continuously at a rate δk ∈ [0, δ), and all of the firm’s
capital is destroyed simultaneously and randomly at the complementary rate δf = δ−δk ∈
(0, δ]. That is, δf is a firm exit rate, and a firm’s exit results in the destruction of all of its
capital. In a steady state, this means that the age distribution of firms is exponential with
mean 1/δf . Incumbent firms grow at the net rate g(m) − δk as long as the random exit
shock does not hit, and so the size of a firm of age a will be k = e(g(m)−δk)a, measured in
units of capital. Assume that g(m) − δk is positive, so that firms can grow beyond their
start-up size. The distribution Φ of firm size will then be

Φ(k) = 1− e−δf ln(k)/(g(m)−δk) = 1− k−ζ , k ∈ [1,∞).

This is a Pareto distribution on [1,∞), and

ζ =
δf

g(m)− δk

is the tail index of the distribution. The mean of this distribution is finite if and only if
ζ > 1. The steady state implies 0 < δ − g(m) = δf − (g(m)− δk), and the assumption that
firms grow beyond their start-up size says that g(m)− δk > 0. Together, these inequalities
imply that ζ > 1. Moreover, as long as g(m) − δk > 0 is bounded away from zero,
δ − g(m) ↓ 0 is the same as the Zipf limit ζ ↓ 1.

Firm employment scales with firm capital because, in the steady state, capital-labor
ratios are constant both in the production of consumption and in the replication of capi-
tal. In US data, the employment size distribution of firms has a tail index ζ of about 1.1

(Luttmer [2007]), and the interpretation given here means that δ−g(m) = (1−1/ζ)δf must
be small. From (5), the per capita capital stock Kt converges at the rate δ − g(m) when
(mt, nt) is fixed at the steady state value (m,n). That is, slow aggregate convergence hap-
pens precisely when the tail index ζ of the firm size distribution is close to 1, as is the case
in US data.

10It is tempting to compare the predicted contribution of new firms directly with gross employment flows
in the Census data. But this highly stripped-down model of the firm size distribution does not account for
the trial and error that occurs in reality and generates large numbers of very transitory firms (as in Jovanovic
[1982]). Pries [2004] uses this argument to account for high turnover in the labor market.
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Discrete Size Distributions In the economy outlined here, the capital stock of incum-
bent firms is replicated and depreciates continuously at the respective rates g(m) and δk.
Instead, if individual pieces of capital can be replicated at the Poisson rate g(m) and de-
preciate randomly in one-hoss-shay fashion at the rate δk, then the resulting firm size
distribution will not be Pareto but an analog of the Pareto distribution that has discrete
support (a generalization of the Yule distribution associated with the special case δk = 0).
In particular, the right tail of that distribution will still behave like k−ζ . When the support
of organization capital is discrete, firms losing their last unit of capital is another source
of firm exit. This then implies aggregate firm exit and entry rates that lie in (δf , δ). As
in Luttmer [2011], this can be used to accommodate the fact that firm exit rates are high
(around 10% per annum in US data), and that the bulk of aggregate exit is accounted for
by small firms. The aggregate properties of this economy are identical to the one with
continuous depreciation.

4 The Steady State and the Zipf Asymptote

Steady states are defined by DKt = 0 in (5) and Dqt = 0 in (7), together with the static
equilibrium conditions implied by (4), (6), and (8). It will be convenient to write

n[m] = [Df ]−1(Dg(m))

and define
m∞ = sup{m : g(m) < δ}.

Since g(m) is assumed to be strictly increasing,m∞ <∞ if and only if g(m) ≥ δ form large
enough. In any case, the steady state supply of managerial services needed for replicating
capital, mK = mf(n[m])/[Λ(δ − g(m))], explodes as m approaches m∞ from below.

What follows proves the existence and uniqueness of a steady state by first estab-
lishing the result for the Cobb-Douglas case, where A(k) = α ∈ (0, 1) identically. This
Cobb-Douglas economy implies a capital-labor ratio k(α), resulting in a map α 7→ k(α).
The steady state for an economy with a non-constant A(·) is simply a fixed point of the
map α 7→ A(k(α)). Assumption 2 is enough to guarantee a unique fixed point.

4.1 The Cobb-Douglas Case

Suppose the labor share in the consumption sector is equal toA(k) = α ∈ (0, 1) identically.
The steady state condition Dqt = 0 then simplifies to qK = (1 − α)/(ρ + δ − [g(m) −
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Dg(m)m]). The first-order condition v = qDg(m) in turn implies vK = (1−α)Dg(m)/(ρ+

δ− [g(m)−Dg(m)m]). The condition DKt = 0 says that K = f(n[m])/[Λ(δ−g(m))]. Given
any m ∈ (0,m∞), this determines v and the quantity of managerial services DΛ(v) =

mK + n[m]/Λ needed to maintain the steady state capital stock. Varying m ∈ (0,m∞)

traces out a demand curve (v,DΛ(v)) for managerial services used to produce capital,

v × f(n[m])

Λ[δ − g(m)]
=

(1− α)Dg(m)

ρ+ δ − [g(m)−Dg(m)m]
, (9)

DΛ(v) = m× f(n[m])

Λ[δ − g(m)]
+
n[m]

Λ
. (10)

The left-hand side of (9) is strictly increasing in m ∈ (0,m∞). Although Dg(m) and ρ +

δ − [g(m)− Dg(m)m] are both decreasing in m, an easy derivative calculation shows that
the right-hand side of (9) is a strictly decreasing function of m ∈ (0,m∞). It follows
immediately that (9) defines v as a strictly decreasing function of m ∈ (0,m∞). It is clear
from (10) that DΛ(v) itself is strictly increasing in m ∈ (0,m∞), and so (9)-(10) traces out a
strictly decreasing demand curve for managerial services.

0
0

managerial services

v

0

q/
v

K

S(v)
D

Λ
(v)

D
∞

(1)/v

supply

demand

Λ = 1

Λ = 8

Λ = ∞

Λ = 4
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FIGURE 1 Taking the Zipf Limit
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Managerial services are also used to produce consumption. The residual supply curve
S(·) of managerial services available for producing capital is defined by

α = (βv + w)L(v, w), (11)

S(v) = M(v, w)− βL(v, w). (12)

Lemma 2 shows that this supply curve is strictly increasing. The left panel of Figure
1 shows an example. Since the supply and demand curves are strictly increasing and
decreasing, respectively, it is immediate that the market clearing condition DΛ(v) = S(v)

can have at most one solution, and so there can be at most one steady state. The existence
of a steady state is guaranteed by the following proposition.

Proposition 1 Given Assumptions 1 and 3 and a labor share α ∈ (0, 1), the Cobb-Douglas
economy has a unique steady state, defined by (9)-(12), together withK = f(n[m])/[Λ(δ−g(m))]

and qK = (1− α)/(ρ+ δ − (g(m)−Dg(m)m)).

Proof If m∞ < ∞, then the left-hand side of (9) ranges throughout (0,∞) with m ∈
(0,m∞). The right-hand side varies between (1 − α)Dg(m∞)/(ρ + Dg(m∞)m∞) and ∞.
It follows that (9) can solved for some m ∈ (0,m∞) for every v ∈ (0,∞). And this m is
decreasing in v. If m∞ = ∞, then the left-hand side of (9) could be bounded above for
m ∈ (0,∞) and a fixed v. But m ↓ 0 implies Dg(m) ↑ ∞, and so it is still the case that (9)
can be solved for a unique m given any v ∈ (0,∞). It follows from (10) that DΛ(v) is well
defined for all v ∈ (0,∞). It is decreasing in v, and taking v → ∞ forces m ↓ 0 and hence
DΛ(v) ↓ 0. The supply curve S(v) is upward sloping, and S(v) will be positive for large
enough v because (βv + w)L(v, w) = α forces L(v, w) ↓ 0 as v →∞.�

In preparation for the general case, consider how the steady state of a Cobb-Douglas
economy depends on the labor share α. Refer to Figure 1 and note from (9)-(10) that an
increase in α shrinks the demand curve DΛ(v) toward the quantity axis. At the same
time, it is easy to see from (11) that an increase in α, holding fixed v, raises w. By (12),
this reduces the household supply of managerial services and raises the supply of labor,
lowering the residual supply S(v) on both counts. So an increase in α moves the supply
curve S(v) toward the price axis. It follows that an increase in α lowers DΛ(v) = S(v).
The definition (10) makes DΛ(v) an increasing function of m, and so a reduction in DΛ(v)

has to go together with a reduction in m. This lowers the steady state capital stock K =

f(n[m])/[Λ(δ − g(m))]. It turns out that L(v, w) is increasing in α, and so an increase in α
lowers the capital-labor ratio. More detail on this last step is in Appendix A, proving the
following lemma.
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Lemma 3 Given Assumptions 1 and 3, the steady state capital-labor ratio in the Cobb-Douglas
economy is decreasing in the labor share α.

The Demand and Supply of Capital The steady state must have g(m) < δ, so that
K = f(n)/[Λ(δ − g(m))] remains finite. To make the role of this asymptote more explicit,
consider the right panel of Figure 1. It shows the steady state demand and supply of
organization capital in terms of the relative price s = q/v. This price immediately pins
down m and n via the first-order conditions 1 = sDg(m) and 1 = sDf(n). The implied
steady state supply of capital at s is then simply K = f(n)/[Λ(δ − g(m))]. This supply is
zero at s = 0, obviously upward sloping as long as s implies δ > g(m), and it becomes
infinitely elastic at the s that solves δ = g(m) and 1 = sDg(m). The steady state demand
for organization capital also follows from the first-order conditions for m and n, but now
together with the steady state condition Dqt = 0 and the market clearing condition for
managerial services. The latter two conditions are svK = (1−α)/(ρ+δ−[g(m)−Dg(m)m])

and S(v) = mK + n/Λ, respectively. Eliminating v produces an equilibrium condition for
K, the demand for capital at s. Since δ > g(m) implies ρ+δ > g(m)−Dg(m)m, the supply
of capital asymptotes before the demand curve becomes ill defined. As Figure 1 suggests,
and as will be shown below for general F , the equilibrium approaches this asymptote
when Λ becomes large.

