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The Risk of Becoming Risk Averse:
A Model of Asset Pricing and Trade Volumes∗

Fernando Alvarez† and Andy Atkeson‡

Abstract

We develop a new general equilibrium model of asset pricing and asset trading volume
in which agents’ motivations to trade arise due to uninsurable idiosyncratic shocks to
agents’ risk tolerance. In response to these shocks, agents trade to rebalance their portfo-
lios between risky and riskless assets. We study a positive question — When does trade
volume become a pricing factor? — and a normative question — What is the impact of
Tobin taxes on asset trading on welfare? In our model, economies in which marketwide
risk tolerance is negatively correlated with trade volume have a higher risk premium for
aggregate risk. Likewise, for a given economy, we find that assets whose cash flows are
concentrated on states with high trading volume have higher prices and lower risk premia.
We then show that Tobin taxes on asset trade have a first-order negative impact on ex-ante
welfare, i.e., a small subsidy to trade leads to an improvement in ex-ante welfare. Finally,
we develop an alternative version of our model in which asset trade arises from uninsurable
idiosyncratic shocks to agents’ hedging needs rather than shocks to their risk tolerance.
We show that our positive results regarding the relationship between trade volume and
asset prices carry through. In contrast, the normative implications of this specification of
our model for Tobin taxes or subsidies depend on the specification of agents’ preferences
and non-traded endowments.
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1 Introduction

In this paper, we develop a new general equilibrium model of asset pricing and asset trading

volume in which investors’ motivations to trade arise due to uninsurable idiosyncratic and

aggregate shocks to investors’ risk tolerance. In response to these shocks, investors trade to

rebalance their portfolios between risky and riskless assets. The volume of asset trade in our

model is driven by the dispersion of idiosyncratic shocks to risk tolerance. Our model delivers

simple analytical expressions for asset prices and trading volume as functions of aggregate

variables and the distribution of idiosyncratic shocks to agents’ risk tolerance. We use these

formulas to study a positive and a normative question: To what extent is trading volume a

factor that helps price risky assets? And what are the welfare implications of Tobin taxes and

subsidies to asset trading?

We show three main positive results regarding the relationship between trading volume and

asset prices in our model. First, with positive trading volume, interest rates are lower than in an

otherwise identical representative agent economy. Second, if aggregate shocks to risk tolerance

are negatively correlated with trade volume, then the risk premium for aggregate risk is higher

than in an otherwise identical representative agent economy with no rebalancing trade. Third,

risky assets whose cash flows are concentrated on states in which trading volume is high sell at

a higher price, i.e., they have lower expected excess returns. To help develop intuition for the

asset pricing results in our model, we show that there is a mathematical correspondence between

our asset pricing formulas and those in Mankiw (1986) and Constantinides and Duffie (1996)

regarding the role of uninsurable idiosyncratic income shocks in asset pricing. The primary

difference between our model and theirs, however, is that the shocks to risk tolerance in our

model lead to a positive volume of rebalancing trade, while there is no trade in the equilibrium

in these other papers.

We also use our model to evaluate the impact on ex-ante welfare of a Tobin tax on asset

transactions. Contrary to the standard public finance result that in an undistorted equilibrium,

a tax (or subsidy) has a zero first-order effect on welfare, in our case a Tobin tax on asset trans-

actions has a first-order negative welfare effect. This is because it turns out that a transaction

tax levied in the equilibrium with uninsurable risk tolerance shocks, through its incidence, ex-

acerbates the equilibrium failure to share risk efficiently. In particular, in equilibrium, agents

cannot insure against an idiosyncratic shock to their risk tolerance, which turns out to act the

same way as an idiosyncratic uninsured wealth shock. Thus, a small subsidy to trade leads to
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first-order ex-ante welfare improvement because it improves upon the incomplete risk sharing

achieved in equilibrium.

In the final section of the paper, we consider two alternative specifications of our model in

which agents’ desire to trade assets is driven by uninsurable idiosyncratic shocks to agents’ non-

tradable risky endowments of consumption goods rather than by shocks to agents’ risk tolerance.

We compare these alternative specifications of our model with the baseline specification with

shocks to risk tolerance to highlight the economics of our positive and normative results.

The specification of preferences in our model is key for its positive and normative implica-

tions. We consider a three-period endowment economy, where, to simplify, consumption takes

place only in the first and last periods. In period t = 0, all agents are identical. In period t = 1,

all investors receive common signals about period t = 2 output, and each investor’s preferences

for consumption at t = 2 are realized. Specifically, we assume that in period t = 1, each investor

has a utility function of the equicautious HARA family, which we index as Uτ (·).1 Formally,

this is the class of utilities where risk tolerance is linear in consumption.2 The intercept of the

linear risk tolerance function, which we denote by τ , is allowed to be investor specific, and this

is the preference shock that we consider.

What is central to our results is the way that investors view at time t = 0 the prospect of

a time t = 1 random shock to their risk tolerance. Here we use a recursive representation of

agents’ preferences. For each realization of the risk tolerance parameter τ at t = 1, we define

for each agent a time t = 1 level of certainty equivalent consumption based on that agent’s

realized risk tolerance τ and the (stochastic) consumption allocated to that agent at t = 2.

Then each investor’s time t = 0 preferences are given by an additively separable utility V over

time t = 0 consumption plus the discounted value of the expected utility over the time t = 1

certainty equivalent of continuation consumption, also computed with the utility function V .

This gives a non-expected utility as of time t = 0, as in Kreps and Porteus (1978) or Selden

(1978). For the particular case where the distribution of risk tolerance τ is degenerate, ex-

ante preferences are exactly as in Selden (1978). In the general case, time t = 0 investors

evaluate the prospects of preference shocks only by considering their effect on their implied

certainty equivalent consumption. In particular, we assume that investors are risk averse with

respect to randomness in certainty equivalent consumption regardless of whether the variation

1As is well known, this family includes utility functions with constant relative risk aversion, constant absolute
risk aversion, and quadratic utility, where the origin can be displaced from zero.

2Recall that risk tolerance is defined as the reciprocal of risk aversion.
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in this certainty equivalent consumption comes from randomness in the time t = 2 allocation

of consumption or from time t = 1 preference shocks. This formulation, as opposed to simply

adding a shifter to standard additively separable preferences, isolates the effect of randomness

of risk tolerance without having extra effects due to the particular cardinal representation of

utility. Thus, our specification captures the risk of becoming risk averse. In addition, this

specification has been used in social choice theory when considering foundations for ex-ante

Rawlsian preferences “behind the veil of ignorance” to take into account the effect of different

realized risk tolerances; see Grant et al. (2010) or Mongin and Pivato (2015).

The correspondence between an idiosyncratic shock to risk tolerance in our model and an

idiosyncratic shock to income in Mankiw (1986) and related models can be understood as

follows. The Arrow-Pratt theorem states that an investor with a risk tolerance lower than

another, given the same budget set for tradable assets, also has lower certainty equivalent

consumption. In our model, all investors are ex-ante identical at t = 0 and thus have the

same asset position right before their time t = 1 preference shock is realized. Hence, they face

the same budget set for tradable assets at t = 1. Therefore, the idiosyncratic risk tolerance

shock is akin to a negative income shock in the sense that such a shock makes it more costly

for that investor to attain any given level of certainty equivalent consumption through trade

in assets at t = 1. Since the assumed time t = 0 preferences are in terms of expected utility

over certainty equivalent consumption, the equivalence of a risk tolerance shock with an income

shock is exact. Thus, as in Mankiw (1986) and Constantinides and Duffie (1996), the effect on

time t = 0 marginal valuation of the idiosyncratic variation on certainty equivalent consumption

depends on whether preferences feature precautionary savings. This claim is formally stated

in Proposition 6. When V ′′′ > 0, so investors are prudent, then states that correspond to

high trade volume (i.e., high dispersion of certainty equivalence) are states with high marginal

valuations. This effect explains the three positive asset pricing implications described above.

Our model can be formulated with a general specification of preferences Uτ (·) realized at

t = 1. Our assumption that the realized Uτ (·) time t = 1 utility functions are of the equicautious

HARA family has several important implications that make the model particularly tractable

and which help us to understand the logic of our asset pricing results. First, the two-mutual

fund separation theorem holds once agents’ risk tolerances are realized at t = 1, and hence, for

pricing assets at t = 1, it suffices for investors to trade in a Lucas tree and an uncontingent

bond. No further claims on output in period t = 2 are needed. We refer to this type of trade
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as portfolio rebalancing. Second, these preferences admit Gorman aggregation. That is, for

the purpose of pricing securities at t = 1 that pay consumption at t = 2 contingent on output

realized at that date once agents’ preference shocks have been realized, there is a representative

investor whose preferences depend exclusively on the average of the risk tolerance parameter

τ across investors. These results imply that asset prices realized at time t = 1, given agents’

preference shocks and signals about aggregate output, are independent of time t = 1 trade

volume. The third key implication that follows from our assumption of HARA preferences is

that trade volume in the Lucas tree and the uncontingent bond at t = 1 maps directly into

and depends exclusively on the realized dispersion of the risk tolerance parameter τ across

investors.3 A fourth key implication of HARA preferences is that the equilibrium allocation

of certainty equivalent consumption to an agent with realized risk tolerance τ at t = 1 is

linear and increasing in the size of that agent’s purchases of the risky security. Hence, our

model implies that data on the volume of rebalancing trade at t = 1 map directly into the

dispersion of certainty equivalent consumption across agents at that date. This is summarized

in Proposition 5.

These four properties of equicautious HARA preferences together imply that the only effect

of trade volume on asset pricing comes from the marginal valuation that investors attach, from

the point of view of time t = 0, to time t = 1 prices that occur given different realizations of

the dispersion of idiosyncratic shocks to risk tolerance. In other words, the connection between

trade volume and ex-ante asset prices comes from investors’ valuation in the presence of risk

to the dispersion of preference shocks that drive the desire for portfolio rebalancing. In our

model, this risk is manifest in variation in the volume of rebalancing trade at t = 1 across the

various states that may be realized at that date.

The main asset pricing positive implications of our model follow directly from the insights

derived from these four properties of the equicautious HARA family of preferences. In particu-

lar, we obtain a decomposition of risk premia in Proposition 7, a comparative statics result on

trade volume and interest rates in Proposition 8, and a comparative statics result on trade vol-

ume and risk premia across economies in Proposition 9 and across securities in a given economy

in Proposition 10.

