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1. Imtroduction

This paper presents a method for Bayesian inference with regard to the structural
parameters of dynamic discrete choice models. The method does not require the econometrician
to solve the agents’ optimization problem, or make strong assumptions about how agents form
expectations. It is implemented using a Gibbs sampling-Data augmentation algorithm (Gelfand
and Smith (1990), Tanner and Wong (1987)). We first describe the generic discrete choice
model framework, describe our method for Bayesian inference, and then present some results
obtained by applying the method to trial problems.

We consider models in which agents choose from among a set of J mutually exclusive
alternatives, and make choices repeatedly over T periods. Such models can usually be written

in the form:

M ViSi®) = Py(S(D) + SBIVE(+1)i8(0,¢;=1]
and

@) Si(t+1) = MIS(1),d.]-

where S;(t) is the state of agent i at time t, V(S;(t)) is the value to agent i of choosing
alternative j at time t, P;(S;(t)) is the time t payoff to agent i from choosing alternative j, & is
the discount factor, E, is the expectation operator, V(S;(t+1)) is the value of being in state
S{t+1), dy, is an indicator equal to 1 if alternative j is chosen at time t and zero otherwise, d;
is the J*1 vector of the J choice indicators, and M is a random function that maps S;(t) and d;
into S;(t+1).

Equation (1) says that the value of choosing alternative j at time t is the immediate payoff
plus a "future component" equal to the discount factor times the expected value of the state the
agent attains at time t+1 given the current state Si(t) and current choice. Since Si(t+1) is
determined by the random function M[S(t),d;], the expectation is taken over realizations from
M.

We consider situations in which the econometrician is willing to assume parametric
functional forms for the payoff functions Py (S;(t)) and the law of motion for the state variables
(equation (2)), and in which the econometrician observes at least some information about payoffs
(e.g., the value of a payoff P;(S,(t)) may be observed if and only if dg=1).




The econometrician is interested in learning about the structural parameters that enter the
payoff functions. However, the econometrician is either unwilling to make strong assumptions
about the process by which expectations are formed, or lacks the necessary computational power
to calculate the E[V(S;(t+1)) | S(t),d;;=1] functions given such assumptions. As an example of
the latter case, suppose that a rational expectations assumption is invoked. Then, solving for

.the future components of the value functions requires that the agents’ optimization problem be
solved via dynamic programming. This will be an extremely computationally burdensome
process for all but the most simple model structures (See Keane and Wolpin (1994) or Rust
(1995) for a discussion).

If it were feasible to solve for the E[V(S,(t+1))}S,(t),d;= 1] functions rather quickly via
dynamic programming, then classical inference with regard to the structural parameters would
be feasible. But, even then, Bayesian inference would likely remain infeasible. This is because
the E[V(S(t+1)) | S{t),d,=1] functions are themselves complex nonlinear functions of the deep
structural parameters. Thus, the mapping from the observed data (choices and payoffs) to the
posterior distribution of the structural parameters will typically be intractably complex.
(Recently, Lancaster (1995) has shown that the mapping is quite tractable in the simple infinite
horizon job search model, but this special case is unusual.}

The idea behind our approach to Bayesian inference for dynamic discrete models is that
much can be learned about the future components of the value functions just by looking at
observed choices and payoffs - without the need to assume an expectations formation mechanism
or solve agents’ optimization problem. Suppose that agents in a particular state usually choose
alternative 1, despite the fact that their observed payoffs are relatively low as compared to those
of other agents in the same state who choose alternative 2. This suggests that the future
component of the value function associated with choice of alternative 1 is greater than that
associated with 2 (e.g., the fact that young people often choose to go to school, despite the fact
that immediate payoffs in terms of income would be greater if they chose to work, suggests that
future component of the value function associated with the school choice is greater than that
associated with the work choice for many young people). Of course, if payoffs are oniy
partially observable, such inferences about the future components of the value functions will
hinge on functional form assumptions for the payoff functions.

Following the above intuition, our approach is to specify a flexible functional form for
the future component of the value function SE[V(S,(t+1))|S{t),dy=1], expressing it as a
polynomial in the state variables. Then, given assumed functional forms for the payoff
functions, and given some information about actual payoffs, it is possible to learn both about the



parameters of the payoff functions and the structure of expectations. Using a Gibbs sampling-
data augmentation algorithm, it is straightforward to simulate the joint posterior distribution of
the structural parameters of the payoff functions and the parameters characterizing expectations.
We illustrate this approach in Section II. '

It is worth noting that our approach is somewhat related to that of Hotz and Miller
(1993), who also develop a method for estimating dynamic discrete choice models without the
need for dynamic programming. If agents solve a dynamic programming problem to arrive at
their decision rules, then E[V(S;(t+1))[Si(t),d;,=1] in (1) takes the form:

3 BLVESt+1))I8(0,dx =11 = B[ max {Vy(Si(t+1)|S(V),dz=1]

where the expectation is taken over realizations for S;(t+1) determined by the random function
M. Given the definition in (3), equation (1) becomes the Bellman equation (Bellman (1957)).
In this case, Hotz and Miller point out that B[V(S;(t+1))}S,(),d;;=11 can be written as a
function of agents’ choice probabilities in periods t+1 through T, conditional on every state that
may be occupied from t+1 through T, and the current payoff functions for each alternative in
those states. Thus, the future components of the value functions can be calculated, given data
on choice probabilities conditional on all possible states, and assumed functional forms for the
payoff functions. Given such calculations, it is not necessary to solve a dynamic programming
problem to construct the future components of the value functions in (1).

In practice, of course, the econometrician will not typically have access to data on the
conditional choice probabilities at every point in the state space. Suppose one has a panel data
set on choices over time for a set of individuals. One can only construct the choice frequencies
at the subset of state points actually observed in the data. To these one can apply nonparametric
smoothing techniques to obtain estimated conditional choice probabilities at all state points. The
predicted conditional choice probabilities are then used to form the E[V(S;(t+1)){Si(),d;=1]
functions.

The Hotz-Miller procedure suffers from a number of limitations. First, the data
requirements are heavy. For large state space problems, the ratio of observed choices to state
points will tend to be small unless one has access to an enormous data set. Thus, as Rust (1995)
has observed, the results may be very sensitive to choice of nonparametric smoothing technique.
Second, a strong stationarity assumption is required. Panel data sets typically only contain data
collected over a fraction of each individual’s life. Therefore, the choice frequencies for periods
far in the future that are used in estimating the future component of an agent’s value function




will typically be the choice frequencies that were observed for much older cohorts of agents.
The implicit assumption that a younger cohort’s choice probabilities will be identical to those
of older cohorts when they reach the same state points rules out regime changes over time.
Third, unobserved heterogeneity is ruled out, since conditional choice frequencies for all agents
are used to calculate the choice probabilities of all agents in the same observed state.

A related approach to the problem is that of Manski (1993), who assumes that agents
form the E[V(S(t+1))|S(t),d,=1] functions by looking at the life histories of payoffs for older
agents who at some past date were in the state Si(t) and made the choice dy=1. This again
entails a strong stationarity assumption.

- Qur approach to inference in dynamic discrete choice models has important advantages
over these other approaches. It does not require the assumption of stationarity in the economic
environment across cohorts, since the method could be applied to a single cohort observed over
a fraction of the planning period t=1,T. Our approach can admit unobserved heterogeneity,
provided the econometrician specifies the manner in which the unobservable affects the payoff
functions. And our approach does not make heavy data requirements, other than that the payoffs
be at least partially observable. We do need to place some structure on the future component
of the value function SE[V(S;(t+1))}5,(t),d;=1], although this can be a flexible functional form
such as a high order polynomial in the state variables. And we do need to assume functional
forms for the current payoff functions, but this is true of the other approaches as well.




II. A Nlustrative Application
g

In this section we present an illustrative application of our method of Bayesian inference
for dynamic discrete choice models. Consider a homogeneous population of agents who choose
between two occupations in each of T periods. Wages in each occupation are determined by the
functions:

C)] In Wi, = By + BuXine + Bl + 85X + BaXla + 1
3) In Wy, = B + 812X + Bsz?m + 83Xy + 342X?1: + €
where X, is experience in occupation j at time t, and:

()] & = (Gunein) ~ N(03,Z).

The ¢, are assumed to be serially independent. We also assume that each alternative has
associated with it a nonpecuniary benefit v, where p, = (vy,,¥p)" ~ N(0;,L,). In this model,
the state of agent i at time t is:

(7) Sl(t) = (Xiltpt!eiu yit)'

Note that it is redundant to include the occupation 2 experience level in the state space, since
X + X = ¢

Notice that while the state variables X, and t evolve deterministically (i.e.,
X1 =X +1), the state variables ¢; and », are serially independent. Thus, the future
component of the value function, SE[V(S;(t+1))|S(t),d;,=1], is a function of only X;; ., and
t. In writing the value functions, we will suppress the argument Si(t) and instead subscript by
i so as to keep the notation more compact.

The value functions associated with each alternative are:

(8) Vig = Wy, + ry + F(Xt1,10)

) Vi = Wiy + iy + F(Xjt)




where F(X|,t) is the expected present value of arriving at time t with X, as the occupation 1
experience level.

Since choices depend only on the differences, rather than the levels, of the value
functions, we define:

(10 Zy = Vi~ Vi
= Wi - Wi + iy - ¥ + FXp+1,1) - FXp, 0
= Wi - Wi + mie + X, +1,1)

where i, = vy - v ~ N(O,oﬁ), and (X, +1,1) = F(X;,+1,0-F (X, D).

We assume that the value functions V;, and V,,, as well as the value function differences
Z, that determine choices, are unobserved by the econometrician. The econometrician only
observes the agents’ choices d;;, and dy, for t=1,T, and the wage for the chosen alternative (i.e.,
W, is observed if and only if d;,=1). Thus, payoffs are never completely observed, both
because wages are censored and because the nonpecuniary components of the payoffs »,;, and v,
are never observed. Nevertheless, given observed choices and partially observed wages, along
with the functional form assumptions about the payoff functions, it is possible to learn something
about the F(X,,t) function and the structural parameters of the payoff functions without making
strong assumptions about how agents form expectations.

