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Extensive Form Games

I will use a variant of Van Damme/Selten's notation.

1. Extensive Form Game r = (K,XP,E,C,py,V)
Game tree K

The game tree is a finite tree with two types of nodes decision
nodes and terminal nodes: X = set of decision nodes and Z = set of terminal
nodes. Let ¢ be a partial order as X u Z that denotes precedence. If x <y
we say x comes before y and y comes after x. (Assume ¢ totally orders the
predecessors of each member of X Z so that there are no cycles i.e., each node

in tree can be reached by one and only one path from the initial node.) Let,

« pdq(x) max{y|y < x} = immediate predecessor of x.

.

pdn(x) = nth predecessor of x (defined recursively using above).

« S(x)

{y]z ¢ p1(y)} immediate successors of x.

o Z(x)

{y € z|x < y} = terminal successors of x.

Player Partition X = {KO,X,...,XI}

The player partition divides decision nodes into I + 1 sets where KO

is the set of decision nodes of nature, and for i # O, Xi is the set of deci-

sion nodes of player 1i.

Information Partition E = (E,...,E{)

Ei is a partition of decision nodes of Xy of player 1 into so called
information sets e; of player i. E; = {e;}. Assume for every information set

eegE

(i) every path in tree intersects e at most once.
(ii) all nodes in the information set have the same number of immediate

successors.



Choice Partition C

The choice partition C is a collection C = {Cele 5.5181} where C, is
a partition of u{S(x)|x e e} into so called choices at el_such that every
choice contains exactly one element of S(x), for all x € e. The interpreta-
tion is as follows: if player i reaches his information set e ¢ E; and takes
choice ¢ ¢ C, then if he is actually at x ¢ e, the next node reached by the
play will be some immediate successor of x and thus lies in S5(x). We will

identify a choice at an information set with the next set of nodes reached by

play given that choice.

Prior on XQ
Each player believes nature chooses a node x e Xy with probability

po(x), so p(-) is, a probability distribution on immediate successors of x,.

Payoff Function V = (Vy,...,Vy): Z + R

If terminal node z is reached, player i receives utility vi(z) (see

Example 1).

2. Strategies

Pure Strategies

A pure strategy LY of player i is a function LY which assigns a

choice ¢ from C to every e ¢ E;

i :{ni: X e~ X C},

i
ecE. ecE.
1 1

Mixed Strategies

A mixed strategy 9 of player i is a probability distribution m.

#1,
1
Sy = {ci: o R |Oi(ﬂi) > 0 all L and E ci(ni) = 1}.

m.ell,
i1



Local Strategy (at an information set)

A local strategy bie of player i at the information set e ¢ E; is a
probability distribution over the set of choices C, at e where a probability
bie(C) is assigned to each choice c ¢ C,. A local strategy is called a pure
local strategy if it assigns 1 to some particular choice ¢ at e and 0 to other

choices at e.

Behavior Strategies

& behavior strategy b-1 of player 1 is a function that assigns a
local strategy b;, to every e ¢ E;. Let B; = the collection of all behavior

strategies of i and B = B; x ... x By so b = (b,...,bI) e B.

Realization Probabilities

If players play behavior strategy b ¢ B, then for every node x ¢ X

u Z we can compute the realization probability PO(x) where

Pb(x) = the probability that node x is reached in play if behavior strat-

egy vector b e B is played.

In a similar manner, for any arbitrary set of nodes A which is a subset of

Xuvi

PP(a) = probability that at least one node of A is reached in play if b is

played.

Expected Payof'fs

With the help of these realization probabilities we can define the
expected payoff to player i given that behavior strategy vector b e B is
played.

V(o) = § %2V (2).
zel



Completely Mixed Behavioral Strategies

A behavior strategy b; of player 1 is said to be completely mixed if
it assigns completely mixed local strategy b;, to each information set e ¢ Eiy

where a completely mixed local strategy bie assigns a strictly positive proba-

bility to every choice ¢ e C,. Let B? denote set of completely mixed behavior

strategies. Let BY = B? R wies ¥ B?.

Conditional Realization Probabilities (with complete mixing)

A completely mixed behavior strategy vector b ¢ BO induces a well-
defined conditional probability distribution pb(‘|e) over all information sets

¢ ¢ E according to the feormula

(1) for x ¢ e, pb(x|e) =

where Pb(x|e) = the probability that x is reached in play when b is played
given that information set e has been reached (confer Figure 2). Now if we
try to define conditional probabilities over information sets (according to
(1)) for arbitrary behavioral strategies we will have a problem. The reason
is that under arbitrary behavioral strategies some information sets will be
reached with probability zero and for such an information set (1) will not
make sense (since we will be dividing by zero).

Notice in Example 2 that the strategy y vector b induces a probabil-

ity distribution on the whole tree, for example:

PP(x3) = by(L)b,(L]e,,)

PP(xg) = by(L)b,(Lle, )bs(r e, ,).



It also induces a conditional probability distribution over each information
set in the tree (if its completely mixed the conditional probabilities are

always well-defined)
P°(x,) b,(L)b,(Lle, )
0 1 11

3 .
® by(DIby(Le ;) + by(L)b, (Rle; )

Po(xy) + PP(x)

Pb(x3]e ) &

21

b1(L|e11}
* b,(Lle;,) + by(R[e, )"

Using equation (1) and the figure we can compute Pb(x8|e13) to be

b
P (xs)
b 8
(2) Pixale..) =
S Bx,) + PPLg)
] bO(L)bI{L|e11)b2(r[ez1)
bo(L)b,(L]ey,)by(1]e,,) + by(L)b,(Lie, )b (rley )"
So
b, (rle,,)
b ) 2121
(3) Plxglers) = 5 Te,, 0+ b(Fleg )

Notice two things about this conditional probability. First, if either of the
numbers bO(L)bq(L|e11) were zero, then the above formula would be nonsense (of
course they cannot be if b;, is completely mixed).

Second, notice how the previous choices of player 1 (i.e., strat-
egies b1(L|e11) and the rest) either cancel out or don't appear in the final
formula (3). Well, this always happens and it is the key reason why the agent

normal form "works." Selten proves this in his paper.



Selten's Lemma 4 (reworded)

Given a completely mixed behavior strategy vector b = (b1,...,b1)
for an extensive form game with perfect recall, the conditional realization
probabilities Pb(x|e) for e ¢ E; do not depend on the strategy b; of player i.

The lemma is proved by observing in a game with perfect recall the

information sets e; of player i have the property that the same choices of

player i are in every path to a vertex x ¢ e;.

Conditional Realization Probabilities (for arbitrary strategies)

For some arbitrary behavior strategy vector b e B, some information
sets in E will be reached with zero probability. Let E(b) denote the subset
of information sets that are reached with strictly positive probability.

E(b) = {e ¢ E|Pb(e} = ) PP(x) > 0}.

Xee
Let E/E(b) denote the information sets reached with 2zero probability under
b. Now for any information set e e E(b) we still have a well-defined condi-

tional probability distribution, it is only the unreached information sets in

E/E(b) that give us trouble.

Conditional Expected Payoff (at an information set)

For every information set e of player i that is reached with posi-
tive probability under b, we have a well-defined notion of conditional ex-
pected payoff, denoted vi(b|e} which equals the conditional expected utility
to player i if b is played and given information set e ¢ Ei is reached. For
each e in Ei(b),

(4) Vi(ble) = E P (xle)[ z pP (z]|x)V. (z)]

Xee ZoX



where Pb(zlx) = PP(2)/PP(x). To interpret this formula imagine: given that x
has been reached what is i's conditional expected payoff? Clearly, if x has
been reached, only those terminal nodes z that follow x will be reached, and
some particular terminal node z after x will be reached with conditional
probability P°(z|x) and at that node z, player i gets v (z).