To gain intuition for our normative results regarding Tobin taxes, first observe that as

discussed above, the initial undistorted equilibrium allocation has imperfect sharing of the

3Recall that investors are identical at time t = 0 and that τ shocks are uninsurable, so investors start their
time t = 1 with identical portfolios.
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idiosyncratic risk of shocks to risk tolerance τ . In particular, an agent who receives a low

idiosyncratic realization of risk tolerance (high risk aversion) has low certainty equivalent con-

sumption at t = 1 relative to an agent who receives a high risk tolerance shock. Thus, the

welfare implications of a Tobin tax on asset trade whose proceeds are rebated lump sum to

investors depend on the incidence of the tax: does the tax fall on risk-tolerant or risk-averse

investors? We find fairly general sufficient conditions where the tax is borne by the risk-averse

investors and hence the certainty equivalent consumption for these agents is pushed even lower

from the imposition of the tax. These results are presented in Propositions 13 and 14. Our

result that the tax falls primarily on the risk-averse investors follows from the classic result in

finance that the elasticity of an investor’s demand for risky assets is increasing in his or her risk

tolerance and the classic result in public finance that tax incidence is determined by demand

elasticities.

For most of the paper, we focus on our baseline model in which asset trade is driven by

idiosyncratic shocks to risk tolerance. In the final section of the paper, we consider two al-

ternative specifications of our model in which agents’ desire to trade assets at t = 1 is driven

by uninsurable idiosyncratic shocks to agents’ tradable and non-tradable endowments of con-

sumption at t = 2 rather than being driven exclusively by shocks to agents’ risk tolerance.

We compare these alternative specifications of our model with the baseline specification with

shocks to risk tolerance to highlight the economics of our positive and normative results.

In the first alternative specification of our model, agents receive at time t = 1 a random

amount of a non-tradable endowment of consumption at t = 2 where the risk in this endowment

is diversifiable. The equilibrium of such a model is essentially the same as the original model,

except that now there is more trade at time t = 1, since agents want to (and can) eliminate

their exposure to this idiosyncratic shock. Thus, in this alternative specification of our model,

we reach the same conclusions for the relationship between the volume of portfolio rebalancing

trade and asset prices and, at the same time, allow for additional trade volume that is not

portfolio rebalancing trade.

In the the second alternative specification of our model, agents receive at time t = 1 a

random amount of non-tradable of consumption at time t = 2 where the risk in this endowment

is exposed to the aggregate endowment of consumption at t = 2. Thus, relative to the first

specification, the risk in this endowment at time t = 1 is non-diversifiable. In this case, for
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simplicity, we suppress the idiosyncratic random shocks to risk tolerance.4 The idiosyncratic

shock in this alternative specification is completely analogous to an idiosyncratic income shock

in terms of certainty equivalent consumption at t = 1 because this shock affects the set of

certainty equivalent consumption that the agent can afford at t = 1. This shock also motivates

the agent to rebalance his portfolio at t = 1 to hedge the risk in his or her non-traded endowment

to be realized at t = 2. The direction of this trade depends on the correlation of the agent’s

non-traded endowment at t = 2 and the payoffs of traded securities. Thus, the tight link

in our baseline model between the observed rebalancing trade of an individual investor at

t = 1 and that investor’s certainty equivalent consumption is broken because this correlation

could be positive or negative or zero. Nevertheless, we show that our three positive results

regarding trade volume (in rebalancing trade) and asset pricing carry through directly to these

alternative specifications. In contrast, our normative results regarding Tobin taxes hold for some

specifications of preferences and non-traded endowment shocks, but not for others, because in

this specification of our model, we no longer have a tight link for each agent between the level

of certainty equivalent consumption for that agent in the initial undistorted equilibrium and

that agent’s realized elasticity of demand for aggregate risk.

The remainder of our paper is organized as follows. In subsection 1.1, we discuss the related

literature. In section 2, we present the model with a general specification of preferences. We

consider socially optimal allocations under the assumption that it is possible to condition agents’

consumption at t = 2 on the realization of their preference shock at t = 1. We then define equi-

librium with asset markets that are incomplete in the sense that traded claims are contingent

only on aggregate shocks and not on the realizations of individuals’ preference shocks. It is

this form of equilibrium that we study. In section 3, we consider our model with preferences at

t = 1, Uτ (·) specialized to the HARA class. Here we develop the properties of these preferences

that are key to making the model tractable. We then fully characterize equilibrium allocations,

asset prices, and trade volumes. We also develop the mathematical correspondence between

asset prices with shocks to risk tolerance and shocks to income. In section 4, we present our

main results regarding the equilibrium relationship between trading volume and asset prices.

In section 5, we present our normative results regarding Tobin taxes on asset trade. In sec-

tion 6, we discuss the alternative specifications of our model in which asset trade is driven by

hedging needs, and we compare the positive and normative implications of these alternative

4Thus, in this case one can consider exactly the same preferences as in Selden (1978), or even expected
utility, if we so desire.
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specifications with those of our baseline model. In the appendix, we complement our analysis

of a simple linear tax of trade rebated lump sum, with the analysis of the optimal non-linear

tax-subsidy.

1.1 Related Literature

There is a large theoretical and empirical literature on the relationship between trading volume

and asset prices.

The idea that idiosyncratic preference shocks affect investors’ precautionary demand for an

asset (in this case, money) is central to Lucas (1980). Also, the idea that shocks to the demand

side for risky assets are important is emphasized by Albuquerque et al. (2016). The model

in that paper, as well as several other related models, incorporates risky preference shocks so

that the model can account for the weak correlation of asset prices with traditional supply side

factors emphasized in the literature. We concentrate on the relationship between aggregate

and idiosyncratic preference shocks so we can examine the implied relationships between trade

volume and asset pricing. Guiso, Sapienza, and Zingales (2018) provide evidence of changes in

the risk aversion of individual Italian investors after the 2008 crisis.

Random Risk Tolerance. There is a small theoretical asset pricing literature that uses

random changes in risk tolerance. An early example, particularly related because it addresses

properties of the volume of transactions, is Campbell, Grossman, and Wang (1993). The aim

of that paper is to investigate the temporal patterns in asset returns and trade volume. This

paper considers shocks to risk tolerance in the context of a model with expected utility, so

these shocks also correspond to shocks to agents’ intertemporal elasticity of substitution. On

the pure portfolio side Steffensen (2011), analyzes the implications randomness of risk tolerance,

also using expected utility. Gordon and St-Amour (2004) use a time-separable utility with a

state-dependent CRRA parameter to jointly fit consumption and asset pricing moments. In

contrast to these earlier papers, here we consider an environment in which agents do not have

expected utility over their preference shocks. With our preference specification, we are able

to derive a more complete characterization of the positive and normative implications of our

model.

The external habit formation model has, when one concentrates purely on the resulting

stochastic discount factor, a form of random risk aversion that is nested by our equicautious

HARA utility specification if agents have common CRRA preferences over consumption less
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the external habit parameter, as in Campbell and Cochrane (1999).5 Bekaert, Engstrom, and

Grenadier (2010) develop and estimate a version of Campbell and Cochrane (1999) where

the ratio of consumption to habit also has independent random variation. They estimate a

(linearized) version of the model and find a substantial role for independent shocks to the

consumption/habit ratio, which have the interpretation of shocks to risk aversion. Guo, Wang,

and Yang (2013) and Cho (2014) further investigate estimates of variations of this model.

In contrast to the papers cited above, our recursive definition of preferences isolates the

shocks to risk tolerance, leaving intertemporal preferences over the allocation of certainty equiv-

alent consumption unchanged.

Santos and Veronesi (2017) consider a model with external habits in which agents experience

idiosyncratic shocks to risk tolerance because they each have different exposures to changes in

the external habit parameter. As in our model, rebalancing trade occurs in the aggregate risky

asset and riskless bonds due to heterogeneous changes in agents’ external habit parameters

correlated with aggregates. These authors focus on the dynamics of leverage and asset trade

that result from this assumption, as opposed to the impact on ex-ante asset prices.

Kozak (2015) uses time-varying aversion in a representative agent model with non-separable

preferences to model variations on the market price of risk. Kim (2014) uses Epstein-Zin pref-

erences with a representative agent with time-varying risk aversion to develop non-parametric

estimates of risk aversion and finds strong evidence for its variability. Drechsler (2013) and

Bhandari, Borovička, and Ho (2016) use models where agents have time varying concerns for

model misspecification, which can also be interpreted as random risk aversion. Drechsler (2013)

studies time varying returns, especially of volatility-related derivatives.

Barro et al. (2017) consider a model with Epstein-Zin utility in which agents have id-

iosyncratic shocks to their risk tolerance. These shocks are introduced to ensure a stationary

distribution of consumption across agents in the model. These shocks are implemented in such

a manner to ensure that they do not have an impact on asset prices. Lenel (2017) also uses

an Epstein-Zin model with random risk aversion. His interest is in the joint explanation of the

holding of bonds and risky assets of different (ex-post) agent types and their returns.

Rebalancing Trade. In our model, the two-mutual-fund separation theorem holds, so agents

trade only the market portfolio of risky assets (aggregate risk) and riskless bonds. Agents have

no need to trade individual risky assets, nor do they need to trade more complex claims to

5The alert reader of Campbell and Cochrane (1999) will recognize the non-linear adjustment on that model
to zero out the precautionary saving effect and obtain constant interest rates.
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aggregate risk. We refer to trade in shares of the aggregate endowment and riskless bonds as

“rebalancing trade.” How much trade is there of this type? There is a large empirical literature

on rebalancing trade. For instance, Lo and Wang (2000) and Lo and Wang (2006) use a factor

analysis on the weekly trading volume of equities. They show that the detrended cross-sectional

trade volume data have an important first component, which can be interpreted as rebalancing

trade, accounting about two-thirds of the cross sectional variation. Yet, as they emphasize, this

is far from being consistent with the two mutual fund separation theorem, and instead favors

at least a second factor explaining trade. There are also many recent studies of individual

household portfolios, which take advantage of large administrative data sets coming from tax

authorities, such as Calvet, Campbell, and Sodini (2009). In that paper, the authors find strong

evidence of idiosyncratic active rebalancing of portfolios between risky and riskless assets by

Swedish households. In the final section of our paper, we consider a specification of our model

with shocks to hedging needs that motivate trade that is not rebalancing trade, but instead is

trade in individual risky securities subject to diversifiable risk. We show that the volume of

this alternative type of asset trade does not affect ex-ante asset prices.

