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The Risk of Becoming Risk Averse:
A Model of Asset Pricing and Trade Volumes*

Fernando Alvarez' and Andy Atkeson?

Abstract

We develop a new general equilibrium model of asset pricing and asset trading volume
in which agents’ motivations to trade arise due to uninsurable idiosyncratic shocks to
agents’ risk tolerance. In response to these shocks, agents trade to rebalance their portfo-
lios between risky and riskless assets. We study a positive question — When does trade
volume become a pricing factor? — and a normative question — What is the impact of
Tobin taxes on asset trading on welfare? In our model, economies in which marketwide
risk tolerance is negatively correlated with trade volume have a higher risk premium for
aggregate risk. Likewise, for a given economy, we find that assets whose cash flows are
concentrated on states with high trading volume have higher prices and lower risk premia.
We then show that Tobin taxes on asset trade have a first-order negative impact on ex-ante
welfare, i.e., a small subsidy to trade leads to an improvement in ex-ante welfare. Finally,
we develop an alternative version of our model in which asset trade arises from uninsurable
idiosyncratic shocks to agents’ hedging needs rather than shocks to their risk tolerance.
We show that our positive results regarding the relationship between trade volume and
asset prices carry through. In contrast, the normative implications of this specification of
our model for Tobin taxes or subsidies depend on the specification of agents’ preferences
and non-traded endowments.
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1 Introduction

In this paper, we develop a new general equilibrium model of asset pricing and asset trading
volume in which investors’ motivations to trade arise due to uninsurable idiosyncratic and
aggregate shocks to investors’ risk tolerance. In response to these shocks, investors trade to
rebalance their portfolios between risky and riskless assets. The volume of asset trade in our
model is driven by the dispersion of idiosyncratic shocks to risk tolerance. Our model delivers
simple analytical expressions for asset prices and trading volume as functions of aggregate
variables and the distribution of idiosyncratic shocks to agents’ risk tolerance. We use these
formulas to study a positive and a normative question: To what extent is trading volume a
factor that helps price risky assets? And what are the welfare implications of Tobin taxes and
subsidies to asset trading?

We show three main positive results regarding the relationship between trading volume and
asset prices in our model. First, with positive trading volume, interest rates are lower than in an
otherwise identical representative agent economy. Second, if aggregate shocks to risk tolerance
are negatively correlated with trade volume, then the risk premium for aggregate risk is higher
than in an otherwise identical representative agent economy with no rebalancing trade. Third,
risky assets whose cash flows are concentrated on states in which trading volume is high sell at
a higher price, i.e., they have lower expected excess returns. To help develop intuition for the
asset pricing results in our model, we show that there is a mathematical correspondence between
our asset pricing formulas and those in Mankiw (1986) and Constantinides and Duffie (1996)
regarding the role of uninsurable idiosyncratic income shocks in asset pricing. The primary
difference between our model and theirs, however, is that the shocks to risk tolerance in our
model lead to a positive volume of rebalancing trade, while there is no trade in the equilibrium
in these other papers.

We also use our model to evaluate the impact on ex-ante welfare of a Tobin tax on asset
transactions. Contrary to the standard public finance result that in an undistorted equilibrium,
a tax (or subsidy) has a zero first-order effect on welfare, in our case a Tobin tax on asset trans-
actions has a first-order negative welfare effect. This is because it turns out that a transaction
tax levied in the equilibrium with uninsurable risk tolerance shocks, through its incidence, ex-
acerbates the equilibrium failure to share risk efficiently. In particular, in equilibrium, agents
cannot insure against an idiosyncratic shock to their risk tolerance, which turns out to act the
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first-order ex-ante welfare improvement because it improves upon the incomplete risk sharing
achieved in equilibrium.

In the final section of the paper, we consider two alternative specifications of our model in
which agents’ desire to trade assets is driven by uninsurable idiosyncratic shocks to agents’ non-
tradable risky endowments of consumption goods rather than by shocks to agents’ risk tolerance.
We compare these alternative specifications of our model with the baseline specification with
shocks to risk tolerance to highlight the economics of our positive and normative results.

The specification of preferences in our model is key for its positive and normative implica-
tions. We consider a three-period endowment economy, where, to simplify, consumption takes
place only in the first and last periods. In period t = 0, all agents are identical. In period t = 1,
all investors receive common signals about period ¢ = 2 output, and each investor’s preferences
for consumption at ¢t = 2 are realized. Specifically, we assume that in period ¢t = 1, each investor
has a utility function of the equicautious HARA family, which we index as U,(-).! Formally,
this is the class of utilities where risk tolerance is linear in consumption.? The intercept of the
linear risk tolerance function, which we denote by 7, is allowed to be investor specific, and this
is the preference shock that we consider.

What is central to our results is the way that investors view at time ¢ = 0 the prospect of
a time t = 1 random shock to their risk tolerance. Here we use a recursive representation of
agents’ preferences. For each realization of the risk tolerance parameter 7 at t = 1, we define
for each agent a time ¢ = 1 level of certainty equivalent consumption based on that agent’s
realized risk tolerance 7 and the (stochastic) consumption allocated to that agent at t = 2.
Then each investor’s time ¢ = 0 preferences are given by an additively separable utility V' over
time ¢ = 0 consumption plus the discounted value of the expected utility over the time t = 1
certainty equivalent of continuation consumption, also computed with the utility function V.
This gives a non-expected utility as of time ¢ = 0, as in Kreps and Porteus (1978) or Selden
(1978). For the particular case where the distribution of risk tolerance 7 is degenerate, ex-
ante preferences are exactly as in Selden (1978). In the general case, time ¢t = 0 investors
evaluate the prospects of preference shocks only by considering their effect on their implied
certainty equivalent consumption. In particular, we assume that investors are risk averse with

respect to randomness in certainty equivalent consumption regardless of whether the variation

L As is well known, this family includes utility functions with constant relative risk aversion, constant absolute
risk aversion, and quadratic utility, where the origin can be displaced from zero.
2Recall that risk tolerance is defined as the reciprocal of risk aversion.



in this certainty equivalent consumption comes from randomness in the time ¢t = 2 allocation
of consumption or from time ¢t = 1 preference shocks. This formulation, as opposed to simply
adding a shifter to standard additively separable preferences, isolates the effect of randomness
of risk tolerance without having extra effects due to the particular cardinal representation of
utility. Thus, our specification captures the risk of becoming risk averse. In addition, this
specification has been used in social choice theory when considering foundations for ex-ante
Rawlsian preferences “behind the veil of ignorance” to take into account the effect of different
realized risk tolerances; see Grant et al. (2010) or Mongin and Pivato (2015).

The correspondence between an idiosyncratic shock to risk tolerance in our model and an
idiosyncratic shock to income in Mankiw (1986) and related models can be understood as
follows. The Arrow-Pratt theorem states that an investor with a risk tolerance lower than
another, given the same budget set for tradable assets, also has lower certainty equivalent
consumption. In our model, all investors are ex-ante identical at ¢ = 0 and thus have the
same asset position right before their time ¢t = 1 preference shock is realized. Hence, they face
the same budget set for tradable assets at ¢ = 1. Therefore, the idiosyncratic risk tolerance
shock is akin to a negative income shock in the sense that such a shock makes it more costly
for that investor to attain any given level of certainty equivalent consumption through trade
in assets at t = 1. Since the assumed time t = 0 preferences are in terms of expected utility
over certainty equivalent consumption, the equivalence of a risk tolerance shock with an income
shock is exact. Thus, as in Mankiw (1986) and Constantinides and Duffie (1996), the effect on
time ¢ = 0 marginal valuation of the idiosyncratic variation on certainty equivalent consumption
depends on whether preferences feature precautionary savings. This claim is formally stated
in Proposition 6. When V" > 0, so investors are prudent, then states that correspond to
high trade volume (i.e., high dispersion of certainty equivalence) are states with high marginal
valuations. This effect explains the three positive asset pricing implications described above.

Our model can be formulated with a general specification of preferences U, (-) realized at
t = 1. Our assumption that the realized U, (-) time ¢t = 1 utility functions are of the equicautious
HARA family has several important implications that make the model particularly tractable
and which help us to understand the logic of our asset pricing results. First, the two-mutual
fund separation theorem holds once agents’ risk tolerances are realized at t = 1, and hence, for
pricing assets at t = 1, it suffices for investors to trade in a Lucas tree and an uncontingent

bond. No further claims on output in period ¢ = 2 are needed. We refer to this type of trade



as portfolio rebalancing. Second, these preferences admit Gorman aggregation. That is, for
the purpose of pricing securities at ¢ = 1 that pay consumption at ¢ = 2 contingent on output
realized at that date once agents’ preference shocks have been realized, there is a representative
investor whose preferences depend exclusively on the average of the risk tolerance parameter
7 across investors. These results imply that asset prices realized at time ¢ = 1, given agents’
preference shocks and signals about aggregate output, are independent of time ¢ = 1 trade
volume. The third key implication that follows from our assumption of HARA preferences is
that trade volume in the Lucas tree and the uncontingent bond at ¢ = 1 maps directly into
and depends exclusively on the realized dispersion of the risk tolerance parameter 7 across
investors.> A fourth key implication of HARA preferences is that the equilibrium allocation
of certainty equivalent consumption to an agent with realized risk tolerance 7 at ¢ = 1 is
linear and increasing in the size of that agent’s purchases of the risky security. Hence, our
model implies that data on the volume of rebalancing trade at ¢ = 1 map directly into the
dispersion of certainty equivalent consumption across agents at that date. This is summarized
in Proposition 5.

These four properties of equicautious HARA preferences together imply that the only effect
of trade volume on asset pricing comes from the marginal valuation that investors attach, from
the point of view of time ¢t = 0, to time t = 1 prices that occur given different realizations of
the dispersion of idiosyncratic shocks to risk tolerance. In other words, the connection between
trade volume and ex-ante asset prices comes from investors’ valuation in the presence of risk
to the dispersion of preference shocks that drive the desire for portfolio rebalancing. In our
model, this risk is manifest in variation in the volume of rebalancing trade at t = 1 across the
various states that may be realized at that date.

The main asset pricing positive implications of our model follow directly from the insights
derived from these four properties of the equicautious HARA family of preferences. In particu-
lar, we obtain a decomposition of risk premia in Proposition 7, a comparative statics result on
trade volume and interest rates in Proposition 8, and a comparative statics result on trade vol-
ume and risk premia across economies in Proposition 9 and across securities in a given economy
in Proposition 10.