Now all that player i knows is that he is in some node x of informa-
tion set e (recall definition of information set). Even though player i does
not know what node he is sitting at, he can compute the probability of being
at x if he knows what other players behavioral strategies are by using the
formula Pb(x|e) = Pb(x)/zyeePb(y). The expected utility condition on reaching
e is then (4).

Notice if e ¢ E;, but e ¢ E/E(b) then player i does not have a well-
defined conditional expected payoff at e. Without such a payoff it is not
clear what '"rational behavior" means at e. We will return to this point

later.

The Problem of Unreached Information Sets

In Example 3, I claim: (L,R,R) is a Nash equilibrium in pure strat-
egies (on equivalently, (1,0;0,1;0,1) is.a Nash equation in behavioral strat-
egies). In this equilibrium, player 2's behavior does not make much sense.
In it 2 plays R with probability 1. However, if node x, were ever reached
(since 2 knows that 3 is going right for sure) then 2 should play L with
problem 1 and get 4 instead of playing R and getting 1. How can we formalize
the idea that 2's behavior is nonsensical? First, the unconditional expected

return to 2 under arbitrary b.
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b b b
(2.1) Vz(b) P (z})V2(21) + P (ze)Uz(zz) + P (25}V5(z5)

b b b
P (22) -2+ P (zu) <4+ P (25) « 1

where

b _ 3R b - b -
PP(z,) = by 7", PPUz,) = bypby bap, PO(2) = b

1Rb2R'
In contemplating best responses to any {b1,b3) notice that if by =1, 2's
behavior is irrelevant in determining his payoff since he will never be

reached anyway he might as well play anvthing.

So clearly 2's behavior is not irrational in terms of unconditional

expected utilities (since it does not even depend on what he chooses when
b1L = 1). How about in terms of conditional expected utility, (given that

e, = [“2} is reached with positive probability)

(2.2) V,(ble,) = Pb(leez)[ ) Pb(zlxe)vi(Z)]-

Z2X
2

Now {z|z > &Ko} = {ZB'zN'ZS}‘ So
Vv (ble,) = PP(x |e )[PP(z J 2 IV (%) # PP(z, |%,)V,(2,)
2 2 2072 31727273 ylo27"2 74

+ Pb(25|x2)V2(25].

Now for any b such that e, is reached under b, Pb(xelez) = 1 so

V,(bley) = [by by Vo(2g) + by bapVo(zy) + bypV (z5)]

2L73L 2 2L 3R 2 2R 2

(4051035 + bagl-

So let Bﬁz(blea) = set of best responses by 2 to b given e, is reached be

defined to be solution to

max Vz(b|e2) (given e

e E,(b)).
eB2 2
1%2

2

b
2192



Clearly the conditional best response to 2 at e, is to play R with probability
one. (For b such that e, is reached.) The problem is that for the particular
b are interested in, namely 5 s €1,0:0,1:0:1), e, is not reached
(e, € EglE;(b)} so that (2.2) does not make sense since Pb(x2|e2) does not
make sense.

This then is the crux of the problem. Intuitively 2's behavior in
the equilibrium 5 is unreasonable because if he were ever actually called upon
to carry out his move he would have no incentive to. However, at the equilib-
rium strategy configuration he will never be called on to carry it out. In
addition, at the equilibrium strategy B there is no well-defined conditional
problem distribution our e, SO we can't even define his conditional choice
problem. Now Selten, Kreps-Wilson and others, have proposed a number of ways
to solve this problem. One interpretation of their work is that they have
various methods for imposing well-defined conditional probability distribu-
tions over information sets that are not reached under the behavior strat-
egy 5 under consideration.

Briefly, Selten in defining trembling hand perfect equilibrium

requires the conditional distribution be generated by a sequence of completely

mixed strategy vectors [bk} such that:

1. bKa+b
2. Each b¥ is an equilibrium of a certain game (which we will define momen-

tarily).

In contrast, Kreps and Wilson (KW) require something weaker. Just

as in Selten's definition, Kreps and Wilson require the conditional distribu-
tion over information sets not reached in equilibrium be generated by a se-

quence of completely mixed strategy vectors bX such that b¥ + b, However, KW
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do not require these bk be an equilibrium to anything. It should be clear
that under KW's criterion we can generate (to a large extent) almost any
conditional probability distributions over unreached nodes that we want,
(However, there are some subtle restrictions about how these conditional
distributions must be related, that I will discuss later,)

For now, simply realize that both criterion are a way of generating
well-defined conditional probability distributions over information sets that
are reached with zero probability under the proposed equilibrium configuration

of behavior strategies.

Note 1. Notice that I have been assuming that at information sets which are
reached with positive probability it makes sense for an agent to maximize
conditional expected utility. It may not be totally obvious that maximizing
conditional expected utility node by node is equivalent to maximizing uncondi-
tional expected utility over paths through the tree. It is a theorem that in
games with perfect recall these are the same and this gives a simple way to
"decentralize" an agents decision making process into a sequence of small
"conditional" problems. I will explain this in more detail.

First, some more definitions:

(Glocbal) Best Reply

A behavior strategy 51 of i is a best reply to b if

Yo

b.e arg max vi(b',b_

* b!eB, 1
1 1

Local Best Reply (an an information set)

A local behavior strategy Eie at an information set e of player i is

a local best reply to b if
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"
Eie £ arg bw:g vi(bi’b—i)
|

where b; = (bi/bie) is the behavior strategy bi with bie replaced with bie and

rest of the strategy is the same.

Conditional Local Best Reply (at an information set)

Bie is a conditional local best reply to b at e if

Eie € arg max V.(bl,b_,e).
b!=(b,7b! )eB,
i i Tie’

The best reply concepts are not in conflict with each other.

Proposition:

1 Ei is a best reply to b iff for every component Eie of b,

i b, is a loecal

le

best reply to b at e, for all e e E(b).

2. b, is a best reply to b iff for every component Eie of b,, b, is a condi-

i i' “ie

tional local best reply at e, for all e ¢ E(b).

Now, so far we have been discussing conditional probability distributions over
information sets that are generated by a behavioral strategy b and we have
denoted them Pb(x|e). We noted that these are well defined only at informa-
tion sets that are reached, that is for e ¢ E(b). Let us now define arbitrary
conditional probability distributions over information sets (that may or may
not come from a behavior strategy).

Let u: X x E » [0,1] the set of conditional probability distribu-
tions over all information sets. For x ¢ e let u(x|e) be the conditional
probability of x given information set e which contains x is reached. For
each e in E let the conditional probability distribution u(-|e) be such that

Y u(x|e) = 7, u(x|e) 20. Sou = {u(-|e): e e E} is actually a whole collec-
xee
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tion of conditional probability distributions each of which specify a condi-
tional probability distribution over a particular information set. KW call u

a system of beliefs.

Now, we can use this notion of system of beliefs to mechanically

solve our problem. Given a behavior strategy b:

1. For any information set that is reached under b, let all agents use the
conditional probability distribution generated by b, when solving their

problems (i.e., calculating their conditional local best replies).

2. For any information set that is not reached under b, let us simply make up
some conditional probability distribution u(-|e) over the set of nodes

{x]x € e).