Shocks to hedging needs. Vayanos and Wang (2012) and Vayanos and Wang (2013) survey

theoretical and empirical work on asset pricing and trading volume using a unified three-period

model similar in structure to ours. In their model, agents are ex-ante identical in period t = 0,

and they consume the payout from a risky asset in period t = 2. In period t = 1, agents receive

non-traded endowments whose payoffs at t = 2 are heterogeneous in their correlation with the

payoff from the risky asset. This heterogeneity motivates trade in the risky asset at t = 1 due to

investors’ heterogeneous desires to hedge the risk of their non-traded endowments. Vayanos and

Wang focus their analysis on the impact of various frictions (participation costs, transactions

costs, asymmetric information, imperfect competition, funding constraints, and search) on the

model’s implications for three empirical measures of the relationship between trading volume

and asset pricing.6 Our focus differs from theirs in that we study the impact of the shocks that

drive demand for trade at t = 1 on asset prices in a model without frictions and then consider

the welfare implications of adding a trading friction in the form of a transactions tax. Yet we

have shown that our setup is amenable to studying frictions on trading, as we have done with

6The first of these measures is termed lambda and is the regression coefficient of the return on the risky
asset between periods t = 0 and t = 1 on liquidity demanders’ signed volume. The second of these measures is
termed price reversal, defined as the negative of the autocorrelation of the risky asset return between periods
t = 1 and t = 1 and between t = 1 and t = 2. The third measure is the ex-ante expected returns on the risky
asset between periods t = 0 and t = 1.
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our study of transaction taxes.

Duffie, Gârleanu, and Pedersen (2005) study the relationship between trading volume and

asset prices in a search model in which trade is motivated by heterogeneous shocks to agents’

marginal utility of holding an asset. As they discuss, these preference shocks can be motivated

in terms of random hedging needs; see also Uslu (2015). Again, trade in their framework is

subject to a friction not considered here.

2 The Model

In this section, we describe our model environment and our specification of agents’ preferences

with random shocks to each agent’s risk tolerance. We define optimal and equilibrium allo-

cations and develop our asset pricing formulas. In the next section, we solve the model for

a specific class of preferences and characterize the model’s implications for asset prices and

trading volume due to portfolio rebalancing.

Consider a three-period economy with t = 0, 1, 2 and a continuum of measure one of agents.

Agents are all identical at time t = 0. Agents consume in periods t = 0 and t = 2. Shocks to

agents’ risk tolerance are realized at t = 1.

There is an aggregate endowment of consumption available at t = 0 of C̄0. Agents face

uncertainty over the aggregate endowment of consumption available at time t = 2, denoted by

y ∈ Y . To simplify notation, we assume that Y is a finite set.

Agents face idiosyncratic and aggregate shocks to their preferences that are realized at t = 1.

Heterogeneity in agents’ preferences at time t = 1 motivates trade at t = 1 in claims to the

aggregate endowment at t = 2. Preference types at t = 1 are indexed by τ with support

τ ∈ {τ1, τ2, . . . , τI}.
Uncertainty is described as follows. At time t = 1, an aggregate state z ∈ Z is realized.

Again, to simplify notation, we assume that Z is a finite set and the probabilities of z being

realized at t = 1 are denoted by π(z). The distribution of agents across types τ depends on the

realized value of z, with µ(τ |z) denoting the fraction of agents with realized type τ at t = 1

in state z. In describing agents’ preferences below, we assume that the probability that an

individual has realized type τ at t = 1 if state z is realized is also given by µ(τ |z).

The conditional distribution of the aggregate endowment at t = 2 may also depend on z,

with ρ(y|z) denoting the probability of y being realized at t = 2 conditional on z being realized

at t = 1. We denote the conditional mean and variance of the aggregate endowment at t = 2
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by ȳ(z) and σ2
y(z), respectively.

We summarize the timing of the realization of uncertainty agents face in our model as in

Figure 1.

Allocations: An allocation in this environment is denoted by ~c (y; z) = {C0, c(τ, y; z)} where

C0 is the consumption of each agent at t = 0 and c(τ, y; z) is the consumption at t = 2 of an

agent whose realized type is τ if aggregate states z and y are realized.

Feasibility requires C0 = C̄0 at t = 0 and, at t = 2,∑
τ

µ(τ |z) c(τ, y; z) = y for all y ∈ Y and z ∈ Z. (1)

2.1 Preferences

We describe agents’ preferences at t = 0 (before z and their individual types are realized) over

allocations ~c (y; z) by the utility function

V (C0) + β
∑
z

[∑
τ

µ(τ |z)V

(
U−1
τ

(∑
y

[Uτ (c(τ, y; z))ρ(y|z)]

))]
π(z), (2)

where V is some concave utility function. We refer to Uτ as agents’ type-dependent subutility

function.

Certainty Equivalent Consumption: It is useful to consider this specification of prefer-

ences in two stages as follows. In the first stage, consider the allocation of certainty equivalent

consumption at t = 1 over states of nature z. For any allocation ~c (y; z), an agent whose realized

type is τ at t = 1 has certainty equivalent consumption implied by the allocation to his or her

type and the remaining risk over y in state z given by

C1(τ ; z) ≡ U−1
τ

(∑
y

Uτ (c(τ, y; z))ρ(y|z)

)
. (3)

Given this definition, in the second stage, we can write agents’ preferences as of time t = 0 in

equation (2) as expected utility over certainty equivalent consumption

V (C0) + β
∑
z

[∑
τ

µ(τ |z)V (C1(τ ; z))

]
π(z). (4)
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Convexity of Upper Contour Sets: To ensure that agents’ indifference curves define con-

vex upper contour sets, we must restrict the class of subutility functions Uτ (c) that we consider

to those for which, given z, certainty equivalent consumption at time t = 1 as defined in equa-

tion (3) is a concave function of the underlying allocation c(τ, y; z) for each given τ and z at

t = 2. We have the following propositions characterizing such subutility functions.

Proposition 1. Fix z and τ . Certainty equivalent consumption

C1(τ,~c; z) ≡ U−1
τ

(∑
y∈Y

Uτ (c(τ, y; z))ρ(y|z)

)
(5)

is a concave function of the vector ~c = {c(τ, y; z)}y∈Y if and only if risk tolerance Rτ (c) ≡
−U ′′τ (c)/U ′τ (c) is a concave function of c.

This condition is satisfied for the equicautious HARA subutility function that we consider

as our leading example throughout the paper, where Rτ (c) is linear in c.

Feasible Allocations of Certainty Equivalent Consumption: To help in the interpre-

tation of the asset pricing formulas below and in solving the model, it is useful to restate the

feasibility constraint in equation (1) in terms of allocations of certainty equivalent consumption.

Given a realization of z and the corresponding distribution of agent types µ(τ |z), we say that

an allocation of certainty equivalent consumption across individuals with risk tolerances τ at

t = 1, {C1(τ ; z)}, is feasible if there exists an allocation of consumption at t = 2, c (τ, y; z),

that is feasible as in (1) and that delivers that vector of certainty equivalent consumption via

(3).

Let C1(z) denote the set of feasible allocations of certainty equivalent consumption at t = 1

given a realization of z. Note that this set is convex as long as agents have subutility functions

Uτ (c) with convex upper contour sets. The set C1(z) can be interpreted as a production

possibility set whose shape is affected by the aggregate shock z which determines the distribution

of tolerance for risk across agents through µ(τ |z) and the quantity of risk to be borne through

ρ(y|z). As we discuss below, the marginal cost of producing certainty equivalent consumption

computed from this production possibility set plays an important role in asset pricing.

We next consider optimal allocations and the corresponding decentralization of those allo-

cations as equilibria with complete asset markets.
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2.2 Optimal Allocations

Consider a social planning problem of choosing an allocation ~c (y; z) to maximize welfare (2)

subject to the feasibility constraints (1). We refer to the solution to this problem as the optimal

allocation. It will be useful to consider the solution of the social planning problem in two stages.

The first stage is to compute the set of feasible allocations of certainty equivalent consump-

tion at t = 1 given z, denoted by C1(z), and then solve the planning problem of choosing

a feasible allocation of certainty equivalent consumption {C0, C1(τ ; z)} to maximize (4) sub-

ject to those feasibility constraints. To characterize the sets C1(z), we also consider efficient

allocations as of t = 1 given z.

We say that an allocation ~c (y; z) is conditionally efficient if, given a realization of z at t = 1,

it solves the problem of maximizing the objective∑
τ

λτ

[∑
y∈Y

Uτ (c(τ, y; z))ρ(y|z)

]
µ(τ |z) (6)

given constraints (1) given some vector of non-negative Pareto weights {λτ}, which can depend

on z. The allocation of certainty equivalent consumption corresponding to a conditionally

efficient allocation is then given by equation (3). The frontier of the set of feasible allocations of

certainty equivalent consumption C1(z) is found by solving this Pareto problem for all possible

non-negative vectors of Pareto weights {λτ}.
Clearly, the optimal allocation is also conditionally efficient.

The second fundamental welfare theorem applies to this economy under our assumptions

on preferences. Thus, corresponding to the socially optimal allocation is a decentralization of

that allocation as an equilibrium allocation with complete markets in which agents can trade

claims to consumption at t = 2 contingent on realized values of τ, y, and z. In what follows,

we consider equilibrium with incomplete asset markets.