4.2 The General Case

Consider a general production function F with a labor share A(k) that is non-decreasing
in k. The conditions for a steady state are then the Cobb-Douglas conditions (9)-(12) to-
gether with the requirement that α = A(k), where k = K/L(v, w) andK = f(n[m])/[Λ(δ−
g(m))]. To set up a fixed point condition for the labor share, start with any α ∈ (0, 1) and
use (9)-(12) to construct a unique steady state for the associated Cobb-Douglas economy.
This can be done by Proposition 1. Take the associated (v, w,m) to compute

α′ = A(k), k =
f(n[m])/[Λ(δ − g(m))]

L(v, w)
. (13)

This produces a well-defined mapping α 7→ α′, from (0, 1) into (0, 1). If α′ = α, then all
the steady state equilibrium conditions for the general economy are satisfied. Proving
the existence and uniqueness of a steady state now requires proving that α 7→ α′ has
precisely one fixed point. By Lemma 3, the mapping α 7→ k implied by the Cobb-Douglas
economy is decreasing. Assumption 2 requires A(·) to be weakly increasing. As a result,
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α 7→ A(k) = α′ is a weakly decreasing map. Such a map can cross the line α′ = α only
once. Because α 7→ α′ is well defined for any α ∈ (0, 1) and continuous, it follows that
there is a unique fixed point.

Proposition 2 Given Assumptions 1-3, the economy has a unique steady state.

CES production functions with an elasticity of substitution greater than 1 have A(·) de-
creasing instead of increasing. This was used by Jones and Manuelli [1990] to construct a
one-sector economy without a steady state, with kt → ∞ and A(kt) ↓ 0 over time. Here,
the mapping α 7→ A(k) = α′ becomes increasing, and it is no longer obvious that this map-
ping will have a fixed point. But F in this economy only determines Ct = F (Kt,L(vt, wt)),
and output of new capital is the maximum of g(mt)Kt + f(nt)/Λ subject to the constraint
mtKt + nt/Λ ≤ S(Kt, vt). Experiments in which F is CES with a finite elasticity of substi-
tution deliver unique steady states even though A(·) is increasing.

4.3 The Large-Λ Limit

If Df(0) is finite, contrary to Assumption 2, then the steady state may very well have
f(n) = 0 together with δ = g(m) and an exponentially declining number of ever larger
firms. Such a steady state would not be able to account for the fact that entry and exit
rates in the US are around 11% and 10% per annum, or for the implied stability of the
per capita number of firms, or for the stability of the firm size distribution. But the tail
index ζ ≈ 1.1 of the US size distribution of firms does suggest that δ− g(m) = (1− 1/ζ)δf

must be very small. We therefore need to describe a scenario in which δ− g(m) is close to
zero even though f(n) is not. The dynamics (5) of the per capita capital stock Kt and the
right panel of Figure 1 indicate that these observations can be reconciled by taking Λ to
be large.

As before, it is useful to first consider the Cobb-Douglas case.

Proposition 3 Suppose Assumptions 1 and 3 hold and F is Cobb-Douglas with labor share
α ∈ (0, 1). Assume that g(m) > δ for m large enough. Then Λ[δ − g(m)], v, and w converge to
limits in (0,∞) as Λ becomes large. As a consequence, g(m) ↑ δ and f(n) ↑ f(n[m∞]), implying
that the tail index of the firm size distribution converges to 1.

Proof Recall the Cobb-Douglas steady state conditions (9)-(12). For any u ∈ (0,∞), de-
fine m(u) ∈ (0,∞) to be the solution to

u× f(n[m])

δ − g(m)
=

(1− α)Dg(m)

ρ+ δ − [g(m)−Dg(m)m]
.

20



The demand curve is then determined by

DΛ(v) = m(v/Λ)× v

Λ

f(n[m(v/Λ)])

δ − g(m(v/Λ))
× 1

v
+
n[m(v/Λ)]

Λ
.

Write vΛ for the solution to DΛ(vΛ) = S(vΛ). Taking u ↓ 0 forces m(u) ↑ m∞ and g(m(u)) ↑
δ. This implies

D∞(v) = lim
Λ→∞

DΛ(v) =
Dg(m∞)m∞

ρ+ Dg(m∞)m∞

1− α
v

,

for any v ∈ (0,∞). This hyperbola is guaranteed to intersect the strictly increasing supply
curve S(v) precisely once, and so the limiting market clearing condition S(v) = D∞(v)

has a well-defined and unique solution v∞ ∈ (0,∞). One can verify that vΛ → v∞ as
Λ→∞.�

As the proof of Proposition 3 shows, the per capita demand curve DΛ(v) for managerial
services is unit elastic in the large-Λ limit. The underlying reason is that the steady state
value qK = (1 − α)/(ρ + δ − [g(m) − Dg(m)m]) of the capital stock converges to a well-
defined limit as m ↑ m∞. This means that mK = qKDg(m)m/v behaves like 1/v when
m is close to m∞, and that mK dominates the demand for managerial services when Λ is
large.

The following proposition extends the large-Λ limit to general F .

Proposition 4 Suppose Assumptions 1-3 hold, and that g(m) > δ for m large enough. Then the
conclusions of Proposition 3 apply.

Proof As in (13), the Cobb-Douglas economy generates a capital-labor ratio α 7→ kΛ[α],
and α = A(kΛ[α]) has a unique fixed point αΛ ∈ (0, 1) by Proposition 1. Given Proposition
3, it is easy to check that kΛ[α] converges to a large-Λ capital-labor ratio k∞[α] as Λ →
∞. Along the lines of the proof of Proposition 1, one can verify that the mapping α 7→
A(k∞[α]) produces a unique fixed point α∞ ∈ (0, 1) for the large-Λ economy. It is clear that
A(kΛ[α∞]) → α∞ as Λ → ∞. The assumption that A(·) is weakly decreasing can be used
to argue that αΛ must be close to α∞ when A(kΛ[α∞]) is close to α∞. This ensures that
αΛ → α∞ as Λ→∞. Detailed versions of these steps are given in the online appendix.�

Robust Entry Note that n increases to the limit n[m∞] ∈ (0,∞) as Λ becomes large. So
there will be robust entry in the limit, and the number of firms converges to f(n[m∞])/δf .
The steady state entry and exit rates are δf ∈ (0, δ), but the per capita number of firms goes
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to zero and the average size of firms, δfΛK/f(n[m]), diverges.11 The contribution of new
firms to the aggregate accumulation of capital will be negligible—both (n/Λ)/(mK+n/Λ)

and (f(n)/Λ)/(g(m)K+f(n)/Λ) converge to zero as Λ becomes large. A large-Λ economy
is an economy in which the managerial resources needed to produce capital are abundant,
as is the supply of labor that can be combined with capital to produce consumption. Entry
is one way in which these managerial resources could be used, but the marginal product
of f(n) would converge to 0 if n became large. In a steady state, this directs most of the
abundant managerial resources toward the process of replicating existing capital.

The plausibility of all of this hinges on the interpretation of the fixed factor implicit in
f(n)/Λ. The most natural interpretation is that this fixed factor is some type of inelasti-
cally supplied human input that is distinct from labor and managerial services. Perhaps
the creativity involved in starting something new, as opposed to replicating something,
is relatively scarce. If the households that supply this human factor also have additively
separable logarithmic preferences over consumption, with the same subjective discount
rate ρ, then Λ can be (or scale with) the number of households who cannot supply this
factor relative to the number who can. This interpretation immediately allows for both
populations to grow at some common rate, and so account for the fact that the number
of firms tends to scale with population (Luttmer [2010] provides time-series evidence for
the US).

The resulting interpretation of Zipf’s law is, in essence, the one given in Luttmer
[2011]. But there, one type of labor is used to produce consumption and replicate cap-
ital, while another type of labor is used to create capital from scratch. The supply curves
of both types of labor respond to factor prices. Here, the explicitly modeled human fac-
tors of production that are used to replicate capital and create capital from scratch are
perfect substitutes, distinct from the labor that is needed to produce consumption, and
distinct from the implicit fixed factor needed to produce new capital from scratch.

5 Aggregate Dynamics

The pieces are now in place to characterize aggregate convergence rates when replica-
tion and entry rates depend on the state of the economy. For this characterization, it is
convenient to write Sg = Dg(m)m/g(m) and Cg = −D2g(m)m/Dg(m) for the share and

11Models with a negligible number of firms relative to the population are relatively common, but they
usually involve similar firms that all employ a continuum of workers (see Kaas and Kircher [2015] for a
recent example). Given that the modal firm in the data has at most a handful of employees, such models
are impossible to calibrate. Here, every firm in the large-Λ economy has a finite number of workers and
firms are not similar at all: the size distribution has a very thick tail.
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curvature parameters of g(·). The implied elasticity of substitution between managerial
services and organization capital is (1 − Sg)/Cg. The analogous share and curvature pa-
rameters for F (1, l) are SF and CF . Assumption 2 forces CF ≥ 1 − SF . The own price
elasticities of labor and managerial services are EL and EM .