Let agents believe the conditional probability distribution over e

is (under b)
b
P (x|e) if e ¢ E(b)
u(x|e) if e e E/E(b)

Or we could simply let agents always use p but then impose that u
agree with the conditional distribution generated by b on information sets
where that distribution is well-defined, that is

b

P"(x|e) for e ¢ E(b)
Given b, ub(x]e) = (some arbitrary)

u(x|e) for e e E/E(b)
In this interpretation, we have "solved" our problem of not having well-
defined probabilities distributions (under b) at certain information sets by

simply making them up.
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Now the goal of Kreps, Wilson, Selten and others is to find reason-
able ways to make up beliefs for unreached information sets. Let ub denote
the collection {u°(x|e)|e ¢ E}. call (u°,b) an assessment. Selten's crite-
rion is Ehat given a proposed equilibrium behavior strategy 5, a system of
beliefs ub is reasonable only if it can be generated as the limiting condi-
tional probability distribution from some sequence bk of completely mixed

strategies such that:

1. bK+b

2. b¥ is an equilibrium of perturbed game (r,nk).

Where nk is a sequence of mistake probabilities at information set§ such
that nk(cle) ~ 0 for all ¢ e C,, for all e ¢ E. We call such a (ub,g} a
trembling hand perfect equilibrium,

Kreps-Wilson criterion is weaker. Giggn a proposed equilibrium
behavior strategy vector B, a system of beliefs ub is reasonable only if it
can be generated as the limiting conditional distribution of a sequence b¥ of

completely mixed strategies such that

The crux of the difference is that:

For Selten. The beliefs must be generated from completely mixed behavior

strategies that are equilibria to the perturbed games (r,nt).

For Kreps and Wilson. The beliefs are again generated from completely mixed

behavior strategies but these don't have to be equilibria to anything.
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From this is should be clear:

Proposition. Every trembling hand perfect equilibrium is a sequential equi-

librium but every sequential equilibrium is not trembling hand perfect.

The first part of the proposition follows from definition. The
second part can be shown by Example 4,

In Example 4 I claim that (L,r) is a sequential equilibrium but not
a trembling hand perfect equilibrium. Denote the behavior strategies of 1 by

by = (b1L’blR) and of 2 by b, = (b ). In this notation, the claim is

2£'b2r
that b = (1,0;0,1) is sequential but not THP. Under both sequential and THP
we will have to check that our proposed equilibrium (b,ub) is sequentially
rational. What this means is that given beliefs ub the behavior strategies

-

b, + b

1 > are conditional local best replies at each information set.

Since we will have to check it in a minute let us write out what
this means for an arbitrary assessment (b,u). In this example there are only
two information sets e, and e,. We need to check player 1's behavior at e,
and players 2's at e,. [I will write the x out using our notation so that you

get used to seeing it, so bear with me.]

Player 1.
Vybley) = w(xle)| § PPz]x)v (2)].
xsel Z2X
With

&, = {xo}. u(x0|e1) = 1 and {z|z > x5} = t21,22,23,2u}
tnis becomes
V.(ble.) = 1+ [PPz,|x)V.(2,) + PPz, |x )V, (z,)]
1 1 17071 2'707 1172

b
+ PP(z5]x)V (2 1R%(2, |2V, (2,)

3



[2b,, - b, ].

= b, [0 21 2r

1L +1-b,]+0b

29 1R

Thus 1 goes left with probability 1 if [bzg + b2r] > [2b22 - bzr} which re-

duces to b, < 2/3. (Any beliefs u will have u{x0]e1) = 1.) The best reply

23
for 1 is
. &
(1,0) it bgl < §
u _ ;
Bﬂq(bgieT) = (0,1) if >
(ay1-a) if &
Player 2.
Vy(bley) = § ulxley)( § PP(z[x)uy(2)).
Xee Zo%
2
With
e, = {x,,%5}, {z|z > x,} = (2,25}, {z|z > x5} = {23’2M}’
we have
b b
Vy(ble,) = ulx,|e))[P7(z5]x,)V,(2) + P (2,]2,)V5(2,)]

b
- u(x2|e2)[pb(z3|x2)u2(23) + P2z, |%,)V,(2)) ]

ulxyley)lbyy + by 1+ ulxyle;y)(-by ]

by lutx;lep)] + by [ulxfey) - ulx;ley)].

So 2 goes left with probability 1 if p{xglez) > 0, and 2 mixes if

u(xziez) = 0. Thus, (a) for any set of beliefs u with u(x,|e,) > O.
W =
BRY (b, e,) = (1,0) all by.

(Call the set {u:u(x,|e,) > 0} type A beliefs. (b) for any set of beliefs u

with p(leez) = 0

BRY(b, |e,) = (a,1-a), a ¢ [0,1] all by.
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(Call the set {u: u(x|ez) = 0} type B beliefs. So now it becomes clear that

the only way we can support our proposed equilibrium in which 2 goes right

with probability 1 is to have 2 believe that node x, is never reached

[u(x2|e2) = 0).

The Question is Are Such "Beliefs" by 2 Reasonable?

Kreps and Wilson say yes they are reasonable, while Selten says no
tbey are not reasonable. Now in both sequential and THP the proposed beliefs
ub have to agree with the conditional probability distribution induced by the
proposed equilibrium behavior strategy é at all nodes that are reached with
strictly positive probability (since the conditional probability distribution

is only defined at these). So

pb(x) = Pb(xle) all x ¢ e for all e ¢ E(b).

Here there are only two information sets, E = (e1,92) and under the

proposed equilibrium b, both are reached. So

- -~

1. 120x, ley) = PP(x,ey)

-~ -~

-~

b

1]
L]
1]
-
.

1L

-

b

2. ub(x2|ee) = Pb(leez)

~ -~

|
3. [ub(leeo) = Pb(x1|e0) = 1],

-~

So ub is completely pinned down by b.
Since there are no unreached information sets under b, we have no
leeway to play with the conditional probabilities at unreached nodes.

Again in both sequential and THP we need to find a sequence of
k
assessments (bk,ub ) such that:

1. Mixing: b is completely mixed ¥V k.
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K -
2. Convergence: (bk,ub ) - (b,ub) (our proposed equilibrium).

3. Sequential Best Replies: Given beliefs ub, the strategies b are sequen-

tial best replies for all players.

Conditions (1), (2), and (3) are all we need for a sequential equi-
librium. (Note: The "consistency" condition of KW is subsumed by my defini-
tion of ub, which I repeat here
Pb
5 (x|e) for e ¢ E(b)

Given b, wu (x|e) =
any *u(x|e) for e ¢ E/E(b)

(*) where "any" u(x|e) means some arbitrary u(x|e) that does not contradict

the information structure of the game--more on this point later.)

However THP requires not only (1), (2), and (3) but also (4) Per-

K
turbed Equilibrium: (b¥,u° ) are equilibria to the perturbed games (T,n¥),

and as k » =, nf(cle) » 0¥ ceC,, ¥eckE.

For our example condition (4) will not be met for any possible
K ==
sequence (bk,ub ) that could possibly support (b,ub).

I Supporting_(b.ub) as a Sequential Equilibrium

I claim b¥ = (1-(51)k,z$;s;,1-s§] works for any €4, €5 > 0. Let us

Check (1), (2), and (3)

1. Mixing: clearly b¥ is completely mixed for each k.
K to B b€ Lo P
2. Convergence: (of b"™ to b and u® to u’)

(A) Clearly bX + (1,0;0,1) = b
oK
(B) u~ 1is given by

k k

b b U TP
u (x1|e2) = P (x1|62) = by = 1-¢ 1=D0

- K
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k k
b _pb ok ka8
W (x]e) = P7 (x50ey) =byp =€y +0=b
" -
b b
[7 (xyle)) = 1 = wix,e)]

50

-~
-~

3. Sequential Best Replies: We need to check that given beliefs ub, b

.

-

(b

(byy1b5,)

b,.) = (1,0) is player 1's (conditional) local best reply at e,, and b

1IL'T1R 2

= (0,1) is player 2's conditional best reply at e,.