To gain intuition for our normative results regarding Tobin taxes, first observe that as

discussed above, the initial undistorted equilibrium allocation has imperfect sharing of the

3Recall that investors are identical at time ¢ = 0 and that 7 shocks are uninsurable, so investors start their
time ¢ = 1 with identical portfolios.



idiosyncratic risk of shocks to risk tolerance 7. In particular, an agent who receives a low
idiosyncratic realization of risk tolerance (high risk aversion) has low certainty equivalent con-
sumption at ¢ = 1 relative to an agent who receives a high risk tolerance shock. Thus, the
welfare implications of a Tobin tax on asset trade whose proceeds are rebated lump sum to
investors depend on the incidence of the tax: does the tax fall on risk-tolerant or risk-averse
investors? We find fairly general sufficient conditions where the tax is borne by the risk-averse
investors and hence the certainty equivalent consumption for these agents is pushed even lower
from the imposition of the tax. These results are presented in Propositions 13 and 14. Our
result that the tax falls primarily on the risk-averse investors follows from the classic result in
finance that the elasticity of an investor’s demand for risky assets is increasing in his or her risk
tolerance and the classic result in public finance that tax incidence is determined by demand
elasticities.

For most of the paper, we focus on our baseline model in which asset trade is driven by
idiosyncratic shocks to risk tolerance. In the final section of the paper, we consider two al-
ternative specifications of our model in which agents’ desire to trade assets at ¢t = 1 is driven
by uninsurable idiosyncratic shocks to agents’ tradable and non-tradable endowments of con-
sumption at ¢ = 2 rather than being driven exclusively by shocks to agents’ risk tolerance.
We compare these alternative specifications of our model with the baseline specification with
shocks to risk tolerance to highlight the economics of our positive and normative results.

In the first alternative specification of our model, agents receive at time ¢ = 1 a random
amount of a non-tradable endowment of consumption at ¢t = 2 where the risk in this endowment
is diversifiable. The equilibrium of such a model is essentially the same as the original model,
except that now there is more trade at time ¢ = 1, since agents want to (and can) eliminate
their exposure to this idiosyncratic shock. Thus, in this alternative specification of our model,
we reach the same conclusions for the relationship between the volume of portfolio rebalancing
trade and asset prices and, at the same time, allow for additional trade volume that is not
portfolio rebalancing trade.

In the the second alternative specification of our model, agents receive at time ¢t = 1 a
random amount of non-tradable of consumption at time ¢ = 2 where the risk in this endowment
is exposed to the aggregate endowment of consumption at t = 2. Thus, relative to the first

specification, the risk in this endowment at time ¢ = 1 is non-diversifiable. In this case, for



4 The idiosyncratic

simplicity, we suppress the idiosyncratic random shocks to risk tolerance.
shock in this alternative specification is completely analogous to an idiosyncratic income shock
in terms of certainty equivalent consumption at ¢ = 1 because this shock affects the set of
certainty equivalent consumption that the agent can afford at t = 1. This shock also motivates
the agent to rebalance his portfolio at t = 1 to hedge the risk in his or her non-traded endowment
to be realized at t = 2. The direction of this trade depends on the correlation of the agent’s
non-traded endowment at t = 2 and the payoffs of traded securities. Thus, the tight link
in our baseline model between the observed rebalancing trade of an individual investor at
t = 1 and that investor’s certainty equivalent consumption is broken because this correlation
could be positive or negative or zero. Nevertheless, we show that our three positive results
regarding trade volume (in rebalancing trade) and asset pricing carry through directly to these
alternative specifications. In contrast, our normative results regarding Tobin taxes hold for some
specifications of preferences and non-traded endowment shocks, but not for others, because in
this specification of our model, we no longer have a tight link for each agent between the level
of certainty equivalent consumption for that agent in the initial undistorted equilibrium and
that agent’s realized elasticity of demand for aggregate risk.

The remainder of our paper is organized as follows. In subsection 1.1, we discuss the related
literature. In section 2, we present the model with a general specification of preferences. We
consider socially optimal allocations under the assumption that it is possible to condition agents’
consumption at t = 2 on the realization of their preference shock at ¢ = 1. We then define equi-
librium with asset markets that are incomplete in the sense that traded claims are contingent
only on aggregate shocks and not on the realizations of individuals’ preference shocks. It is
this form of equilibrium that we study. In section 3, we consider our model with preferences at
t =1, U,(-) specialized to the HARA class. Here we develop the properties of these preferences
that are key to making the model tractable. We then fully characterize equilibrium allocations,
asset prices, and trade volumes. We also develop the mathematical correspondence between
asset prices with shocks to risk tolerance and shocks to income. In section 4, we present our
main results regarding the equilibrium relationship between trading volume and asset prices.
In section 5, we present our normative results regarding Tobin taxes on asset trade. In sec-
tion 6, we discuss the alternative specifications of our model in which asset trade is driven by

hedging needs, and we compare the positive and normative implications of these alternative

4Thus, in this case one can consider exactly the same preferences as in Selden (1978), or even expected
utility, if we so desire.



specifications with those of our baseline model. In the appendix, we complement our analysis
of a simple linear tax of trade rebated lump sum, with the analysis of the optimal non-linear

tax-subsidy.

1.1 Related Literature

There is a large theoretical and empirical literature on the relationship between trading volume
and asset prices.

The idea that idiosyncratic preference shocks affect investors’ precautionary demand for an
asset (in this case, money) is central to Lucas (1980). Also, the idea that shocks to the demand
side for risky assets are important is emphasized by Albuquerque et al. (2016). The model
in that paper, as well as several other related models, incorporates risky preference shocks so
that the model can account for the weak correlation of asset prices with traditional supply side
factors emphasized in the literature. We concentrate on the relationship between aggregate
and idiosyncratic preference shocks so we can examine the implied relationships between trade
volume and asset pricing. Guiso, Sapienza, and Zingales (2018) provide evidence of changes in
the risk aversion of individual Italian investors after the 2008 crisis.

Random Ruisk Tolerance. There is a small theoretical asset pricing literature that uses
random changes in risk tolerance. An early example, particularly related because it addresses
properties of the volume of transactions, is Campbell, Grossman, and Wang (1993). The aim
of that paper is to investigate the temporal patterns in asset returns and trade volume. This
paper considers shocks to risk tolerance in the context of a model with expected utility, so
these shocks also correspond to shocks to agents’ intertemporal elasticity of substitution. On
the pure portfolio side Steffensen (2011), analyzes the implications randomness of risk tolerance,
also using expected utility. Gordon and St-Amour (2004) use a time-separable utility with a
state-dependent CRRA parameter to jointly fit consumption and asset pricing moments. In
contrast to these earlier papers, here we consider an environment in which agents do not have
expected utility over their preference shocks. With our preference specification, we are able
to derive a more complete characterization of the positive and normative implications of our
model.

The external habit formation model has, when one concentrates purely on the resulting
stochastic discount factor, a form of random risk aversion that is nested by our equicautious

HARA utility specification if agents have common CRRA preferences over consumption less



the external habit parameter, as in Campbell and Cochrane (1999).> Bekaert, Engstrom, and
Grenadier (2010) develop and estimate a version of Campbell and Cochrane (1999) where
the ratio of consumption to habit also has independent random variation. They estimate a
(linearized) version of the model and find a substantial role for independent shocks to the
consumption/habit ratio, which have the interpretation of shocks to risk aversion. Guo, Wang,
and Yang (2013) and Cho (2014) further investigate estimates of variations of this model.

In contrast to the papers cited above, our recursive definition of preferences isolates the
shocks to risk tolerance, leaving intertemporal preferences over the allocation of certainty equiv-
alent consumption unchanged.

Santos and Veronesi (2017) consider a model with external habits in which agents experience
idiosyncratic shocks to risk tolerance because they each have different exposures to changes in
the external habit parameter. As in our model, rebalancing trade occurs in the aggregate risky
asset and riskless bonds due to heterogeneous changes in agents’ external habit parameters
correlated with aggregates. These authors focus on the dynamics of leverage and asset trade
that result from this assumption, as opposed to the impact on ex-ante asset prices.

Kozak (2015) uses time-varying aversion in a representative agent model with non-separable
preferences to model variations on the market price of risk. Kim (2014) uses Epstein-Zin pref-
erences with a representative agent with time-varying risk aversion to develop non-parametric
estimates of risk aversion and finds strong evidence for its variability. Drechsler (2013) and
Bhandari, Borovicka, and Ho (2016) use models where agents have time varying concerns for
model misspecification, which can also be interpreted as random risk aversion. Drechsler (2013)
studies time varying returns, especially of volatility-related derivatives.

Barro et al. (2017) consider a model with Epstein-Zin utility in which agents have id-
iosyncratic shocks to their risk tolerance. These shocks are introduced to ensure a stationary
distribution of consumption across agents in the model. These shocks are implemented in such
a manner to ensure that they do not have an impact on asset prices. Lenel (2017) also uses
an Epstein-Zin model with random risk aversion. His interest is in the joint explanation of the
holding of bonds and risky assets of different (ex-post) agent types and their returns.

Rebalancing Trade. In our model, the two-mutual-fund separation theorem holds, so agents
trade only the market portfolio of risky assets (aggregate risk) and riskless bonds. Agents have

no need to trade individual risky assets, nor do they need to trade more complex claims to

5The alert reader of Campbell and Cochrane (1999) will recognize the non-linear adjustment on that model
to zero out the precautionary saving effect and obtain constant interest rates.



aggregate risk. We refer to trade in shares of the aggregate endowment and riskless bonds as
“rebalancing trade.” How much trade is there of this type? There is a large empirical literature
on rebalancing trade. For instance, Lo and Wang (2000) and Lo and Wang (2006) use a factor
analysis on the weekly trading volume of equities. They show that the detrended cross-sectional
trade volume data have an important first component, which can be interpreted as rebalancing
trade, accounting about two-thirds of the cross sectional variation. Yet, as they emphasize, this
is far from being consistent with the two mutual fund separation theorem, and instead favors
at least a second factor explaining trade. There are also many recent studies of individual
household portfolios, which take advantage of large administrative data sets coming from tax
authorities, such as Calvet, Campbell, and Sodini (2009). In that paper, the authors find strong
evidence of idiosyncratic active rebalancing of portfolios between risky and riskless assets by
Swedish households. In the final section of our paper, we consider a specification of our model
with shocks to hedging needs that motivate trade that is not rebalancing trade, but instead is
trade in individual risky securities subject to diversifiable risk. We show that the volume of
this alternative type of asset trade does not affect ex-ante asset prices.

Shocks to hedging needs. Vayanos and Wang (2012) and Vayanos and Wang (2013) survey
theoretical and empirical work on asset pricing and trading volume using a unified three-period
model similar in structure to ours. In their model, agents are ex-ante identical in period ¢ = 0,
and they consume the payout from a risky asset in period £ = 2. In period t = 1, agents receive
non-traded endowments whose payoffs at ¢t = 2 are heterogeneous in their correlation with the
payoff from the risky asset. This heterogeneity motivates trade in the risky asset at t = 1 due to
investors’ heterogeneous desires to hedge the risk of their non-traded endowments. Vayanos and
Wang focus their analysis on the impact of various frictions (participation costs, transactions
costs, asymmetric information, imperfect competition, funding constraints, and search) on the
model’s implications for three empirical measures of the relationship between trading volume
and asset pricing.’ Our focus differs from theirs in that we study the impact of the shocks that
drive demand for trade at t = 1 on asset prices in a model without frictions and then consider
the welfare implications of adding a trading friction in the form of a transactions tax. Yet we

have shown that our setup is amenable to studying frictions on trading, as we have done with

6The first of these measures is termed lambda and is the regression coefficient of the return on the risky
asset between periods ¢t = 0 and ¢ = 1 on liquidity demanders’ signed volume. The second of these measures is
termed price reversal, defined as the negative of the autocorrelation of the risky asset return between periods
t=1and ¢t =1 and between t = 1 and ¢t = 2. The third measure is the ex-ante expected returns on the risky
asset between periods t =0 and t = 1.



our study of transaction taxes.