5.1 Mechanical Examples

Suppose β = 0, and that the supply of managerial services is completely inelastic, equal
to a constantM. As long as the price of capital is positive, the net flow of new capital DKt

is then simply the maximum of (g(m) − δ)Kt + f(n)/Λ subject to the resource constraint
mKt + n/Λ ≤ M. Managerial services are good for nothing else. Their only use is to
produce as much capital as possible. The first-order and envelope conditions immediately
imply that

−∂DKt

∂Kt

= − ∂

∂Kt

max
m,n

{
(g(m)− δ)Kt +

f(n)

Λ
: mKt +

n

Λ
≤M

}

= δ − g(mt) + g(mt)×
Dg(mt)mt

g(mt)
. (14)

In the steady state of the Zipf limit, mt = m, where δ = g(m), and so (14) reduces to
δ × Dg(m)m/g(m) = δSg. Because a low capital stock implies more inelastically supplied
managerial services per unit of capital, the capital stock converges to the steady state,
even in the Zipf limit. The rate at which this happens is δSg. A factor share of Sg =

0.7 and a 10% depreciation rate imply a half-life of slightly less than 10 years. Outside
the Zipf limit, the steady state term δ − g(m) speeds up the economy. But a firm size
distribution with a tail index ζ = 1.1, combined with a random exit rate δf = 0.02, implies
δ − g(m) = (1− 1/ζ)δf = 0.0018, and this shortens the half-life by only 3 months.

This logic extends to some simple scenarios in which managerial task shifting plays
a role. For example, suppose that β > 0, and that the supply of labor is also inelastic,
at some L < M/β. In that case, the resource constraint is simply mtKt + nt/Λ ≤ M −
βL, and (14) again applies. Alternatively, if the supply of labor can respond to wages
but the technology for producing consumption is determined by the Leontief production
function F (K,L) = min{K,L}, then the resource constraint becomes (β+mt)Kt +nt/Λ ≤
M. The first-order and envelope conditions then imply −∂DKt/∂Kt = (δ − g(mt)) +

Dg(mt)(β + mt). The resulting speed is then Dg(m)(β + m) = (1 + β/m)δSg in the Zipf
limit. A capital stock below the steady state releases managerial services that are normally
used to produce consumption, and this will speed up convergence.
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More Generally Outside these special cases, the extent to which managerial services are
used to produce new organization capital naturally depends on the state of the economy.
Let M[Kt] be the resulting policy function. Replacing the constraint mKt + n/Λ ≤ M in
(14) by mKt + n/Λ ≤ M[Kt] and considering the Zipf limit gives

−∂DKt

∂Kt

=

(
1− KtDM[Kt]

M[Kt]

)
δSg.

As in (14), there would be an additional term δ − g(m) outside the Zipf limit. Not sur-
prisingly, the rate of convergence is faster than δSg when the policy function M[Kt] is
decreasing in Kt. But there is no presumption that it is. If there is more capital that can
be replicated, then it may well be optimal to use more managerial services to do so. To
investigate, and to compare with the convergence speeds in some standard models, it is
useful to take a step back and consider a more general class of economies.

5.2 An Abstract Economy

Consider an economy with DKt = Kt(g(mt)− δ) and flow utilities U(Kt,mtKt). As in the
Zipf limit of the economy with organization capital, the technology for producing new
capital exhibits constant returns to scale in (Kt,Mt) = (Kt,mtKt). The function U(Kt,Mt)

is assumed to be increasing in Kt, decreasing in Mt, concave, and sufficiently smooth.12

The Hamiltonian for this economy is

H(K, q) = max
m
{U(K,mK) + qK(g(m)− δ)} . (15)

This Hamiltonian is concave in K and convex in q. Along the optimal trajectory for
(Kt, qt), the first-order condition implied by (15) is

0 = D2U(Kt,mtKt) + qtDg(mt), (16)

as long as the mt that attains H(Kt, qt) is positive. Clearly, an increase in qt raises mt. The
dynamic optimality conditions for this economy require that (Kt, qt) satisfy the differen-

12This formulation includes the special case g(m) = m. So this describes any economy with a single
capital stock, DKt = −δKt +Mt, and flow utility U(Kt,Mt). A non-trivial g(m) helps isolate the role of the
technology for replicating capital.
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tial equation

DKt = D2H(Kt, qt),

Dqt = ρqt −D1H(Kt, qt).

The fact that H(·, qt) is concave and H(Kt, ·) is convex implies that ∂DKt/∂qt ≥ 0 and
∂Dqt/∂Kt ≥ 0. Note also that ∂DKt/∂Kt + ∂Dqt/∂qt = ρ, provided that H is sufficiently
smooth. See Cass and Shell [1976] for a discussion of these features of the Hamiltonian in
a more general setting.

Observe that the envelope conditions for the Hamiltonian (15) imply that D1H(Kt, qt) =

D1U(Kt,mtKt) + D2U(Kt,mtKt)mt + qt(g(mt)− δ), and then the first-order condition (16)
turns this into D1H(Kt, qt) = D1U(Kt,mtKt)+qt(g(mt)−δ−Dg(mt)mt). It is convenient to
scale the first term by qt and define pt = D1U(Kt,mtKt)/qt. This measures the profitability
of capital from any use other than replication. The differential equation for (Kt, qt) can
then be restated as

DKt = Kt(g(mt)− δ), (17)

Dqt = (ρ+ δ − pt − [g(mt)−Dg(mt)mt]) qt, (18)

where (mt, pt) must solve [
pt −Dg(mt)

]
qt = DU(Kt,mtKt). (19)

Imposing DKt = 0 and Dqt = 0 gives δ = g(m) and p = ρ + δDg(m)m/g(m). The
monotonicity of g(·) implies there can be only one pair (m, p) that solves these condi-
tions. Any K that solves p/Dg(m) = −D1U(K,mK)/D2U(K,mK) will then be a steady
state capital stock.

5.2.1 Steady State Curvature Parameters

To characterize steady states and the dynamics of this economy near a steady state, it is
useful to introduce the following curvature parameters:

Ci,j = −Di,jU(x)xj
|DiU(x)| , i, j ∈ {1, 2}, (x1, x2) = (K,M).

The sign convention adopted in this definition, together with the concavity of U(K,M),
ensures that the diagonal curvature parameters are positive. The steady state condition
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for K implies that the off-diagonal curvature parameters are related via CKM = CMK ×
δSg/(ρ + δSg). Modulo a sign, adding up the two columns of the matrix of curvature
parameters produces the scale elasticities of D1U(K,M) and D2U(K,M),

d ln(D1U(K,mK))

d ln(K)
= − (CKK + CKM) ,

d ln(−D2U(K,mK))

d ln(K)
= CMK + CMM ,

where m is held constant. This can be used to describe how the steady state capital stock
depends on the subjective discount rate ρ.

Proposition 5 If CKK + CKM + CMK + CMM 6= 0 at a steady state (K, q), then the elasticity of
that steady state with respect to the subjective discount rate is given by[

ρ
K

dK
dρ

ρ
q

dq
dρ

]
= − ρ

ρ+ δSg
1

CKK + CKM + CMK + CMM

[
1

CMK + CMM

]
. (20)

The effect on flow utility follows from dU(K,M)/dρ = qK × (ρ/K)dK/dρ.

To see this, note that the steady state condition δ = g(m) does not depend on ρ. The elastic-
ity of the steady state profit rate p = ρ+δSg with respect to ρ is therefore simply ρ/(ρ+δSg).
Differentiating p/Dg(m) = −D1U(K,mK)/D2U(K,mK) and q = −D2U(K,mK)/Dg(m)

then delivers (20). The condition (19) implies D1U(K,mK) + D2U(K,mK)m = ρq in a
steady state. Observe that δ and g(·) play a role in Proposition 5 only via δSg.

5.2.2 Dynamics Near a Steady State

To examine the stability properties of a steady state, we need to evaluate the Jacobian of
the differential equation (17)-(19) at that steady state. One can verify that[

∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

]
= δSg

[
1

−Cg

] [
K
m
∂m
∂K

q
m
∂m
∂q

]
−
[

0

ρ+ δSg

] [
K
p
∂p
∂K

q
p
∂p
∂q

]
.

The elasticities ofm and pwith respect to (K, q) are those implied by (19), evaluated at the
steady state. Interestingly, δ and Sg only matter for the local properties of this economy
via δSg. As the basic example (14) shows, this is not true outside the Zipf limit. Not
immediately apparent from this expression, but as already noted, ∂DKt/∂Kt+∂Dqt/∂qt =

ρ. It follows that the two eigenvalues of the Jacobian of the differential equation are given
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by λ± = (ρ/2)±
√

(ρ/2)2 +D, where D is a determinant,

D = det

[
Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

]
.

If D is positive, then λ− < 0 < λ+, implying that the steady state is a saddle point. And
−λ− and λ+ are increasing functions of D, with λ± → 0 as D ↓ 0. In fact, near zero, D/ρ is
a first-order approximation for −λ− (though an extremely poor one for reasonable values
of ρ). So D/ρ, if positive, is the approximate speed of convergence of this economy. One
can verify that the slope of the resulting stable manifold is negative.

The determinant of the Jacobian does not change when a multiple of one row of the
Jacobian is added to the other. For purposes of computing D, we can therefore replace
the coefficient−Cg in the above expression for the Jacobian by a zero. It is then immediate
that

D = (ρ+ δSg)δSg × det

[
K
m
∂m
∂K

q
m
∂m
∂q

K
p
∂p
∂K

q
p
∂p
∂q

]
. (21)

Differentiating (19) gives

[
K
m
∂m
∂K

q
m
∂m
∂q

K
p
∂p
∂K

q
p
∂p
∂q

]
= −

[
0

1

] [
CKK + CKM 1

]
+

[
−1

CKM

] [
CMK + CMM −1

]
Cg + CMM

. (22)

Calculating the determinant of this matrix and combining the result with (21) proves the
first part of the following proposition. The second part gives an important comparative
static for the slope of the stable manifold that requires a more elaborate calculation.