Rather than making strong assumptions about how agents form the F(X,,t) function, we
will simply allow it to be a polynomial function of the state variables X; and t. For example,
a 3rd order polynomial would be:

(11) FX,0) = 7 + X, + X5 + X3 + n Xt + X0t + 7 X,
+ ‘ﬂ'7t + 1!‘3172 + 1r9t3.

In this case we would have:

(12) X+ 1,0 = 7 + 12X +1) + mGXL 43X+ + myt
-+ T5(2Xi1t+ 1)t + Tﬁtz

Notice that the terms involving the parameters =, w;, w; and m, drop out of the f(X,+1,1)




function after differencing. This is because these terms capture influences on the level of the
F(X,,D function that do not depend on the level of X;. Since these terms are the same regardiess
of whether alternative 1 or 2 is chosen, they drop out when the future component is differenced.
Also notice that the number of regressors is P(P+1)/2, where P is the order of the polynomial.
With a 4th order polynomial, additional terms would be:

(4X?1,+6X%n+4xm+ 1); (3X%1t+3Xilt+ 1)ta (2Xi1t+ 1)t2: t3
while a 5th order polynomial would add the terms:

(X4, + 10X, + 10X3,+ 5K, + 1), (435, +6XG,+4X,,+1Dt, 3XF,+3X,+ D)%,
X+ 1, t

and a 6th order polynomial adds the terms:

(655t 15X+ 20Xy, + 15X+ 66Xy + 1), (SXfpt 10X+ 10X, + 5K, + 1,
(A% A 6K+ 4K+ 1P, 3K+ 3K 1P, QX+ D,

In our Monte-Carlo results reported below, we use 6th order polynomials.
Writing the model in matrix notation, we have:

(13) In Wy = X6, + & j=1,...2  t=L,..,T
and:
(14) X +1,0) = Syw t=1,..,T

where S;;, is the row vector of functions of state variables that appear in the equation for
f(X,,+1,t) and = is the corresponding column vector of coefficients. Equation (14) highlights
the fact that the polynomial function f(X;;,+1,t) is linear in the unknown parameters =.

The first step in a Bayesian analysis of this model via a Gibbs sampling-data
augmentation algorithm is to form the "complete data" likelihood function. That is, we consider
the likelihood function that could be formed if we had data on N individuals observed over T
periods each, and we observed the value function differences Z = {Z,,i=1,N;t=1,T} and the




complete set of wages W = {(W;,,,Wy),i=1,N;t=1,T} for all alternatives. This is:

‘C‘B(Wsz} Bbﬁmzu O',',ﬂ')

= O I(2m) Y |~ Wy Wy exp) —
it ¢

(XT

€

[EnWm—Xm ﬁl]’ o [EDW:I:_XH: B,

LnW, X, 3, LnW X, B3,

(15)
- (2m) ‘ma,,'lexp{—.% (Z, —W,, + Wy — S,.I;n')zlaz}

- I[Z,20 if dy, =1, Z,<0 ifd, = 0]

Given flat priors, the joint posterior density of the structural parameters (8,,8;,Z,0,), the
parameters characterizing expectations =, the unobserved wages {W; when d,=0 for
i=1,N,j=1,2,t=1,T}, and the value function differences {Z;,i=1,N;t=1,T}, is proportional to
the likelihood in (15).

It is not feasible to construct this posterior density analytically, because of the high
dimensional integrations over the unobserved wages and value function differences that are
involved. For instance, to form the joint posterior of the parameters of interest (8,,8,,£,,0,,7),
we must perform an N*T*2 dimensional integration over the unobserved wages and value
function differences.

But it is possible to simulate draws from the posterior using a Gibbs sampling-data
augmentation algorithm. To implement this algorithm, we factor the joint posterior density (15)
into a set of conditional densities, each of which can be drawn from easily. Then, we repeatedly
cycle through these conditionals, drawing from each one in turn. As the number of cycles grows
large, the draws so obtained converge in distribution to that of the complete joint posterior (See
Gelfand and Smith (1990) or Geweke (1995b) for a discussion of convergence conditions).

Our Gibbs sampling-data augmentation algorithm consists of six steps or "blocks." To
start the algorithm off, we need an initial guess for the model parameters (8,,8,,Z,,0,,%), and
for the unobserved wages. Then, the six steps are:

(S1) Draw the value function differences {Z,,i=1,N;t=1,T}

(82) Draw the unobserved wages {W;, when d;;=0 for
§
i=1,N,j=1,2,t=1,T}

(S3) Draw (8,8,

|




{S4) Draw L,
(85) Draw =
(86) Draw o,

Return to step S1.
Each loop through steps S1 through S6 is referred to as a "cycle" of the Gibbs sampler.
We now describe the steps in detail.

Step 1
With everything else known, the Z; have a simple truncated normal distribution. We

have:
Zk -~ T+N(-Wiu+wi2:‘siltwaoi) if di1t=1
Z, ~ T"N(-Wm-{-Wm—Siu‘Jr,o,l,) if d,=0

where T* indicates the normal is truncated from below at 0, while T indicates the normal is
truncated from above at 0. It is straightforward to draw from these distributions using an
inverse CDF method.

Sep 2
With everything else known, the unobserved wages still have a rather complex
distribution. Suppose W,,, is unobserved. The kernel of its density is:

EWi) = Wire e€xp{-s{ln WyXy8-M)Y 02}exp{-5(Zi- Wiy, + Wip-Sipem)¥ o2}

where N, = 0O,, €/ o5, and ot = o (1-( 0., / 0, o, )?). Notice that the
appearance of log wages on the left hand side of the wage functions and the level of wages in
the payoff functions creates a density that is difficult to draw from (because the inverse CDF
must be constructed using quadrature methods).

Rather than using an inverse CDF method, we draw from this density using a more
efficient acceptance/rejection (A/R) method described in Geweke (1995a). In this case, g(Wj;,)




is the "target" density kernel. The "sampling" density kernel is:
h(Wy) = Wi-}t: exp{-3(In W;;-Xiu8-A0% ot}.

Note that one can draw wages from this density simply by drawing log wages from the normat
density kernel exp{-i(in W;-X;8;-A\)¥¢?} and then taking the anti-log. The acceptance
probability in the A/R algorithm is:

{ m’?vx g(W)/h(W)} g (W, )/h(Wiy).

Note that the first term in the acceptance probability is a normalizing factor that sets the
maximum acceptance probability, which occurs at the point where the g(W)/h(W) ratio is
greatest, equal to one.

To examine the acceptance probabilities more closely in our case, define p;, = Z;+ Wy
S;m. Then the ratio of the target to the sampling density kemel is:

g(Wu/h(Wi) = exp{-3(Wyepsr)?/ 0?;}

If p;;, >0 then this is maximized at Wy,=pu;;,, the normalizing factor { max g(W)/h(W}}'is
simply 1 (since the sampling density kernel is always at least as great as the target density
kernel), and the acceptance probability is g(W;)/h(Wy). If, on the other hand, p;;, <0 then,
given the constraint that wages must be positive, the ratio g(W)/h(W) approaches its maximum
exp{-uh/2a2} as W—0. Thus, the acceptance probability is exp{u},/202}g(Wy,)/h(W,,). Finally,
note that gy, = Wy, +m;,, so that negative values will be a rather rare event provided that o2 is
small relative to o .

Step 3 .
With everything else known, the density of (8,,8,) is just:

l'znwut_xm B 1] » [Enwm'_xm B 1]

€

-1 -1 1
EI L DI Bl o =

LW Xy, B, enW, X, 3,

Note that, as a function of (8,,8,), this is just the kernel of a multivariate normal density. This
can be constructed by estimating a seemingly unrelated regression (SUR) system in which the
first equation is the In Wy, equation and the second is the In W, equation. Since I, is known

10
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we apply a GLS transformation. Then (8;,8,) is distributed according to the standard GLS
formula:

8 ~ NIX'ZX)y'X'TlIn W, (X’E'X)"]

where $=(3,,8,)’, Z=L,®Iy, X is defined as a matrix with the X;;, in the upper left block,
X, in the lower right block, and zeros in the upper right and lower left blocks, and In W is
defined as a vector with the In W, stacked on top and the In Wy, on the bottom. It is
straightforward to draw (8;,8;) from this bivariate normal density.

Stepd - S § .
With everything else known, 7' has a Wishart distribution. Define ey = In Wy-X;8;.
Then, 7! has the distribution;

7~ W[ E;E (€1 €20 (e €2, NT]

It is straightforward to draw from the bivariate Wishart, and then invert the draw for £7* to
obtain a draw for £..

Step 3
With everything else known, = has the density:

H H (024 'm%lexP{‘%(Zi;'Wm"'Wizf'sinf)/ Oﬁ}
i
Note that, as a function of =, this is the kernel of a multivariate normal density. This can be

constructed by running a regression with the Z,-W;; + W, as the dependent variable and the S;;,
as the independent variables. Then = is distributed according to the standard OLS formula:

x ~ N((S’S)'S'Z",6%(S’S)™)
where S is the matrix consisting of the stacked §;;, vectors and Z is the column vector consisting

of the stacked Z,-W,,,+ W, values. It is straightforward to draw from this using a multivariate
normal random number generator.

11




Step 6
With everything else known, ¢, has an inverted gamma distribution. Since 7, = Zy
Wi+ WpS;mr, we have that:

XX /e~ $m

To draw o,, just draw a x* random variable with NT degrees of freedom, set this equal to the
quantity 22 n?/o%, and choose g, accordingly. "
4

12




II. Experimental Design

In order to evaluate the performance of the method described in sections I and II, we
have performed several Monte-Carlo experiments. In these experiments, we generated data from
the occupation choice model in equations (4)-(6), using the following parameter values:

].n Wilt = 9-425 -+ '033Xi1t - O.OOOSX?It + .OOOXﬁt + .OOOOX%:: + Eint

gk g

In W, = 9.000 + .067Xp, - 0.00103%, + .022X;, - .0005X%, + ey

€ | ]| O 0.0400 0.0000
€ 0 {"|0.0000 0.0625
g, = 400

We set N, the number of individuals, equal to 500, and T, the number of time periods, equal
to 40.