Duffie, Garleanu, and Pedersen (2005) study the relationship between trading volume and
asset prices in a search model in which trade is motivated by heterogeneous shocks to agents’
marginal utility of holding an asset. As they discuss, these preference shocks can be motivated
in terms of random hedging needs; see also Uslu (2015). Again, trade in their framework is

subject to a friction not considered here.

2 The Model

In this section, we describe our model environment and our specification of agents’ preferences
with random shocks to each agent’s risk tolerance. We define optimal and equilibrium allo-
cations and develop our asset pricing formulas. In the next section, we solve the model for
a specific class of preferences and characterize the model’s implications for asset prices and
trading volume due to portfolio rebalancing.

Consider a three-period economy with ¢ = 0, 1,2 and a continuum of measure one of agents.
Agents are all identical at time t = 0. Agents consume in periods t = 0 and ¢t = 2. Shocks to
agents’ risk tolerance are realized at t = 1.

There is an aggregate endowment of consumption available at ¢ = 0 of Cy. Agents face
uncertainty over the aggregate endowment of consumption available at time t = 2, denoted by
y € Y. To simplify notation, we assume that Y is a finite set.

Agents face idiosyncratic and aggregate shocks to their preferences that are realized at t = 1.
Heterogeneity in agents’ preferences at time ¢ = 1 motivates trade at ¢t = 1 in claims to the
aggregate endowment at ¢t = 2. Preference types at ¢ = 1 are indexed by 7 with support
TE{T, T2y .., T}

Uncertainty is described as follows. At time t = 1, an aggregate state z € Z is realized.
Again, to simplify notation, we assume that Z is a finite set and the probabilities of z being
realized at t = 1 are denoted by m(z). The distribution of agents across types 7 depends on the
realized value of z, with p(7|z) denoting the fraction of agents with realized type 7 at t = 1
in state z. In describing agents’ preferences below, we assume that the probability that an
individual has realized type 7 at ¢t = 1 if state z is realized is also given by u(7|z).

The conditional distribution of the aggregate endowment at t = 2 may also depend on z,
with p(y|z) denoting the probability of y being realized at ¢t = 2 conditional on z being realized

at t = 1. We denote the conditional mean and variance of the aggregate endowment at t = 2
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by §(2) and 07(2), respectively.
We summarize the timing of the realization of uncertainty agents face in our model as in

Figure 1.

Allocations: An allocation in this environment is denoted by ¢ (y; z) = {Co, ¢(T, y; 2)} where
Cy is the consumption of each agent at ¢ = 0 and ¢(7,y; z) is the consumption at t = 2 of an
agent whose realized type is 7 if aggregate states z and y are realized.

Feasibility requires Cy = Cy at t = 0 and, at ¢t = 2,

Z,u(ﬂz) c(r,y;2) =y foraly €Y and z € Z. (1)

2.1 Preferences

We describe agents’ preferences at t = 0 (before z and their individual types are realized) over

allocations ¢ (y; z) by the utility function

V(Co)+8) [Z p(r2)V (UII (Z U= (e(7, u; Z))MW)]))] m(2), (2)

Y

where V' is some concave utility function. We refer to U, as agents’ type-dependent subutility

function.

Certainty Equivalent Consumption: It is useful to consider this specification of prefer-
ences in two stages as follows. In the first stage, consider the allocation of certainty equivalent
consumption at t = 1 over states of nature z. For any allocation ¢(y; z), an agent whose realized
type is 7 at t = 1 has certainty equivalent consumption implied by the allocation to his or her

type and the remaining risk over y in state z given by

Ci(r;2) = U (Z U (c(7, y; Z))p(y|2)> : (3)

Given this definition, in the second stage, we can write agents’ preferences as of time ¢t = 0 in

equation (2) as expected utility over certainty equivalent consumption

V(Co) +8) [Z p(T[2)V (Ci(T; Z))] m(2). (4)

11



Convexity of Upper Contour Sets: To ensure that agents’ indifference curves define con-
vex upper contour sets, we must restrict the class of subutility functions U, (c) that we consider
to those for which, given z, certainty equivalent consumption at time ¢ = 1 as defined in equa-
tion (3) is a concave function of the underlying allocation ¢(7,y; z) for each given 7 and z at

t = 2. We have the following propositions characterizing such subutility functions.

Proposition 1. Fix z and 7. Certainty equivalent consumption

Ci(r,¢2) = U <Z U-(e(T, y; 2))p(y!Z)> (5)

yey

is a concave function of the vector ¢ = {c(7,y; 2)}yey if and only if risk tolerance R.(c) =

—U"(c)/UL(c) is a concave function of c.

This condition is satisfied for the equicautious HARA subutility function that we consider

as our leading example throughout the paper, where R, (c) is linear in c.

Feasible Allocations of Certainty Equivalent Consumption: To help in the interpre-
tation of the asset pricing formulas below and in solving the model, it is useful to restate the
feasibility constraint in equation (1) in terms of allocations of certainty equivalent consumption.
Given a realization of z and the corresponding distribution of agent types p(7|z), we say that
an allocation of certainty equivalent consumption across individuals with risk tolerances 7 at
t =1, {C1(1; 2)}, is feasible if there exists an allocation of consumption at ¢t = 2, ¢(7,y; 2),
that is feasible as in (1) and that delivers that vector of certainty equivalent consumption via
(3).

Let C;(z) denote the set of feasible allocations of certainty equivalent consumption at ¢ = 1
given a realization of z. Note that this set is convex as long as agents have subutility functions
U.(c) with convex upper contour sets. The set Cy(z) can be interpreted as a production
possibility set whose shape is affected by the aggregate shock z which determines the distribution
of tolerance for risk across agents through u(7|z) and the quantity of risk to be borne through
p(y|z). As we discuss below, the marginal cost of producing certainty equivalent consumption
computed from this production possibility set plays an important role in asset pricing.

We next consider optimal allocations and the corresponding decentralization of those allo-

cations as equilibria with complete asset markets.
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2.2 Optimal Allocations

Consider a social planning problem of choosing an allocation ¢(y; z) to maximize welfare (2)
subject to the feasibility constraints (1). We refer to the solution to this problem as the optimal
allocation. It will be useful to consider the solution of the social planning problem in two stages.

The first stage is to compute the set of feasible allocations of certainty equivalent consump-
tion at ¢ = 1 given z, denoted by Ci(z), and then solve the planning problem of choosing
a feasible allocation of certainty equivalent consumption {Cy, C;(7;2)} to maximize (4) sub-
ject to those feasibility constraints. To characterize the sets Ci(z), we also consider efficient
allocations as of t = 1 given z.

We say that an allocation ¢ (y; 2) is conditionally efficient if, given a realization of z at t = 1,

it solves the problem of maximizing the objective

DA D Unlelmys 2)alyl2) | plrlz) (6)

yey
given constraints (1) given some vector of non-negative Pareto weights {\,}, which can depend
on z. The allocation of certainty equivalent consumption corresponding to a conditionally
efficient allocation is then given by equation (3). The frontier of the set of feasible allocations of
certainty equivalent consumption C;(z) is found by solving this Pareto problem for all possible
non-negative vectors of Pareto weights {\,}.

Clearly, the optimal allocation is also conditionally efficient.

The second fundamental welfare theorem applies to this economy under our assumptions
on preferences. Thus, corresponding to the socially optimal allocation is a decentralization of
that allocation as an equilibrium allocation with complete markets in which agents can trade
claims to consumption at t = 2 contingent on realized values of 7,y, and z. In what follows,

we consider equilibrium with incomplete asset markets.

2.3 Equilibrium with Incomplete Asset Markets

We now consider equilibrium in an economy in which agents are not able to trade contingent
claims on the realization of their type 7 at t = 1. Instead, they can only trade claims contingent
on aggregate states z and y. We are motivated to consider incomplete asset markets here by the
possibility that the idiosyncratic realization of agents’ preference types is private information
and that the opportunity for agents to retrade at ¢t = 1 prevents the implementation of incentive

compatible insurance contracts on agents’ reports of their realized preference type 7.
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We consider a decentralization with two rounds of trading, one at t = 0 before agents’ types
are realized and one at ¢ = 1 after the realization of agents’ types. We assume that all agents
start at time ¢ = 0 endowed with equal shares of the aggregate endowment Cy at t = 0 and
realized y at t = 2. In a first stage of trading at time ¢ = 0, we assume that agents can trade
bonds whose payoffs are certain claims to consumption at time t = 2 conditional on aggregate
state z being realized at time ¢ = 1. Let a single unit of such a bond pay off one unit of
consumption at ¢ = 2 in all states y given that z is realized at t = 1. Let Q(z)7(z) denote the
price at t = 0 of such a bond. Note that trade in such bonds at ¢ = 0 is equivalent to trade in
sure claims to certainty equivalent consumption at t = 1 since these bonds are sure claims to
consumption at t = 2.

Let B(, z) denote the quantity of such bonds held by an agent with realized type 7 in his
or her portfolio. Note that in equilibrium, agents choose their portfolio of bonds at ¢ = 0 before
their type is realized. Hence, we must have B(7, z) = B(z) independent of 7. The bond market
clearing condition is given by B(z) = 0 for all z.

In a second stage of trading at ¢ = 1, agents can trade their shares of the aggregate en-
dowment or realized y at ¢ = 2 and the payoff from their portfolio of bonds in exchange for
a complete set of claims to consumption contingent on the realized value of y at t = 2. Let
p(y; z) denote the price at t = 1, given that aggregate state z has been realized at that date,
of a claim to consumption at ¢ = 2 in the event that endowment y is realized. In what follows,
we choose to normalize asset prices at time ¢ = 1 in each state z such that the price of a bond,
i.e., a claim to a single unit of consumption at t = 2 for every realization of y, is equal to one.

That is, in each equilibrium conditional on z, we choose the numeraire
> py; 2)plylz)dy = 1. (7)
Yy

At t = 1, given state z, the price of a share of the aggregate endowment at ¢t = 2 relative to

that of a bond is given by

Di(z) = p(y; 2)yp(yl2). (8)

Since the price of a bond at this date and in this state is equal to one, D;(z) is also the level
of this share price at t = 1 given state z.