Proposition 6 A steady state is a saddle point if and only if

D = (ρ+ δSg)δSg ×
CKK + CKM + CMK + CMM

Cg + CMM

(23)

is strictly positive. At such a steady state, the elasticity of the stable manifold is negative, with an
absolute value that is increasing in Cg.

Simply put, given Sg ∈ (0, 1] and Cg < ∞, the steady state is a saddle point if and only
if the sum of the curvature parameters of U(K,M) is positive. By Proposition 5, this is
precisely when the elasticity of the steady state capital stock with respect to ρ is negative.13

In those circumstances, increasing the curvature Cg slows down the economy and makes

13This connection between saddle point stability and the dependence of a steady state on ρ is well known.
For example, see Liviatan and Samuelson [1969] and Magill and Scheinkman [1979].
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the stable manifold steeper. In fact, D can be made arbitrarily close to zero by taking Cg to
be large enough—the definition of a steady state imposes no restrictions on this curvature.
From (22), this makes m almost independent of (K, q), and then the zero convergence rate
associated with Zipf’s law and a constant g(m) emerges.

Suppose now that the parameters happen to be such that (23) simplifies to D = (ρ +

δSg)δSg. Then the stable eigenvalue of this economy is λ− = −δSg. This corresponds to
the speed of convergence obtained in the Zipf limit of the basic example (14). A direct
calculation of the slope of Mt with respect to Kt, along the stable manifold, can be used
to confirm that it is zero precisely when D = (ρ + δSg)δSg. So the factor that multiplies
(ρ + δSg)δSg on the right-hand side of (23) measures the extent to which the speed of
convergence differs from that in an economy in which the input Mt = mtKt used to
replicate capital, whatever it is, happens to be completely inelastic at the steady state.

5.2.3 Two Further Decompositions of D

Relative to the depreciation rate δ, the approximate speed D/ρ can be expressed in terms
of two potentially observable elasticities. Note from (22) that (q/m)∂m/∂q is equal to
1/(Cg + CMM). It follows that Sg/(Cg + CMM) is the elasticity of g(m) with respect to the
shadow price q, holding fixed the capital stock. Propositions 5 and 6 can then be combined
to imply

D
ρ

= δ × q

g(m)

∂g(m)

∂q
×
(
− ρ

K

dK

dρ

)−1

. (24)

This decomposes (D/ρ)/δ into an instantaneous elasticity and a steady state elasticity.
Intuitively, the approximate speed of convergence is slow if g(m) is particularly inelastic
with respect to the shadow price of capital, at a point in time, holding fixed the capital
stock. It is also slow if small changes in the subjective discount rate imply large long-run
changes in the stock of capital.

Observe that the first-order condition (16) for mt can be written as vt = qtDg(mt),
where vt = −D2U(Kt,Mt). The latter condition defines a supply curve Mt = S(Kt, vt),
with elasticities [

ES,K ES,v
]

=
1

CMM

×
[
−CMK 1

]
.

This can be used to rewrite the formula (23) for D as

D =
(ρ+ δSg)δSg

1
1+ES,v +

ES,v
1+ES,v × Cg

× CKK + CKM + CMK + CMM

1 + CMM

. (25)

In the two versions of this economy discussed next, Cobb-Douglas assumptions drasti-

28



cally simplify the second factor in this decomposition.

5.3 Back to the Specific Factor Economy

The economy introduced in Section 2 is a model of team production in which labor is a
specific factor for the consumption sector. It corresponds to

U(K,M) = max
C,L
{ln(C)− V (L, βL+M) : C ≤ F (K,L)} . (26)

This function is concave, increasing in K, and decreasing in M . The first-order and en-
velope conditions imply D1U(Kt,mtKt) = D1F (Kt, Lt)/Ct. Since qt is the marginal utility
weighted price of capital, this means that pt = D1U(Kt,mtKt)/qt is the profit rate in the
consumption sector—profit from the production of consumption, per unit of capital, and
divided by the consumption price of capital. The price vt = −D2U(Kt,mtKt) is now the
marginal utility weighted price of managerial services.

5.3.1 A Cobb-Douglas Consumption Sector

If F is Cobb-Douglas, then (26) implies that U(K,M) − (1 − SF ) ln(K) does not depend
on K. This additive separability immediately yields CKM = CMK = 0 (which entails
ES,K = 0), and the logarithmic term (1 − SF ) ln(K) implies CKK = 1. So the first factor in
(25) describes the speed of an economy with a Cobb-Douglas consumption sector. This
first factor is automatically positive, and so the steady state is a saddle point.

When F is Cobb-Douglas, Cg ≈ 1 or a small ES,v both imply D ≈ (ρ + δSg)δSg, result-
ing in the same speed as obtained for the Zipf limit of the basic example (14). If Cg < 1,
then the speed of convergence is increasing in the residual supply elasticity ES,v. But the
reverse is true if Cg > 1. In that case, an economy with an elastic supply of managerial
services converges more slowly than the completely inelastic example described by (14).
Whether a more elastic residual supply of managerial services helps or hurts the speed of
convergence (in other words, whether it tends to make M = mK decreasing or increasing
in K along the stable manifold) all depends on whether the factor payments from repli-
cation that accrue to managers, Dg(m)m, are an increasing or a decreasing function of
m.

5.3.2 Separable Factor Supplies

The curvature parameters of U(K,M) simplify when V (·, ·) is additively separable. Equa-
tion (38) in Appendix B gives these curvature parameters in terms of (SF , CF ), the factor
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supply elasticities EL and EM , the share βv/(βv + w) of managers in the cost of a team
producing consumption, and the fraction βL/(βL + M) = βL(w)/M(v) of managerial
services used for supervision.

If F is again assumed to be Cobb-Douglas (so that CF = 1 − SF ), then an easy bench-
mark emerges when EL =∞ and EM = 0. The residual supply elasticity ES,v of managerial
services is then driven entirely by managerial task shifting. Specifically, ES,v = 1/CMM and
(38) imply

ES,v =
βv

βv + w

βL

M
.

This says that the residual supply of managerial services available to produce new capital
is particularly elastic when managers are a significant cost component of a team produc-
ing consumption, and when overseeing workers is an important component of the total
supply of managerial services. If Cg > 1, this implies slow convergence.

More generally, the assumption that F has an elasticity of substitution below one is
sufficient for saddle point stability, and one can prove the following proposition.

Proposition 7 Suppose the supplies of labor and managerial services are separable. Then CF ≥
1− SF implies that D is positive and increasing in CF .

Intuitively, more curvature in F hastens the reallocation of managerial services from pro-
ducing consumption to producing new capital when the capital stock is low. The proof
is a somewhat elaborate calculation, based on the curvature parameters reported in (38).
The condition CF ≥ 1 − SF implies that these curvature parameters are all positive, and
that both CMM and (CKK + CKM + CMK)/CMM are increasing in CF . It is possible to have a
steady state that is not a saddle point when, instead, CF is close enough to zero.

5.4 Conventional Adjustment Costs

The conventional model of adjustment costs is DKt = (gt − δ)Kt together with Ct +

a(gt)Kt = F (Kt, Lt), where a(·) is increasing and convex (Lucas [1967], Hayashi [1982],
Abel and Blanchard [1983]). Of course, this is the same as DKt = (g(mt) − δ)Kt together
with Ct + mtKt = F (Kt, Lt) and g(·) increasing and concave. It will be of interest to also
allow for the joint production of Ct and the investment good Mt = mtKt. To this end,
consider

U(K,M) = max
C,L
{ln(C)− V (L) : H(M,C) ≤ F (K,L)} , (27)
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where both V (·) andH(·, ·) are increasing and convex, andH(·, ·) exhibits constant returns
to scale.14

The usual interpretation is that K is physical capital, but here it could be a form of
organization capital that is jointly produced with consumption. In particular, organi-
zation capital can be discrete, with every unit replicated randomly at an average rate
g(m) when used together with l units of labor to produce c units of consumption, subject
to the constraint H(m, c) ≤ F (1, l). If L is taken to be a composite of labor and man-
agerial services, then the assumption implicit in (27) is that there is no special role for
managerial services in producing organization capital. In the competitive equilibrium,
ṽt = D1H(Mt, Ct)/D2H(Mt, Ct) is the price of the investment good in units of consump-
tion, and so ṽt/Ct = −D2U(Kt,Mt) = vt is the marginal utility weighted price of the
investment good.

Write SH for the expenditure share of consumption in intermediate output H(M,C) =

F (K,L), and CH = D22H(M,C)C/D2H(M,C) for the curvature of H with respect to con-
sumption (this sign convention and the convexity of H imply that CH is non-negative).
The curvature parameters of U(K,M) can be expressed in terms of (SF , CF ), (SH , CH),
and the Frisch labor supply elasticity EL. The result is (39) in Appendix B, and the decom-
position (25) then becomes

D =
(ρ+ δSg)δSg

1
1+ES,v +

ES,v
1+ES,v × Cg

×

(
CF

1−SF + CH
1−SH

)(
1
EL + 1

)
1
SH

(
1 + CH

1−SH

)(
1 + 1

SF

(
1
EL + CF

)) , (28)

where ES,v = 1/CMM is given by

ES,v =

1
SF

(
1
EL + CF

)
+ 1+CH

SH

1
SF

(
1
EL + CF

)
1
SH

(
1− SH + CH

1−SH

)
+ CH

1−SH

.