We generated data from this model using two different assumptions about how agents
form their expectations. In one case, we assume that agents solve a dynamic programming (DP)
problem to generate the optimal decision rule, using a discount factor of § = (.95. Since there
are only two alternatives, and given the simplicity of the state space, it is straightforward to
solve this DP problem analytically. The DP solution gives us the future components of the value
functions associated with each alternative in each state in each time period. That is, we obtain:

F(XyHduot) = SE[V(Si(t+1))[8,(D),du]

for X, = 0,t-1, dy;, = 0,1, and t=1,T-1. Given these objects, we can form the optimal
decision rule (10). Then, by drawing values of the stochastic terms {e;,, ¢, 7:}.t=1,T,i=1,N,
we simulate lifetime occupational choice and wage paths.

A problem with using data generated in this way is that in our Gibbs sampling algorithm
we constrain the f{X;;,+1,t) functions to lie in a space spanned by finite order polynomials. But
if the agents in the artificial data are solving a DP problem to form optimal decision rules, then
neither the future components of the value functions F(X;,+d;,,t), nor their differences across
choices, f(X;,+1,t), will lie in a space spanned by finite order polynomials. Thus, we have a
misspecification of the true data generating process.

13




It is of interest to see how the algorithm performs when the data generating process is
correctly specified. Thus, we also generated data under the assumption that agents use a
decision rule in which the future component is 2 polynomial in the state variables. To construct
this polynomial, we regressed the f(X;,+1,t) functions obtained from solving the DP problcm
on a 6th order polynomial in the state variables. The form of the polynomial is given in
equation {12) and the subsequent discussion. We then used the fitted values from this regression
as the f(X;,+1,t) functions in the decision rule (10).

We find that the 6th order OLS fitted polynomial approximation to the future components
gives a very good approximation to the optimal decision rule in two senses. First, the R? from
the regression is .932. Second, and more importantly, we determined that agents wealth losses
from using the suboptimal decision rule based on the polynomial future component rather than
the optimal rule obtain by solution of the DP problem are trivial.

To determine the wealth loss from using the suboptimal decision rule we constructed two
types of artificial data sets, each with N=500 and T=40. In one, agents used the optimal
decision rule while in the other they used a decision rule based on the 6th order polynomial
approximation to the f(X;,+1,t) functions. The results are reported in table 1. The data sets
labeled 1 through 5 were constructed using five independent sets of draws for the ¢,,, € and
n,. But for each set of draws we constructed two artificial data sets. In one agents use the
optimal decision rule based on the future components obtained from solution of the DP problem.
Henceforth we call these data sets 1-EMAX through 5-EMAX. In the other agents use the
polynomial approximation to the future components to form a decision rule. Henceforth we call
these data sets 1-POLY through 5-POLY. Any differences in choices between the corresponding
EMAX and POLY data sets results only because the future components of the value functions
differ. Across the five experiments, the average wealth loss among the set of agents using the
suboptimal rule is 8.8 hundredihs of 1 percent. The finding that wealth losses from using a
simple polynomial approximation to the optimal decision rule are small is consistent with the
findings of Krusell and Smith (1995).

Table 2 reports on various characteristics of the artificial data sets. For data sets 1-
EMAX and 1-POLY we report the fraction of agents who choose alternative 1 at each age, and
the mean accepted wage in occupations 1 and 2 at each age. With these parameter values,
occupation 1 can be thought of as "unskilled labor" while occupation 2 is “skilled labor." The
mean of the offer wage distribution for inexperienced workers is higher in occupation 1, but in
occupation 2 wages rise more quickly with experience. It is also the case that experience in
occupation 1 raises offer wages in occupation 2, but not vice-versa. Together, these features

14




create an “occupational ladder" in which workers have some tendency to shift from 1 to 2 as
they get older. #

Table 3 reports the results from applying the Gibbs sampling algorithm describé’gl in
section II to the POLY data sets. After a sufficient number of "burn-in" cycles so as to achieve
convergence (with the criteria to be discussed below), we used the next 2000 cycles to simulate
the joint posterior distribution. The column labeled "True" in table 3 contains the data
generating values for the structural parameters (8,,8;,Z,,0,) and the 21 polynomial coefficients
= that capture expectations. The column labeled "Mean" contains the posterior means, followed
in the subsequent columns by the posterior median, posterior standard deviation, and the
minimum and maximum draw.

Overall, the results in table 3 are quite impressive. For instance, in the runs on the 1-
POLY data, 2-POLY and 4-POLY data sets, the posterior means for all the wage equation
parameters are all within two posterior standard deviations of the data generating values, and
most are well within one standard deviation. The posterior mean for the wage error correlation
is slightly more than two posterior standard deviations above the data generating value in the run
on the 3-POLY data set, while the posterior mean for the occupation 2 wage error variance is
slightly more than two posterior standard deviations above the data generating valve in the run
on the 5-POLY data set.

Table 4 contains OLS regressions of accepted log wages on experience, ignoring the
dynamic selection bias that is generated by agents’ decision rule, for the 1-POLY through 5-
POLY data sets. These estimates show substantial biases for all the wage equation parameters.
Thus, it is clear that the Gibbs sampling algorithm is doing an impressive job of implementing
the appropriate dynamic selection correction.

The results in table 3 also indicate that there is difficulty in pinning down ,, the standard
deviation of the nonpecuniary component of payoffs. In the runs on data sets 1-POLY, 2-POLY
and 4-POLY, the posterior means for o, are well above the data generating value. However,
some investigation revealed that choices are quite insensitive to rather large changes in .
Recall that the true value of ¢, is 400. In an experiment we regenerated one of the artificial data
sets using the same sets of draws for the €, ¢, and n;, but scaling o, up to 600. In that case,
97.4 percent of choices remained identical. When we scaled o, down to 200, 97.4 percent of
choices also remained identical. Thus, it is not surprising that ¢, is hard to identify.

Finally, we note that for the most part the algorithm does a good job of uncovering the
true values of the polynomial coefficients « that capture expectations. But a close examination
reveals that we tend to better on the lower order polynomial terms. In particular, the draws for

15



w1, the coefficient on the 6th order experience term, are usually too high. This suggests we
may have some trouble capturing the future comporents that agents assign to choices near the
end of the life cycle. (Some evidence to this effect is reported below).

~ More interesting is an analysis of how the algorithm performs in the case where agents
do in fact use the optimal decision rule. Table 5 reports the results for artificial data sets 1-
EMAX through 5-EMAX. The column Iabeled "True" still contains the data generating values
of the structural parameters. However, for the = coefficients we simply reproduce the
coefficients from the OLS regression of the f(X;,+1,t) functions obtained by solving the DP
problem on a 6th order polynomial in the state variables. Thus, these = values are only reported
so that we can gauge the extent to which the Gibbs sampling algorithm obtains a polynomial fit
to the future components that looks similar to the OLS fit.

The results in table 5 are again quite impressive. There are a few instances in which the
structural parameters in the wage equations are (slightly) more than two posterior standard
deviations away from the data generating values. These include: 1) the occupation 2 own-
experience linear and quadratic terms in data set 1-EMAX, 2) the occupation 2 cross-experience
linear and quadratic terms in data sets 1-EMAX and 5-EMAX, 3) and the occupation 1 cross-
experience linear and quadratic terms in data set 3-EMAX. But these four instances are not of
much concern, because in each case where the linear term in the quadratic function is too big
(small), the quadratic term is also too big (small). Such problems in pinning down the exact
curvature of quadratic functions is common in data sets of this size, even when the data
generating process is correctly specified. The posterior mean for the wage error correlation is
also slightly more that two posterior standard deviations below the data generating value in data
sets 1-EMAX and 4-EMAX.

Table 6 contains OLS regressions of accepted log wages on experience, ignoring the
dynamic selection bias that is generated by agents’ decision rule, for the 1-EMAX through 5-
EMAX data sets. These estimates again show substantial biases for all the wage equation
parameters. Thus, the Gibbs sampling algorithm continues to do an impressive job of
implementing a dynamic selection correction despite the fact that agents’ decision rule is
misspecified due to the 6th order polynomial approximation.

Returning to table 5, we see that we again have difficuity in pinning down g,, just as with
the POLY data sets. It’s posterior mean is well above the data generating value in the runs on
data sets 2-EMAX, 4-EMAX and 5-EMAX. But again, it appears that choices are little affected
by changes in the magnitude of o, on the order we observe here.

Figure 1 contains the simulated posterior densities for each of the structural parameters,
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using data set 3-EMAX. In each figure, a vertical bar indicates the true data generating value
of the parameter. Tick marks along the horizontal axis indicate the posterior mean and points
one and two posterior standard deviations away from the mean. Except for the cross-experience
and cross-experience squared coefficients in occupation 1, the posterior means are all very close
to the data generating values. An interesting feature is the bimodal density for o,.

Figure 2A reports the joint posterior density for the linear and quadratic terms in
occupation 1 own experience for data set 3-EMAX, while figure 2B reports the same information
for the cross experience terms. These figures illustrate the strong negative correlation between
the linear and quadratic terms, which is the source of the problem in pinning down these terms
individually that was mentioned above.

Returning to table 5, a comparison of the posterior means of the = parameters with the
OLS estimates obtained by regression of the actual f(X,+1,t) functions on a 6th order
polynomial in the state variables reveals many substantial differences. Thus, the polynomial
approximation to the future components in the agents’ optimal decision rule generated by the
Gibbs algorithm appears (superficially) to be quite different from that generated by OLS
regression.