We can price arbitrary claims to consumption at t = 2 with payoffs d(y; z) contingent on
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the realized aggregate states z and y as follows. Let
Pi(zd) = p(y; 2)d(y; 2)p(y|2) 9)
y

denote the price at ¢t = 1 of a security with payoffs d(y; z) in period ¢t = 2 given that state z is

realized. Then the price of this security at t = 0 is
Po(d) = ) Q(2)Pi(z; d)(2), (10)

where @(z) are the equilibrium bond prices at date ¢ = 0.

Each agent’s budget constraint at the first stage of trading (at ¢t = 0) is given by

Co+ > Q(2)B(2)m(z) = Co. (11)
Agents’ budget sets at ¢ = 1 are contingent on the aggregate state z and are given by
> p(y; 2)e(r,y; 2)plylz) < Di(2) + B(r, 2). (12)
y

The timing of trading and the notation for asset prices in our model is illustrated in Figure 2.

We first use this decentralization to define a concept of equilibrium at time ¢ = 1 conditional
on a realization of z. Here we assume that at time ¢ = 1, agents are each endowed with one
share of the aggregate endowment y at t = 2 and a quantity of bonds B(r, z) (here allowed to
vary with type 7) that are sure claims to consumption at ¢ = 2. We require that, given z, the

initial endowment of bonds satisfies the bond market clearing condition ) _u(7|2)B(7, 2z) = 0.

Conditional Equilibrium Given z Realized at t = 1:  An equilibrium conditional on z and
an allocation of bonds {B(7;2)} is a collection of asset prices {p(y; z)} and feasible allocation
{c(7,y;z)} that maximizes agents’ certainty equivalent consumption (3) given the allocation of
bonds and budget constraints (12).

Clearly, from the two welfare theorems, every conditional equilibrium allocation is condition-
ally efficient, and every conditionally efficient allocation is a conditional equilibrium allocation
for some initial endowment of bonds.

We now present our definition of equilibrium.
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Incomplete Markets Equilibrium: An equilibrium with incomplete asset markets in this
economy is a collection of asset prices {Q°(z),p°(y;2)} and a feasible allocation ¢¢(y; z) and
bond holdings at t = 0 {B°(z)} that satisfy the bond market clearing condition and that
together solve the problem of maximizing agents’ ex-ante utility (4) subject to the budget
constraints (11) and (12).

Note that since all agents are ex-ante identical, at date ¢ = 0, they all hold identical
bond portfolios B¢(z) = 0. This implies that we can solve for the equilibrium asset prices and
quantities in two stages starting from ¢ = 1 given a realization of z. Specifically, the equilibrium
allocation of consumption at ¢ = 2 conditional on 2z being realized at t = 1 is the conditional
equilibrium allocation of consumption given z at ¢ = 1 and initial bond holdings B(r,z) =
B¢(z) = 0 for all 7 and z, and the allocation of certainty equivalent consumption at ¢ = 1
given z, {C{(7;2)}, is that implied by the conditional equilibrium allocation of consumption at
t = 2. Likewise, equilibrium asset prices at t = 1, p®(y; z), are the conditional equilibrium asset
prices at t = 1 given z. We refer to this conditional equilibrium as the equal wealth conditional
equilibrium because in it all agents have identical portfolios comprising one share of aggregate

y and zero bonds.

2.4 Preference Shocks and Asset Prices

To gain intuition for how preference shocks affect asset pricing and to solve the model in the
next section, it is useful to follow a two-stage procedure in solving for equilibrium.

In the first stage, we take as given the realized value of z at ¢ = 1 and the payoffs from
agents’ date t = 0 bond portfolios and solve for the conditional equilibrium prices at t =
1, p(y; z), for contingent claims to consumption at ¢ = 2 and the corresponding conditional
equilibrium allocation of consumption ¢(7,y;2). These prices and this allocation satisfy the
budget constraints (12) with B(7; z) given, and the standard first-order conditions

UL (T, 41;,2)) _ pys; 2)
Ul(e(T,y252))  p(ye; 2)

characterizing conditional efficiency for all types 7 and all yy, ys.

(13)

Given a solution for contingent equilibrium prices p(y; z), we can define for each type of
agent a cost function for attaining a given level of certainty equivalent consumption at time
t =1 given z as

HT<Cl7 - mln Zp Yy = (y‘ ) (14)



subject to the constraint that c(y;z) delivers certainty equivalent consumption C; at ¢ = 1
for an agent of type 7. Using these cost functions, in the second stage, we can then compute
the date t = 0 bond prices that decentralize the equilibrium allocation of certainty equivalent
consumption as follows.

Consider the problem for the consumer of choosing certainty equivalent consumption and
bond holdings to maximize utility (4) subject to budget constraints (11) and (12). These budget

constraints can be restated as
H,(C{(7;2); 2) = Di(2) + B*(2) (15)

with D$(z) defined in (8) as the price of a share at ¢t = 1 in state z. This problem has first

order conditions

@) =3 [ [ Ot i) wirle (16

with

0 UL(Cs (T,
O H(Ci(r 29 = )
aC, >, Ur(ee(7,y5.2))p(yl2)
Note that this is the “standard” risk adjustment due to Kreps-Porteus non-expected utility,

(17)

with the added feature of random risk tolerance. To see this, first consider the case where there
is no dispersion in risk tolerance at z, so that 7 = 7(z) for all agents, obtaining the standard
risk adjustment:

V/(C5(7(2); 2)) 2oy U (¢°(7(2), 43 2))ply]2)
V'(C§) Ul (C1(7(2);2))

Q(z) =8
Moreover, if 7 = 7(z) for all agents and V(-) = Uz(.)(+), we have expected utility, and thus

- gzy V(e (T(2), 95 2))p(yl2)
V'(C) '

Note that if we interpret certainty equivalent consumption in our model as analogous to con-

Q°(2)

sumption in incomplete market models such as Mankiw (1986) and Constantinides and Duffie
(1996), then this formula is the standard pricing formula for a sure claim to consumption in

the presence of idiosyncratic risk to consumption.

3 Solving the Model with HARA Subutility

The specification of preferences we use to solve our model has subutility U, of the equicautious
HARA utility class defined as
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U, (c) = (ﬁ) (§+T)HWA 1 for {c:r+§> 0} (18)

U-(c) =log(c+7) for {c:7+¢>0} fory=1 for {c:7+¢>0}, and (19)
U-(c) = —7 exp (—¢/T) as 7 — oo, for all c. (20)
This utility function is increasing and concave for any values of 7 and v as long as consumption

belongs to the sets described above for each of the cases. To see this, we compute the first and

second derivative as well as the risk tolerance function:

U’ (c) = (% + T) 0, U = — (% + T) T o md (21)
Ro(c) = — gjg - s +r (22)

Note that the notation above assumes that v is common across agents. Note also that v > 0
gives decreasing absolute risk aversion and 7 < 0 gives increasing absolute risk aversion. The
sign of v will turn out to be immaterial for the qualitative implications of the model. Note as
well that 7 can be positive or negative. We do require, however, that ¢/vy + 7 > 0 for these
preferences to be defined.

When agents have subutility U, of the equicautious HARA utility class, the interpretation
of preference type 7 is that if 7 > 7/, then at any level of consumption, an agent of type 7
has higher risk tolerance than an agent of type 7. Hence, the heterogeneity we consider with
these preferences is purely in terms of the level of risk tolerance across agents. The Arrow-Pratt
theorem then immediately implies that if, given z at ¢t = 1, agents of type 7 and 7’ receive the
same allocation at t = 2, i.e., if given z, c(7,y; z) = ¢(7',y; 2) for all y, then agents of type 7
have higher certainty equivalent consumption at t = 1, i.e., C1(7; 2) > C1(7'; z). In this sense,
for an individual agent, having type 7’ realized at ¢ = 1 is a negative shock relative to having
type 7 realized at ¢ = 1 in that with preferences of type 7/, it requires more resources for the
agent to attain the same level of certainty equivalent consumption as an agent with preferences
of type 7.

Note that the equicautious HARA utility class nests several commonly used preference
specifications in the literature. In particular, we have that as 7 — oo, these preferences display
risk tolerance that is constant in consumption and hence constant absolute risk aversion, or

CARA preferences. With 7 = 0, these preferences display constant relative risk aversion, or
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CRRA preferences. With 7 # 0, these preferences are equivalent to CRRA preferences with an
additive external habit parameter.

When agents have subutility functions of the equicautious HARA class (18), then our model
is particularly tractable, and it is possible to derive specific implications of the model for
the relationship between asset prices and transactions volumes at ¢ = 1. The tractability of
our model follows from four related properties of these preferences that are derived from the
observation that all agents have linear risk tolerance with a common slope in consumption
(determined by 7). We prove each of these properties in the appendix.

These four properties are (1) Gorman aggregation, (2) linearity of the frontier of the set
of feasible allocations of certainty equivalent consumption, (3) a two-fund theorem, and (4)
type-independent marginal cost of certainty equivalent consumption. We present and prove

each of these properties next.

Gorman Aggregation: Given a realization of z at £ = 1, Gorman aggregation holds in all
conditional equilibria. That is, in all conditional equilibria at ¢ = 1, asset prices p(y;z) are
independent of the allocation of bonds B(7;z) at that date and also independent of moments

of the distribution of types p(7|z) other than the mean of this distribution defined by
7(2) = ZT,U(T|Z). (23)

This result allows us to solve for equilibrium asset prices at ¢t = 1, p(y; 2z), directly from the

parameters of the environment. Specifically, in all conditional equilibria, p(y; z) = p(y; z) where

Ul(c(T,y152) U;(Z)(yl) _ P(y1; 2)
Up(e(r,y2:2))  Upy(y2) — plye; 2) 2

for all types 7 and all y1,7.. The level of asset prices p(y; z) is set from the normalization
in equation (7). Thus, asset prices in any conditional equilibrium correspond to those in an
economy with a representative agent with risk tolerance 7(z). We establish this result in

Proposition 2.

Linear Frontier of Feasible Allocations of Certainty Equivalent Consumption Given
subutility functions of the equicautious HARA class (18), given z realized at t = 1, the set of
allocations of certainty equivalent consumption C;(z) has a linear frontier, the optimal final

consumption is affine, and the Lagrange multipliers on the resource constraints (1) of the
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Pareto problem (6) defining conditional efficiency are independent of the Pareto weights for the

problem. More formally, we have the following proposition:

Proposition 2. Assume all U.(-) are of the equicautious HARA class, and fix a particular z.

An allocation is conditionally efficient if and only if:

(i) There are scalars o(1;z) > 0, with >, O(m: 2)u(r)2) = 1, for which the allocation of

consumption satisfies

dArnyiz) b(7;2) (E + T) for all y. (25)
g g

(i) The Lagrange multipliers on the resource constraints (1) of Pareto problem (6) are inde-

pendent of the weights {\.} and are directly proportional to

5(lz) = Ul () p(ylz)
PO =2 0L @) o)

(26)

(11i) The conditionally efficient allocation of certainty equivalent consumption Cy(T; z) satisfies

the pseudo-feasibility constraint
ZM(T|Z)01(T§ z) = Ci(2), (27)

where
m@a@«waW@ﬂ (28)

is the certainty equivalent consumption of an agent with the average risk tolerance 7(z)

in the market who consumes the aggregate endowment y at t = 2.