The speed parameter D given in (28) is automatically positive, without any assumptions
on F other than that the labor share is strictly less than 1 and the curvature of F (1, ·) is
strictly positive. When H is linear, one can verify that more curvature in F speeds up the
economy, as it does in the specific factor economy.

Imposing DKt = 0 and Dqt = 0 in (17)-(19) gives a steady state condition that can be
used to relate the consumption share SH to the labor share SF and the factor share of the

14As discussed below, Beaudry and Portier [2007] emphasize the role of complementarities between M
andC in generating co-movement between consumption and investment. They trace this specification back
to Sims [1989].
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investment good in replication Sg,

SH =
ρ+ δSgSF
ρ+ δSg

∈ (SF , 1). (29)

When F is Cobb-Douglas, the second factor in (28) simplifies to SHSF . Using the steady
state condition (29) to eliminate SH then has the effect of replacing the factor (ρ+ δSg)δSg
on the right-hand side of (28) by (ρ + δSgSF )δSgSF . So the first factor in (25) again gov-
erns the speed of convergence in an economy with a Cobb-Douglas consumption sector,
but with the labor share SgSF of the integrated technology Kg(F (K,L)/K) replacing the
factor share Sg. This implies D = (ρ+ δSgSF ) δSgSF if Cg = 1 as well, and then the exact
speed is δSgSF . As in the specific factor economy, this matches the Zipf limit of the basic
example (14), with the integrated factor share SgSF replacing Sg.

5.4.1 The Cass-Koopmans Economy

In the Cass-Koopmans economy, H(M,C) = M+C and g(m) = m.15 This implies CH = 0,
Cg = 0, and Sg = 1. Using (29), it is not difficult to show that (28) reduces to

D =
(ρ+ δSF )δSF
1

1+EL + EL
1+EL × CF

× 1

1− SH
CF

1− SF
, (30)

with a consumption share given by SH = (ρ+δSF )/(ρ+δ) ∈ (SF , 1). A high consumption
share means that it takes only a small fraction of consumption to increase investment by
a lot, and the factor 1/(1 − SH) shows that this speeds up the economy. The similarity
between the leading factors of (25) and (30) is apparent. Suppose F is Cobb-Douglas
in both economies, and g(·) = F (1, ·) in the specific factor economy. Then the two speed
formulas (25) and (30) differ only by the factor 1/(1−SH) > 1, and by the appearance of EL
in the formula for the Cass-Koopmans economy versus ES,v in the formula for the specific
factor economy. Since the Cobb-Douglas assumption means that CF = 1−SF ∈ (0, 1), this
implies a faster rate of convergence for the Cass-Koopmans economy if EL > ES,v.

A Back-of-the-Envelope Comparison An easy estimate of the speed of this economy
is obtained by taking F to be Cobb-Douglas, so that CF = 1 − SF , and assuming that
EL = ∞. This implies an exact speed of convergence (ρ + δ)SF/(1 − SF ). The parameter

15Hopenhayn and Rogerson [1993] serves as the starting point for much of the quantitative literature on
firm dynamics and the aggregate economy. It is worth emphasizing that their benchmark model, which has
entry costs in units of final output, reduces to this Cass-Koopmans economy when there are no idiosyncratic
productivity shocks and firms are assumed to exit randomly. In such a model, all investment in organization
capital is via entry, not replication.

32



values ρ = 0.04, δ = 0.10, and SF = 0.7 then imply a half-life of just over 2.1 years. The
consumption rate is close to 80%, and so 1/(1−SH) ≈ 5. Omitting the factor 1/(1−SH) in
(30) therefore drastically lowers D. As a result, the half-life for the corresponding specific
factor economy with F Cobb-Douglas, ρ = 0.04, δ = 0.10, Sg = 1− Cg = 0.7 and EM = ∞
(to ensure ES,v = 1/CMM = ∞ for this comparison) is 4.9 years. From ES,v = 1/CMM and
(38), one can infer that this specific factor economy will have a still longer half-life when
EM <∞.

5.5 The Crucial Distinction: How C and L Respond to q

From Proposition 6 we know that taking Cg to be large can account for slow aggregate
convergence rates. The details of U(K,M) do not matter, as long as the sum of its curva-
ture parameters is positive. In particular, it does not matter if the cost of accumulating
more capital is managerial services or consumption goods. In either case, raising Cg slows
down the economy. But the details of U(K,M) do very much matter for determining how
employment and consumption respond to shocks.

For example, consider an unforeseen and permanent reduction in the subjective dis-
count rate ρ. Proposition 5 says that this implies an increase in the steady state capital
stock K. The steady state condition DKt = 0 does not depend on ρ. Saddle point sta-
bility implies that the stable manifold is downward sloping and must cut the DKt = 0

curve from above (with K on the horizontal axis and q on the vertical axis). It follows
that q must jump up on impact. The first-order condition qDg(m) = −D2U(K,mK) then
implies that M = mK jumps up as well.

In the case of conventional adjustment costs, the effects, on impact, of such an increase
in M are given by

[
M
L

∂L
∂M

M
C

∂C
∂M

]
=

1− SH
SH

1

1
SF

(
1
EL + CF

)
+ 1+CH

SH

 1
SF

(
1 + CH

1−SH

)
− 1
SF

(
1
EL + CF

)
+ CH

1−SH

 . (31)

These elasticities are determined by the version of U(K,M) given in (27). If H(M,C) is
linear, the increase in M is accommodated in part by more employment, and in part by
lower consumption. The increase in employment looks like a boom, but the associated
decline in consumption looks like a recession. In a setting with a different type of news
shock, Beaudry and Portier [2007] argued that the curvature of H(M,C) must be positive
for investment, employment and consumption to move together in this economy. The
elasticities (31) confirm this: co-movement occurs only when the elasticity of substitu-
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tion (1 − SH)/CH between M and C is low enough—an intuitive but extreme example
would be H(M,C) = max{M,C}. The upward jump in q then produces an unambiguous
and immediate boom: investment, employment, and consumption all jump up. One can
verify that the investment expenditures D1H(M,C)M/D2H(M,C) jump up as well.

The core argument in this paper is, instead, that a shock that makes households act
more patiently naturally produces a recession. This is what happens when labor is a spe-
cific factor for the consumption sector and requires managerial supervision. The effects
of an upward jump in M on labor and consumption are given by[

M
L

∂L
∂M

M
C

∂C
∂M

]
= −

βv
w+βv

M
βL+M

1
EM

SF + CF + w
w+βv

1
EL + βv

w+βv
βL

βL+M
1
EM

[
1

SF

]
. (32)

These elasticities follow from the version of U(K,M) given in (26), with separable factor
supplies. Because of this separability, an increase in M would have no effect on L and
C if β = 0. But when β > 0, an increase in managerial services used to produce new
organization capital comes at the cost of managerial services that can be assigned to su-
pervise workers producing consumption. As expected, ∂L/∂M = −1/β when EM = 0. In
any case, L and C automatically move together when β > 0, but in the opposite direc-
tion of investment in new organization capital. The fact that v = −D2U(K,M), together
with ∂M/∂q > 0 and CMM > 0, implies that v rises with an increase in q. It follows that
M(v) also rises with q and M , unlessM(v) is completely inelastic. In contrast to worker
employment, managerial employment does increase with q and M . But if the supply of
managerial services is relatively inelastic and workers make up the bulk of employment,
then consumption and aggregate employment will both decline.16

6 A Bursting Bubble Implies a Recession

An obvious objection to a belief shock interpretation of recessions along these lines is
that recessions are invariably associated with declines in asset values—and by itself, an
upward jump in qt causes qtKt to jump up.17 But observed asset values need not be a
measurement of only qtKt, and a sudden drop in subjective discount rates is not the only
way in which households can be induced to act more patiently.

16If β = 0 and the disutility V (L,M) is replaced by V (L+M), then ∂L/∂M < 0 and ∂C/∂M < 0 as well.
But this also implies ∂(L+M)/∂M > 0 as long as L > M , and so aggregate employment and consumption
would move in opposite directions.

17A destruction of organization capital, which also raises qt but lowers Kt at the same time, can account
for declining asset values if the elasticity of the stable manifold is in (−1, 0). Recall also that the price of
capital in units of consumption is qtCt, and consumption drops on impact.
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To describe a more plausible recession scenario, suppose households own not only or-
ganization capital but also an outside asset that initially produces no dividends. House-
holds believe the asset will deliver a constant flow of consumption X > 0, indefinitely,
starting at some random time that is exponentially distributed with mean 1/θ ∈ (0,∞).
Then, unforeseen, the arrival rate θ drops to zero.18 Such a bursting bubble can easily ac-
count for a decline in asset values if these asset values reflect what happens to portfolios
of qtKt and the outside asset.

How does such a negative wealth shock affect consumption, employment, and wages?
How does the economy converge to its new steady state? What follows is an answer
to these questions for the Zipf limiting economy with separable supplies of labor and
managerial services, augmented with an outside asset.