Table 7 contains an analysis of how well the approximation to agents’ decision rule
obtained by the Gibbs algorithm matches the agents’ optimal decision rule, The following
experiment was performed: For each of the data sets 1-EMAX through 5-EMAX, we formed
the polynomial approximation to the f(X;;,+1,t} function implied by the posterior means for the
@ parameters obtained from the respective runs. We then used these polynomial approximations
to the f(X;;,+1,t) functions to form an approximate versions of agents’ decision rule (10). We
then regenerated each of the 5 data sets, using the exact same draws for the ¢, € and #,, but
with the polynomial approximations replacing the optimal f(X;,+1,t) functions in (10). The
average wealth loss across the 5 data sets if agents use these suboptimal decision rules is 7.6
hundredths of 1 percent. This is actually slightly smaller than the average wealth loss of 8.8
hundredths of 1 percent obtained when OLS estimates of the w parameters were used (see table
1).

Figures 3, 4 and 5 compare the true values and polynomial approximations to the
f(X;,,+1,t) - the difference between the future component associated with choice of occupation
1.and that associated with choice of 2. TFigure 3A plots the true values of the f(X;,+1,t) at
various state points that arise in periods 1 through 5, while figure 3B plots the polynomial
approximation. The horizontal axis shows the level of occupation 1 experience at each state
point.
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For example, in period 1 the only possible state is zero experience in occupation 1.
That point is indicated by a box in figures 3A and 3B. In that state, the true value of f(X;,+1,t)
= f(1,1) is minus $2653. The value is negative because the return to experience is less in
occupation 1 than in occupation 2. The polynomial approximation is minus $2523.

In period 2 there are two possible states - either one or zero periods of experience in
occupation 1. These two points are indicated by shaded hour glasses in figures 3A and 3B.
When occupation 1 experience is zero, the true value of {(Xj+1,t) = f(1,2) is minus $3022.
The polynomial approximation is minus $2945. When occupation 1 experience is one, the true
value of f(X;+1,t) = £{2,2) is minus $2805. The polynomial approximation is minus $2837.

Overall, figures 3, 4 and 5 show that the Gibbs sampling algorithm does an excellent job
of uncovering agents’ expectations. As figure 4C indicates, the polynomial approximations to
the f(X;,+1,t) functions are generally within a few hundred dollars of the true values at state
points that may arise over the first periods. Figure 4C also shows that the accuracy of the
approximation deteriorates over certain regions of the state space that may arise in later periods.

This pattern, whereby the inferences about the future components of the value functions
deteriorate with age, is to be expected for two reasons: First, since in later periods there are
more possible states, the data will tend to contain fewer agents at each state point. Thus, there
is less data to pin down the f(%;,+ 1,t) functions at those less frequently observed state points.
Second, as agents age they tend to specialize in either occupation 1 or 2. As a result of human
capital accumulation, the current payoff function realizations for that occupation in which an
agent specializes come more and more to dominate those for the alternative occupation. Thus,
with age, choices become less influenced by the future components, and the data therefore
contains less information about them.

Despite the fact that our inferences about the future components of the value functions
tend to deteriorate with age (at least over certain regions of the state space), figures 5A and 5B
indicate that the Gibbs sampling algorithm does a good job of picking up the overall shape of
the f(X;,+1,t) functions over the whole life cycle.

Finally, figure 6 contains graphical evidence on convergence of the Gibbs sampling
algorithm for data set 3-EMAX. To gauge convergence we used such graphical evidence.
Specifically, we constructed charts of the draws by cycle and the posterior means by cycle, and
let the Gibbs sampler run until it appeared that the distribution was stationary. We found that
from 5,000 to 18,000 cycles were necessary to achieve convergence, with substantial variation
across runs. For data set 3-EMAX, we concluded that convergence had been achieved after
18,000 cycles, Each cycle required approximately 12.6 seconds on an IBM RISC 6000 model

18




360. That is 0.0252 seconds per person, and 0.00063 seconds per person-year.

V. Conclusion

In this paper we have illustrated a method for Bayesian inference in dynamic discrete
choice models that does not require the econometrician to make strong assumptions about how
agents form expectations, or to solve the agents’ dynamic optimization problem. In this method,
we use observed data on agents’ choices and payoffs to infer both the structural parameters of
the payoff functions that agents confront, and the agents’ expectations of the values of occupying
different states. The results of our numerical application to artificial data generated from a
human capital based occupational choice model indicate that the method does of good job both
of drawing inferences about the structural parameters of the payoff functions and of drawing
inferences about expectations.

Qur results indicate that misspecification of agents’ decision rules, in the form of
assuming that the future components of the value functions follow a 6th order polynomial when
in fact they are the discounted values of the EMAX functions that come from a solution of a
dynamic programming problem, is a "second order" problem in two senses. First, it has a
negligible effect on inferences with regard to the structural parameters of the payoff functions.
Second, the misspecified decision rule that we infer from the data is very close to the optimal
rule - in the sense that if agents were to use our suboptimal rule rather than the optimal rule it
would lead to trivial wealth losses.

In future work, we plan to investigate how our method performs if the current payoff
functions are misspecified. Then, we will compare this to the performance of full solution
methods under misspecification of the current payoff functions. We conjecture that in statistical
inference for dynamic optimization models the misspecification of the current payoff functions
is a “first order" problem relative to the misspecification of the future component of the value
functions.

The Gibbs sampling-data augmentation approach to Bayesian inference that we have used
here has previously been successfully applied to inference in static discrete choice models in
work by McCulloch and Rossi (1994) and Geweke, Keane and Runkle (1994a,b), among others.
The results here indicate that the method also works well in selection type models. This
outcome was not obvious from the previous results because of potential problems associated with
the step of the Gibbs algorithm in which the unobserved wages are drawn. As we have
described, this step is significantly more complex than the step in which latent utilities are drawn
in a pure discrete choice framework without observed payoffs.
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Table 1

Quality of the OLS Estimated Polynomial Approximation to
the True Future Component

Error Set

[ b2
10
jw
£
1

Mean* Wealth** with True
Future Component 354534.72 354912.58 356430.12 355723.35 355438.58

Mean* Wealth** with

Polynomial Approximation 354404.31 354401.22 3560092.88 355612.60 354526.21
Mean* Dollar Loss 130.43 511.37 337.24 110.75 512.37
Mean* Percent Loss 0.03% 0.14% 0.05% 0.03% 0.14%

Percent Agreement
in Choices

Rggregate 92.40% 92.80% 90.60% 93,20% 92.80%
By Age

1 97.60% 97.80% 95.00% 96.20% 96.80%

2 98.00% 98.80% 97.40% . 87.20% 98.20%

3 88.60% 98.40% 87,60% 98.60% 98.20%

4 96.60% 96,60% 95, 40% 97.40% 97.20%

B 94.,40% 95,20% 93.20% 96.00% 87.00%

10 80 .40% 88.60% 89.80% 91.40% 87.20%

20 91.20% 93.00% 81.20% 92,60% 92.40%

30 91.80% 92.20% g1.40% 94.60% 93.60%

40 92 ,60% 93.40% 90.60% 93,20% 92.80%

* Mean is taken over 500 agents that live for exactly 40 periods,

** “¥aalth" is defined as the discounted stream of ex-post lifetime earnings,
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Table 2

Choice Distributions and Mean Accepted Wages in the Data
Generated with True and OLS Polynomial Future Components

Period

Data Set 1-EMAX

Data Set 1-POLY

Mean Accepted Wage

Percent

in Occ. 1 Oce. 1 Occ. 2
68.20% 13518.85 10157.72
64.20% 14075.90 10333.34
63.60% 14255.73 10412.94
61.60% 14711.21 10720.55
57.80% 15149.64 11265.89
53.40% 15074.74 11386.17
51.20% 15873.34 12043.18
53.60% 16110.32 12483.63
46.80% 16435.97 12807.57
45.40% 16880.64 13191.99
£43.20% 17147.20 13546.29
44.80% 17228.21 14183.09
37.80% 17581.22 15073.7¢
37.80% 17434.20 15696.70
36.80% 17880.31 16124.57
32.60% 18237.00 16864.88
31.80% 18776.79 17215.52
33.00% 18915.48 18427.82
32.40% 18928.04 18692.19
26.60% 15465.56 18474.62
30.20% 20174.20 20024.03
30.80% 15771.71 20891.76
28.20% 19931.867 21044.38
27.20% 19612.29 22108.70
27.40% 20484.94 22476.02
26.80% 19880.57 23026.35
26.40% 21125.67 23990.42
27.00% 20889.27 23755.55
25.40% 20784.30 25535.36
26.60% 21159.77 25761.60
25.60% 21421.28 26887.25
24.40% 21271.78 26857.47
24.00% 20470.71 27392.54
23.20% 22078.95 27582.74
24.80% 21493.14 27957.00
23.40% 21680.03 277599.76
23.80% 21546.08 28819.30
22.20% 21255.37 29480.34
21.20% 20816.65 29277.87
22.00% 21680.48 28889.35

Mean Accepted Wage

Percent
in Ccec. 1 Oce. 1 Qce. 2

€5.80% 13582.70 10090.85
62.20% 14143.4% 10270.84
62.60% 14273.48 10410.98
60.20% 14722.20 10736.39
56.60% 15126.34 11352.12
52.40% 15024.08 11511.15
49.80% 15916.81 12104.61
50.60% 16366.56 12351.35
44_.40% 16580.96 12849.18
43.40% 17012.38 13276.41
40.20% 17178.43 13654.06
40.40% 17345.29 14210.80
36.20% 17702.36 15086.65
34.40% 17385.17 15704.33
35.20% 17708.52 16266.56
31.60% 18031.73 16956.84
29.60% 18524.06 17288.61
31.80% 18754.68 18460.48
30.40% 19070.55 18728.53
26.20% 19173.03 18581.50
29.60% 20105.41 20154.48
29.80% 19752.06 21014.38
28.20% 19888.64 21126.76
27.00% 19896.59 22160.10
27.60% 20275.29 22661.92
26.00% 19946.60 22855.08
25.60% 21112.75 23%11.17
28.20% 20743.88 2398%.04
24.60% 20844.08 25487.78
25.20% 21157.22 256%91.86
25.60% 21302.05 26904.03
23.80% 21276.90 26786.20
22.80% 20497.13 27373.38
22.20% 22101.79 27459.55
22.80% 22002.08 27700.57
22.20% 22047.80 27706.19
22.20% 218896.35 28533.66
21.00% 21475.40 2%466.02
20.80% 20882.50 29241.84
20.60% 21976.99 28583.09