Note that this characterization of the set of feasible allocations of certainty equivalent con-
sumption C;(z) implies that the fully optimal allocation of certainty equivalent consumption
C(7; z) solves the problem of maximizing welfare (4) subject to the pseudo-resource constraint
(27). If the utility function over certainty equivalent consumption V(C) is strictly concave,
then the solution to this social planning problem is to have all agents receive the same cer-
tainty equivalent consumption at date t = 1, i.e., Cj(1;2) = Cy(2) for all 7. This allocation
is implemented by uncontingent transfers at ¢ = 1 from risk-tolerant to risk-averse agents. As
we will see below, Cf(7;2) = Cy(z) is also the equilibrium allocation of certainty equivalent

consumption in an economy in which there is no dispersion in shocks to risk tolerance.
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Since any equilibrium allocation is conditionally efficient, the first and second welfare the-
orem apply given realized identities 7 at ¢ = 1. Hence, Gorman aggregation follows since we
can take the Lagrange multipliers p(y; z) to be the equilibrium prices p(y; z) independent of the
Pareto weights across agents at ¢ = 1. Recall Gorman aggregation implies that the asset prices
at t = 1 that decentralize the fully optimal allocation are the same as those in the equilibrium
with incomplete asset markets.

We now turn to the characterization of portfolios in the equilibrium with incomplete market,
and then return, as a consequence, to the determination of the allocation of certainty equivalent

consumption in an equilibrium with incomplete markets.

Two-Mutual Fund Separation Theorem and Equilibrium Certainty Equivalent Con-
sumption Given subutility functions of the equicautious HARA class (18), we obtain a two
fund separation theorem for all conditional equilibria. That is, to decentralize any condition-
ally efficient allocation at ¢t = 1 given z, it is sufficient to have agents trade only shares of the
aggregate endowment y at ¢ = 2 and a riskless bond. We show that each agent’s equilibrium
purchase of shares of aggregate risk is linear in the difference between that agent’s realized risk
tolerance and the average risk tolerance in the market. This, in turn, implies that the certainty
equivalent consumption allocated to that agent is also linear in the difference between that
agent’s realized risk tolerance and the average risk tolerance in the market. These two obser-
vations allow us to establish a direct relationship between trade volume in shares of aggregate
risk and the idiosyncratic risk to certainty equivalent consumption at t = 1 that agents face as
of t =0.

It is convenient to define the representative agent absolute risk aversion for each realization
of z at t = 1 as the absolute risk aversion of an agent with budget feasible risk-free consumption
Bi(z) and risk tolerance equal to the average risk tolerance in the market 7 = 7(2) as

A(z) = _U;I(z) (1:71(2)) _ 1 .
Uy (0) - BB 1 7(3)

(29)

Recall that D;(z) is the price of a share of the aggregate endowment at ¢ = 1 in state z defined
in (8) using equilibrium asset prices p(y; z).

We then have the following proposition:

Proposition 3. Let ¢¢(7; z) denote the post-trade quantity of shares of the aggregate endowment
held by an agent of type T at t = 1 given realized z, and let C¢(7;2) denote the certainty
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equivalent consumption allocated to that agent in the equilibrium with incomplete markets. Then

(i) To implement the incomplete markets equilibrium allocation, the quantity of shares pur-

chased att =1 by this agent is
¢°(m52) — 1= (1 — 7(2)) A(2) - (30)

(ii) In equilibrium we have

Ce(r;2) = C1(z) + (C’l(z) — Dl(z)) (1 —7(2)) A(2). (31)

(iii) Certainty equivalent consumption for the representative agent is higher than the market

value of y, i.e., C1(z) > Di(z), which we can approximate as

— §A(z)a2(z) +0(0*(2)) and Di(z) = §(2) — A(2)0*(z) + o(cd?(2)), (32)

where §(z) and 0(z) is the variance of y using p(+|2).

Note that the term C)(z) — D;(z) is a measure of the risk premium on the market portfolio.
In particular, it is the gap between the certainty equivalent consumption of the representative
agent in equilibrium C}(z) and the certainty equivalent consumption that any agent would have
at t = 1, if she sold her one share of the aggregate endowment at price D;(z) and purchased
instead a portfolio made up entirely of sure bonds. Note as well that equations (30) and (31)
imply a linear relationship between each agent’s purchases of risky shares ¢°(7;z) — 1 and
the deviation of that agent’s certainty equivalent consumption from that of the representative
agent C¢(7; 2) = C1(2), where the slope of that line is given by the risk premium on the market
portfolio C;(2) — Dy(2).

From this proposition, the observed incomplete market equilibrium trade volume in shares

at t = 1 given state z is given by

ZIT—T )p(7|2). (33)

N)I»—l

TV(E) =5 D16 2) - 1lu(rl) =

This measure of trade volume is also a measure of the mean absolute deviation of agents’ risk
tolerances from the risk tolerance of the agent with average risk tolerance. In other words,
observed share trade volumes are a direct measure of the dispersion in agents’ risk tolerances.
Equation (31) implies as well that dispersion in agents’ risk tolerances drives dispersion in

agents’ equilibrium certainty equivalent consumption. Hence, equations (30) and (31) together
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imply that observed share trade volumes is a direct measure of dispersion (in terms of mean
absolute deviation) of agents’ certainty equivalent consumption.
To complete our characterization of date t = 0 bond prices in equation (16), we must also

compute the marginal cost of certainty equivalent consumption. We do so next.

Type-Independent Marginal Cost of Certainty Equivalent Consumption. Given
subutility functions of the equicautious HARA class (18), for any conditionally efficient al-
location of consumption, together with the associated certainty equivalent consumptions, the
marginal cost of delivering an additional unit of certainty equivalent consumption to any agent

of type 7 is defined as in equation (17) and independent of type, as the next proposition shows.

Proposition 4. Assuming U, are of the equicautious HARA class, then in an equilibrium with

mcomplete markets, ~
Ul)(C1(2))

C UL el)

iHT(CT(T; 2); 2)

ac (34)

for all values of T.

Using the results from Propositions 2, 3, and 4 we have a complete solution of the model
for the optimal and equilibrium allocations, their associated asset prices, and the implications
of the model for equilibrium trading volumes. We summarize our solution of the model in the

following proposition.

Proposition 5. Let V(C) be strictly concave and let agents have type-dependent subutility
functions of the equicautious HARA class (18) with 2 +7(z) > 0 for all y and z.

(i) Asset prices att = 1 in any conditional equilibrium are given by p(y; z) defined in (24) with
>, P(y; 2)p(y[1) = 1 as the numeraire. The price of a share of the aggregate endowment
at t = 1 given z is denoted D1(z) and given by (8) at asset prices p(y,z). They depend

exclusively on the representative agent’s valuations.

(ii) The optimal allocation of certainty equivalent consumption is given by Ci = Cy and
Ci(1;2) = C1(2) defined in (28), while the allocation of certainty equivalent consumption
in the equilibrium with incomplete asset markets is given by C§ = Cy and C¢(t; 2) given

as in (31).
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(111) Date t = 0 bond prices Q°(z) in equilibrium are given by (16) evaluated at the equilib-
rium allocation of certainty equivalent consumption (31) with common marginal cost of
certainty equivalent consumption given as in (34). The prices for these bonds in the de-
centralization of the optimal allocation are given by (16) with all agents receiving common

certainty equivalent consumption C(7;2) = Cy(2).

(iv) Agents can implement the incomplete markets equilibrium allocation of consumption at
time t = 2, by trading at t = 1 their one share of the aggregate endowment for ¢°(7; 2)
shares of the aggregate endowment y given as in (30) and holding Dy(2)(1 — ¢°(7;2))
risk-free bonds. This leads to share turnover of TV¢(z) as in (33).

The restriction that £ + 7(z) > 0 for all possible values of y in the statement of this
proposition is required to ensure that the HARA subutility is well defined for all agents in

equilibrium for all values of y.

3.1 Solving the Model as an Endowment Shock Model

When agents have subutility functions of the equicautious HARA class (18), then the equi-
librium allocations of certainty equivalent consumption in our model and the associated date
t = 0 asset prices are equivalent to those of the following economy with idiosyncratic endow-
ment shocks but no preference shocks. This equivalence result, which we demonstrate here,
follows from the properties of the equicautious HARA preferences used above. We spell out
this mapping of the model to an endowment shock economy to highlight the mathematical
connection between the role of idiosyncratic risk in certainty equivalent consumption due to
uninsured idiosyncratic risk tolerance shocks in shaping asset prices in our model to the role of
idiosyncratic risk in consumption at ¢t = 1 due to uninsured idiosyncratic endowment shocks in
shaping asset prices in Mankiw (1986) and Constantinides and Duffie (1996). Of course, in our
model, the equilibrium allocation of certainty equivalent consumption at ¢ = 1 is implemented
with a positive volume of asset trade, while there is no such trade in the endowment shock
economy.

The endowment shock model is described as follows. Consider an economy with two time
periods, t =0 and t = 1. Let agents face aggregate uncertainty indexed by z and idiosyncratic

uncertainty indexed by 7. Let the probability that state z is realized at time ¢ = 1 be given by
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7(z) with change of measure
F(2) = J(z)m(2) .
2 J(Z)m ()

The term J(z) is the inverse of the marginal cost of certainty equivalent consumption which,

in equilibrium, is common to all agents and, from equation (34), is given by

5, Ut @elul2) Sy [4+7C)] otol2) -
U (G (7)) IR

J(z) =

v

which equals the expected marginal utility of the representative agent relative to that agent’s
marginal utility of his or her certainty equivalent consumption. This risk adjustment J comes
from the Kreps-Porteus-Selden-Epstein-Zin non-expected utility, and hence it is a feature in all
the asset pricing models with such preferences. Note that in the case with CARA subutility
(i.e., v = 00), we have J(z) = 1 for all 2.7

Let the distribution of the idiosyncratic uncertainty faced by agents at ¢ = 1 in state z be
given by u(7|z). Assume that an agent who has realized type 7 in state z has endowment at
t=1:

Yi(r;2) = Ci(z) + (1 — 7(2)) A(2) (Ci(2) — Di(2)) .

Let the allocation of consumption at ¢ = 1 be denoted by Ci(7; z). This allocation must satisfy
the pseudo-resource constraint (27). As before, let all agents be endowed with Y, = Cj at time
t=0.

Let agents have preferences over allocations given by
VI(Co) + B V(Ci(r; 2)ulr]2)7(2)

with

3= Z J(2) ().

In the equilibrium of this endowment shock economy with incomplete asset markets, let

agents choose consumption C'(0), Cy(7; z) and bond holdings B(z) to maximize utility subject

"For values of 7 < oo, we have the Taylor approximation around the conditional mean realization of the
endowment, 7(z):

L o(2) 1/y
J(z)~1+ 5 (@_Fﬂz))?