2.3 Equilibrium with Incomplete Asset Markets

We now consider equilibrium in an economy in which agents are not able to trade contingent

claims on the realization of their type τ at t = 1. Instead, they can only trade claims contingent

on aggregate states z and y. We are motivated to consider incomplete asset markets here by the

possibility that the idiosyncratic realization of agents’ preference types is private information

and that the opportunity for agents to retrade at t = 1 prevents the implementation of incentive

compatible insurance contracts on agents’ reports of their realized preference type τ .
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We consider a decentralization with two rounds of trading, one at t = 0 before agents’ types

are realized and one at t = 1 after the realization of agents’ types. We assume that all agents

start at time t = 0 endowed with equal shares of the aggregate endowment C̄0 at t = 0 and

realized y at t = 2. In a first stage of trading at time t = 0, we assume that agents can trade

bonds whose payoffs are certain claims to consumption at time t = 2 conditional on aggregate

state z being realized at time t = 1. Let a single unit of such a bond pay off one unit of

consumption at t = 2 in all states y given that z is realized at t = 1. Let Q(z)π(z) denote the

price at t = 0 of such a bond. Note that trade in such bonds at t = 0 is equivalent to trade in

sure claims to certainty equivalent consumption at t = 1 since these bonds are sure claims to

consumption at t = 2.

Let B(τ, z) denote the quantity of such bonds held by an agent with realized type τ in his

or her portfolio. Note that in equilibrium, agents choose their portfolio of bonds at t = 0 before

their type is realized. Hence, we must have B(τ, z) = B(z) independent of τ . The bond market

clearing condition is given by B(z) = 0 for all z.

In a second stage of trading at t = 1, agents can trade their shares of the aggregate en-

dowment or realized y at t = 2 and the payoff from their portfolio of bonds in exchange for

a complete set of claims to consumption contingent on the realized value of y at t = 2. Let

p(y; z) denote the price at t = 1, given that aggregate state z has been realized at that date,

of a claim to consumption at t = 2 in the event that endowment y is realized. In what follows,

we choose to normalize asset prices at time t = 1 in each state z such that the price of a bond,

i.e., a claim to a single unit of consumption at t = 2 for every realization of y, is equal to one.

That is, in each equilibrium conditional on z, we choose the numeraire∑
y

p(y; z)ρ(y|z)dy = 1. (7)

At t = 1, given state z, the price of a share of the aggregate endowment at t = 2 relative to

that of a bond is given by

D1(z) =
∑
y

p(y; z)yρ(y|z). (8)

Since the price of a bond at this date and in this state is equal to one, D1(z) is also the level

of this share price at t = 1 given state z.

We can price arbitrary claims to consumption at t = 2 with payoffs d(y; z) contingent on
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the realized aggregate states z and y as follows. Let

P1(z; d) =
∑
y

p(y; z)d(y; z)ρ(y|z) (9)

denote the price at t = 1 of a security with payoffs d(y; z) in period t = 2 given that state z is

realized. Then the price of this security at t = 0 is

P0(d) =
∑
z

Q(z)P1(z; d)π(z), (10)

where Q(z) are the equilibrium bond prices at date t = 0.

Each agent’s budget constraint at the first stage of trading (at t = 0) is given by

C0 +
∑
z

Q(z)B(z)π(z) = C̄0. (11)

Agents’ budget sets at t = 1 are contingent on the aggregate state z and are given by∑
y

p(y; z)c(τ, y; z)ρ(y|z) ≤ D1(z) +B(τ, z). (12)

The timing of trading and the notation for asset prices in our model is illustrated in Figure 2.

We first use this decentralization to define a concept of equilibrium at time t = 1 conditional

on a realization of z. Here we assume that at time t = 1, agents are each endowed with one

share of the aggregate endowment y at t = 2 and a quantity of bonds B(τ, z) (here allowed to

vary with type τ) that are sure claims to consumption at t = 2. We require that, given z, the

initial endowment of bonds satisfies the bond market clearing condition
∑

τ µ(τ |z)B(τ, z) = 0.

Conditional Equilibrium Given z Realized at t = 1: An equilibrium conditional on z and

an allocation of bonds {B(τ ; z)} is a collection of asset prices {p(y; z)} and feasible allocation

{c(τ, y; z)} that maximizes agents’ certainty equivalent consumption (3) given the allocation of

bonds and budget constraints (12).

Clearly, from the two welfare theorems, every conditional equilibrium allocation is condition-

ally efficient, and every conditionally efficient allocation is a conditional equilibrium allocation

for some initial endowment of bonds.

We now present our definition of equilibrium.

15



Incomplete Markets Equilibrium: An equilibrium with incomplete asset markets in this

economy is a collection of asset prices {Qe(z), pe(y; z)} and a feasible allocation ~c e(y; z) and

bond holdings at t = 0 {Be(z)} that satisfy the bond market clearing condition and that

together solve the problem of maximizing agents’ ex-ante utility (4) subject to the budget

constraints (11) and (12).

Note that since all agents are ex-ante identical, at date t = 0, they all hold identical

bond portfolios Be(z) = 0. This implies that we can solve for the equilibrium asset prices and

quantities in two stages starting from t = 1 given a realization of z. Specifically, the equilibrium

allocation of consumption at t = 2 conditional on z being realized at t = 1 is the conditional

equilibrium allocation of consumption given z at t = 1 and initial bond holdings B(τ, z) =

Be(z) = 0 for all τ and z, and the allocation of certainty equivalent consumption at t = 1

given z, {Ce
1(τ ; z)}, is that implied by the conditional equilibrium allocation of consumption at

t = 2. Likewise, equilibrium asset prices at t = 1, pe(y; z), are the conditional equilibrium asset

prices at t = 1 given z. We refer to this conditional equilibrium as the equal wealth conditional

equilibrium because in it all agents have identical portfolios comprising one share of aggregate

y and zero bonds.

2.4 Preference Shocks and Asset Prices

To gain intuition for how preference shocks affect asset pricing and to solve the model in the

next section, it is useful to follow a two-stage procedure in solving for equilibrium.

In the first stage, we take as given the realized value of z at t = 1 and the payoffs from

agents’ date t = 0 bond portfolios and solve for the conditional equilibrium prices at t =

1, p(y; z), for contingent claims to consumption at t = 2 and the corresponding conditional

equilibrium allocation of consumption c(τ, y; z). These prices and this allocation satisfy the

budget constraints (12) with B(τ ; z) given, and the standard first-order conditions

U ′τ (c(τ, y1; z))

U ′τ (c(τ, y2; z))
=
p(y1; z)

p(y2; z)
(13)

characterizing conditional efficiency for all types τ and all y1, y2.

Given a solution for contingent equilibrium prices p(y; z), we can define for each type of

agent a cost function for attaining a given level of certainty equivalent consumption at time

t = 1 given z as

Hτ (C1; z) = min
c(y;z)

∑
y

p(y; z)c(y; z)ρ(y|z) (14)
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subject to the constraint that c(y; z) delivers certainty equivalent consumption C1 at t = 1

for an agent of type τ . Using these cost functions, in the second stage, we can then compute

the date t = 0 bond prices that decentralize the equilibrium allocation of certainty equivalent

consumption as follows.

Consider the problem for the consumer of choosing certainty equivalent consumption and

bond holdings to maximize utility (4) subject to budget constraints (11) and (12). These budget

constraints can be restated as

Hτ (C
e
1(τ ; z); z) = De

1(z) +Be(z) (15)

with De
1(z) defined in (8) as the price of a share at t = 1 in state z. This problem has first

order conditions

Qe(z) = β
∑
τ

[
V ′(Ce

1(τ ; z))

V ′(Ce
0)

/
∂

∂C1

Hτ (C
e
1(τ ; z); z)

]
µ(τ |z) (16)

with
∂

∂C1

Hτ (C
e
1(τ ; z); z) =

U ′τ (C
e
1(τ ; z))∑

y U
′
τ (c

e(τ, y; z))ρ(y|z)
. (17)

Note that this is the “standard” risk adjustment due to Kreps-Porteus non-expected utility,

with the added feature of random risk tolerance. To see this, first consider the case where there

is no dispersion in risk tolerance at z, so that τ = τ̄(z) for all agents, obtaining the standard

risk adjustment:

Qe(z) = β
V ′(Ce

1(τ̄(z); z))

V ′(Ce
0)

∑
y U
′
τ̄(z)(c

e(τ̄(z), y; z))ρ(y|z)

U ′τ̄(z)(C
e
1(τ̄(z); z))

.

Moreover, if τ = τ̄(z) for all agents and V (·) = Uτ̄(z)(·), we have expected utility, and thus

Qe(z) = β

∑
y V
′(ce(τ̄(z), y; z))ρ(y|z)

V ′(Ce
0)

.

Note that if we interpret certainty equivalent consumption in our model as analogous to con-

sumption in incomplete market models such as Mankiw (1986) and Constantinides and Duffie

(1996), then this formula is the standard pricing formula for a sure claim to consumption in

the presence of idiosyncratic risk to consumption.

3 Solving the Model with HARA Subutility

The specification of preferences we use to solve our model has subutility Uτ of the equicautious

HARA utility class defined as
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Uτ (c) =

(
γ

1− γ

)(
c

γ
+ τ

)1−γ

γ 6= 1 for

{
c : τ +

c

γ
> 0

}
(18)

Uτ (c) = log(c+ τ) for {c : τ + c > 0} for γ = 1 for {c : τ + c > 0} , and (19)

Uτ (c) = −τ exp (−c/τ) as γ →∞, for all c . (20)

This utility function is increasing and concave for any values of τ and γ as long as consumption

belongs to the sets described above for each of the cases. To see this, we compute the first and

second derivative as well as the risk tolerance function:

U ′τ (c) =

(
c

γ
+ τ

)−γ
> 0 , U ′′τ (c) = −

(
c

γ
+ τ

)−γ−1

< 0 and (21)

Rτ (c) ≡ −
U ′τ (c)

U ′′τ (c)
=
c

γ
+ τ (22)

Note that the notation above assumes that γ is common across agents. Note also that γ > 0

gives decreasing absolute risk aversion and γ < 0 gives increasing absolute risk aversion. The

sign of γ will turn out to be immaterial for the qualitative implications of the model. Note as

well that τ can be positive or negative. We do require, however, that c/γ + τ > 0 for these

preferences to be defined.

When agents have subutility Uτ of the equicautious HARA utility class, the interpretation

of preference type τ is that if τ > τ ′, then at any level of consumption, an agent of type τ

has higher risk tolerance than an agent of type τ ′. Hence, the heterogeneity we consider with

these preferences is purely in terms of the level of risk tolerance across agents. The Arrow-Pratt

theorem then immediately implies that if, given z at t = 1, agents of type τ and τ ′ receive the

same allocation at t = 2, i.e., if given z, c(τ, y; z) = c(τ ′, y; z) for all y, then agents of type τ

have higher certainty equivalent consumption at t = 1, i.e., C1(τ ; z) ≥ C1(τ ′; z). In this sense,

for an individual agent, having type τ ′ realized at t = 1 is a negative shock relative to having

type τ realized at t = 1 in that with preferences of type τ ′, it requires more resources for the

agent to attain the same level of certainty equivalent consumption as an agent with preferences

of type τ .