For 1: we know for any set of beliefs u

2
(1,0) by ¢ 3
H &
BRy(b,|e,) = (0,1) >
(a,1=a) =
So for our p and our 5 which has bZl =0 (< 2/3) we know
BR:[(O,1)|e1] = (1,0) = b,.

For 2: we know for: type A beliefs (i.e., u such that u(x,|e;) > 0)

u
BRy(b,|e,) = (1,0) all by.
type B beliefs (i.e., u such that u(xsle,) = 0)

BR5(b, |e,) = (a,1-a), a € [0,1] all by.
b b .
But u , u (x2]e2) = 0 B is type B so

b . .
BRY (b,le,) = [0,1] x [0,1] which contains (0,1) = b,.
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So (b,ub) is a sequential equilibrium.

-~

I1I. Impossibility of Supporting (b,ub) as a THP Equilibrium

(Recall that an equilibrium be THP requires there exist a sequence
of minimum mistake probabilities 8 (nk(c|e),Uc e e,¥e ¢ E) that all con-

verge to zero as k goes to infinity and a sequence of associated perturbed
k

[}
games (r,nk) where the behavioral strategies (bk,ub ) are equilibrium of

£n).)
Now to show (b,ub) is not THP we must show for all nk sequences
k
there cannot be a sequence of {bk,ub ) which are equilibria of (r,nk). In-

spection of player 2's best response makes it clear. Since any such sequence

k

b i1l be type A
k

of b¥ is completely mixed then the associated "beliefs" u

beliefs (with 'uk(x2|ez) = bfﬁ > 0 all k) so the equilibrium {bk,ub ) will

always have 2 playing left at e, for all by so b¥ will 1look like
k .k " b

(blL’bZR;1’O) # (...;0,1) so (b,u ) is not THP.

Now what is the intuitive story for what is going on? Basically,
the only way 2 will play right is if he/she is sure 1 is going left. Selten
thinks that such beliefs are unreasonable because if 1 trembles at all, 2 will
always play left. That is, in any game that is close to our game (in terms of
perturbed strategies) the equilibria will be far from our equilibria. So this
equilibria is "unstable with respect to small perturbations in strategies."

Kreps and Wilson don't think (at least given their definition) that
such beliefs are unreasonable since they can be induced as the limiting condi-
tional probability distribution of some sequence of completely mixed behavior
strategies (of course, these behavioral strategies will not necessarily be

equilibrium of anything).
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III. However, (blub) is a Weak Trembling Hand Perfect Equilibrium

KW relax Selten's defiinition of THP to allow trembles on the payoff

vector v along with trembles on the strategies.

Weak Trembling Hard Perfect (WTHP)
> K

An assessment (b,ub) is WTHP if there exists a sequence (bk,ub ,Uk}
such that
1. Mixing: bk is completely mixed.

2. Convergence: of strategies, beliefs and payoff vectors

; 2
(o%,u° ,v) + (b,u°,V)

3. Sequential Best Reply: CGCiven nb, strategies are sequential best replies.

4, Perturbed Equilibria: (bk,ub ) are equilibria to perturbed game I =
5

(F,nk,U
K and W prove:

KW Prop 6. For any extensive form game, the sets of weak THP and sequential
equilibria coincide.

Return to our example, this means if we allow ourselves to perturb
the Putcome functions (vi) slightly along the sequence then we can support

(b,ub). Originally

(1,1,2,-1)

vy = (v1(z1).v1(22).vT(z3),v1(zu)]

and

(1,1,0,-1).

= (v3(20),9,(2,) v, (23),v,(2))

<
no
i
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I claim the following v© = (v1,v2) will work. Leave v, alone (put vy

and put vg = (1—zk,1+sk,0,-1). To see why let us compute 2's conditional best

= v1)

response at e, given 2 has payoffs vg instead of v,.
ky _ k k
v2(b1|e2,v2) = b21[(1-e )b1L] + b2r[(1+e )b1L - b1R]'

So 2 goes left with probability 1 if (?—ek)b1L > (1+ek)b1L - byp which implies

b1R > (2£)b1L. Thus

. K
(1,00 if by > (2659,
BR,(b, |e,,v<) = (0,1) if b, < (265
2(bqlen v, ' IR L
. k
(a1,02) if b1H = (2¢ JbTL

Now consider the perturbed game (r,nk,vk}. The best responses with mistake

k k k k k
= (n

1L,n1H;n21,n2r) and with by in the perturbed strategy

probabilities n

space S(nk)

(1 - ngganon) if boo > (265)b,
BRy(bye,vgung) = (nyrsl = ngp) 1F Byp o (oK), ot
(a1,32) if b1H = (2¢ 5b1L
where
n; < @, <1 - ngR, n;R < as <1 - nSL, a, + a5 = 1
In a similar manner we find (Recall v? = v1)
(1 - njgingg) IF by < %
BR1(b|e2,v§) = (n1E,1 - "EL) if by, > %

. 2
(71.72) If by, = 3
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where

k k k

k
Mgy, S0y S = Mey Mg SV T = figg Wy

= i1,

+

Y2

(Recall unperturbed games players play their pure best responses as much as we
let them and their nonbest responses as little as we let them.)
Now to support b = (1,0;0,1) we need to choose the relative size of

the n's and ¢ so that along the sequence:

« player 1 plays left as much as possible (given nf) and
« player 2 plays right as much as possible (given ng) is an equilibrium

to the perturbed game.

That is we want bX to look like bX - (bf;bg) where

k k .k o k Kk
by = (by»byp) = (1=njpinyg)s
k _ .k Ky _ .k . Kk
by = (byysby,) = (ngy,1-n3) ).
Now if b% is to be a best response in Uynk,vk) to bg it must be the case
that bgl < 2/3. To see this look at BR, (¢1...). Thus one restriction on
the nk sequence is ngl < 273, Next if b; is to be a best response in
(r,n*,v) to b¥ it must be the case that:
k k.. k
b1R < (2¢ )b1L'
To see this look at BR2(-|...)('|e,vk,ng). Which in terms of our equation

becomes n?ﬂ < (25k)(1 - nfR) or (1 + 2sk)nl1{R < Zek. Thus a second restriction
on the nk and ck sequence is

k 2ek

At ¢t
Ry, 2K
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Clearly if we put

. Ek k ek ( k . k _
21 T2 Mg = k* VM2p * ML
1 + 2¢

E)

then the two restrictions (A) and (B) are met (at least for k large enough for
eX ¢ 2/3 or k In e < 1n 2/3 or k < (1n 2/3)/(1n ¢) (a negative number).

So b = (1,0;0,1) is a weak trembling hard perfect equation.

IV. Consistent Belief's

You might (mistakenly) believe that the sequential equation concept
we can put arbitrary beliefs at nodes that are reached with probability zero
under some proposed equilibrium behavioral strategy. The argument would be
that we can always choose a sequence of strategies that impose arbitrary
conditional distributions along the sequence (since these strategies do not
have to be an equilibrium) and so also in the limit. This argument is incor-
rect. Basically, we need beliefs at unreached nodes to respect the informa-
tion structure of the game.