Hence, holding ~ fixed, J(z) is increasing in the conditional variance of the endowment, o7 (z), and decreasing
in the average risk tolerance across agents g(z)/v + 7(2) if and only if v > 0.

(36)
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to budget constraints (11) with Yj replacing Cy at t = 0 and, at t = 1,
Ci(1;2) = Yi(7; 2) + B(2).
The bond market clearing conditions are given by B(z) = 0 for all z.

Proposition 6. The equilibrium allocations Cy, C1(T; z) and date zero bond prices Q(z) for the
endowment shock economy are equivalent to the equilibrium allocations of certainty equivalent

consumption and date zero bond prices Q(z) for the corresponding taste shock economy.

Proof. Note that with the change of measure to 7(z) and the rescaling of the discount factor
3, the bond pricing conditions (16) are the same in the two economies. Direct calculation
then shows that the equilibrium allocations and date zero bond prices in our preference shock
economy are also equilibrium allocations and bond prices in this endowment shock economy

and vice versa. O

This proposition is also useful in establishing a bound on the extent of downside idiosyncratic
risk to certainty equivalent consumption that agents can face in this economy. This bound on
the downside risk that agents can face does put a bound on the extent to which this idiosyncratic
risk can affect asset prices at ¢ = 0. Specifically, note that the parameter restrictions we need to
ensure that our HARA utility is well defined imply that the lowest possible endowment Y;(7; 2)
that can be realized is D;(2).

This lower bound has a simple economic interpretation: an agent in our preference shock
economy always has the option at £ = 1 to trade his or her endowment of one share, at price
D, (z), for a portfolio made up entirely of risk-free bonds, hence ensuring certainty equivalent
consumption of D;(z) independent of that agent’s realized risk tolerance 7. Thus, in the equi-
librium with incomplete asset markets, the gap between the certainty equivalent consumption
of the agent with the lowest realized risk tolerance and the average level of certainty equivalent
consumption in the economy is always bounded above by the measure of the aggregate risk pre-
mium given by C;(z) — D;(2). This bound restricts the downside risk that agents face ex-ante
and hence the premia they are willing to pay at ¢ = 0 to avoid the impact of this preference

risk on their certainty equivalent consumption at ¢ = 1.
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4 Trade Volumes and Asset Prices

In Proposition 5, we provided a complete characterization of equilibrium allocations and asset
prices under the assumption that agents have subutility functions of the equicautious HARA
class. We also characterized trade volumes in asset markets at ¢ = 1 under the assumption that
agents trade only shares of the aggregate endowment and risk-free bonds. In this section, we
study the implications of our model for the joint distribution of trade volumes and asset prices
in greater detail.

We first discuss our model’s implications for trading volume and expected excess returns
as of date t = 0. As shown in equation (31), in equilibrium, agents’ certainty equivalent
consumption is exposed to idiosyncratic shocks to their risk tolerance. We consider the impact
of these idiosyncratic shocks to agents’ certainty equivalent consumption on asset pricing in
terms of multiplicative expected excess returns.

The price at t = 0 of a riskless bond, i.e., a claim to a single unit of consumption at t = 2 for
each possible realization of 7, z, and y, is given by (1) = > Q(2)7m(z). We use the inverse
of this price to define the risk-free interest rate at ¢ = 0 between periods t = 0 and ¢t = 1 as
Ry = 1/Py(1). Note that this formula follows from our normalization of the riskless bond price
at t = 1 to one for all realized z.

Consider a security with payoffs d(y|z) at t = 2. The time ¢t = 0 multiplicative expected

excess return of a claim with payoffs d at ¢t = 2 is denoted by &y 2(d), and is defined as

_Eold(y,9)] /1
fald) = =5 5 iy (37)

Analogously, the multiplicative expected excess return of a claim with payoffs d at t = 2 bought

at t = 1 in state z is denoted by & 2(d), and is defined as

o Ei[d(y, 2)|2] 1 Eild(y, 2)|7]
E12(z1d) = Pi(z;d) /Pl(z;l)_ Pi(z;d) (38)

since we use the normalization Pj(z;1) = 1 for all z. The expressions for P;(z;d) are given by
equation (9), where p(y; z) are given by the representative agent marginal utilities defined in
(24). The expectations E[-] are taken with respect to the statistical distribution, i.e., using the
probability distributions 7 and p.

From equations (16) and (34), we have

er v RV'(Ci(2)
Q(z) = 5WJ(Z)L(Z) (39)
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with

_Vi(Ci(r;2)
L(z) = ET: m#(ﬁ z) (40)

and J(z) is defined as in equation (35). The random variable L will be key to describing the
effect of trade volume on ¢ = 0 asset prices.
This gives a complete characterization of asset prices for the incomplete market economy.

Next we turn to an analysis of these asset prices based on these expressions.

Trade Volumes, L(z), and Asset Prices: In the incomplete markets equilibrium, there is
a direct connection between asset prices and the dispersion of the preference shocks 7 realized
at t = 1 in state z. This connection comes through the term L(z) in Q¢ in equations (39) and
(40). Under the assumption that V" > 0, the term L(z) is equal to one if there is no dispersion

in 7 and is strictly increasing in the dispersion in 7. Specifically,

V" (-) > 0 implies L(z) = Z %M(T; z) > 1

so that L(z) is the extra valuation in state z for a prudent agent facing rebalancing risk in state
z. Using a Taylor expansion, so that the remainder is of smaller order than the conditional
variance of 7 we have

1V"(Cy(2)) c SRINLI 2
5V (2)) Z [Ci (7, 2) — C1(2)]” plTs 2) + o(0*(7]2))

1LV"(C1(2)) ;~ _ 2 el 2 ) 2
SV (2) [Cy(2) = Di(2)] Z: [¢°(7:2) — 1]" (73 2) + 0(0(7]2)). (41)

L(z) =

Hence, if V" (C,(2)) > 0, then our approximation to L(z) is directly proportional to the variance
of individual share trades times the square of the aggregate consumption risk premium as
measured by (C1(z) — Dl(z))2 = 1 A(z)0?(z)+0(0?(z)) using the approximation in Proposition
3.

As an example, consider the case of a uniform distribution of 7. For a uniform distribution of
7, the mean absolute deviation of 7 from 7(z) is directly proportional to the standard deviation
of 7 and hence, in this case, to a second order approximation, data on the square of trading
volume in state z are a valid proxy for the term Y_(¢¢(7;2) — 1)* u(7]2) 4 o(0?(7|2)) in our
approximation to L(z).

Of course, the previous result that the square of trading volume is directly proportional to

the dispersion of agents’ marginal utilities of certainty equivalent consumption is special to the
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case of uniform shocks to risk tolerance. More generally, if one had data on the distribution of
trade sizes, one could potentially map data on trade volumes to empirical proxies for L(z) using
the relevant distributional assumptions. Moreover, since |z — 1] and (z — 1)? are both convex
functions, if we consider a mean-preserving spread in the distribution of risk tolerance, both
trade volume and L(z) increase. In this sense, both trade volumes and L(z) are increasing in the
dispersion of idiosyncratic risk tolerance, and hence L(z) measures the exposure to rebalancing

risk of state z.

4.1 Comparative Statics on Trade Volumes and Asset Prices

We now develop three results regarding the impact of trading volumes on asset pricing. The
first one is a result about interest rates, the second one is a comparison of risk premia across
economies with different patters of trading volume, and the third one is a comparison of the
risk premia on different assets in the same economy.

For these results, it is useful to collect two properties of asset prices. Define
V'(Ci(2))

Q" (z) =5 V1ol

J(z).

Note that this bond prioe @Q*(z) is the bond price that would obtain in the decentralization
of the optimal allocation. Likewise, it is the equilibrium bond price in an economy in which
there is no dispersion in realized risk tolerances and hence no trade volume at t = 1.

Then we have that
Py(d) =Y Q*(2)L(2)m(2) Py(z; d) (42)

for all assets with dividend d. This expression, together with the previous definitions of expected
excess returns, gives the following expression for the (inverse) time ¢t = 0 expected excess return
as a weighted average of the time ¢t = 1 expected excess returns:

1 Q" (2)L(z)m(z)  Eild(y,2)[2] 1
&o,2(d) _zz:Zz/ Q*(¢)L(z")m(2) Eold(y,2)] Era(z:d)’ .

)

which we summarize in the following proposition.

Proposition 7. Take a payoff d(y,z) att = 2. The time t = 0 (inverse) excess expected return
Eo2(d) of a this payoff is the risk-neutral complete market expected value of the product of three

random variables realized at t = 1, i.e., functions of the realization of z. These are exposure to
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rebalancing risk, L/ES[L], updates in the asset expected payoffs By [d] /Eo [d], and the (inverse)
excess expected returns & 2(d), i.e.,

L o L E [d] 1
Eoa@ 0 | ES[] Eald] Eald) ] (44)

where E§ [x] is the time t = 0 complete-market risk-neutral expected value of t = 1 random

variable x(z), i.e.,

) @ ()n)
R S ST E N (4)

Note that the expression E§ [L] is the time ¢ = 0 value of a riskless bond paying 1 at ¢t = 1.

The expression (43), or its equivalent form (44), is key to show the two results on excess
returns. Note that the only term in this asset pricing formula that involves the dispersion of
w(+|2) is the term L(z). The expressions for Q*(z), w(2), Pi(z;d), £12(%;d), and E; [d|z] /E [d]
are not functions of the shape of u(+|z) other than the mean of this distribution, and hence they
are independent of trade volume. The ratio E; [d|z] /Eq [d] measures the exposure of the cash
flow d to the state z. Hence, expected excess returns at t = 0 depend on trade volume only
through the correlation of trade volume with future expected returns & »(z; d) or with expected

cash flows E; [d|z] /Eo [d].

Trade Volume and Interest Rates. We have the following comparative static result re-
garding the dispersion of shocks to risk tolerance, and hence trade volume, and time ¢ = 0 bond
prices Py(1) =Y. Q(2)7 ().

Proposition 8. Consider two economies in which agents have the same preferences with
V"(.) > 0 and face the same distribution of endowments, Cy, 7(2), and p(y|z). Assume that
the distribution of shocks to risk tolerance in the two economies u(t|z) and p'(7;z) are such
that, for all j, 7(z;) = 7'(2;). Then these two economies have the same equilibrium values of
Cy(2) and J(z), but, for each state z, the economy with the higher dispersion in shocks to risk

tolerance as measured by a higher value of L(z) has the higher equilibrium bond price at t = 0,

Q°(2).

Proof. The proof is by direct calculation. O]
Given our previous result that trade volume and dispersion in certainty equivalent consump-

tion are both increasing in the dispersion of shocks to risk tolerance, we have that, for each

state z, the economy that has the higher trade volume has the higher equilibrium bond price

at t =0, Q°2).
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Trading Volume and Expected Returns (Risk Premia) across Economies. We now
compare an economy with a constant dispersion of risk tolerance across different states z at t = 1
with one in which the marketwide risk tolerance is negatively correlated with the dispersion of
risk tolerance. We find that if V' displays prudence (i.e. if V" > 0), then any cash flow with
systematic risk has a higher risk premium in the economy in which dispersion is negatively
correlated with risk tolerance.