6.1 The Ex Post Equilibrium Conditions

Consider the ex post economy that arises when it is known that the outside asset produces
a flow ofX ≥ 0 units of consumption forever. So consumption is now Ct = F (Kt, Lt)+X .
Because of this, the labor share function A(·) of F no longer suffices for describing the
equilibrium. The capital stock evolves according to DKt = Kt(g(mt) − δ), as before.
Given a capital stock Kt and a marginal utility weighted price Qt of a unit of organization
capital, the first-order and market clearing conditions are

βvt + wt =
D2F (1, lt)

F (1, lt)Kt +X
, vt = QtDg(mt), (33)

L(wt) = ltKt, M(vt) = (βlt +mt)Kt. (34)

These conditions determine the inputs (lt,mt) and the factor prices (vt, wt) as a func-
tion of (Kt, Qt). The implied marginal utility weighted consumption-sector profits are
D1F (1, lt)/(F (1, lt)Kt + X) per unit of capital. The asset pricing equation for Qt is there-
fore

ρQt =
D1F (1, lt)

F (1, lt)Kt +X
+Qt(g(mt)− δ)− vtmt + DQt.

Together with a transversality condition, these conditions determine a stable manifold
Qt = Q(Kt) for this ex post economy. Of course, these equilibrium conditions are exactly
those described in Section 2 if X = 0.

18One can devise a signal structure in which Bayesian consumers foresee the possibility that θ is zero
rather than positive, but come to believe with great certainty, and mistakenly, that θ is positive. The events
that then unfold are exactly the same as what happens when, unforeseen, θ > 0 drops to zero. See Luttmer
[2013].
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Across steady states of different ex post economies, variation in X creates wealth ef-
fects with the usual implications for consumption and labor supply. But the relation be-
tween X and the capital stock is ambiguous. It depends on, among other things, how
elastic the supply of managerial services is.

Proposition 8 Suppose that L(·) is strictly upward sloping. Comparing ex post steady states,
an increase in X ≥ 0

(i) raises C and lowers L(w);

(ii) raises K and lowers Q if M(·) is completely inelastic;

(iii) lowers Q andM(v) if M(·) has a positive but finite slope;

(iv) reduces K and leaves Q unchanged if M(·) is perfectly elastic.

The proof is in Appendix C. In an economy with conventional adjustment costs, it is easy
to see that an increase in X always crowds out capital. Here, on the other hand, the
negative wealth effect on L(w) of an increase in X immediately implies an increase in K
whenM(·) is inelastic, via the market clearing conditionM(v) = βL(w) +mK.

6.2 A Bubble Crowds Out Organization Capital

The outside asset produces nothing in the ex ante economy. Given a capital stock Kt and
a price of capital qt, the first-order and market clearing conditions are exactly as in Section
2 (or as in the ex post economy with X = 0). But the asset pricing equation (7) for qt must
be modified to allow for the capital gain Q(Kt)− qt that will occur when the outside asset
begins to generate the consumption flow X > 0. Since this capital gain arrives randomly
at the rate θ, the ex ante asset pricing equation becomes

ρqt =
D1F (1, lt)

F (1, lt)Kt

+ qt(g(mt)− δ)− vtmt + Dqt + θ(Q(Kt)− qt), (35)

where (lt,mt) and (vt, wt) are determined by first-order and market clearing conditions
(the X = 0 version of (33)-(34), with the ex ante price qt replacing the ex post price Qt).
The capital stock evolves according to DKt = Kt(g(mt) − δ). The initial capital stock K0

is given, and a transversality condition pins down the initial value q0.
The ex ante steady state is determined by the first-order and market clearing condi-

tions together with the two steady state requirements DKt = 0 and Dqt = 0. Beliefs affect
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the steady state only via the appearance of the ex post stable manifold Q(·) in the equa-
tion for Dqt. To determine how the ex ante steady state depends on beliefs, it is useful to
start with the steady state requirement that does not depend on beliefs.

Lemma 4 The DKt = 0 condition determines q as an increasing function of K. The implied
capital-labor ratio K/L is increasing in K as well.

Proof The condition DKt = 0 implies δ = g(m), and the first-order condition (16) then
gives q = −D2U(K,mK)/Dg(m), with U(·, ·) as defined in (26). The optimality conditions
for the L that attains U(K,mK) can be written as

(
βv + L−1(L)

)
L = A

(
K

L

)
, M(v) = βL+mK.

Viewed as functions mapping L into v, the first curve is downward sloping and the sec-
ond is upward sloping. IncreasingK shifts both curves upwards. So an increase inK will
raise v = −D2U(K,mK), and hence q = v/Dg(m) as well. An increase in K must raise
K/L, or else βv = (A(K/L)/L)− L−1(L) would decline with K.�

When it is possible to rank the price of organization capital not only across ex post steady
states (as in Proposition 8) but also across different ex post stable manifolds, a definite
prediction emerges for the ex ante steady state capital stock.

Proposition 9 Consider two alternative ex ante economies with ex post stable manifoldsQ(1)(·)
and Q(2)(·). Suppose Q(1)(K) < Q(2)(K) over a range of K that covers the respective ex ante
steady state capital stocks K(1) and K(2). Then K(1) < K(2).

Proof Impose the steady state condition Dqt = 0 in (35) and use δ = g(m) and v = qDg(m)

to infer that in any steady state

(ρ+ θ + Dg(m)m)q −
(

1− A
(
K

L

))
1

K
= θQ(K). (36)

Lemma 4 says that DKt = 0 gives q as an increasing function of K, and profits (1 −
A(K/L))/K as a decreasing function of K. Imposing DKt = 0 therefore makes the left-
hand side of (36) an increasing function of K. The result follows from shifting θQ(K)

along the upward-sloping left-hand side of (36).�

Not surprisingly, if an economy can transition to a state in which capital is cheap, then
there are only weak incentives to accumulate capital before the transition. Here, this
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means that optimistic beliefs about an outside asset crowd out organization capital, in
spite of the ambiguous effects, highlighted in Proposition 8, of X on K in ex post steady
states.

6.3 Phase Diagrams and Equilibrium Trajectories

Figures 2 and 3 show the phase diagrams for two economies in which the premise of
Proposition 9 is satisfied: a high X implies a low price of organization capital, not only
in the ex post steady states (as asserted by Proposition 8) but also along the ex post stable
manifolds. Because of this ranking of ex post stable manifolds, Proposition 9 ensures that
the stock of organization capital will be lower in the ex ante steady state than in the ex
post steady state with X = 0. This means a steady state stock of organization capital that
is lower in the ex ante steady state than in the ex post steady state that will eventually
emerge after consumers realize that θ = 0. These phase diagrams prove that qt must jump
up when consumers suddenly realize that θ = 0. The elasticities (32) for this economy
(which apply at any combination of K and q) imply that this results in an immediate
drop in consumption and labor.

Figure 2 describes an economy with an inelastic supply of managerial services. As
predicted by Proposition 8, the steady state capital stock in the ex post economy with
X > 0 is larger than it is in the X = 0 ex post economy. Figure 3 shows what happens
when EM = 0.2. This is far from the perfectly elastic case mentioned in Proposition 7, but
elastic enough to reverse the relation between X and K across ex post steady states.

The ex ante steady states and ex post equilibrium trajectories are shown in Figures 4
and 5, for a belief shock in year 10 that is augmented with a 5% destruction of organiza-
tion capital—imagine that the confusion associated with the realization of an essentially
unforeseen contingency also causes mistakes (in the context of this economy) that lead to
the loss of some organization capital. It takes 5.5 years to recover from this destruction of
capital if EM = 0, and 3.6 years if EM = 0.2. The subsequent equilibrium trajectories can
be interpreted as the equilibrium trajectories that are implied by a belief shock alone.

It is worth emphasizing the co-movement exhibited by this economy during the long
recovery. Figures 4 and 5 show that Kt, Ct, Lt, wtCt, and vtCt all rise.19 Worker and man-
agerial wages move in opposite directions only on impact. As these figures show, they
would move together even on impact if the only shock were a destruction of organization
capital.

19The definition (26) of U(K,M) implies ∂L/∂K > 0 if and only if CF > 1− SF , and that condition more
than suffices for ∂C/∂K > 0. Together with (31), this proves that K, L, and C co-move along the stable
manifold.
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FIGURE 4 Equilibrium Trajectories for EM = 0
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A comparison of Figures 4 and 5 shows that the elasticity of M(·) plays a signifi-
cant role in determining what happens to consumption and labor supply in the long run.
WhenM(·) is inelastic, consumption almost recovers, but labor remains well below its ex
ante steady state after the (permanent) belief shock to θ. Labor still does not fully recover
when EM = 0.2, but consumption rises significantly above the ex ante steady state. It
does so by enough that worker wages in units of consumption also rise above the ex ante
steady state, even though the marginal utility weighted wages of workers do not.

The arrival rate θ is taken to be 10%, and the outside source of consumption X is equal
to 50% of the steady state level of consumption in the ex post economy with no outside
source. Although there is an offsetting effect on F (K,L), this implies differences in ex
post consumption levels between these two ex post economies that are very large. But
because the pie-in-the-sky outside source of consumption is expected to arrive at only
a 10% annual rate, the shocks to total wealth that happen when consumers realize that
θ = 0 are much more modest. Since utility is logarithmic, wealth is simply Ct/ρ, and so
the magnitudes of these wealth shocks are implied by the consumption trajectories shown
in Figures 4 and 5.

In both economies, the drop in θ lowers interest rates to only slightly above the steady
state value of 4%, from an ex ante value of 5.6% if EM = 0, and from 5.0% if EM = 0.2.20

The recovery in consumption is spread out over decades, and so it adds very little to in-
terest rates during this recovery. Consumption in the ex ante steady state is constant, but
consumers expect an improvement. An econometrician with limited data would be con-
fronted with a Peso problem and could mistakenly infer a drop in the subjective discount
rate ρ when θ drops to zero.