To see this consider Example 5. In it nature chooses (L,R) with
problem (bOL,bOR). Player 1 at ey = {xi,xz} chooses (a,u) with problem
(b1a'b?v)' Player 2 at e, = {x3,x1] chooses (L,R) with probability
(b2L'b2R)' Now suppose bTa = 1 and b1u = 0, then information set e is
reached with zero probability. The question is can we under sequential equi-
librium impose arbitrary beliefs at en. That is, for any possible conditional
distribution at e, say [u(x3|e2),uhqde2)], can we find a sequence of com-
pletely mixed behavior strategies say bX such that the induced conditional
probability distribution [(Pbk(x3|e2),Pbk(xq[e2)] converges to (u(x3|e2)],

n(quez}? The answer is no (think about it before reading on).
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For any completely mixed b¥ we have e, € E(b¥) and

. le.) = PoL®1u _ o,
-2 bOLb1u - bOHbTU bOL . bOR oL
and
yi-2 bORbhj + bORb1U bOR + bOL OR

Since nature's move is part of the game so that P, is a pair of given num-

bers. If, for example, Po{x1) = by = 1/3, Po(xz) = bgp = 2/3 then the only

conditional probability distribution cn e, that is consistent is (1/3, 2/3).
Consider next Example 6 on the next page. Imagine the equilibrium

is

»

=
1

= (bypsbqp,bqRib2as02, 3031 P3R)

(1,0,0;0,1;1,0).

Since 1 goes A with probability 1, the rest of the tree is reached with zero
probability. In particular, €51:€3, and ey, are unreached information sets.
Now, under sequential equilibrium can we induce any conditional probability
distribution on these unreached information sets that we want? The answer is
no. For example, consider the beliefs: at e,,: p(32|921) = 0.9, u(x3|e21) =
0.1 and at eyy: ulxgle,,) = ulxgle,,) =0, u(x?|e22) = 0.9; u(xglezz) £ Qds

I claim these "beliefs" u('|921) and u(-lezz) are inconsistent both
with each other and with player 3's strategy. (Try to figure this out before
reading on.)

Imagine you were player 2 sitting at e,,, you have the above belief's
at e, namely (u[x2|e21) = 0.9, u(x3]e21) = 0.1 and you know the equilibrium

strategy vector isb = (1,0,0;0,1;,0,1), what would you compute the condi-
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tional probabilities at ey, to be? You would most likely compute as fol-
lows: Say, for example K7

u(xyle, )b, bap
u(xylen1)by bap + ulxyley )by by

b,u
P (xq o))

-~

= by = 0(+ 0.9 = u(x,e,,))

and so on. Basically, beliefs at unreached nodes have to "respect" the infor-
mation structure of the game.

Consider finally Example 7. Imagine b = (bTL’b1R:b2a'b2a;"'

(0.1,0.9;1,0;...) is being played and imagine we claim the following beliefs:

) =

for unreached information set

-~ -~

e3: (10(x,]e,),u°(x5]e,))

(0.1,0.9)

and

- -~

ey (W(xyleg)u0(xylen)) = (0.9,0.1)

are consistent. I claim they are not (why?) Recall that to be consistent the
bheliefs must be the limit of the conditional probability distributions induced
by a sequence of completely mixed behavioral strategy that converges to the
conjectured equilibrium behavioral strategy, say 5.

Now for any completely mixed b we know eg € E(b), so

24Py 5 .

byrboy * P1gbay Py *Pqp L

b
u (x3|e3) Pb(x3|e3) =

and similarly

"
o

b
wixyles) = byp
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So for b = (0.1,0.9;1,0) we know along the sequence

k K
(4 (xgleg),u° (xyleq)) = (o ,bY0) + (0.1,0.9)

for any b + b. This is a final implication of the KW consistency condition

on beliefs (see KW for more detailed discussion).

V. The Structure of the Set of Sequential Equation may be Complicated

KW provide two interesting examples in which they show the set of
sequential equilibrium may have isolated points. Let us compute the set of

sequential equilibrium, for Example 8.

Step 1. Compute the Local Best Replies for Arbitrary Beliefs

For player 1, his only information set is a singleton and it starts

the game so he needs no (extra) beliefs.

bya + by [30

v,(ble,) o, = 20pp] + bypl2by - bypl

b1g + b1L[5b =2] +# b,.[3b 1].

2L 1n[ 2L ~

So A is preferred to both L and R if 3/5 > by and 2/3 > by or 0 < by <
3/5. Likewise R is preferred to both A and B if 2/3 < b, and by < 1/2, but
this is empty. Finally, L is preferred to both A and R if 3/5 < sz and sz >
1/2 or 1 2 by > 3/5. If by = 3/5 then 1 mixes between A and L. Thus for

any belief's u, player 1's best reply is

3

(1,0,0) 0 =< b2L < 5

M 5 |

BR1(b2|e1) = (a,1-a,0) by =5
3

(0,1,0) 5 < by <1

for any a in [0,1].
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For Player 2. The only information set is e,, let us denote beliefs there

as [u(x1|e2),u(x2|e2)] or simply [“(31)'“{x2)]' With

U )
V2(b|e2) = u(x )by + u(xy)b,e.

Given y
. 1
(1,0) if u(xj) > >
M i . 1
BH1(b|e2) = (0,1) u(x1) < 5 -
1
(011“0)1 a € [031]9 1-1(}{1) = E
Now look back at the picture. There are two cases:
Case I. If 1 plays a with probability 1, then e, is an unreached information

set and we will have a lot of flexibility in assigning consistent beliefs at

e, (i.e., conditional probability distributions over Xy and 32).

Case II. If 1 does not play a with problem 1, then e, is reached with posi-
tive probability and the behavior of 1 pins down the beliefs at e,.

Let us deal with Case II first. Inspection of 1's best response
tells us the only way he will play (0,*,*) is if 3/5 > by < 1 then he will
play (0,1,0) (i.e., left for sure), but if he does that pins down 2's beliefs
to be u(x1} = 1 and u(xz) = 0 and with these beliefs 2 plays (1,0), so the

only type of equilibrium for this case is

b = (0,1,0;1,0) with x® = (1,0)

that is 1 plays L with probability 1, 2 believes this and plays 1 with proba-

bility 1. It is clear

bt = (e;,1-2¢,e431-65,¢,) + b = (0,1,0;1,0)

and
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€ 1 - 2e1 £, b

b~ _ »
H '(]-51'1-9:1]*“"(1-0}'

For Case I
* for 1 to play (1,0,0) we need 2 to play by, with 0 < by, < 3/5
» for 2 to do this he must believe "(xi) < 172
+ for any such beliefs we have an equilibrium i.e. the set of equilib-

rium for case I is:

A

{(b,u)|b = (1,0,0;a,1-a) with 0 < a ¢ 3/5
together with 1 = (y,1-y) 0 < y < 1/2}.
In more detail, we have two types of equilibrium in Case I

Type 1.A. b = (1,0,0;0,1) with 12 = (a,1-a) a < 1/2

Type 1.B. b = (1,0,0;a,1-a) with uP = (1/2,1/2).
To support this consider:

bE = (1-8,—62,61,82;1—83,53)

which implies beliefs u°

E € E
1

-
e1+£2' €4+€5 =

To generate beliefs for type I.B. put €4 = €5 = €3 = E. To generate beliefs

for type I.A. put €57 (1/a - ‘I)e1 because then

1 3
(g -1)1

3 ) = (a,1-a).

R |—
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(To see how to get this put £y = 651 and solve 51/(1+6)e1 = 1/148 = a, for §

in terms of a.)

Let us plot (project) these equilibria in (sz,ub(x1)) space: (see

Figure 8).

Consider next the game represented in Figure 9. We compute the

sequential equilibria for this as follows:

Step 1. Compute the best responses at each information set, for arbitrary

beliefs.

Step 2. Break strategy space into "cases" (into strategies that lead to all

nodes being reached and into those that leave some unreached nodes.

Step 3. Construct completely mixed strategies that support the proposed

equilibrium,
We start with Step 1.

Player 1. only one information set e

= 0.1by bop + 2bypboy - 0.1b23b3R]

Vi(bley) = byy + by [205 by 2LP3R

by + by (205 - 0,105 ] + bygl2. 10y ]

By * b1L[2.?b3L -0.1] + b1R[2.1b3L].