Denote by fi(+|z) the distribution of (7 — 7(z)).A(z) conditional on z. We consider the

following assumptions:

If 2/ > 2z, then 7(2') > 7(z) and (46)

If 2/ > 2, then fi(+|2’) is less dispersed (in a second-order stochastic sense) than fi(-|2). (47)

In words, states with higher marketwide risk tolerance have a lower dispersion of risk tolerance
and thus a lower volume of trade at ¢ = 1. We say that an asset has systematic payoff exposure

if d is increasing in y, and
d(y',2") > d(y, z) for all z,2" and ¢/ > y. (48)

With this notation at hand, we can state the following result:

Proposition 9. Let the distribution of y not vary with z, so p(y|z) = p(y) for all states z.
Consider two economies where shock z indexes marketwide risk tolerance as in (46). The first
economy has constant dispersion on the idiosyncratic risk tolerance across states at time t = 1,
so L(z) = Ly(z) is constant for all z. The second economy has u(-|z) more dispersed for lower
marketwide risk tolerance as defined in (47), so L(z) = Lo(2) is decreasing in z. We fix the
same asset d(-) with a systematic payoff exposure as defined in (48) in both economies. If
investors are prudent (i.e., they have precautionary savings motives, or V" > 0), then the
second economy (where the cross-sectional dispersion in risk tolerance is negatively correlated

with the marketwide risk tolerance) has a higher t = 0 expected excess return Ey(d).

We can describe the second economy as one where the cross-sectional dispersion in risk
tolerance is negatively correlated with the marketwide risk tolerance, or equivalently as one in
which trade volume is positively correlated with the marketwide risk aversion. Thus, in this
second economy, times of high marketwide risk aversion (times in which the risky assets sell at

a low price) are times in which lots of investors want to rebalance.
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This proposition parallels the results in Mankiw (1986) and Constantinides and Duffie
(1996). In both papers, the authors consider the level of excess expected returns when in-
vestors have uninsurable labor risk whose dispersion is correlated with the level of aggregate
consumption. While their results are mathematically parallel to ours, it is important to note

that there is no trade in assets in their models.

Trading Volume and Expected Returns (Risk Premia) in the Cross Section of
Assets. We now compare the risk premia across risky assets in the same incomplete markets
economy. In this case, we find that if V' displays prudence (i.e., if V" > 0), then assets with
cash flows that load more onto the time ¢ = 1 states z with higher dispersion of risk tolerances
have higher prices or lower expected returns. Since trade volume is also given by a measure of
dispersion of risk tolerances, this result means that assets whose cash flows load on states at
t = 1 with high trade volume have low expected excess returns.

To make this result precise, we fix an economy with incomplete markets and compare the
excess expected returns of assets with different exposures to the idiosyncratic dispersion of risk
tolerance. We assume that the average risk tolerance and the distribution of the endowment y

conditional on 2z are both constant across z.

Proposition 10. Consider an economy with incomplete markets with the same marketwide
risk tolerance T(z) and the same conditional distribution of aggregate risk p(y|z) = p(y) for
all states z. Assume that the states z are ordered in terms of dispersion of idiosyncratic risk
tolerance as in (47), so that L(z) decreases with z. Consider two cash flows, d and d, in the
same economy, where d loads more than d in states with higher dispersion of risk tolerance in
the following way: d(y,z) = 6(y)é(z) and d(y,z) = 6(y)e(z) with &(z)/e(z) decreasing in z.
Then, the time t = 1 conditional expected excess returns are the same for both assets and all
states z, i.e., &9 (z,ci) = &9 (z; d), and the time t = 0 expected excess returns for the asset

with higher exposure to trade volume are smaller, i.e., &2 (ci) < &2 (d)

This result gives conditions under which trade volume acts as a pricing factor, i.e., the
conditions under which the cross-sectional expected excess returns on assets (i.e., 5072(6% Versus
&o2(d)) depend on the correlation of returns with trade volume. In this case, the asset with
dividend d, which has higher value when trade volume is high, and thus ex ante is a better
hedge against the rebalance risk, has a higher price, i.e., it has a lower ¢ = 0 expected excess

return. The higher price of the asset with dividend d is due to higher exposure of its dividends
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to trade volume, as captured by the term E,[d|z]/Eold] = é(z)/Eo[é(2)].

5 Taxes on Trading and Ex-ante Welfare

In this section, we consider the implications for welfare of a tax on trade in shares of the
aggregate endowment at ¢ = 1 (a Tobin taxr). We show that while a Tobin tax on trade
has a zero first-order effect on welfare if imposed on the socially optimal allocation, it has a
first-order negative welfare effect if imposed on the equilibrium allocation. In other words, a
small Tobin subsidy to trade increases ex-ante welfare in equilibrium. The basic logic of this
result is that a Tobin tax exacerbates the inefficient sharing of idiosyncratic preference risk in
equilibrium. Agents who have negative risk tolerance shocks suffer a negative shock to certainty
equivalent consumption in equilibrium. The Tobin tax also falls on them in terms of its tax
incidence because their demand for shares is relatively inelastic. Hence, the tax exacerbates
the inefficient sharing of risk in certainty equivalent consumption in equilibrium.

In the online appendix, we complement our analysis of a simple linear tax of trade rebated
lump sum, with the analysis of the optimal non-linear tax or subsidy scheme. We use a standard
mechanism design approach, assuming that the realization of individual risk tolerance is private
information for each investor. We think of this assumption as the natural explanation of why
we assume that these risks are uninsurable. We use the optimal non-linear scheme to judge
the sense in which a subsidy to trade is a general feature of the optimal policy. We conclude
that, consistent with the results on Tobin taxes, the optimal non-linear tax/subsidy is one that

induces more trade.

5.1 A Tobin Tax

In our analysis of a Tobin tax, we assume that there are two asset markets — one at t = 0
for bonds that pay off at t = 1 and one at ¢ = 1 in which agents trade shares of the aggregate
endowment for sure claims to consumption at ¢ = 2. Assume that trade in shares at ¢t = 1
is taxed. Specifically, assume that there is a tax of w per share traded such that if the seller
receives price D;(z) for selling a share of the aggregate endowment at t = 1, the buyer pays
D;(2) + w, and the total revenue collected through this tax, equal to w times the volume of
shares traded, is rebated lump sum to all agents.

With this notation, we define a conditional equilibrium with a Tobin tax as follows.
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Conditional Equilibrium with a Tobin Tax. An equilibrium conditional on z with a Tobin
tax w is a share price {D;(z;w)}, transactions tax revenue rebate T'(z;w), post-trade holdings of
share s(7; z;w), and corresponding allocation of consumption at ¢t = 2, ¢(7, y; z; w), that satisfy

the market clearing condition

S s(rzw)n(rlz) =0, (49)

T

and budget constraints,
o1y zw) = ys(1; z,w) — (Di(zw) +w) (s(73230) = 1) + T(z;w) + B(7, 2)
if s(7;z;w) > 1 and
o(r,ys 23 w) = ys(1;23w) — Di(zw) (s(m3 250) — 1) + T(z;w) + B(7, 2)

if s(7;2;w) < 1. The rebate T(z;w) satisfies the government budget constraint 7T'(z;w) =

wWT'V(z;w) where trade volume TV (z;w) is given by

TV(zw)= Y (s(rizw) = 1) p(r]z). (50)
T:5(Tyz3w)>1
Equilibrium share holdings s(7; z; w) maximize each agent’s certainty equivalent consumption
(3) among all share holdings and allocations of consumption that satisfy the budget constraints
given the initial bond holdings, the share price, the tax, and the tax rebate.

We denote by Ci(7;z;w) the time ¢t = 1 certainty equivalent consumption for agent 7 in
state z for the conditional equilibrium with a Tobin tax w with initial bond holdings B¥(, 2)
for i € {, e} corresponding to those in the decentralization of the optimal allocation and equal
wealth equilibrium, respectively. Likewise, let s* denote the shareholdings in the conditional
equilibrium with a Tobin tax with initial bond holdings Bi(, z) for i € {*,e}. Let H:(Cy; z; w)
denote the minimum cost to an agent of type 7 of attaining certainty equivalent consumption
Ch at t =1 in state z by trading in shares and risk-free bonds subject to Tobin tax w.

Consider the following calculation of the change in ex-ante welfare from a marginal increase

in the transactions tax w starting from w = 0. Here we must compute

dW?

dw

=637 Lt V(G 2:0)) -C(7::0), (51)

w=0

where C%(7;2;0) is the initial allocation of certainty equivalent consumption (with w = 0)

corresponding to either the optimal allocation or the equilibrium allocation.

34



Using that any conditionally efficient allocation of certainty equivalent consumption must

satisfy the pseudo-feasibility constraint (27), we must have that
Z,u C’*TzO Z,uﬂ Ci(1;2;0) = 0. (52)

(This restriction follows from the observation that all perturbations to the initial conditionally
efficient allocation of certainty equivalent consumption must remain inside the set of feasible
allocations of certainty equivalent consumption.) This result implies that a Tobin tax, at
the margin, simply redistributes certainty equivalent consumption across agents, regardless of
whether the initial allocation of certainty equivalent consumption corresponds to either the
optimal or the equilibrium allocation.

Since in the optimal allocation, C;(7;z) = C1(z) for all 7, the formula (51) together with
equation (52) then immediately implies the standard result that a share transactions tax has
no first-order impact on welfare starting from the optimal allocation since all types of agents
share the same initial marginal utilities of certainty equivalent consumption in each state z.

In contrast, in the incomplete markets economy, the baseline equilibrium allocation of cer-
tainty equivalent consumption at ¢ = 1 is not socially efficient. The restriction (52) that the
aggregate change in certainty equivalent consumption must be zero gives us that the total

change in ex-ante welfare in equation (51) can be written as
= 52 2)Cov | V'(Cy(732)) icl(r 2)|z (53)
) ) du_) J )

where Cov(-, - | z) denotes the covariance of two variables dependent on 7 conditional on z. As
shown in equation (31), certainty equivalent consumption for an agent with realized type 7 in
state z at ¢t = 1 is strictly increasing in the risk tolerance 7 of that agent. If V' is strictly concave,
the marginal utility of certainty equivalent consumption for an agent with realized type 7 in
state z at t = 1, V/(C{(7;2)), is strictly decreasing in the risk tolerance of that agent. Thus,
the first-order impact on welfare of a tax on trading in shares imposed on the equilibrium
allocation is then determined by whether it is agents with high or low marginal utilities of
certainty equivalent consumption in the initial equilibrium allocation who bear the cost of the
tax net of the lump sum transfer of tax revenue. In other words, the welfare implications of a
Tobin tax depend on the incidence of that tax.