Table 3

Descriptive Statistics for Final 2000 Gibbs Sampler Parameter Draws for Several
Different Data Sets Generated Using Polynomial Future Component

Data Set l-~Polymomial

Parameter True ‘Mean Med 3D Min Max

Qce. 1 Int. 9.42500 9.42581 9.42574 0.00480 9.41139 5.44243

Occ. 1 Own Exp. 0.03300 0.03262 0.03260 0.00074 0.03005 0.03516
occ. 1 Own Exp. Sg. ~0.00050 -0.0004% -0.0004% .0.00002 -0.00055 -0.00043
1 Other Exp. 0.00000 0.60102 0.00103 0.00099 -0.00197 0.00385

Occ. 1 Other Exp 3q. 0.00000 ~0.00005 -0.000GS 0.00003 -0.00014 0.00006
1 Error Var. 0.04000 0.03873 0.03876 0.00084 0.03618 0.04116

Ocec. 2 Int. 9.00000 9.00645 9.00668 0.00662 8.93432 9.03120

Oce. 2 Own EXp. 0.06700 0.06763 0.06764 O0.00100 0.06461 0.,07070
Occ. 2 Own Exp. S¢. =0.00100 ~0.00102 -0.00102 0.00003 -0.00111 -0.00093
Occ. 2 Other Exp. 0.02200 0.019e0 0Q.01961 0.0013% ¢.01453 0.02323
Occ. 2 Other Bxp Sq. -0.00050 -0.00043 -0.00043 0.00005 -0.00057 -0.00026
2 Error Var. 0.06250 0.06245 0.06244 0.006087 0.95%27 0.06540

Error Covariance 0.00000 -0.00154 -0.00150 0.00119 -0.00490 €.Q0177
Error Correlation 0.00000 -0,03122 ~-0.03046 0,02400 ~0.09783 0.03692
5D Eta {: 400,00 877.92 877.41 89.37 678.54 1045.30

PI 1 -2861.22 -2569.51 -2560.35 219.86 =3316.45 ~1921.61

PI 2 -717.03 -2789.23 -2811.85 580.0% -4242.62 ~1034.00

PT 3 2285.40 3883.24 3896.59 497.74 2274.22 528B3.83

PI 4 ~750.83 -1181.06 -1187.38 187.77 -16706.83 -535.21

PI 5 108.03 146.48 147,96 29.91 49.33 228.67

PT 6 -5.24 -6.57 -6.73 1.62 -11.01 -1.72

PI 7 137.86 1483.24 1510.31 376.34 342.40 2571.53

PI 8 =-5757.05 -6715.48 ~6674.38 767.26 -9364.73 —4448.55

PI 9 2835.75 2897.92 2933.42 403.07 1753.28 4081.22

P10 -437.15 -429.25 -438.14 79.04 -636.24 -213.40

PIL1L 21.28 20.94 21.34 4.82 8.04 32.91

PIlZ 3763.28 3612.86 3627T7.42 403.40 2471.73 4959.85

PIri3 ~2986.69 -2773.78 -2787.23 386.38 ~3758.32 -1896,12

PI14 479,48 485.87 478.12 892.89 279.73 T716.27

PI15 -20.18 -24.70 -23.84 6.48 ~4£3,35 -9.862

PIl6 897.49 882.39 872.97 153.68 479.70 1331.18

PI17 -88.54 -=161.07 -160.47 4%.31 -=313.72 -41.65

PI18 -4.,29 6.95 7.086 4.63 -4.713 21.68

PT1S -57.82 ~22.89 -23.23 15.22 -64.18 14.24

PIZ20 8.92 2.58 2.60 1.84 -2.66 7.87

D12l -0.74 0.00 0.00 0.20 -3.72 0.78




Parameter

Cecc. 1 Int.

Ocec. 1 Cwn Exp.

Qece. 1 Own Bxp. S5q.
QOce. 1 Other Exp.
Occ. 1 Other Exp Sg.
Ocec. 1 Error Var.

Ocec., 2 Int.

Ocec. 2 Own Exp.

Ccc. 2 Own Exp. Sq.
Qcc. 2 Othexr Exp.
Occ. 2 Other Exp Sqg.
Ccc. 2 Error Var.

Error Covariance
Brror Correlation

SD Eta

PI
PI
BI
Pl

av)
H
0O 1 Gy Ok O3 B

Data Set Z-Polynomial

True Mean Med
9.42500 9.423%75 5.42956
.03300 .03182 ° .03184
-.00030 ~.00047 -.00047
.00000 000306 .00038
.00000 ~.00001 =-.00001
. 04000 . 03960 . 039856
$.00000 2.01192 5.01213
-06700 .0B585 .06587
-.00100 -.00098 -.00098
02200 .02205 L02201
-.00050 ~.00051 -.00051
. 06250 . 06087 .06088
.00000 .00073 . 00068
. 00000 01494 .01410
C 400.00 626.78 598.40
-2861.22 -2831.80 -2840.92
-717.03 ~1238.40 -1233.04
2285.40 3026.43 3013.73
-790.83 -1021.39% -1012.77
108.03 127.16 126,22
-5.24 ~5.44 -5.41
137.86 1029.23 1047.37
=-5757.05 -6936.46 -6938.52
2835.75 30098.48 3094.69
-437.15 -415.57 -418.%¢6
21.28 17.25 17.60
3763.28 3907.54 3915.65
-29586.69 -2845.31 -2862.74
479.48 357.96 366.56
-20.18 -9.82 -10.1%
B97.49 802.56 817.72
-88.54 7.72 8.01
-4.20 -11.02 -10.9%9
-57.82 -81.937 -80.47
8.92 9.22 9.09
-.74 .00 .00

sD .

.00472
.00076
.00002
.00088
.00004
.00072

-00645
.00081
-00002

- .00122

.00005
.00087

. 00085
01721

79.67

187.41
619.12
504.76
152.72
19.56
-93
397.84
655.01
246.50
39.49
2.52
328.78
204.96
58,12
4.88
110.10
42.97
4.35
14.31
1.67
.16

Min

9.41350
.02913
-.00054
<.00234
-.00011
.03730

8.388975
-06275
-.00106
.017%6
-.00068
.05766

-.00145
-.02957

506.08

-3372.70
-2893.84
1355. 90
-1520.02
67.60
-8.44
-178.19
-8521.04
2349.86
-527.39
9.57
3006. 69
~3473.74
185.12
-20.26
465.36
-98.82
-23.64
-124.11
4.88
-.48

Max

9.44386
.03444
-.0Q00039
.00316
.00010
04224

9.03430
. 06822
-.0008%
.0260%
-.00035
. 06371

.00316
.06383

802.73

-2237.46
589.55
4489.56
-527.63
194.44
~2.84
2217.27
-5019.01
3813.03
-277.77
24.17
4682.20
-2295.56
476.69
4.23
1054.95
130.25
.44
-49.66
14.80
.57




Parameter

Occ. 1 Int.

1 Own Exp.
1 Own Exp. 8q.
1 Cther Exp.
1 Other Exp Sq.
1 Error Var.

Occ. 2 Int.

Occ. 2 Own Exp.

Occ. 2 Own Exp. 34g.
Cce. 2 Other Exp.
Ocec. 2 Other Exp 34g.
2 Error Var.

Error Covariance
Error Correlation

SD Eta

[uv]
H
W -dRnRnd NP

Data Set 3-Polynomial

True Mean Med

9.42500 9.42433 9.42428
0.03300 0.03339 0.03340
-0.00050 ~0.00050 ~-0.00050
0.00000 0.00178 0.001e1
0.00000 -0.00006 -0.00005
0.04000 0.03923 09.03821
9.00000 9.00963 9,00971
0.06700 0.06695 0.06694
-0.00100 -0.00101 -Q.00101
0.02200 90.02210 0.02205
-0.00050 -0.00054 -0.,.00054
0.06250 0.06177 0.06172
0.00000 0.00264 0.00253
T 0.00000 0.05376 0.05148
400.00 365.07 364.19
~2861.22 -2770.31 -2777.83
=717.03 ~1247.45 -1292.60
2285.40 2322.31 2321.32
-790.83 -667.07 -660.94
108.03 79.06 77.80
-5,24 -3.51 -3.37
137.86 425.65 383.70
-5757.05 -5055.43 -5088.36
2835.75 2158.62 2092.33
-437.15 -305.88 -291.50
21.28 14,22 13.7¢6
3763.28 3160.24 3134.61
~2986.69 -2267.32 -2158.70
479.48 353.01 355.7%
-20.18 =-15.51 -16.31
897.49 704.08 704.53
~88.54 -80.92 -85.28
-4.20 0.18 1.09
-57.82 -38.75 -38.10
8.82 4.37 4.31

~0.74 0.00 0.00

.. 5D

0.00463
0.00076
0.00002
0.00105
0.00004
0.00062

0.00596
0.00087
0.00003
0.00135
0.00005
0.00091

0.00073
0.01502

23.43

233.39
634.46
458.09
159.63
23,52
1.21
468.02
682.36
306.03
50.34
2.98
318.48
285.97
76.52
5.81
121.60
52.39
4.77
12.65
1.44
0.09

Min

'9,40993
0.03085
-0.00058
-0.00067
-0.00020
0.03713

8.99033
0.06439
-0.0010%
0.01751
-0.00069
0.05870

0.00030
0.01793

318.61

-3483.21
-2860.29
1051.95
-1137.73
26.01
-6.63
-772.88
-6733.75
1491.26
-433.52
8.25
2367.18
-3054.56
201.23
-27.39
374.88
~192.48
-11.12
-68.47
0.87
-0.31

Max

9.43982
0.035%92
-0.00043
0.00572
0.00003
0.04122

9.02821
0.06585
=0.00093
0.02611
-3.00037
0.06464

0.00460
0.09445

439.33

-2067.96
468.68
3507.73
-275.26
145.97
-0.94
1658.885
-3301.32
2980.31
-219.99
21.05
3868.82
-1740.23
515.07
=2.77
946.47
37.69
10.82
-8.70
8.12
0.35