Note that the equicautious HARA utility class nests several commonly used preference

specifications in the literature. In particular, we have that as γ →∞, these preferences display

risk tolerance that is constant in consumption and hence constant absolute risk aversion, or

CARA preferences. With τ = 0, these preferences display constant relative risk aversion, or
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CRRA preferences. With τ 6= 0, these preferences are equivalent to CRRA preferences with an

additive external habit parameter.

When agents have subutility functions of the equicautious HARA class (18), then our model

is particularly tractable, and it is possible to derive specific implications of the model for

the relationship between asset prices and transactions volumes at t = 1. The tractability of

our model follows from four related properties of these preferences that are derived from the

observation that all agents have linear risk tolerance with a common slope in consumption

(determined by γ). We prove each of these properties in the appendix.

These four properties are (1) Gorman aggregation, (2) linearity of the frontier of the set

of feasible allocations of certainty equivalent consumption, (3) a two-fund theorem, and (4)

type-independent marginal cost of certainty equivalent consumption. We present and prove

each of these properties next.

Gorman Aggregation: Given a realization of z at t = 1, Gorman aggregation holds in all

conditional equilibria. That is, in all conditional equilibria at t = 1, asset prices p(y; z) are

independent of the allocation of bonds B(τ ; z) at that date and also independent of moments

of the distribution of types µ(τ |z) other than the mean of this distribution defined by

τ̄(z) ≡
∑
τ

τµ(τ |z). (23)

This result allows us to solve for equilibrium asset prices at t = 1, p(y; z), directly from the

parameters of the environment. Specifically, in all conditional equilibria, p(y; z) = p̄(y; z) where

U ′τ (c(τ, y1; z))

U ′τ (c(τ, y2; z))
=
U ′τ̄(z)(y1)

U ′τ̄(z)(y2)
≡ p̄(y1; z)

p̄(y2; z)
(24)

for all types τ and all y1, y2. The level of asset prices p̄(y; z) is set from the normalization

in equation (7). Thus, asset prices in any conditional equilibrium correspond to those in an

economy with a representative agent with risk tolerance τ̄(z). We establish this result in

Proposition 2.

Linear Frontier of Feasible Allocations of Certainty Equivalent Consumption Given

subutility functions of the equicautious HARA class (18), given z realized at t = 1, the set of

allocations of certainty equivalent consumption C1(z) has a linear frontier, the optimal final

consumption is affine, and the Lagrange multipliers on the resource constraints (1) of the
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Pareto problem (6) defining conditional efficiency are independent of the Pareto weights for the

problem. More formally, we have the following proposition:

Proposition 2. Assume all Uτ (·) are of the equicautious HARA class, and fix a particular z.

An allocation is conditionally efficient if and only if:

(i) There are scalars φ̂(τ ; z) ≥ 0, with
∑

τ φ̂(τ ; z)µ(τ |z) = 1, for which the allocation of

consumption satisfies

c(τ, y; z)

γ
+ τ = φ̂(τ ; z)

(
y

γ
+ τ̄

)
for all y. (25)

(ii) The Lagrange multipliers on the resource constraints (1) of Pareto problem (6) are inde-

pendent of the weights {λτ} and are directly proportional to

p̂(y|z) =
U ′τ̄(z) (y) ρ(y|z)∑
ỹ U
′
τ̄(z) (ỹ) ρ(ỹ|z)

. (26)

(iii) The conditionally efficient allocation of certainty equivalent consumption C1(τ ; z) satisfies

the pseudo-feasibility constraint∑
τ

µ(τ |z)C1(τ ; z) = C̄1(z), (27)

where

C̄1(z) ≡ U−1
τ̄(z)

(∑
y

Uτ̄(z)(y)ρ(y|z)

)
(28)

is the certainty equivalent consumption of an agent with the average risk tolerance τ̄(z)

in the market who consumes the aggregate endowment y at t = 2.

Note that this characterization of the set of feasible allocations of certainty equivalent con-

sumption C1(z) implies that the fully optimal allocation of certainty equivalent consumption

C∗1(τ ; z) solves the problem of maximizing welfare (4) subject to the pseudo-resource constraint

(27). If the utility function over certainty equivalent consumption V (C) is strictly concave,

then the solution to this social planning problem is to have all agents receive the same cer-

tainty equivalent consumption at date t = 1, i.e., C∗1(τ ; z) = C̄1(z) for all τ . This allocation

is implemented by uncontingent transfers at t = 1 from risk-tolerant to risk-averse agents. As

we will see below, C∗1(τ ; z) = C̄1(z) is also the equilibrium allocation of certainty equivalent

consumption in an economy in which there is no dispersion in shocks to risk tolerance.
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Since any equilibrium allocation is conditionally efficient, the first and second welfare the-

orem apply given realized identities τ at t = 1. Hence, Gorman aggregation follows since we

can take the Lagrange multipliers p̂(y; z) to be the equilibrium prices p(y; z) independent of the

Pareto weights across agents at t = 1. Recall Gorman aggregation implies that the asset prices

at t = 1 that decentralize the fully optimal allocation are the same as those in the equilibrium

with incomplete asset markets.

We now turn to the characterization of portfolios in the equilibrium with incomplete market,

and then return, as a consequence, to the determination of the allocation of certainty equivalent

consumption in an equilibrium with incomplete markets.

Two-Mutual Fund Separation Theorem and Equilibrium Certainty Equivalent Con-

sumption Given subutility functions of the equicautious HARA class (18), we obtain a two

fund separation theorem for all conditional equilibria. That is, to decentralize any condition-

ally efficient allocation at t = 1 given z, it is sufficient to have agents trade only shares of the

aggregate endowment y at t = 2 and a riskless bond. We show that each agent’s equilibrium

purchase of shares of aggregate risk is linear in the difference between that agent’s realized risk

tolerance and the average risk tolerance in the market. This, in turn, implies that the certainty

equivalent consumption allocated to that agent is also linear in the difference between that

agent’s realized risk tolerance and the average risk tolerance in the market. These two obser-

vations allow us to establish a direct relationship between trade volume in shares of aggregate

risk and the idiosyncratic risk to certainty equivalent consumption at t = 1 that agents face as

of t = 0.

It is convenient to define the representative agent absolute risk aversion for each realization

of z at t = 1 as the absolute risk aversion of an agent with budget feasible risk-free consumption

B̄1(z) and risk tolerance equal to the average risk tolerance in the market τ = τ̄(z) as

Ā(z) ≡ −
U ′′τ̄(z)

(
D̄1(z)

)
U ′′τ̄(z)

(
D̄1(z)

) =
1

D̄1(z)
γ

+ τ̄(z)
. (29)

Recall that D̄1(z) is the price of a share of the aggregate endowment at t = 1 in state z defined

in (8) using equilibrium asset prices p̄(y; z).

We then have the following proposition:

Proposition 3. Let φe(τ ; z) denote the post-trade quantity of shares of the aggregate endowment

held by an agent of type τ at t = 1 given realized z, and let Ce
1(τ ; z) denote the certainty
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equivalent consumption allocated to that agent in the equilibrium with incomplete markets. Then

(i) To implement the incomplete markets equilibrium allocation, the quantity of shares pur-

chased at t = 1 by this agent is

φe(τ ; z)− 1 = (τ − τ̄(z)) Ā(z) . (30)

(ii) In equilibrium we have

Ce
1(τ ; z) = C̄1(z) +

(
C̄1(z)− D̄1(z)

)
(τ − τ̄(z)) Ā(z). (31)

(iii) Certainty equivalent consumption for the representative agent is higher than the market

value of y, i.e., C̄1(z) > D̄1(z), which we can approximate as

C̄1(z) = ȳ(z)− 1

2
Ā(z)σ2(z) + o(σ2(z)) and D̄1(z) = ȳ(z)− Ā(z)σ2(z) + o(σ2(z)), (32)

where ȳ(z) and σ2(z) is the variance of y using ρ(·|z).

Note that the term C̄1(z)− D̄1(z) is a measure of the risk premium on the market portfolio.

In particular, it is the gap between the certainty equivalent consumption of the representative

agent in equilibrium C̄1(z) and the certainty equivalent consumption that any agent would have

at t = 1, if she sold her one share of the aggregate endowment at price D̄1(z) and purchased

instead a portfolio made up entirely of sure bonds. Note as well that equations (30) and (31)

imply a linear relationship between each agent’s purchases of risky shares φe(τ ; z) − 1 and

the deviation of that agent’s certainty equivalent consumption from that of the representative

agent Ce
1(τ ; z) = C̄1(z), where the slope of that line is given by the risk premium on the market

portfolio C̄1(z)− D̄1(z).

From this proposition, the observed incomplete market equilibrium trade volume in shares

at t = 1 given state z is given by

TV e(z) ≡ 1

2

∑
τ

|φe(τ ; z)− 1|µ(τ |z) =
1

2
Ā(z)

∑
τ

|τ − τ̄(z)|µ(τ |z). (33)

This measure of trade volume is also a measure of the mean absolute deviation of agents’ risk

tolerances from the risk tolerance of the agent with average risk tolerance. In other words,

observed share trade volumes are a direct measure of the dispersion in agents’ risk tolerances.

Equation (31) implies as well that dispersion in agents’ risk tolerances drives dispersion in

agents’ equilibrium certainty equivalent consumption. Hence, equations (30) and (31) together
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imply that observed share trade volumes is a direct measure of dispersion (in terms of mean

absolute deviation) of agents’ certainty equivalent consumption.

To complete our characterization of date t = 0 bond prices in equation (16), we must also

compute the marginal cost of certainty equivalent consumption. We do so next.

Type-Independent Marginal Cost of Certainty Equivalent Consumption. Given

subutility functions of the equicautious HARA class (18), for any conditionally efficient al-

location of consumption, together with the associated certainty equivalent consumptions, the

marginal cost of delivering an additional unit of certainty equivalent consumption to any agent

of type τ is defined as in equation (17) and independent of type, as the next proposition shows.