Since e; is reached with probability 1 for any strategies, 1's strategies are
independent of his/her belief's.
Clearly L is dominated by R, so 1 won't play L. 1 will play A with

probability 1 if 1 > (2.1)b3L or 1/2.1 > b3L' Thus 1's best response is
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1
(1,0,0) 0sby <353
1
BRy(ble,) = (a,0,1-a), @ € [0,1] by =357
1
(0,0,1) -2—--T ¢ b3LS 1

Player 2. The only information set is e, = (x,,x,} which may or may not be
reached in equilibrium. So for arbitrary beliefs (u(x,|e,),u(x,|e,)] which we

denote by (u(x1),u(32)) we have:

Vi(bley) = u(x;)[by by + bypbac] + ulx,)(by by ]

by [bg 1 + boplulxy)bap]

So by = 1 if by > u(x1J - u(x1)b3L or u(x1)/(1+u(x1)] < by s 1

(1,00 1f w(x,)/(1+u(x)) < by <1
BB;(b|e2) = (a,1-a) if u(x,)/(1+u(x,)) = bay
(0,1) if u(x1)/(1+u(x1)) > by 20

Player 3. The only information set is e3 which may or may not be reached.

Denote arbitrary beliefs are e; = {x3,xa,x5,xs} by

{u(x3),u(xu},u(X5),u{xGJ}

H
then V3(b|e3) u(xg)bap + ulxy)by + u(xg)by + u(xg)by

"

by [u(xy) + ulxg) + u(xg)] + byp[u(xs)]

1]
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So
(1,0) 0 % ulxy) < %
BRY(bey) = (a,1-a), @ e [0,1] ulxy) = E
(0,1) %< u(xg) <1

Step 2. Break the strategy space into cases.

Case 1. Strategies that lead to all information sets being reached.

Case II. Strategies that leave some information sets unreached.

Case 1. Unless 1 plays A with probability 1, both e, and e will be

reached. Now 1 plays (0,0,1) for any b3 with 1/2.1 ¢ b3L < 1 and 1 mixes

(a,0,1-a) for any by with 1/2.1 = by .
Notice under either of 1's strategies we have e, being reached so

-~

-~ b
1L 1 1-a
u(x,) = —m———— = = (or =——) = 1 and u(x ) = 0.
2 b1L + b2L 1 T-a

¢ Given the beliefs on e, are pinned down by by we have 2 plays left
with probability 1 (to see this substitute y into 2's best response.

» For player 3, given 1 plays (0,1,0) or (a,1-a,0) (and 2 plays (1,0))
we have the information set e3 having a conditional probability

u(x3) = 0, so 3 plays L with probability 1 for case I.

* But given the strategies of 2 and 3; 1 plays (0,1,0).
So for case 1 we have a unique equilibrium
b = {0,1,0;1,0;1,0)

with
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-~ -~ -~ -~ -~ -~ -~

- [ub(x1),ub(xz);ub(x3),ub(xu),ub(xﬁ),ub(xﬁ)]

=
|

{0,1;0,0,1,0).

I eclaim b® = (31,?-253,51;?-52,52;?-53,e3) with e, = €5 = Eg = € supports
this. Clearly

" 1-2¢ g,(1-¢ E.€
€ b® 3 1. %1 3 %
b" + band u = (3 T Toey 0 T, ey

(?—281){1~€2) (1-251)52

1-g

g i-€

1 1

E -~ -~ -~
is such that ub + u and by above the sequential best reply holds for (u,b).

Case 1I. Information sets e,, ey will be unreached if 1 plays (1,0,0)

1. 1 will play this if by < 1/2.1.

2. 3 will play such a strategy if u(x3) > 1/2. Notice that we can set u(x1)
arbitrarily but that given “(xi)’ player 2's strategy pins down player 3's
beliefs according to

2. u(xg} = sz“(xl)‘

We'll use (1), (2), and (3) in what follows:

Fix u(x.l) =, (a) 1If bBL 5 u1/(1+u1) then by = 1 and by (3), u(x3) = iy
Now if My oF 1/2 then player 3 mixes any (a,1-a), but by (1) we consider only

by = a < 1/2.1 and by hypothesis

Hy

M| —

b, < s

Jeg
3L 1+% T+u, 3

sob = (1,0,0;1,0;a,1-a) with 1/3 < a < 1/2.1 with beliefs
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-~ -~

W(xy) = ub(x3) i

nj—

is an equilibrium. (b) If b3L =z u1f{1+u1) then by is any 6§ ¢ [0,1] and 3
plays any y ¢ [0,1] if Mg = bopuy = 1/2. Given by = &, this becomes 3 plays
any y if &y, = 1/2. So B = (1,0,0;6,1-6;y,1-y) together with (u1,u3) s
(1/28,1/2) is an equilibrium, with y < 1/(2.1) but since by = u1/(1+u1) and
by, < 1/(2.1) implies u1/(1+u1J ¢ 1/(2.1) or u, < 17(1.1).  So for u; ¢
[172,1/1.1], ug = 1/2 we have

-~ - -

b = (1,0,05by ,bap;ba; ,bap)

with u1/(1 + u1) = b3L < 1/(2.1), bop, = 1/2u4 and its easy to support this
with a sequence of completely mixed strategy b® =
(1-51,-52,61,82;3,1-0;7,1-7) for a, y > 0

bE 81 82
My o=

e, +£.' €,+¢ ] = (u1.u2)

T2 =1 2

if
= - {.._1 _1)2
€y = HqE E5 = u, .

VI. Sequential Equilibria are not Invariant to Innocuous Changes in the

Game Tree.
(This section is from Kohlberg-Mertens "On the Strategic Stability

of Equilibria," hereafter referred to as (KM).) K-M provide the following

examples:

Examples 10 and 11. In Example 10 player 1 has one information set e, at

which he chooses (T,M,B}. In Example 11 player 1 has two information sets e

and e;. At €4, player 1 chooses either T or D while e!, player 1 chooses
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either M or B. Player 2's situation is the same in both. Basically, these
two games are the same and all we have done is to add an "irrelevant" move for
1 (by splitting his decision into two stages). Although these games are equal
(up to this innocuous addition of an extra move for 1) the sequential equilib-
ria do not coincide.

In both games "3,3" is a sequential equilibrium, however, in the

first game, "2,2" is a sequential equation, but it is not in the second.

r(x): Step 1.
Player 1.

Vi(bleq) = bypl2]) + by (305 + 1.5by0] + byplbyp]

1]

bTT(z) + b?m[1'5 . 1.5b2L] + b1B[1—b2L].

B is strictly dominated by T, that is, T is preferred to M if 2 > 1.5 + 1.5by

which simplifies to 1/3 > by.

Thus for arbitrary u (since e4 reached with probability 1) the best

response of player 1 is,

1

(1,0,0) b2L < 3

] 1
BR1(b|e2) = (2,1 = a,0) b2L - §
1

(0,1,0) b2L > 3

Player 2.

M
V5(bley)

"

by [3u(xy)] + bop[1-u(x))].



- 35 -

L is preferred to R if 3 u(x1) 1 - u(x1) which simplifies to u(x1) > /4.

Thus the best response of 2 is,

(1,00 wlx) >

BRA(ble,) = (a,1 - a) u(x,) = 7
1

(0,1)  w(x) <

Step 2. Case I: Strategies s.t. e, is reached. Case II: Strategies s.t. e,

not reached.