Data Set 4-Polynomial

Parameter True Mean Med SD Min Max

Occ. 1 Int. 9.42500 9.42540 9.,42547 .00492 9.40842 9.44164

Occ. 1 Own Exp. .03300 .03293 .03292 .00078 .030490 .03536
Occ. 1 Oown Exp. Sq. ~.00050 =~-.00050 ~.00050 .00002 -.00057 -.00042
Ccc. 1 Other Exp. . 00000 . 00130 .00136 .00118 -.00221 . 00455
Qcc. 1 Other Exp Sq. L00000 -.00007 -.00007 .00004 ~.000L7 . 00006
Occ. 1 Brror Var. . 04000 .03856 03951 .00088 .03734 .043086
Oce. 2 Int. 3.00000 B8.89872% 8.8%712 .00725 8.97404 9.02495

Occ. 2 Own Exp. 06700 .06876 06873 .000s2 . 06592 .07195
Occ. 2 Own EBxp. 5d. ~.00100 -.00104 ~.00104 .00003 ~-.00113 -~.00095
Ocg. 2 Other Exp. . 02200 .02076 .02073 .00136 .01647 . 02504
Occ. 2 Other Exp 3Sq. -.00050 -.00051 -.00051 .00007 -~-.00071 -.0002%9
Gce. 2 Error Var. . 06250 .06154 . 06156 .00089% . 35855 . 06466
Error Covariance .00000 -.00174 -~.00147 .00135 -~.00618 .00136
Error Correlation .00000 -.03505 =~,0298% .02682 -~.12191 .02781
SD Eta [ 400.00 674.58 724.84 113.83 464.21 870.08

PTI 1 ~-2861.22 ~2536.40 -2550.50 158.81 —-3162.43 -1869.93

PI 2 -717.03 -18%9.82 -1866.77 597.81 ~3981.71 -324.84

PI 3 2285.40 3274.33 3279.02 541.34 1878.76 529%4.37

PI 4 -790.83 ~1142.62 -1154.73 227.3% -1802.83 -509.60

PI 5 108.03 153.3% 154.55 38.35 54.00 254,71

PI 6 =5.24 -7.11 -7.12 2.19 -12.19 -1.56

PL 7 137.86 278.15 287.62 415.08 -901.18 1643.12

PI 8 -5757.05 -5816.11 ~-5851.45 780.33 -8438.24 ~3608.96

PI 9 2835,75 3034.69 3042.88 495.56 1902.69 4344.79

PILQ -437.15 -458.75 -450.83 898.94 -711.45 =243.92

P11l 21.28 21.68 21.03 5.84 g8.84 36.80

PI1Z2 3763.28 3833.76¢ 3885.07 460.40 2655.1% 5097.36

PI13 -2986.69 -3270.66 —-31%80.73 446.07 -4447.08 -2364.28

PI1l4 479,48 520.19 503.08 98.28 300.93 306.76

PI15 -20.18 -22.55 ~-22.16 6.26 -42.31 -8.80

PIl6 897.49 1025.35 1005.58 146.49 €69.54 1456.10

PI1T -88.54 ~110.%3 -112.27 41.10 -237.68 -7.12

PI18 -4,20 -.55 -.30 -3.60 ~3i1.21 9.76

PIlS -57.82 -56.08 -54.55 10.77 -94.00 -29.06

PI20 g.92 6.34 65.18 1.31 2.81 11.44

PI21 ~.74 -.01 -.01 .16 -.58 .47




Occ.

Cce.

Occ. 2 Own Exp.

Ocec. 2 Own Exp. Sq.
Qcc., 2 Other Exp.
Occ. 2 Other Exp Sg.
2 Brror Var.

Parameter

1 Int.
1 Oown Bxp.

1 Own Exp. Sq.
QOce, 1 Other Exp.

1 Cther Exp Sq.
1 Brror Var.

2 Int.

Error Covariance
Error Correlation

SD Eta

o
H
O = s M

Data Set 5-Polynomial

True

9.42500
0.03300
~-0.00050
0.00000
0.00000
0.04000

9.00000
0.06700
-0.00100
0.02200
~0.00050
& 0.06250

0.00000
0.00000

400.00

-2861.22
-717.03
2285.40
~750.83

108.03
-5.24
137.86

-5757.05
2835.75
-437.15

21.28
3763.28
-2986.69
475.48
-20.18
897.49
~88.54

Mean

Med

9.42477
0.032596
-0.00050
8.00076
~0.00004
0.03985

8.55958
0.06761
~0.00101
0.02077
=0.00047
0.06464

-0.00103
-0.02031

594.25

~2823.83
-1374.43
3054.51
-1038.84
133.97
-6.00
845.36
-6881.36
3233.48
-458.84
20.34
4110.59
-3191.07
436.44
-14.51
930.51
-10.34
-10.70
-91.47
10.36
-0.02

9.42472
0.03238
-0.00050
0.00Q73
~-0.00004
0.03586

8.98851
0.06763
-0.00102
0.02074
-0.00047
0.06463

-0.00104
-0.02052

557.47

-2805.36
-1412.63
3043.68
-1034.14
135.1¢
-6.08
836.20
-6898.43
3244.04
-458.11
19.74
4123.52
-3161.70
416.69
-13.18
905.86
-8.62
-10.60
-90.78
10.30
-0.02

8D

0.00470
0.00076
0.00002
0.00104
0.00004
0.00068

0.00605
0.00092
6.00003
0,00127
0.00005
0.0008S

0.00072
0.01404

128.49

217.86
547.50
531.96
189.35
27.80
1.48
388.94
747.04
335.08
64.93
4.37
324.99
270.15
87.82
7.28
120.27
60.63
5.70
14.01
1.66
¢.1s5

Min

5.40829
0.03054
=0.00057
-0.00208
-(.00018
0.03736

8.97836
G.06416
~-0.00112
0.01648
-5.00063
0.06183

~-0.00358
-0.07029

406.23

-3476.93
-2886.53
1513.29
-1631.32
60.67
-10.06
-163.08
~-8901.33
2276.31
-640.20
10.43
3038.34
-4116.02
292.87
-42.01
606.35
=225.97
-24.25
-128.67
5.12
-0.72

Max

9.44211
0.03549
-0.00043
0.00456
0.060007
0.04238

§.01842
0.07111
-0.00092
0.02466
-0.00030
6.06767

0.00083
0.01823

815.81

-2186.27
276.85
4599.72
-526.30
218.46
-2.32
1832.36
-4814.42
4172.79
-284.09
34.79
5013.84
-2538.56
783.30
-0.27
1370.58
129.68
8.04
-50.28
15.37
0.64




Table 4

OLS Wage Bguation Paramoter Estimates for Data Generated with Polynomial Future Componsnt (standard deviations in parentheses)*

Occupation One

Cacupation Two

Wage Error 2Ds

Qun Oty Other Other Own Own

Data Bet Intercept Exp. Exp. Squared ExXp. Exp. Squared Intercept Exp. Exp, Squared
Actual 9.42500 0.03300 -0.00050 0.00000 0.00000 9.00000 0.06700 -0.00100
1-POLY 5,51154 0.02621 ~0.00039 0.01970 -0.00049 5.17053 0.05818 -0,00083
(0.00458) {0.00071) {0.00002) (0.00104) (0. 00005} (0.00616) (0,00088) {0.00003)
2-POLY 9,51300 0.02633 ~0.00040 0.01591 -0.00050 9.17570 0.05665 -0,00079
(0.00486) (0.00077) (0.00002) {0.00103) (0.00004) (0.00620} (0.0Q008T) (0.00003)
3-POLY 9.51180 0.02707 ~0.00041 0.02029 -0.60053 9.16835 0.05781 -0.00082
(D.00463) {0.00073) (0.00002) {0.00104) (0. 00005) (0.00619) (0,0C087) (0.00003)
4-POLY 9,51410 0.02648 ~0.00040 0.02035 -0.00051 5.16211 ©.05899 ~0, 00084
{0.00460) (0.00072) (0,00002) {0.00102} {0.00004) (0.00623) {(C,00088) {6.00003)
5-POLY 9,51402 0.02696 ~0.00041 0.018988 -0.00053 8,17109 0,05834 -0.00082
(0.00472) {0.,00077) (0.00002) {0.00101) (0.00004) (0.00625) (0.00089) (0.00003)

Othex

¢.02200
0.01124
{0.00148)

0.01210
(0. 00163)

0.01306
(0.00187)

0.01213
{0.00161)

0.00881

Other

ExXp. Exp. Squared 0o, 1 Ooc. 2
~0.00080 0.20000 0.25000
0.00012 0.17728 0.22841
{0.00007)
0,00011 0.17862 0.22648
{0.00008)
g.00008 0,.17806 0.22836
(0.00008)
0.00007 0.17732 0,22673
(0,00008)
0.00031 0.17676 0.23088
(0.000085)

(0.00170)

*Results from simple OLS regression using only chserved wages and exparience.