Proposition 4. Assuming Uτ are of the equicautious HARA class, then in an equilibrium with

incomplete markets,

∂

∂C1

Hτ (C
e
1(τ ; z); z) =

U ′τ̄(z)(C̄1(z))∑
y U
′
τ̄(z)(y)ρ(y|z)

(34)

for all values of τ .

Using the results from Propositions 2, 3, and 4 we have a complete solution of the model

for the optimal and equilibrium allocations, their associated asset prices, and the implications

of the model for equilibrium trading volumes. We summarize our solution of the model in the

following proposition.

Proposition 5. Let V (C) be strictly concave and let agents have type-dependent subutility

functions of the equicautious HARA class (18) with y
γ

+ τ̄(z) > 0 for all y and z.

(i) Asset prices at t = 1 in any conditional equilibrium are given by p̄(y; z) defined in (24) with∑
y p̄(y; z)ρ(y|1) = 1 as the numeraire. The price of a share of the aggregate endowment

at t = 1 given z is denoted D̄1(z) and given by (8) at asset prices p̄(y, z). They depend

exclusively on the representative agent’s valuations.

(ii) The optimal allocation of certainty equivalent consumption is given by C∗0 = C̄0 and

C∗1(τ ; z) = C̄1(z) defined in (28), while the allocation of certainty equivalent consumption

in the equilibrium with incomplete asset markets is given by Ce
0 = C̄0 and Ce

1(τ ; z) given

as in (31).
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(iii) Date t = 0 bond prices Qe(z) in equilibrium are given by (16) evaluated at the equilib-

rium allocation of certainty equivalent consumption (31) with common marginal cost of

certainty equivalent consumption given as in (34). The prices for these bonds in the de-

centralization of the optimal allocation are given by (16) with all agents receiving common

certainty equivalent consumption C∗1(τ ; z) = C̄1(z).

(iv) Agents can implement the incomplete markets equilibrium allocation of consumption at

time t = 2, by trading at t = 1 their one share of the aggregate endowment for φe(τ ; z)

shares of the aggregate endowment y given as in (30) and holding D̄1(z)(1 − φe(τ ; z))

risk-free bonds. This leads to share turnover of TV e(z) as in (33).

The restriction that y
γ

+ τ̄(z) > 0 for all possible values of y in the statement of this

proposition is required to ensure that the HARA subutility is well defined for all agents in

equilibrium for all values of y.

3.1 Solving the Model as an Endowment Shock Model

When agents have subutility functions of the equicautious HARA class (18), then the equi-

librium allocations of certainty equivalent consumption in our model and the associated date

t = 0 asset prices are equivalent to those of the following economy with idiosyncratic endow-

ment shocks but no preference shocks. This equivalence result, which we demonstrate here,

follows from the properties of the equicautious HARA preferences used above. We spell out

this mapping of the model to an endowment shock economy to highlight the mathematical

connection between the role of idiosyncratic risk in certainty equivalent consumption due to

uninsured idiosyncratic risk tolerance shocks in shaping asset prices in our model to the role of

idiosyncratic risk in consumption at t = 1 due to uninsured idiosyncratic endowment shocks in

shaping asset prices in Mankiw (1986) and Constantinides and Duffie (1996). Of course, in our

model, the equilibrium allocation of certainty equivalent consumption at t = 1 is implemented

with a positive volume of asset trade, while there is no such trade in the endowment shock

economy.

The endowment shock model is described as follows. Consider an economy with two time

periods, t = 0 and t = 1. Let agents face aggregate uncertainty indexed by z and idiosyncratic

uncertainty indexed by τ . Let the probability that state z is realized at time t = 1 be given by
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π̃(z) with change of measure

π̃(z) =
J(z)π(z)∑
z′ J(z′)π(z′)

.

The term J(z) is the inverse of the marginal cost of certainty equivalent consumption which,

in equilibrium, is common to all agents and, from equation (34), is given by

J(z) ≡
∑

y U
′
τ̄(z)(y)ρ(y|z)

U ′τ̄(z)(C̄1(z))
=

∑
y

[
y
γ

+ τ̄(z)
]−γ

ρ(y|z)[
C̄1(z)
γ

+ τ̄(z)
]−γ , (35)

which equals the expected marginal utility of the representative agent relative to that agent’s

marginal utility of his or her certainty equivalent consumption. This risk adjustment J comes

from the Kreps-Porteus-Selden-Epstein-Zin non-expected utility, and hence it is a feature in all

the asset pricing models with such preferences. Note that in the case with CARA subutility

(i.e., γ →∞), we have J(z) = 1 for all z.7

Let the distribution of the idiosyncratic uncertainty faced by agents at t = 1 in state z be

given by µ(τ |z). Assume that an agent who has realized type τ in state z has endowment at

t = 1:

Y1(τ ; z) ≡ C̄1(z) + (τ − τ̄(z)) Ā(z)
(
C̄1(z)− D̄1(z)

)
.

Let the allocation of consumption at t = 1 be denoted by C1(τ ; z). This allocation must satisfy

the pseudo-resource constraint (27). As before, let all agents be endowed with Y0 = C̄0 at time

t = 0.

Let agents have preferences over allocations given by

V (C0) + β̃
∑
z

∑
τ

V (C1(τ ; z))µ(τ |z)π̃(z)

with

β̃ ≡ β
∑
z′

J(z′)π(z′).

In the equilibrium of this endowment shock economy with incomplete asset markets, let

agents choose consumption C(0), C1(τ ; z) and bond holdings B(z) to maximize utility subject

7For values of γ < ∞, we have the Taylor approximation around the conditional mean realization of the
endowment, ȳ(z):

J(z) ≈ 1 +
σ2
y(z)

2

1/γ(
ȳ(z)
γ + τ̄(z)

)2 . (36)

Hence, holding γ fixed, J(z) is increasing in the conditional variance of the endowment, σ2
y(z), and decreasing

in the average risk tolerance across agents ȳ(z)/γ + τ̄(z) if and only if γ > 0.
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to budget constraints (11) with Y0 replacing C̄0 at t = 0 and, at t = 1,

C1(τ ; z) = Y1(τ ; z) +B(z).

The bond market clearing conditions are given by B(z) = 0 for all z.

Proposition 6. The equilibrium allocations C0, C1(τ ; z) and date zero bond prices Q(z) for the

endowment shock economy are equivalent to the equilibrium allocations of certainty equivalent

consumption and date zero bond prices Q(z) for the corresponding taste shock economy.

Proof. Note that with the change of measure to π̃(z) and the rescaling of the discount factor

β̃, the bond pricing conditions (16) are the same in the two economies. Direct calculation

then shows that the equilibrium allocations and date zero bond prices in our preference shock

economy are also equilibrium allocations and bond prices in this endowment shock economy

and vice versa.

This proposition is also useful in establishing a bound on the extent of downside idiosyncratic

risk to certainty equivalent consumption that agents can face in this economy. This bound on

the downside risk that agents can face does put a bound on the extent to which this idiosyncratic

risk can affect asset prices at t = 0. Specifically, note that the parameter restrictions we need to

ensure that our HARA utility is well defined imply that the lowest possible endowment Y1(τ ; z)

that can be realized is D̄1(z).

This lower bound has a simple economic interpretation: an agent in our preference shock

economy always has the option at t = 1 to trade his or her endowment of one share, at price

D̄1(z), for a portfolio made up entirely of risk-free bonds, hence ensuring certainty equivalent

consumption of D̄1(z) independent of that agent’s realized risk tolerance τ . Thus, in the equi-

librium with incomplete asset markets, the gap between the certainty equivalent consumption

of the agent with the lowest realized risk tolerance and the average level of certainty equivalent

consumption in the economy is always bounded above by the measure of the aggregate risk pre-

mium given by C̄1(z)− D̄1(z). This bound restricts the downside risk that agents face ex-ante

and hence the premia they are willing to pay at t = 0 to avoid the impact of this preference

risk on their certainty equivalent consumption at t = 1.
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4 Trade Volumes and Asset Prices

In Proposition 5, we provided a complete characterization of equilibrium allocations and asset

prices under the assumption that agents have subutility functions of the equicautious HARA

class. We also characterized trade volumes in asset markets at t = 1 under the assumption that

agents trade only shares of the aggregate endowment and risk-free bonds. In this section, we

study the implications of our model for the joint distribution of trade volumes and asset prices

in greater detail.

We first discuss our model’s implications for trading volume and expected excess returns

as of date t = 0. As shown in equation (31), in equilibrium, agents’ certainty equivalent

consumption is exposed to idiosyncratic shocks to their risk tolerance. We consider the impact

of these idiosyncratic shocks to agents’ certainty equivalent consumption on asset pricing in

terms of multiplicative expected excess returns.

The price at t = 0 of a riskless bond, i.e., a claim to a single unit of consumption at t = 2 for

each possible realization of τ , z, and y, is given by P0(1) =
∑

z Q(z)π(z). We use the inverse

of this price to define the risk-free interest rate at t = 0 between periods t = 0 and t = 1 as

R̄0 = 1/P0(1). Note that this formula follows from our normalization of the riskless bond price

at t = 1 to one for all realized z.

Consider a security with payoffs d(y|z) at t = 2. The time t = 0 multiplicative expected

excess return of a claim with payoffs d at t = 2 is denoted by E0,2(d), and is defined as

E0,2(d) ≡ E0 [d(y, z)]

P0(d)

/ 1

P0(1)
. (37)

Analogously, the multiplicative expected excess return of a claim with payoffs d at t = 2 bought

at t = 1 in state z is denoted by E1,2(d), and is defined as

E1,2(z; d) ≡ E1 [d(y, z)|z]

P1(z; d)

/ 1

P1(z; 1)
=

E1 [d(y, z)|z]

P1(z; d)
(38)

since we use the normalization P1(z; 1) = 1 for all z. The expressions for P1(z; d) are given by

equation (9), where p̄(y; z) are given by the representative agent marginal utilities defined in

(24). The expectations E[·] are taken with respect to the statistical distribution, i.e., using the

probability distributions π and ρ.

From equations (16) and (34), we have

Qe(z) = β
V ′(C̄1(z))

V ′(C̄0)
J(z)L(z) (39)
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with

L(z) ≡
∑
τ

V ′(Ce
1(τ ; z))

V ′(C̄1(z))
µ(τ ; z) (40)

and J(z) is defined as in equation (35). The random variable L will be key to describing the

effect of trade volume on t = 0 asset prices.