Case I. e, will be reached if by > 1/3 and 1 plays M with positive probabil-
ity. This pins down beliefs u(x;) = Pb(x1|e2) = byy/(byy + bep) = (1-a)/(1-a)
= 1 and u(xy) = 0, so 2 responds wi}h s “The sg} of equilibria for this case
have b = (0,1,0;1,0) with beliefs u° = (u°(x,),u°(x,)) = (1,0). Clearly b° =
(e,1-2e,e;1=-c,e) with ube = (1-2¢/1-e,e/1-¢) supports this.

Case II. e, will not be reached if 1 plays (1,0,0), 1 will play this if by <

1/3. 2's best response includes this if u(x1) > 1/4, For this case the set

of equilibrium are

{b = (1,0,0;&,1-—3), ub = (y,1-y) with a < %, y <

}.

&l

To support this put
b™ = (1»51—52,e1,52;a,1—n) (for a > 0)

= (1-¢

o
I

1—52,51,52;53,1-53) (for a = 0)

with beliefs u




= B =

To get these beliefs to converge to (y,1 - y) put €5 = Qeq, 50

- i 1
G o5, = e wa) = (1Y)
which implies
1+Aml(}r‘ﬂ.=l-1.
¥ Y
So put
¢ 1 1 .
b€ = (1= 3 e,e,{; -Nesa,l-a)
or b* = (1- 1 €,€ {l -Ve;e, 1-€).
Y ¥ ? Y ] ¥

Clearly this works.

r‘(x): This is basically the same game except that we have introduced an
extra (strategically) irrelevant move. However, we are not forced to check

the sequential best reply at both e, and e;. The key node is in e;
L] =
BR,(be]) = (0,1,0) all by .

This pins down u(x:) = 1 and eliminates all case II equilibria of T'. 3o here

b

the only sequential equilibrium is b = (0,1,0;1,0), u~ = (1,0).

Remark: Notice (2.2) is not even subgame perfect. Kohlberg and Mertens
believe this type of example points out a serious defect of sequential equa-
tion, namely: The set of sequential equation may change a great deal as we

change the game tree in seemingly innocuous ways.
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VII. Refinements of Sequential Equilibria for Signaling Games

[This section is from Kreps "Signaling Cames and Stable Equilib-
ria."] Kreps and others have proposed a variety of criteria that eliminate
"bad" sequential equilibria. For the most part these criteria and their
associated refinements have been developed for a simple class of (extensive
form) games called signaling games. We will begin by defining a signaling

game and then will consider several examples.

7.1 A Signaling Game (with 2 players, one-sided uncertainty and 2 stages)

Consider a simple (Bayesian) game with two players: A& and B.

Stage 1. Player A learns some private information, namely that his type is
some specific type t of some finite list of types T,. Given this information,
A selects an action, here, to send a "message" M to B from some finite list of

messages M.

Stage 2. Player B receives the message from A, and then chooses some action,

here called a "response" r from some finite list of responses R.

If A's type is t, and A plays M and B plays r. the utility of A is
Uﬁ(t,m,r) and the utility of B is UB{t,m,r).

At stage 1, A knows B's type (since his type set is a singleton), so
A's beliefs will be trivial. At stage 2, in order to select an action B must
have some well-defined beliefs about A's type. B's beliefs will depend on A's
message. Let u(ty|m) = the (subjective) conditional probability that A's type
is ty given message M is sent from A to B.

Now we let by = (b, (t)|t e T,) denote the behavioral strategy of A
where bﬁm(t) is a probability distribution over possible messages M (notice we

let each type of player A have a different distribution). Let bg =
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(bBr(m)!m e M) denote a behavioral strategy of B. For each message m that A
sends, B will be at a different information set (which we index here by m
itself). For each information set B will choose a probability distribution
over possible responses r ¢ R. bBr(m) = a probability distribution over R,
given that information set indexed by m is reached. A's utility depends on

his type t, and the behavior strategy b. Let

Vpblt,) =} § by (t,)bg (m)U,(t,,m,r)

meM reR
and
Vg(blm) =} ] u(t,|m)by (m)Up(t,,m,r).
tAaT reR
A
For A: Given A's type is t,, A chooses m with probability

bpm(ty). Given this choice, B chooses r with probability bgp(m}. So given
ty, the probability of m and r is bam(ta)bpp(m), then we just sum over all m
and r.

For B: Conditional on receiving m, B believes A is type t, with
probability p(tﬂ|m). B plays r with probability bg.(m), then just sum over

possible types of A and possible actions of B.

7.2 The Vodka-Quiche Example

We will motivate the general case with a simple example. Confer
Example 12 at end of text, notice the basic structure can be summarized as
follows: A is one of two types tough or wimp, T, = {T,W}. A knows his type
by the time he moves. {"Nature" selects type T with probability Py = 0.9 and
W with Py = 0.1 or we may simply say B's priors over Ty are Pp = 0.9 and Py =

0.1}
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B will eventually decide to duel or not duel A

« If A is tough, B will lose by dueling.

* If A a wimp, B will win by dueling.

Before B decides he gets to see what A has for breakfast, Vodka or Quiche

(that is the signal sent by A)

» If A is tough, he prefers Vodka.

« If A is a wimp, he prefers Quiche.

In both cases the cost to A of having the less preferred breakfast
is smaller than the cost of having to engage in a duel (i.e., the tough guy
would eat quiche if it meant B would not challenge and the wimp would drink
Vodka if it meant B would not challenge).

In our notation:

T, = {T,W}, M= {v,q}, R = {d,n}.

A

A's messages = drink vodka, eat quiche, B's responses: duel/not duel. A's
information sets: e,(T) = sees he is tough or e,(w) = sees he is wimp. B's
information sets: epg(v) = sees A drink vodka, eg(gq) = sees A eat quiche.
by = (bnv(T"bnq(T};bAv("”bnq(“)] (which, respectively, represent the proba-
bilities of playing: vodka if tough, quiche if tough; vodka if wimp, quiche if
wimp). bp = (de(V),an(v);de(q),an(q)] (which respectively, the probabili-
ties of playing duel if vodka, do not duel if vodka; duel if quiche, not duel

if quiche).
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Kreps claims there are two classes of Sequential Equilibria:

Class I. A has vodka regardless of type. (I.1) B duels if quiche, not duels
if vodka, and this is supported with off the equation path beliefs; if A4 has

quiche then A is more likely to be a wimp [or (I.2) B randomizes if quiche].

Class II. A has quiche regardless of type. (II.1) B duels if vodka, not
duels if quiche and this is supported by out of equation beliefs: If A has
vodka, then A is more likely to be a wimp then a tough [or (II.2) B randomizes
if vodka]. Kreps thinks the Class II. equilibria are "unintuitive" since B
interprets A's drinking vodka as a good indication A is a wimp, even though it
is the tough A that prefers vodka.
In the class II equilibrium A could make the following speech:

"I will have vodka and you should conclude I am tough, because if you

concluded this then you will not duel and I am better off. You

should conclude this because if I were a wimp then I would have no

incentive to make this defection from equilibrium. Because were I a

wimp, no matter what conclusion you made about my type from me drink-

ing vodka, I would be worse off then if I stuck to the equilibrium."

Kreps then rules out equilibria of class II as unintuitive. Let us

first show these are sequential equilibria.

Step 1. Compute the best responses for A at each information set, A has two
information sets e,(T), ey(w) (denoted "T" and "W"). At information set
eg(”):

Vu(blW) = by (W)[2bg (V)] + by (W)[3b (@) + byy(a)]

by, (W) [2bg (V)] + bnq(w)[1+2an(q)l.