To study the incidence of a Tobin tax, we must solve for the the changes in certainty equiv-

alent consumption by type 7 that arise from the direct effect of the tax on agents’ consumption
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at t = 2 and the changes in certainty equivalent consumption that arise indirectly from the
change in the share price and the lump sum transfer induced by the tax. We do so by differenti-
ating the cost minimization problem that determines H 1(Cy; z;w). Using the envelope theorem,
together with the observation that with equicautious HARA subutility, the cost functions ﬁ;

coincide with the cost functions H, defined in equation (14) when w = 0, we get that
J(z) [(Si(T; z;0) —1) <—% — 1) + TVi(z;O)} if st(7;2;0) > 1
Ci(1;2;0) = < J(2) TV(2;0) if s'(752;0) =1 (54)
J(2) [(Si(TQZ;O) — 1) <—8DZ§—S;O)> —i—TVi(z;O)] if s'(7;2;0) <1

d
dw

for all 7, z, and i € {e,*}, and where J(z) is given by expression (35).
From equation (54), we see that, in general, the incidence of a Tobin tax on each type of
agent depends on the quantity of shares that they trade. A Tobin tax lowers the equilibrium

D1 (z;0)

5 € [~1,0]. Thus, a Tobin tax tends to lower the certainty equivalent

share price, with
consumption of agents with extremely low values of 7. That is because these agents wish
to sell a large number of shares, and thus the impact of the tax on the certainty equivalent
consumption of these agents through the impact of the tax on the price at which these agents
can sell their shares is larger than the gain to these agents from the lump sum transfer of tax
revenue. A Tobin tax also lowers the certainty equivalent consumption of agents with extremely
high values of 7. In contrast, a Tobin tax benefits agents with values of 7 close to the mean
value 7(z), as these agents do not wish to trade shares but do benefit from the lump sum
transfer of tax revenue. This observation that agents with values of 7 close to the mean value
of 7 tend to benefit from a Tobin tax and those with extreme values of 7, either low or high,
tend to lose from a Tobin tax does not directly allow us to compute the covariance term that
determined the change in welfare in equation (53). Instead, we make progress on computing
that covariance as follows.

First observe that the total gain in certainty equivalent consumption for those agents that
are buyers of shares (and hence have values of 7 > 7(z)) is positive if and only if the endogenous
fall in the share price that results from the tax is sufficiently large in magnitude, i.e.,

iy
SOPED S ik, (59)

T:8(T5250) <1
That is, buyers of shares, in the aggregate, benefit from a Tobin tax if the magnitude of the
fall in the share price in response to the tax is larger than the fraction of agents who are sellers

of shares. Since the equilibrium change in the share price that results from the imposition of
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a Tobin tax depends on the elasticities of demand of buyers and sellers of shares, this result is
the version of the classic public finance result that the sellers of a good (here, shares) subject
to a tax bear the incidence of the tax if their individual demands are relatively inelastic, and
thus the equilibrium price falls by more than the weight of these sellers in the population. To
derive inequality (55), use equations (50) and (54) to compute

T:s(gbl %C’f(ﬂ 20\ u(7]2) = J(2) TV'(2;0) <—% — 1) + T:S(T;ZZ;;)N w(T|2)
and recall that both J(z) and trade volume are positive.

That inequality (55) is satisfied in our model is simply a reflection of the classic result in
finance that an agent’s elasticity of demand for risky shares is increasing in that agent’s risk
tolerance. In fact, given our assumption of equicautious HARA preferences, we can derive a
very simple formula for the equilibrium decline in the share price that occurs in response to
the imposition of a Tobin tax. To derive this formula, we first compute the changes in demand
for shares by each type 7 of agent as a function of the change in price and lump sum transfer
induced by the tax. The implied equilibrium change in price then follows from the share market
clearing condition.

Consider the derivatives of agents’ demands for shares with respect to a change in the price

of shares and a lump sum transfer. The first-order condition for the risky asset trade is
EU (y+(S(r32,D,T) = 1) (y=D)+T)(y— D) |2] =0, . (56)

where the expectation is taken with respect to the random variable y. Differentiating this
first-order condition and evaluating it at the equal wealth equilibrium, we obtain the following

result.

Lemma 1. Let S(7;2D,T) be defined as the solution of (56) evaluated at the equilibrium price
D = D,(2) for equal wealth and at transfer T = 0. Then:

E (UL () |2] E[Uz., () (v — D)2
9 + (¢€<T7 Z) - 1) 9
E U2, ) (v — D)’ I2] E (UL, () (v = D)’ |2]
0S(r; D, T) E |:U7£',(z) (y) (y — D) ‘Z}

or E (U2, () (v - D) I2]

0S(t;2;D,T)

=20 ()
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Three comments about this lemma are in order, as these results play an important role
in our calculation of the welfare impact of a Tobin tax. First, observe that the derivative of
share trades of an agent with risk tolerance 7 with respect to the price is increasing in the risk
tolerance of that agent. That is, agents who are more risk tolerant adjust their share demand
more in response to a change in price than do agents who are less risk tolerant. Second, observe
that the second term in the derivative of agents’ demand for shares with respect to a change in
price D, the term which reflects the income effects on demand from a change in price, cancels
out when aggregated across all agents, since the market for shares clears. This result is also
an implication of the result that equicautious HARA preferences satisfy Gorman aggregation.
Third, the result that the derivative of agents’ demand for shares with respect to a transfer
is common across all agents is simply an implication of the result that equicautious HARA
preferences satisfy Gorman aggregation.

These second and third features of the demand for shares in our economy allow us to
compute the change in price that arises from a change in the Tobin tax simply as a function of
trade volume in shares and the fractions of agents who are buyers and sellers of shares. Other
parameters of preferences do not enter into this calculation. In particular, using Lemma 1 and
these conditions, we derive the following characterization for the impact of prices of a Tobin

tax.

Proposition 11. Let D(z;w) be equilibrium price of a claim to the aggregate endowment with
a tax on trade w introduced in the equal wealth equilibrium. Assume, to simplify, that there are
no marginal investors, i.e., u has no mass point at T = 7. Then the price D(z;w) received by

sellers decreases by the fraction of shares held post-trade by buyers times the Tobin taz, i.e.,

PED _ S s mautrl) = - |1V + Y alr) | € (-1,0) . (57

W - —
T>T T>T

From equations (55) and (57), we have that, in the aggregate, buyers of shares (relatively
risk-tolerant individuals) benefit from a Tobin tax if and only if the initial equilibrium trade
volume exceeds the difference between the measure of buyers of shares and the measure of sellers
of shares. This observation gives as an immediate result that if the distribution of preference
shocks p(7|z) is symmetric, so that the measures of buyers and sellers are equal, then, on
average, those experiencing negative shocks to risk tolerance (sellers of shares) lose certainty
equivalent consumption and those experiencing positive shocks to risk tolerance (buyers of

shares) gain certainty equivalent consumption. In fact, the next proposition, proved in the
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online appendix, shows that the average gains (or losses) for buyers (and sellers) of the risky
asset after the introduction of a small transaction tax w are an extremely simple function of

trade volume prior to the introduction of taxes.

Proposition 12. Assume that p(-|z) is symmetric around 7. Then the average consumption
equivalent gain among all buyers (respectively, losses among sellers) of the risky asset is pro-
portional to the square of trade volume:

d
Avg. Gain Buyers = Z %Cf(T; 2; 0)% w=+2J(2)[TVe(2)]? w,
e WD

Avg. Loss Sellers = ; %Cf(T; z; 0)%w = 2J()[TV)] w.

Three comments about this proposition are in order. First a corollary of this proposition is
that in the case of a symmetric distribution pu(-|z) with only two values of 7, there is a first-
order welfare loss of introducing a Tobin tax w. This is because the marginal utility of buyers
of risky assets is discretely below the marginal utility of sellers. Second, since this result gives
a strict inequality, it suggests that in the case of two values of 7, one can relax the assumption
of symmetry of u(-|z). Indeed, Proposition 13 shows that. Third, and more subtly, the result
in Proposition 12 does not imply that, assuming symmetry, there is a first-order loss in welfare
for a Tobin tax w. The reason why this is not sufficient is that, in general, there is also a
redistribution of certainty equivalent consumption among sellers and among buyers, as those
who have intermediate values of 7 sell or buy only a small quantity of shares and hence do
not suffer from tax-induced changes in share prices while still benefiting from the lump sum
transfer of tax revenue. Proposition 14 imposes extra conditions on the utility function V' so
that these potential redistributional effects do not overturn the result that a Tobin tax has a
first-order negative impact on welfare.

We now prove our result that a Tobin tax imposes a first-order welfare loss in an economy
with only two possible realizations of 7. We then present this result in an economy with a

symmetric distribution of shocks to risk tolerance u(7|z).

Proposition 13. Fix a value of z. Consider an economy with only two types of agents, T €
{m, o} with m < 7(2) < 7, and thus ¢°(11;2) < 1 < ¢°(12;2). Assume that V is strictly
concave. Then, when agents have equicautious HARA preferences, a Tobin tax on asset trade

imposed on the equal wealth equilibrium has a negative first-order ex-ante welfare effect if and

39



only if
(0°(725 2) = D725 2) > pulm; 2) — (723 2). (58)
Note that p(m|z) > 1/2 is a sufficient condition for the Tobin tax to induce a first-order
welfare loss. Also, symmetry of the distribution of 7 implies that u(m|z) = 1/2 and hence
satisfies condition (58). Inequality (58) is, of course, again our condition that buyers of shares
(relatively risk-tolerant individuals) in the aggregate benefit from a Tobin tax if and only if the
initial equilibrium trade volume exceeds the difference between the measure of buyers of shares
and the measure of sellers of shares. With only two types of agents, this condition is sufficient
to sign the covariance term in equation (53) and thus prove our result that a Tobin tax has a
first-order negative impact on welfare.
Now we extend the result to the case of a general symmetric distribution u(-, z) and where

V' is concave with derivatives that alternate signs.

Proposition 14. Fiz a state z. Assume that there are no marginal investors, i.e., u(-|z) has no
mass point at T = T, and that the distribution of T is symmetric, i.e., u(T — a; z) = (7 + a; 2)
for all a. Furthermore, assume that the ex-ante utility V' is analytical, strictly increasing, and
strictly concave, with all derivatives evaluated at C(z) alternating signs, i.e., the utility function
s “proper”:

, otV (O) , oV (C) -
sign (W) = —sign (W) evaluated at C = Cy(z), and alln =1,2,3,...
(59)

Then, when agents have equicautious HARA preferences, a Tobin taxr on asset trade on the
equal wealth equilibrium has a negative first-order ex-ante welfare effect for each z. Moreover,
approximating the change on ex-ante utility in terms of moments of T, and using the first leading

term, we obtain

%WQ(O; 2) = J(2)V"(Ci(2)) [A(z)f (C’l(z) - Dl(z)) TVe(z) Var(