This gives a complete characterization of asset prices for the incomplete market economy.

Next we turn to an analysis of these asset prices based on these expressions.

Trade Volumes, L(z), and Asset Prices: In the incomplete markets equilibrium, there is

a direct connection between asset prices and the dispersion of the preference shocks τ realized

at t = 1 in state z. This connection comes through the term L(z) in Qe in equations (39) and

(40). Under the assumption that V ′′′ > 0, the term L(z) is equal to one if there is no dispersion

in τ and is strictly increasing in the dispersion in τ . Specifically,

V ′′′(·) ≥ 0 implies L(z) =
∑
τ

V ′(Ce
1(τ ; z))

V ′(C̄1(z))
µ(τ ; z) ≥ 1

so that L(z) is the extra valuation in state z for a prudent agent facing rebalancing risk in state

z. Using a Taylor expansion, so that the remainder is of smaller order than the conditional

variance of τ we have

L(z) = 1 +
1

2

V ′′′(C̄1(z))

V ′(C̄1(z))

∑
τ

[
Ce

1(τ, z)− C̄1(z)
]2
µ(τ ; z) + o(σ2(τ |z))

= 1 +
1

2

V ′′′(C̄1(z))

V ′(C̄1(z))

[
C̄1(z)− D̄1(z)

]2∑
τ

[φe(τ ; z)− 1]2 µ(τ ; z) + o(σ2(τ |z)). (41)

Hence, if V ′′′(C̄1(z)) > 0, then our approximation to L(z) is directly proportional to the variance

of individual share trades times the square of the aggregate consumption risk premium as

measured by
(
C̄1(z)− D̄1(z)

)2
= 1

2
Ā(z)σ2(z)+o(σ2(z)) using the approximation in Proposition

3.

As an example, consider the case of a uniform distribution of τ . For a uniform distribution of

τ , the mean absolute deviation of τ from τ̄(z) is directly proportional to the standard deviation

of τ and hence, in this case, to a second order approximation, data on the square of trading

volume in state z are a valid proxy for the term
∑

τ (φe(τ ; z)− 1)2 µ(τ |z) + o(σ2(τ |z)) in our

approximation to L(z).

Of course, the previous result that the square of trading volume is directly proportional to

the dispersion of agents’ marginal utilities of certainty equivalent consumption is special to the
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case of uniform shocks to risk tolerance. More generally, if one had data on the distribution of

trade sizes, one could potentially map data on trade volumes to empirical proxies for L(z) using

the relevant distributional assumptions. Moreover, since |x − 1| and (x − 1)2 are both convex

functions, if we consider a mean-preserving spread in the distribution of risk tolerance, both

trade volume and L(z) increase. In this sense, both trade volumes and L(z) are increasing in the

dispersion of idiosyncratic risk tolerance, and hence L(z) measures the exposure to rebalancing

risk of state z.

4.1 Comparative Statics on Trade Volumes and Asset Prices

We now develop three results regarding the impact of trading volumes on asset pricing. The

first one is a result about interest rates, the second one is a comparison of risk premia across

economies with different patters of trading volume, and the third one is a comparison of the

risk premia on different assets in the same economy.

For these results, it is useful to collect two properties of asset prices. Define

Q∗(z) = β
V ′(C̄1(z))

V ′(C̄0)
J(z).

Note that this bond prioe Q∗(z) is the bond price that would obtain in the decentralization

of the optimal allocation. Likewise, it is the equilibrium bond price in an economy in which

there is no dispersion in realized risk tolerances and hence no trade volume at t = 1.

Then we have that

P0(d) =
∑
z

Q∗(z)L(z)π(z)P1(z; d) (42)

for all assets with dividend d. This expression, together with the previous definitions of expected

excess returns, gives the following expression for the (inverse) time t = 0 expected excess return

as a weighted average of the time t = 1 expected excess returns:

1

E0,2(d)
=
∑
z

Q∗(z)L(z)π(z)∑
z′ Q

∗(z′)L(z′)π(z′)

E1 [d(y, z)|z]

E0 [d(y, z)]

1

E1,2(z; d)
, (43)

which we summarize in the following proposition.

Proposition 7. Take a payoff d(y, z) at t = 2. The time t = 0 (inverse) excess expected return

E0,2(d) of a this payoff is the risk-neutral complete market expected value of the product of three

random variables realized at t = 1, i.e., functions of the realization of z. These are exposure to

29



rebalancing risk, L/E∗0[L], updates in the asset expected payoffs E1 [d] /E0 [d], and the (inverse)

excess expected returns E1,2(d), i.e.,

1

E0,2(d)
= E∗0

[
L

E∗0 [L]

E1 [d]

E0 [d]

1

E1,2(d)

]
, (44)

where E∗0 [x] is the time t = 0 complete-market risk-neutral expected value of t = 1 random

variable x(z), i.e.,

E∗0 [x] ≡
∑

z x(z)Q∗(z)π(z)∑
z′ Q

∗(z′)π(z′)
. (45)

Note that the expression E∗0 [L] is the time t = 0 value of a riskless bond paying 1 at t = 1.

The expression (43), or its equivalent form (44), is key to show the two results on excess

returns. Note that the only term in this asset pricing formula that involves the dispersion of

µ(·|z) is the term L(z). The expressions for Q∗(z), π(z), P1(z; d), E1,2(z; d), and E1 [d|z] /E0 [d]

are not functions of the shape of µ(·|z) other than the mean of this distribution, and hence they

are independent of trade volume. The ratio E1 [d|z] /E0 [d] measures the exposure of the cash

flow d to the state z. Hence, expected excess returns at t = 0 depend on trade volume only

through the correlation of trade volume with future expected returns E1,2(z; d) or with expected

cash flows E1 [d|z] /E0 [d].

Trade Volume and Interest Rates. We have the following comparative static result re-

garding the dispersion of shocks to risk tolerance, and hence trade volume, and time t = 0 bond

prices P0(1) =
∑

z Q(z)π(z).

Proposition 8. Consider two economies in which agents have the same preferences with

V ′′′(·) > 0 and face the same distribution of endowments, C̄0, π(z), and ρ(y|z). Assume that

the distribution of shocks to risk tolerance in the two economies µ(τ |z) and µ′(τ ; z) are such

that, for all j, τ̄(zj) = τ̄ ′(zj). Then these two economies have the same equilibrium values of

C̄1(z) and J(z), but, for each state z, the economy with the higher dispersion in shocks to risk

tolerance as measured by a higher value of L(z) has the higher equilibrium bond price at t = 0,

Qe(z).

Proof. The proof is by direct calculation.

Given our previous result that trade volume and dispersion in certainty equivalent consump-

tion are both increasing in the dispersion of shocks to risk tolerance, we have that, for each

state z, the economy that has the higher trade volume has the higher equilibrium bond price

at t = 0, Qe(z).
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Trading Volume and Expected Returns (Risk Premia) across Economies. We now

compare an economy with a constant dispersion of risk tolerance across different states z at t = 1

with one in which the marketwide risk tolerance is negatively correlated with the dispersion of

risk tolerance. We find that if V displays prudence (i.e. if V ′′′ > 0), then any cash flow with

systematic risk has a higher risk premium in the economy in which dispersion is negatively

correlated with risk tolerance.

Denote by µ̃(·|z) the distribution of (τ − τ̄(z))Ā(z) conditional on z. We consider the

following assumptions:

If z′ > z, then τ̄(z′) > τ̄(z) and (46)

If z′ > z, then µ̃(·|z′) is less dispersed (in a second-order stochastic sense) than µ̃(·|z). (47)

In words, states with higher marketwide risk tolerance have a lower dispersion of risk tolerance

and thus a lower volume of trade at t = 1. We say that an asset has systematic payoff exposure

if d is increasing in y, and

d(y′, z′) > d(y, z) for all z, z′ and y′ > y . (48)

With this notation at hand, we can state the following result:

Proposition 9. Let the distribution of y not vary with z, so ρ(y|z) = ρ̄(y) for all states z.

Consider two economies where shock z indexes marketwide risk tolerance as in (46). The first

economy has constant dispersion on the idiosyncratic risk tolerance across states at time t = 1,

so L(z) = L1(z) is constant for all z. The second economy has µ(·|z) more dispersed for lower

marketwide risk tolerance as defined in (47), so L(z) = L2(z) is decreasing in z. We fix the

same asset d(·) with a systematic payoff exposure as defined in (48) in both economies. If

investors are prudent (i.e., they have precautionary savings motives, or V ′′′ > 0), then the

second economy (where the cross-sectional dispersion in risk tolerance is negatively correlated

with the marketwide risk tolerance) has a higher t = 0 expected excess return E0(d).

We can describe the second economy as one where the cross-sectional dispersion in risk

tolerance is negatively correlated with the marketwide risk tolerance, or equivalently as one in

which trade volume is positively correlated with the marketwide risk aversion. Thus, in this

second economy, times of high marketwide risk aversion (times in which the risky assets sell at

a low price) are times in which lots of investors want to rebalance.
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This proposition parallels the results in Mankiw (1986) and Constantinides and Duffie

(1996). In both papers, the authors consider the level of excess expected returns when in-

vestors have uninsurable labor risk whose dispersion is correlated with the level of aggregate

consumption. While their results are mathematically parallel to ours, it is important to note

that there is no trade in assets in their models.

Trading Volume and Expected Returns (Risk Premia) in the Cross Section of

Assets. We now compare the risk premia across risky assets in the same incomplete markets

economy. In this case, we find that if V displays prudence (i.e., if V ′′′ > 0), then assets with

cash flows that load more onto the time t = 1 states z with higher dispersion of risk tolerances

have higher prices or lower expected returns. Since trade volume is also given by a measure of

dispersion of risk tolerances, this result means that assets whose cash flows load on states at

t = 1 with high trade volume have low expected excess returns.

To make this result precise, we fix an economy with incomplete markets and compare the

excess expected returns of assets with different exposures to the idiosyncratic dispersion of risk

tolerance. We assume that the average risk tolerance and the distribution of the endowment y

conditional on z are both constant across z.