41 -

So the wimp eats quiche if 1 + 2an(q) > 2an(v)

1

BRy(b[w) = by, (w),by (W) = (a,1-a)
(0,1) >

At information set eﬂ(T):

Va(bIT) = by ()30 (V) + bgy(v)] + by (T)[2bg ()]

bAv{t)[1 + 2by (V)] + bAq(T)[2an(q)].
So tough guy drinks vodka if 1 + 2 an(v) > Zan(q)

(1,00 1f by (a) < by (V) - 3

BR,(b|T) = [bAV(T),bAq(T)) = (a,l-a)
(0,1) >

Compute the best responses for B at each information set; B has two informa-
tion sets eg(v) + ep(q) (denoted "v" and "g").
Let (u(T|v),u(W|v)) be the conditional probability distribution over

eB(v).

Va(b|v) = w(T|v)[bg (V)] + w(W|v)[bg (v) + 2b5,(v)]

b (V) [W(T[v) + w(W[v)] + by, (v)[2u(H|v)]

by (V) + bg,(v)[2u(W|v)].

So B does not duels vodka drinker if w(W|v) < 1/2 (i.e., w(T|v) > 1/2) that

is, if vodka "signals" A is tough guy with probability > 1/2).
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(1,00 u(M|v) < 3
BRA(b]V) = (by (v),by (V) = (a,1-a) w(W|v) = 3
0,1)  u(W|v) > %

Let (u(T|q),u(W|q)) be the conditional probability distribution on eg(q).
5]
Vp(bla) = by (@) + by,(a)[2u(u]q)].

B does not duel quiche eater if u(w|g) < 1/2. (If eating quiche "signals" B

is a tough guy.)

(1,0) <3
BRA(b]Q) = (by (@),by(a)) = (a,1-a) u(ulq) = 3
(0,1) > 3

Step 2. Break analysis into cases:
Case I. Both tough and wimp drink vodka with probability one.

Case II. Both tough and wimp eat quiche with probability one.

Case I. If T and W play by,(T) = by,(w) = 1 then B's information set eg(q) is

unreached.

* To get T to play this we need bg,(q) < bg,(v) - 1/2.
» To get w to play this we need an(q) < an(v) - 1/2.

For both inequalities to hold we need by, (q) < bp,(v) - 1/2 (we need B to not

duel vodka drinkers much)

* B's information set ep(v) has the conditional pinned down to the

prior (since both T and W mimic each other there is no new informa-
tion) so u(T|v) = P = 0.9, u(W|v) = PH = 0.1. Since u(W|v) = 0.1 ¢
1/2 this I implies B plays bg,(v) =1 (i.e., B doesn't duel the vodka
drinker since he believes the vodka drinker has a 0.9 (> 1/2) chance

of being a tough guy).
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+ B's information set ep(q) is unreached under our proposed strategies

SO we can impose arhiﬁ}ary beliefs here. Now in order to get T and W
to play their strategies we need an(q) < 1/2 (substitute an(v) = 1
into the above inequality so we need B to duel quiche eater with

probability > 1/2). Beliefs u(W|q) 2 1/2 will support this. So

ba [bgv(w),bﬂq(w);bAv(T),bAq(T} = (1,0;1,0)

bg = (bg,(v),bg,(Vv);bg (a),bg (q)) = (1,05a,1 - a)
with beliefs

(u(W|v),u(T|v);u(W]|q),u(T|q))

=
"

(0,1;0,1-a)

1

with a < 1/2, a 2 1/2 is a set of seguential equilibrium of class I.

Case II. If T and W play bAq{T) = bAq(H) = 1 then B's information set eB(v)

is unreached.

« To get T to play this we need bg,(q) > an(v) - 1/2.

» To get W Lo play this we need an(q) > an(v) + 1/2.

Both hold if bgn(q) > bgy(v) + 1/2 (we need B to not duel quiche eaters very

much)

« B's information set ep(q): has the conditional pinned down to the
prior (seeing quiche eater gives B no new information). So u(T|q) =
0.9, u(W|g) = 0.1. Since u(W|g) = 0.9 > 1/2 this implies B plays
bg,(a) = 1. (B doesn't duel quiche either since he believes a quiche

eater is a tough guy with probability = 0.9 > 1/2.)

*» B's information set ey(v): 1is unreached under proposed strategies to

get T and W to play their strategies we need bg,(v) < 1/2 (subsequent
an(q) = 1 into above box). Beliefs u(W|v) = 1/2 will support this.
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7.3 The Intuitive Criterion for Signaling Games

Return to the general notation of (7.1). For each message m ¢ M, B
winds up at a different information set say eg(m) which we denote simply by
m. Thus B solves at eg(m)

max V;(b|m).

reR
Let BR;(m) = subset of R of best responses by player B given message m. For
some set S of types of A, which is a subset of T, let BRB(S,m) = Best re-
sponses by B, for all beliefs u assign probability 1 to the subset S of types.

1
BRy(S,m) = U{BR (m)|u(t|m) such that } u(t|m) = 1},
teS
Let there be a sequential equilibrium in which the expected utility to type to

player A is uA(t). teT,.

Intuitive Criterion:

Definition. A sequential equilibria for this signaling game fails the intui-

tive criterion if we can find

(i) a message m' that is unsent in equilibrium.
(ii) a proper subset S of types, (SCT).
(iii) a certain type t' ¢ T/S, subject to:
1. For all t e S, and all r & BR(T,m'), Gt > ut,n',r).

2. For all r ¢ BR(T/S,m'), u;, < ‘aleY ;' r).

In words a sequential equilibrium fails the intuitive criterion if some type
t' can profitably distinguish himself from a set of types S by sending a

message m'
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+ Where if this type t' can convince the receiver of m' that t' is not
of type S then t' does strictly better then in original equilibrium
as long as B concludes A is not in type S (for all r e BR(T/S,m'),

u., <u(t',m',r).

t!

» And if any player with a type in S tries to do the same he will end
up worse off than he was in the original equilibrium, no matter what

type B concludes he is

(all t € S, all r € BR(T,m'), ug ult'.m',r).
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Koz (%pyXqyeneyXgh pdy(xq7) = %3

Xy = {x1,x2} pdg(x.?) = Xp

X2 = {33,..-,36} S(K-l) = {x3,xu}

2 = {X?,.-.,X.Iu} Z(X'l) = {xT'x8’29’x10}
Eq = {egq = (x4}, = {x,}}

Ey = [821 = {;:B,xu},e22 =z {x5,x6}}‘.

Ce11 = {L,R} = {x3,xn}

0323 = {1,r} = {x7.x9}, {KB,Xw).

V,(xg) =0

VE(XB) =4



Example 2

i

b1 = (b b 8 )

leyy' 18y,

b1eH = {b1(L|e11},b1(Rle?1)}, b,(+|eqq) 20,
by(Lley,) + by(Rle, ) = 1

b1912 = {by(L]e.),b (Rle,,)}

By = (b2921‘b2e22)

b2e21 B {b2(1|ez1),b (r|e21)}, by(leys) > 0
b21e22

P2te,, {byt1lezy) byl ey}

b2(1]e21) + by(rleyy) =1
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Example 3

The Problem of Unreached Information sets:

(A Slight Modification of Selten's Example 2)
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Example 5 (KW p. 873)
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Example 6

€1 e4 {xq}

ep1 = (xp,%3), ep = {xg,%7,%8,%g}

n

2

63 83 = {xlf.ixs}



Consider finally Example 7

92 {321,K3}

63 {xu,x5}

wBD -



Example 8

i

E.'T {Xo}

ey = [%9,%5}

- 53~
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Example §: Consider another example from KW.

e1 {XO]

= {Xlxg)

(1]
4]
]

83 = {x3!°--tx‘|]



Example 10:

Example 11:

eq = {xo}
ey = {XI’XE}
e, {xy}

e%: £y

ey = {x1 ,x2}
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Example 12:
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(The Vodka-Quiche Example)