6.4 Underlying Parameters and Further Implications

Table 1 lists the parameters that determine the local properties of this economy near the
X = 0 ex post steady state. The first six columns of Table 1 pin down the elasticities (32)
of (C,L) with respect to (K,M), and the curvature parameters (38) of U(K,M). Including
information on Cg determines the elasticities (22) of (m, p) with respect to (K, q). The
Jacobian of the differential equation (17)-(19) for (Kt, qt) follows by adding δSg and ρ.

20In the ex ante steady state, the risk-free rate is r = ρ+ θ (1− C/C[K]), where C and K are consumption
and capital in the ex ante steady state, and C[K] is consumption in the ex post economy with X > 0.
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This is enough information to apply Propositions 5 and 6.

TABLE 1 Half-Life Parameters

EL EM CF SF βL
βL+M

βv
βv+w

Cg δ × Sg ρ

3.0 {0, 0.2} 0.33 0.75 0.66 0.40 0.33 0.10× 0.60 0.04

The inelastic case EM = 0 implies a half-life of 8.5 years, and the elastic scenario EM = 0.2

implies a half-life of 7.7 years, bracketing what has happened in the US following the
2008-2009 recession.

It is useful to understand how these parameters could be inferred from ideal data,
generated by an economy with no physical capital, no aggregate risk, only two types
of employees, and firms with a single layer of management that differ only by size.21

Hicks-neutral technical progress in the consumption sector can be used to accommodate
aggregate trends, and then ρ is simply the difference between the interest rate and the
growth rate of aggregate consumption.

Imagine that it is possible to empirically classify households into potential managers
and potential workers. The numbers of actual managers and workers then determine the
labor market participation rates by household type. Together with the earnings distrib-
utions of managers and workers, this is enough to identify the factor supply elasticities
of managers and workers. Here, it is assumed that 90% of the households can supply
only labor, and that the remaining 10% can supply only managerial services. Both types
of households make a discrete choice that is governed by distributions over (hu, hw) and
(hu, hv) that are both independent Fréchet. For households who supply only labor, the
probabilities of {h : hu ≥ h} and {h : hw ≥ h} behave like h−σ, with σ = 11, and the scale
parameters are restricted to ensure a labor force participation rate of 70%. This implies an
aggregate labor supply elasticity equal to EL = (1− 0.7)× (11− 1) = 3.0.22 In the scenario
of elastically supplied managerial services, the tail probabilities for households who can
supply managerial services behave like h−3. So abilities (and, as a consequence, earnings)
are much more dispersed among households who can supply managerial services than
among households who can supply only labor. The participation rate for potential man-

21Hall [2001] and McGrattan and Prescott [2000] are early attempts at measuring intangible capital in
general equilibrium. In essence, what they do can be translated as follows. In a model with conventional
adjustment costs, Hall assumes g(m) ∝

√
m and uses DKt = (g(mt)−δ)Kt together with VtDg(mt) = Kt to

infer the trajectory of Kt from an initial value K0 and the trajectory of Vt = q̃tKt. Here, this would require
the trajectory of qtKt/vt. In a Cass-Koopmans economy, McGrattan and Prescott use the fact that NIPA
profits are net of unmeasured investment to make the steady state inference K = (D1F (K,L)K −M)/ρ.

22The labor supply curve is of the form L(w) ∝ [P(w)]
1−1/σ , where P(w) = (Aw)σ/[1 + (Aw)σ] is the

participation rate and A is a scale parameter. This implies EL = (1 − P(w))(σ − 1). The elasticity of the
participation rate with respect to w is (1− P(w))σ.
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agers is set at 90%. The resulting supply elasticity is then only EM = (1−0.9)×(3−1) = 0.2.
The small fraction of households who are potential managers, and their high participation
rate, ensure that aggregate employment fluctuations are dominated by what happens to
workers.

The present value C/ρ of aggregate consumption equals aggregate wealth, and the
present value of aggregate labor market earnings then determines how much of that
wealth must be due to organization capital. Specifically, qK = (1 − v(βL + M) − wL)/ρ,
and this becomes a testable restriction if qK can be measured independently. Recall that
SF = (βv + w)L, and that the first-order condition qDg(m) = v implies qK × δSg = vM

in the steady state. So the key present value and efficiency conditions can be restated
as qK = (1 − SF )/(ρ + δSg) and vM = (1 − SF ) × δSg/(ρ + δSg). Imagine now that
βL/(βL + M) is available from a time use survey of managers. Then one can decom-
pose the aggregate labor market earnings v(βL + M) + wL into (βv + w)L = SF and
vM = (1−SF )×δSg/(ρ+δSg). From this the important speed parameter δSg follows. The
cost share βv/(βv+w) = 1−vM/SF is also implied. A convenient way to summarize this
is

δSg
ρ+ δSg

βL
βL+M

1− βL
βL+M

=
SF

1− SF
βv

βv + w
. (37)

This matches (43) in Appendix C. Equation (37) is the only equilibrium condition that
restricts the speed parameters in Table 1. Holding fixed the values of ρ, δSg, and SF
reported in Table 1, cutting the cost share βv/(βv + w) in half forces βL/(βL + M) = 0.5.
This increases the half-life of the economy by 1.2 years if EM = 0, and by 0.8 years if EM =

0.2. Implicit in Table 1 are managerial earnings v(βL + M) = 0.45 and worker earnings
wL = 0.45. Since there are 0.7×0.9/(0.9×0.1) = 7 workers for every manager, the average
manager earns about 7 times what the average worker earns. Relative to consumption,
the value of the capital stock is qK = (1 − 0.45 − 0.45)/0.04 = 2.5. None of this relies on
knowing δ and Sg separately. Assuming that δ = 0.10, steady state consumption relative
to the value of gross output measured in units of consumption is 1/(1 + δqK) = 0.8. This
implies an overall labor share equal to 0.8× SF + (1− 0.8)× Sg = 0.72.

The production functions F (K,L) and Kg(M/K) used to construct Figures 2-5 are
CES production functions. The elasticity of (1 − SF )/SF with respect to L/K is −1 +

CF/(1 − SF ), and the CES assumption implies that this is a constant. Variation along the
stable manifold in L/K and the factor share SF can therefore be used to infer the elasticity
of substitution (1 − SF )/CF . This now requires measurement of K, outside the steady
state. In a discrete interpretation of organization capital, K would be a per capita count
of, say, the number of projects, blueprints, or plants. Variation in the supplies of labor
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and managerial services can be inferred from earnings data and participation rates. As
before, managerial time use data can be used to decompose v(βL + M) into supervision
expenditures vβL and replication expenditures vM . Together with out-of-steady-state
data on the flow market value qKg(M/K) of new capital produced, one can then infer
(1 − Sg)/Cg as well. It would be an understatement to note that the data demands of
directly estimating (1− SF )/CF and (1− Sg)/Cg are substantial.

More indirect inferences are possible. The elasticities of substitution implied by Table
1 are (1−SF )/CF = 0.75 < 1 and (1−Sg)/Cg = 1.2 > 1. The decrease in L/K and increase
in M/K that occur when a bubble bursts therefore have the effect of lowering the factor
share of capital in both sectors of the economy. More curvature in the consumption sector
would increase the negative effect of a destruction of capital on worker employment.
Table 2 shows that the stable manifold has an elasticity that is less than 1 in absolute
value. A destruction of capital therefore lowers the market value of the aggregate stock
of capital relative to consumption (consistent with Proposition 6, increasing Cg to about
0.8 would reverse this result). From Propositions 6 and 7, raising Cg and lowering CF
slows down these economies. As reported in Table 2, when F (K,L) and Kg(M/K) are
both Cobb-Douglas, half-lives are 1.3 years longer than those implied by Table 1.

Table 2 also shows the long-run elasticities (20) and the decomposition (24) of the
approximate speed D/ρ. Included for comparison with the standard model are the anal-
ogous elasticities for a Cass-Koopmans economy with ρ = 0.04, δ = 0.10, and the conven-
tional labor share SF = 1− CF = 0.7.

TABLE 2 Local Dynamics and Long-Run Elasticities

K
q

dq
dK

q
g(m)

∂g(m)
∂q

ρ
K

dK
dρ

ρ
q

dq
dρ

half-

life

Specific factor∗ EM = 0
−0.814

(−0.751)

0.310

(0.316)

−0.126

(−0.160)

−0.228

(−0.240)

8.5

(9.8)

EM = 0.2
−0.796

(−0.739)

0.522

(0.505)

−0.179

(−0.224)

−0.166

(−0.177)

7.7

(9.0)

Cass-Koopmans EL = 0 −0.062 3.667 −0.408 0.045 4.1

EL =∞ −0.016 14.556 −0.486 0.123 2.1
∗In parentheses: the economy with CF = 1− SF and Cg = 1− Sg.

A reduction in ρ raises the steady state market value of the capital stock relative to con-
sumption by very similar amounts in the specific factor and Cass-Koopmans economies.
But in the specific factor economy, much of that is due to an increase in the shadow price
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of capital. The elasticity of the long-run capital stock with respect to ρ is much smaller in
the specific factor economy than in the Cass-Koopmans economy.23 In the specific factor
economy, the effect of a capital income tax on the steady state capital stock would be less
than half of what it is in the standard model. The decomposition (24) suggests more rapid
convergence in the specific factor economy too, but the elasticity of g(m) with respect to
q is much smaller than in the Cass-Koopmans economy.