Table 5

Descriptive Statistics for Final 2000 Gibbs Sampler Parameter Draws Ffor Several
Different Data Sets Generated Using True Future Component

Data Sef 1-EMAX

Parameter True Mean Med 5D Min Max

Occ. 1 Int. 9.42500 9.42126 9.42126 .00484 9.40353 9.43603

Ocec. 1 Own Exp. .033300 .03262 .03263 . 00078 .03000 .03492

Occ. 1 Own Exp. Sg. -.00050 -.00048 -.00049 .00002 =-.00057 -.00042

Qcc. 1 Dther Exp. - 000060 .0001S . 00016 .00084 -—-.00255 .00335

Occ. 1 Other Exp Sg. .00000 -.00005 -.00005 000063 -.00016 .00005

Ocec. 1 Brror Var. .904000 . 04072 . 04081 .00082 . 03785 .04268

Occ. 2 Int. $.00000 B8.99625 8.99657 .00689 B8.97321 9.01843

Occ. 2 Own EXp. 06700 065878 .06974 .00112 06571 .07325
Occ. 2 Own Exp. Sqg. -.00100 -.00107 ~.00187 00003 -.00117 -.00096 -

Occ. 2 Other Exp. .02200 .01803 .01802 .00138 .01365 .02383

Occ. 2 Other Exp Sg. '~ -=.00050 -.00041 -.00041 00005 -.00060 -~.00026

Occ. 2 Error Var. .06250 .06346 .06347 .00089 .06012 .06648

Error Covariance .00000 -.00256 -.00254 .00104 -.00521 .00003

Error Correlation .00000 -.05026 -—.04989 02026 -.10128 . 00066

8D Eta 400.00 412.45 383.08 90.60 280.71 571.85

PI 1 -2861.22 -2275.14 -2268.75 163.01 -2717.07 -1889.73

PI 2 ~-717.03 -2515.66 -2382.84 721.67 —4595.73 -1091.64

PI 3 2285.40 4402.92 4295.74 589.58 3152.15 5861.02

PI 4 ~790.83 ~1783.01 -1745.13 178.52 -2266.54 -1395.11

PI 5. 108.03 270.88 268.67 21.85 222.86 326.34

PI & ~5.24 -13.73 -13.78 1.02 -16.05 -11.15

P1 7 137.86 455,12 357.22 565,73 -988.30 19%15.07

PI 8§ -=-5757.05 -6780.05 —-6B00.54 628.35 ~-8488.48 ~5436.43

PI 9 2835.75 4184.87 4205.18 253.29 3567.70 4785.58

PI1O -437.15 -=747.73 -757.16 51.73 -870.11 -624.87

PI11 21.28 40.73 40.61 3.85 32.43 49.02

Pllz 3763.28 4108.51 4135.01 304.92 3349.37 4887.98

PI13 -2986.69 —-4432.14 -4446.77 226.42 ~5031.70 -3965.43

PI1l4 479.48 897.15 889.32 88.34 762.81 1125.58

PIl5 -20.18 -50.66 -49.66 7.71 -69.38 -37.82

PI16 897.49 1455.56 1439.65 84.79 1235.66 172%.37

PIL17 -88.54 -316.72 -306.49 63.99 -471.%4 -196.24

PI1l8 -4,20 17.186 16.51 6.42 3.54 31.86

PIL1S -57.82 -22.86 ~-24.30 18.34 -66.50 14.75

PI20 8.92 2.61 2.68 2.08 ~2.05 8.04

PI21 -.74 -.01 -.01 .18 ~-.73 .57




Data Set Z2-EMAX

Parameter True Mean Med SD Min Max

Oceg. 1 Int. 9.42500 9.42768 9.42754 .00486 5.41162 9.44391

Occ. 1 Own Exp. .03300 .03196 .03195 .00078 .02960 .03488
Occ. 1 Own Exp. Sq. -.00050 -.00047 ~.00047 00002 ~.00054 -.00040
Oce. 1 Other Exp. . 00000 .006S99 -00098 .00100 -.00329 .00473
Occ. 1 Other Exp Sq. .00000 -.00005 ~,00006 .00004 -,0001% 00010
Qce. 1 Error Var. 34000 .03858 .039857 00063 037170 .04161
Occ. 2 Int. 9.00000 9.00681 9.00698 ,00659 8.98613 9.02580

Occ. 2 Own Exp. .06700 . 06658 . 06655 - 00096 .06370 06967
Occ. 2 Own Exp. Sq. -.00100 -.00100 -.00100 .00003 ~,00110 -.00091
Ccc. 2 Other Exp. -02200 .02183 02179 -00150 .01855 . 02691
Occ. 2 Other Exp Sg. -.00050 -.00055 -.0Q055 .00006 -~.00074 -.00036
Occ., 2 BError Var. . 06250 .06132 . 06133 .00083 . 058395 06429
Error Covariance .00000 =~.0013% -.00131 .00126 -.00468 . 00227
Error Correlation 00000 -.02807 =-.02657 .02551 ~-.0393685 .04518
Sp Eta 400.00 923.32 940.83 86.61 718.30 1078.77

PI 1 -2861.22 -2466.07 -2462.99 196.85 -3016.62 -1911.88

PI 2 =717.03 -1209.73 -1236.76 634.31 -3164.75 851.48

PI 3 2285.40 38289.17 3814.17 613.10 2059.06 5472.48

PI 4 -790.83 ~1792.41 -1781.49 214.09 -2399.12 -1163.98

PI 5 108.03  287.78 287.38 31.49 186.533 376.17

PI & -5.24 -14.91 -14.982 1.64 -19.50 -9.52

PI 7 137.86 -38.20 -30.46 461.49 -1456.46 1535.78

PI 8 ~-5757.05 -7533.96 =-7458.22 858.56-10031.17 -4597.6%

PI S 2835.75 4826.8% 4791.51  391.18 3691.06 6014.80

PTI10 ~-437.15 -842.73 -838.31 72.96 ~-1054.19 -~-617.42

PI1l 21.28 44.52 44,38 4.61 31.55 56.75

PIl12 3763.28 4801.36 4779.32 387.29 3642.51 57985.23

PI13 -2986.69 —-4888.25 -4899.15 365.90 -6130.87 -3560.05

PIl4 475.48 898.91 897.14 102.49 647.13 1181.67

PI1% -20.18 -46.37 -46,17 8.02 -71.56 ~-23.77

PIl6 897.49 1468.11 1472.57 178.55 1030.87 1850.73

PI17 -88.54 -244,07 -241.5] 66.98 -482.06 -21.60

PI18 -4.20 9.44 9.30 7.03 -14.50 33.02

PI1S -57.82 -45.38 -43.78 24.53 -118.13 28.36

PI20 8.92 4,59 4.36 3.33 -3.60 14.88

FI21 -.74 .17 .20 .52 -1.40 1.90




Data Set 3-EMAX

pParameter True Mean  Med 8D Min Max

Occ. 1 Int. 9.42500 9.42285 9.422955 .00454 9.40759 5.43572

Qcc. 1 Quwn Exp. .033040 .03311 .03308 .0Q073 .03083 .03557
Occ. 1 Own Exp. Sq. -.00050 -.00050 ~.00049% .00002 =-.00057 -.00043
Occ. 1 Other Exp. " . 00000 . 00173 00171 .00081 -.00051 -00429
Occ. 1 Other Exp Sq. - 00000 -.00008 -.00008 .00003 -.00019 .00001
Occ. 1 Error Var. . 04000 .03877 .03982 . 00063 .03751 .04146
Oce. 2 Int. $.00000 92.00106 9.00137 .00636 B8.97715 9.02368

Occ. 2 Own Exp. . 06700 .06839 .06832 -00111 .064096 . 07171
Occ., 2 Own Exp. Sqg. -.00100 -.00105 -.00105 .006003 -.00115 -.00095
Occ. 2 Other Exp. -02200 .02162 .02157 . 00155 .01741 .02702
Oce. 2 Other Exp Sq. -.00050 -.00052 -.00031 00006 -.00070 -.00039
Occ. 2 Error Var. . 06250 .06264 . 06260 . 00088 . 05867 . 06558
Error Covariance . 00000 00114 .00112 .08074 -.00120 .00331
Error Correlation . 00000 .02288 -.02258 .01478 -.02423 . 06645
SD Eta 400.00 376.46 389.5%0 47.28 278.09 479.99

PI 1 -2861.22 -1944.13 -1944.49 240.25 ~2750.58 -1393.96

PI 2  ~717.03 -3566.42 -3641,57 632.92 -4505.05 -1208,37
PI 3 2285.40 5104.83 5176.30 580.72 3548.48 6&18B.79%

PI 4 -750.83 ~19872.37 -1972.62 153.83 -2346.73 -13%4.77

PI &5 108.03 300.46 301.85 27.10 216.53 354.69

PI 6 -5.24 -15.50 -15.59 1.38 -18.27 ~11.36

PI 7 137.86 401.08 3%8.50 444.25 -737.16 1542.29

PI 8 -5757.05 ~6515.54 -6456.85 821.56 -8266.17 -4635.38

PT 8 2835.75 4065.07 4075.50 306.68 3240.18 4776.35

PI10 -437.15 =-770.07 -763.72 57.24 -544.15 -61Z2.70

Pill 21.28 44.39 43.77 3.84 36.01 57.24

PI12 3763.28 4114.05 4124.81 272.16 3468.44 4930.380

PI13 -25B6.69 -4512.592 -4499.20 275.15 -5444.67 -3631.24

PI14 475.48 1019.16 1006.15 g87.81 878.82 1317.33

PI15 -20.18 -63.35 -62.27 7.12 ~85.08 -50.90

PIl6 897.49 1523.18 1485.38 135.72 1232.71 1952.29

PI17 -88.54 -441.26 -434.25 62.32 -603.78 -325.76

PI18 -4.20 30.27 29.69 6.03 18.01 43.50

PT19 -57.82 16.73 13.96 17,44 -22.74 63.08

PI20 8.92 -1.80C -1.80 2.12 -6.51 3.41

PI21 -.74 -.03 -.03 22 -.72 .85




Data Set 4-EMAX
Parameter True Mean Med 8D Min Max
Occ. 1 Int, 9.42500 9.42747 9.42744  .00481 9.41011 9.44805
Occ. 1 Own Exp. .03300 -03221 03222 .00075 . 02580 . 03466
Occ. 1 Own Exp. Sq. -.00050 -~.00048 =-.00048 .00002 -.00055 -.00042
Oce. 1 Other Exp. .00000 . 00085 .00087 -00105 ~.00244 .D0456
Occ. 1 Other Exp Sq. .00000 -.04007 -.00007 .00004  -.g0013 .00008
Qec. 1 Error Var. .04000  ,04023  .04023 .00084  .03763  .04286
Qec. 2 Int. 9.00000 8.59930 8.998%22 .00675 8.97572 9.02151
Occ. 2 Own Exp. . 06700 .06884 .06881 .00101 - 06540 .07234
Occ. 2 Own Exp. Sg.  -.00100 ~.00105 -.00105  .00003 -.00116 -.00096
Oce. 2 Other Exp. . 02200 02074 -02073 -001e2 .01572 .02583
Occ. 2 Other Exp Sg.  ~.00050 -.00050 -.00051  .00007 =-.00073 -.00030
Oce. 2 Error Var. .06250  .06098  .060%8  .00088  .05736  .06391
Error Covariance .00000 -.00280 -.00296 .00130 -.00676  .00050
Error Correlation .00000 -.05648 -.05975 .02603 =-.13517 .01020
Sh Eta 400.00 1144.95 1151.39 78.45 834.89 1379.81
PI 1 -2861.22 -1706.04 -1717.06  233.52 -2512.23 -810.17
PT 2 -717.03 -3784.52 -3768.08 818.64 -6371.53 -1113.53
PI 3  2285.40 5253.57 5251.48 734.46 2691.14 7727.12
PI 4  -790.83 -2210.30 -2208.41  240.23 -2998.12 -1440.29
PI 5 108.03  348.53  348.93 32.68  256.37  445.07
PI 6 -5.24 -18.08 ~-18.15 1.60 -22.60 -13.79
PI 7 137.86 21.51 ~22.72 536.85 -1480.82 2122.87
PI 8 -5757.05 ~6457.47 -6411.95 882.95 -8764.30 -4072.67
PI 9 2835.75 4865.96 4871.22 346.21 3872.25 5736.74
PI10 -437.15 -9531.15 -3534.17 64.32 -1118.24 -768.99
PI11 21.28 52.34 52.44 4.27 40.51 65,00
PIl2 3763.28 4425.14 4415.04 360.98 3281.72 5485.6%
PIl3 -2986.69 -581%8.93 -5785.74 371.54 -6869.68 -4815.46
PIl4 479.48 1209.70 1208.65 110.46 940.17 1510.05
PI15 -20.18 ~68.59 -69.29 §.70 ~-93.24 -44.84
PI16 897.49 2055.85 2041.20 183.49 1623.48 2591.71
PI17 ~-88.54 -413.97 =-426.13 77.98 -638.10 -207.08
BI18 -4.20 20.22 20.90 7.6%3 -1.85 45.56
PILS -57.82 -53.15 -55.84 27.66 -125.26 20.60
PIZ20 B.92 6.28 6.57 3.43 -7.08 15.72
PIZ1 -.74 -.09 -.10 .61 -1.87 2.56




Data Set 5-EMAX

Parameter True Mean

Oce. 1 Int, 9.42500 9.42501

Occ. 1 Own Exp. . 03300 -03326
Occ. 1 Own Exp. Sq. ~-.0005¢ -,00051
Occ. 1 Other Exp. . 00000 -00116
QOce. 1 Other ExXp Sqg. .00000 -.00006
Occ. 1 Error Var. .04000 . 03947
Occ. 2 Int. 5.00000 9.00383

Ccgec. 2 Own Exp. .06700 . 06845
Occ. 2 Own Exp. S4qg. -.00100 ~-.00103
Occ. 2 Other Exp. 02200 .01861
Occ. 2 Other Exp Sq. -.00050 -,00041
QOcec. 2 Error Var. . 06250 .06379
Error Covariance .00000 . 00007
Error Correlation - 00000 .00154
5D Eta 400.00 743.69

PYI 1 -2861.22 -2254.28

PI 2 =717.03 -2534.70

PI 3 2285,.40 4384.96

PI 4 -780.83 -1805.12

PI 5 108.03 277.95

PI 6 -5.24 ~14.21

PI 7 137.86 277.55

PI 8 -5757.05 -6844.18

PI 9 2835,75 4314.°715

PI1O0 -437.15 -757.24

PIli 21.28 40.23

PIi1z 3763.28 4279.90

PI13 -2986.69 -4543.45

PIi4 479.48 829.44

PI15 -20.18 -41.67

PIl6 897.48 1438.60

PIl17 -88.54 -186.41

PI18 -4.20 2.29

PI19 -57.82 ~78.93

PIZ0 8§.92 8.31

PI21 -.74 -.14

Med

9.42512
.03324
~-.00851
.D0115
-.00006
-03549%

5.00383
-06845
-.00103
. 01858
-.00041
.06378

. 00005
.00180

734.47

~2243.22
-2553.71
4382,24
~-1771.68
270.78
-13.82
290.25
-6745.88
4264 .33
-749.31
35.86
4252.99
~-4514,.26
821.11
-40.59
1441.Q07
-178.87
1.48
-82.33
9.55
~.12

8D

.004786
. 00075
.00002
.00091
.00003
.00073

.00614
.00093
.00003
.0013%
. 00006
.00088

. 00057
01328

54.89

202.82
751.72
€669.77
225.74
32.42
1.68
434.78
739.95
358.08
77-.59
5.30
341.38
371L.71
117.22
9.26
165.12
74.59
7.02
20.38
2.41
-43

Min
9.40964

. 03050
~.00058
-.00197
-.00016

.03725

8.98340
-06557
~-.00113
.01488
-.00058
. 06117

-.00267
-.05266

€17.31

-2796.61
~5107.52
2530.72
-2579.87
201.31
~19.33
-855.72
~-9144.72
3551.80
~-976.35
27.94
3303.59%
-5588.27
589.23
-67.85
1001.62
—3594.69
-13.99%
-124.39
1.72
~1.58

Max

9.44054
-03582
-.00043
.00402
.00004
.04221

$5.02467
07166
-.00085
-02356
-.00026
. 06646

. 00325
-06476

905.40

-16%6.53
~432.79
6623.84

-1209.68

37%.86
~10.70
1563.31
~4810.17
5401.98
-574.41
54.58
5357.59

-3725.08

1176.68

-23.37
2073.02
-23.84
22.25
-11.91
15.30
1.31




Table 6

0L.8 Wage Equation Parameter Estimates for Data Generated with True Futurs Component (standard deviations in parenthases)*

Ocgupation One

Cocupation Two

Wage Error BDs

own Own Other Other Oown Own Other Othexr

Data Set Intercept Exp. Exp. Squared EXp. Exp. Squared Intercapt Exp. Exp. Squared Exp. Exp. Squared Cac. 1 Ocge., 2

Aotual 9.42500 0,03300 ~0,00050 0.00000 0.00000 9.00000 0.06700 ~0.00100 0.02200 -0.00050 0.20000 0.25000

1-EMAX 9,50638 0.02827 ~0,00039 0.02123 -0.00054 9.1%7518 0.05938 -0.00086 0.00796 0,00031 0.17981 0.22853
(0. 00470  {0.00074) {0.00002) {0.00107) {0.00005) {0, 00835} (0.00054) (0.000603) {0.00169) {0.00009)

2-EMAX 9.50716 0.02682 -0.00038 0, 02098 ~0.00053 9,17877 ¢.05829 -0.00083 0.00907 0,00024 0.17890 0.22594
{0.00475) (0.00074) (0.00002) {0.00104) {0.00005) (0.00648) (0.00095) {0, 00003) {0.00188) {0.00011)

3-EMAY 9,49973 0.02763 ~0,00040 0,02251 ~=0.00059 5.17000 0,05893 ~-0.00086 0,01086 0.06017 0.17999 0.22882
{0,00469) (0.00071) {0.00002) (0.001086}) {0.00005) {0,008658) {0.00095) {0.00003) {0,00183) {0. 00010}

4-EMAT 9,50622 0.02653 ~-0.0003% 0.02164 ~-0.00054 9.16782 0.06002 -0.00088 0.00962 0,00023 0.18052 0.22606
{0.00474) {0.00072) (0.00002) {0, 00106) {0.00005) (0.006414) (0,000545) {0, 00003) {0.00277) {0,00010)

5-EMAY 9,50534 0.02773 -0, 00042 0,02081 -0,00055 9,17511 0.05929 -0,00085 0,00808 0,00025. 0.17916 0.22586
(0.00475) (0.Q0074) {0.,00002) (0.00100) {0.00004) (0.00629) (0.00094) (0, 00003) {0.00169) {0. 00009}

*Rasults from simple OLS regression using only ohserved wages and experience.



Table 7

Analysis of Wealth Loss when Estimated
Polynomial Approximation is used in Place of True Future Component#

Using Using
True EMAX** Approximate EMAX**
Magn Mean Aggregate Percent with Parcent with Percent
Data Mean Mean Pbollar Percent Choice 0-35 36-39 Choosing
Sat Wealth*s#* Wealth*++ Loss Losgs Agreement Agreemants Agreeements Samae Path
1-EMAX 354534.72 354345.25 189.47 0.05% 94.10% 9.60% 39.40% 51.00%
2-EMAY 354912 .59 354529.61 382.58 0.11% 94,60% 7.20% 38.40% 54.40%
3-EMAX 356430.12 356175.54 254,58 0.07% 93.50% 10.20% 39.20% 50.680%
4-EMAY 355723.35 355589,21 134.14 0.03% 95.00% 6.80% 35.80% 57.40%
5-EMAX 355438.58 354984.04 454.54 0.12% 93.90% 8.60% 39.00% 52.40%

*

*% FRach simulation includes 500 agents that live for exactly 40 periods.

Polynomial parameter values are aset to the mean of their respective empirical posterior distributions.

*%% I'Maan wealth" is the equal-weight sample average of discounted streams of ex-post lifetime earnings.




Figure 1

Empirical Posterior Distributions¥* of Structural Parametersg**
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Figure 2A

Joint Density* of Own Experience
and Own Experience Squared for Occ. 1
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Figure 2B

Joint Density* of Other Experience
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Dollar Difference
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Figure 3A

True Difference in Future Components
at All States in First Five Periods
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- Figure 3B

Estimated Difference*
in Future Components at All
States in First Five Pericds
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Dollar Difference

Figure 4A

True Difference in Future Components
at All States in First Ten Periods
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Figure 4B

Estimated Difference¥
in Future Components at All
States in First Ten Periods
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Figure 4C

Dollar Error in Estimated
Difference* of Future Components
at All States in First Ten Periods
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Figure 5B

Estimated Difference* in Future
Components at Various State Points
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Figuxe 6
gibbs Sampler Convergence¥
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