In the specific factor economy, worker wages fall and managerial wages rise when θ

drops to zero. This is similar to the Stolper-Samuelson relation between output and factor
prices. The increases in the marginal utility weighted factor price vt implicit in Figure 5
are very large. In the economy with EM = 0.2, this results in an increase in the supply of
managerial services of about 3.2% on impact and 2.1% in the long run.24

TABLE 3 Participation Rates

ex ante impact long run

workers 73.1 68.2 70.0

EM = 0 managers 100.0 100.0 100.0

all 75.8 71.3 73.0

workers 71.7 67.9 70.0

EM = 0.2 managers 87.0 91.3 90.0

all 73.2 70.3 72.0

As shown in Table 3, because marginal managers are much less productive than the av-
erage employed manager, the participation rate among potential managers increases by
even more. But since this increase in participation applies to only 10% of all households,
the effect on the aggregate participation rate is relatively small. This effect is absent in
the economy with EM = 0, resulting in the larger drop in aggregate participation reported
in Table 3, one that essentially matches the drop in the US participation rate seen during
2008-2009.

7 Concluding Remarks

Sims [1998] argued that many of the microeconomic stories underlying adjustment cost
models are implausible. In the models he describes, capital accumulation amounts to

23This has implications for the distribution of earnings across managers and workers. For the parameters
in Table 1, a reduction in ρ raises managerial wages and lowers the wages of workers.

24Raising the curvature parameter Cg can be used to reduce these numbers. A larger value of X would
be needed to engineer the same reductions in C and L on impact, and this would go together with larger
declines in interest rates.
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opening a can of generic output, consuming some of it, and then using the rest to add
to the capital stock. Adjustment costs arise because the amount of output it takes to
augment the capital stock is increasing and strictly convex in the rate at which capital
is being accumulated. It is hard indeed to tell plausible microeconomic stories for such
adjustment costs.

As Prescott and Visscher [1980] suggested long ago, the evidence on how firms grow
is hard to interpret without thinking about the time-consuming process of accumulat-
ing some form of organization capital. In the model presented here, organization capital
cannot be created using cans of generic output. Instead, it takes managers, and these
managers have to optimally allocate their time between two tasks: producing new orga-
nization capital and overseeing workers as they produce consumption. This distinction
is critical for how negative news about household wealth affects aggregate employment.

Along multiple dimensions, the model in this paper is highly rudimentary. It has no
physical capital, no labor market frictions, no technical progress, and markets are com-
plete. The contention is that some form of organization capital is the critical state variable
that governs firm growth and aggregate convergence rates. The model captures the fact
that firm growth is hard to predict based on size alone, and it generates a realistic distrib-
ution for the employment size of firms. A negative wealth shock generates a recession in
aggregate consumption and employment. And the half-life of the subsequent recovery is
similar to what has been observed following recent US recessions. The fact that the firm
size distribution is close to Zipf’s law is a strong indication that most organization cap-
ital accumulation comes from incumbent firms expanding, and not from entry. Even if
entry rates respond elastically to the state of the economy, the fact that entrants are small
means that entry can do little to speed up a recovery. The model can easily be extended
to allow for the costly mothballing of organization capital. Transitory shocks that are also
perceived as such can then lead to speedy recoveries.

Because the economy has only one type of organization capital, there is only one ag-
gregate state variable. As emphasized in Luttmer [2011], heterogeneity in the quality of
organization capital is essential to account for the relatively young age of the very large
firms that employ so much of the aggregate labor force. Large firms often have histories
of persistent double-digit growth lasting for multiple decades, and these growth rates
do not appear to vary significantly across the business cycle.25 The result is a type of

25See Luttmer [2012]. The persistent rapid growth of some firms led Birch [1979] to introduce the term
“gazelles” to describe such firms. There are also many small firms that hardly grow (Hurst and Pugs-
ley [2011]). Moscarini and Postel-Vinay [2012] examine the contributions of large and small employers to
employment growth at different stages of the business cycle. Haltiwanger, Jarmin, and Miranda [2013]
emphasize the importance of firm age. In Luttmer [2011], size and age are imperfect indicators, and some
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systematic reallocation of employment that is abstracted from here. Understanding the
aggregate dynamics of economies with richer forms of firm heterogeneity remains an im-
portant task for further research.

A Proof of Lemma 3

The conditions (9)-(12) for a steady state in the Cobb-Douglas economy imply a function
Σ : α 7→ S(v) that relates the labor share parameter α to the steady state value of the
residual supply of managerial services. The argument given in the text leading up to
Lemma 3 shows that this is a decreasing function. Given α and Σ(α), one can infer factor
prices from

α = (βv + w)L(v, w), Σ(α) =M(v, w)− βL(v, w).

Differentiating this system with respect to α gives

α

L(v, w)

dL(v, w)

dα
=

[
EL,v EL,w

] [ α
v
∂v
∂α

α
w
∂w
∂α

]

=
[
EL,v EL,w

] βv
βv+w

+ EL,v w
βv+w

+ EL,w
EM,v−βLM×EL,v

1−βLM

EM,w−βLM×EL,w
1−βLM

−1 [
1

DΣ(α)α
Σ(α)

]
,

where [EL,v, EL,w] and [EM,v, EM,w] are the elasticities of L(v, w) andM(v, w), respectively.
Combining DΣ(α) < 0 with the fact that own price elasticities dominate cross price elas-
ticities (Lemma 1), one can verify that this is positive. It follows that the steady state
capital-labor ratio is decreasing in α.

B The Curvature Parameters of U(K,M)

Let EA = CF −(1−SF ), the elasticity ofA(·). With an additively separable disutility V (·, ·),
the curvature parameters of U(K,M) as defined in (26) are[

CKK CKM
CMK CMM

]
=

[
1 0

0 0

]
+

(
EA + 1 +

w

βv + w

1

EL
+

βv

βv + w

βL

βL+M

1

EM

)−1

{(
1 +

w

βv + w

1

EL

)[ SF EA
1−SF 0

0 M
βL+M

1
EM

]
+
EA
EM

[
SF

1−SF
βv

βv+w

1

] [
βL

βL+M
M

βL+M

]}
. (38)

measure of firm quality is essential for explaining how firms grow.
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The curvature parameters of U(K,M) as defined in (27) are[
CKK CKM
CMK CMM

]
=

1

1
SF

(
1
EL + CF

)
+ 1+CH

SH

{[
1
EL

CF
1−SF 0

0 CH
1−SH

]
+

1

SFSH

 (
1−SF
EL + CF

1−SF

)
(1 + CH) −

(
1
EL + CF

1−SF

)
(1− SH + CH)

−
(

1−SF
EL + CF

)(
1 + CH

1−SH

) (
1
EL + CF

)(
1− SH + CH

1−SH

)  , (39)

where EL is the Frisch elasticity implied by V (·).

C Proof of Proposition 8

The steady state requirement DKt = 0 implies δ = g(m). So v = QDg(m) transfers all
statements about v into statements about Q. The steady state equilibrium conditions can
be summarized as

βv + L−1(L) =
F (k, 1)A(k)

F (k, 1)L+X
, (β +mk)L =M(v),

together with

v =
δSg

ρ+ δSg
F (k, 1)

F (k, 1)L+X

1− A(k)

mk
. (40)

This last condition follows from DQt = 0 and v = QDg(m). Using (40) to eliminate v from
the first two equilibrium conditions yields

L−1(L) =
F (k, 1)

F (k, 1)L+X

(
A(k)− δSg

ρ+ δSg
β

m

1− A(k)

k

)
, (41)

L =
1

β +mk
×M

(
δSg

ρ+ δSg
F (k, 1)

F (k, 1)L+X

1− A(k)

mk

)
. (42)

These are two equilibrium conditions that relate L to k = K/L. Both left-hand sides are
increasing in L, and both right-hand sides, if positive, are decreasing in L. So each of
these two conditions defines a function k 7→ L. Observe that

∂

∂k

{
F (k, 1)A(k)

F (k, 1)L+X

}
> 0,

∂

∂k

{
F (k, 1)

F (k, 1)L+X

1− A(k)

k

}
< 0,

because A(·) is non-decreasing and X ≥ 0. It follows that the function k 7→ L defined
by (41) must be increasing in k, and that the function k 7→ L defined by (42) must be
decreasing. So there can be no more than one steady state. An increase in X shifts both
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functions k 7→ L down ((41) strictly and (42) weakly), and so an increase in X must lower
L.

IfM(·) is completely inelastic, then the market clearing conditionM(v) = βL + mK

implies that a decline in L has to result in a rise in K = kL. It follows that k = K/L

must rise as well. Because of (41), the fact that L−1(L) declines while k rises implies that
C = F (K,L) + X must increase. Together with (40), this implies that v declines. This
proves the proposition for the case of inelastic managerial services.

Now suppose M(·) is strictly increasing. Note that the equilibrium conditions for
(βv + L−1(L))L and βv can also be combined to yield (an instance of the restriction in
footnote 13)

βv

βv + L−1(L)
=

δSg
ρ+ δSg

β

mk

1− A(k)

A(k)
. (43)

The right-hand side of this equation is decreasing in k. Suppose now that an increase in
X raises v. Since it certainly lowers L, this implies that βv/(βv + L−1(L)) rises. So then
k must decline, and then so does (β + mk)L = M(v). This contradicts the presumed
increase in v. So v must decline with an increase in X . It remains to investigate what
happens to C. If k declines, then (β +mk)L declines, and the fact that F (1, 1/k)(1−A(k))

is a decreasing function then forces an increase in C = F (k, 1)L+X , by (42). On the other
hand, if k increases, then the decline in L−1(L) together with (41) again forces an increase
in C = F (k, 1)L+X .

Finally, if M(·) is perfectly elastic at some v, then the steady state is determined by
(40) and (41). The condition (40) implies a decreasing function k 7→ L that shifts down
with an increase in X . So we still have the conclusion that an increase in X lowers L. The
condition (43) still applies, and so the decline in L implies that k must decline as well.
Then (40) implies that an increase in X raises C.
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