Proposition 10. Consider an economy with incomplete markets with the same marketwide

risk tolerance τ̄(z) and the same conditional distribution of aggregate risk ρ(y|z) = ρ̄(y) for

all states z. Assume that the states z are ordered in terms of dispersion of idiosyncratic risk

tolerance as in (47), so that L(z) decreases with z. Consider two cash flows, d̃ and d, in the

same economy, where d̃ loads more than d in states with higher dispersion of risk tolerance in

the following way: d̃(y, z) = δ(y)ẽ(z) and d(y, z) = δ(y)e(z) with ẽ(z)/e(z) decreasing in z.

Then, the time t = 1 conditional expected excess returns are the same for both assets and all

states z, i.e., E1,2

(
z; d̃
)

= E1,2

(
z; d
)
, and the time t = 0 expected excess returns for the asset

with higher exposure to trade volume are smaller, i.e., E0,2

(
d̃
)
< E0,2

(
d
)
.

This result gives conditions under which trade volume acts as a pricing factor, i.e., the

conditions under which the cross-sectional expected excess returns on assets (i.e., E0,2(d̃) versus

E0,2(d)) depend on the correlation of returns with trade volume. In this case, the asset with

dividend d̃, which has higher value when trade volume is high, and thus ex ante is a better

hedge against the rebalance risk, has a higher price, i.e., it has a lower t = 0 expected excess

return. The higher price of the asset with dividend d̃ is due to higher exposure of its dividends
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to trade volume, as captured by the term E1[d̃|z]/E0[d̃] = ẽ(z)/E0[ẽ(z)].

5 Taxes on Trading and Ex-ante Welfare

In this section, we consider the implications for welfare of a tax on trade in shares of the

aggregate endowment at t = 1 (a Tobin tax ). We show that while a Tobin tax on trade

has a zero first-order effect on welfare if imposed on the socially optimal allocation, it has a

first-order negative welfare effect if imposed on the equilibrium allocation. In other words, a

small Tobin subsidy to trade increases ex-ante welfare in equilibrium. The basic logic of this

result is that a Tobin tax exacerbates the inefficient sharing of idiosyncratic preference risk in

equilibrium. Agents who have negative risk tolerance shocks suffer a negative shock to certainty

equivalent consumption in equilibrium. The Tobin tax also falls on them in terms of its tax

incidence because their demand for shares is relatively inelastic. Hence, the tax exacerbates

the inefficient sharing of risk in certainty equivalent consumption in equilibrium.

In the online appendix, we complement our analysis of a simple linear tax of trade rebated

lump sum, with the analysis of the optimal non-linear tax or subsidy scheme. We use a standard

mechanism design approach, assuming that the realization of individual risk tolerance is private

information for each investor. We think of this assumption as the natural explanation of why

we assume that these risks are uninsurable. We use the optimal non-linear scheme to judge

the sense in which a subsidy to trade is a general feature of the optimal policy. We conclude

that, consistent with the results on Tobin taxes, the optimal non-linear tax/subsidy is one that

induces more trade.

5.1 A Tobin Tax

In our analysis of a Tobin tax, we assume that there are two asset markets — one at t = 0

for bonds that pay off at t = 1 and one at t = 1 in which agents trade shares of the aggregate

endowment for sure claims to consumption at t = 2. Assume that trade in shares at t = 1

is taxed. Specifically, assume that there is a tax of ω per share traded such that if the seller

receives price D̄1(z) for selling a share of the aggregate endowment at t = 1, the buyer pays

D̄1(z) + ω, and the total revenue collected through this tax, equal to ω times the volume of

shares traded, is rebated lump sum to all agents.

With this notation, we define a conditional equilibrium with a Tobin tax as follows.
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Conditional Equilibrium with a Tobin Tax. An equilibrium conditional on z with a Tobin

tax ω is a share price {D̄1(z;ω)}, transactions tax revenue rebate T (z;ω), post-trade holdings of

share s(τ ; z;ω), and corresponding allocation of consumption at t = 2, c(τ, y; z;ω), that satisfy

the market clearing condition ∑
τ

s(τ ; z;ω)µ(τ |z) = 0, (49)

and budget constraints,

c(τ, y; z;ω) = ys(τ ; z;ω)−
(
D̄1(z;ω) + ω

)
(s(τ ; z;ω)− 1) + T (z;ω) +B(τ, z)

if s(τ ; z;ω) ≥ 1 and

c(τ, y; z;ω) = ys(τ ; z;ω)− D̄1(z;ω) (s(τ ; z;ω)− 1) + T (z;ω) +B(τ, z)

if s(τ ; z;ω) < 1. The rebate T (z;ω) satisfies the government budget constraint T (z;ω) =

ωTV (z;ω) where trade volume TV (z;ω) is given by

TV (z;ω) =
∑

τ :s(τ ;z;ω)>1

(s(τ ; z;ω)− 1)µ(τ |z). (50)

Equilibrium share holdings s(τ ; z;ω) maximize each agent’s certainty equivalent consumption

(3) among all share holdings and allocations of consumption that satisfy the budget constraints

given the initial bond holdings, the share price, the tax, and the tax rebate.

We denote by Ci
1(τ ; z;ω) the time t = 1 certainty equivalent consumption for agent τ in

state z for the conditional equilibrium with a Tobin tax ω with initial bond holdings Bi(τ, z)

for i ∈ {∗, e} corresponding to those in the decentralization of the optimal allocation and equal

wealth equilibrium, respectively. Likewise, let si denote the shareholdings in the conditional

equilibrium with a Tobin tax with initial bond holdings Bi(τ, z) for i ∈ {∗, e}. Let H̃ i
τ (C1; z;ω)

denote the minimum cost to an agent of type τ of attaining certainty equivalent consumption

C1 at t = 1 in state z by trading in shares and risk-free bonds subject to Tobin tax ω.

Consider the following calculation of the change in ex-ante welfare from a marginal increase

in the transactions tax ω starting from ω = 0. Here we must compute

dW i

dω

∣∣∣∣
ω=0

= β
∑
z

π(z)
∑
τ

µ(τ |z)V ′(Ci
1(τ ; z; 0))

d

dω
C1(τ ; z; 0), (51)

where Ci
1(τ ; z; 0) is the initial allocation of certainty equivalent consumption (with ω = 0)

corresponding to either the optimal allocation or the equilibrium allocation.
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Using that any conditionally efficient allocation of certainty equivalent consumption must

satisfy the pseudo-feasibility constraint (27), we must have that∑
τ

µ(τ |z)
d

dω
C∗1(τ ; z; 0) =

∑
τ

µ(τ |z)
d

dω
Ce

1(τ ; z; 0) = 0. (52)

(This restriction follows from the observation that all perturbations to the initial conditionally

efficient allocation of certainty equivalent consumption must remain inside the set of feasible

allocations of certainty equivalent consumption.) This result implies that a Tobin tax, at

the margin, simply redistributes certainty equivalent consumption across agents, regardless of

whether the initial allocation of certainty equivalent consumption corresponds to either the

optimal or the equilibrium allocation.

Since in the optimal allocation, C∗1(τ ; z) = C̄1(z) for all τ , the formula (51) together with

equation (52) then immediately implies the standard result that a share transactions tax has

no first-order impact on welfare starting from the optimal allocation since all types of agents

share the same initial marginal utilities of certainty equivalent consumption in each state z.

In contrast, in the incomplete markets economy, the baseline equilibrium allocation of cer-

tainty equivalent consumption at t = 1 is not socially efficient. The restriction (52) that the

aggregate change in certainty equivalent consumption must be zero gives us that the total

change in ex-ante welfare in equation (51) can be written as

dW

dω
= β

∑
z

π(z)Cov
(
V ′(C1(τ ; z)) ,

d

dω
C1(τ ; z) | z

)
, (53)

where Cov(·, · | z) denotes the covariance of two variables dependent on τ conditional on z. As

shown in equation (31), certainty equivalent consumption for an agent with realized type τ in

state z at t = 1 is strictly increasing in the risk tolerance τ of that agent. If V is strictly concave,

the marginal utility of certainty equivalent consumption for an agent with realized type τ in

state z at t = 1, V ′(Ce
1(τ ; z)), is strictly decreasing in the risk tolerance of that agent. Thus,

the first-order impact on welfare of a tax on trading in shares imposed on the equilibrium

allocation is then determined by whether it is agents with high or low marginal utilities of

certainty equivalent consumption in the initial equilibrium allocation who bear the cost of the

tax net of the lump sum transfer of tax revenue. In other words, the welfare implications of a

Tobin tax depend on the incidence of that tax.

To study the incidence of a Tobin tax, we must solve for the the changes in certainty equiv-

alent consumption by type τ that arise from the direct effect of the tax on agents’ consumption
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at t = 2 and the changes in certainty equivalent consumption that arise indirectly from the

change in the share price and the lump sum transfer induced by the tax. We do so by differenti-

ating the cost minimization problem that determines H̃ i
τ (C1; z;ω). Using the envelope theorem,

together with the observation that with equicautious HARA subutility, the cost functions H̃ i
τ

coincide with the cost functions Hτ defined in equation (14) when ω = 0, we get that

d

dω
Ci

1(τ ; z; 0) =


J(z)

[
(si(τ ; z; 0)− 1)

(
−∂D̄i1(z;0)

∂ω
− 1
)

+ TV i(z; 0)
]

if si(τ ; z; 0) > 1

J(z)TV i(z; 0) if si(τ ; z; 0) = 1

J(z)
[
(si(τ ; z; 0)− 1)

(
−∂D̄i1(z;0)

∂ω

)
+ TV i(z; 0)

]
if si(τ ; z; 0) < 1

(54)

for all τ , z, and i ∈ {e, ∗}, and where J(z) is given by expression (35).

From equation (54), we see that, in general, the incidence of a Tobin tax on each type of

agent depends on the quantity of shares that they trade. A Tobin tax lowers the equilibrium

share price, with
∂D̄i1(z;0)

∂ω
∈ [−1, 0]. Thus, a Tobin tax tends to lower the certainty equivalent

consumption of agents with extremely low values of τ . That is because these agents wish

to sell a large number of shares, and thus the impact of the tax on the certainty equivalent

consumption of these agents through the impact of the tax on the price at which these agents

can sell their shares is larger than the gain to these agents from the lump sum transfer of tax

revenue. A Tobin tax also lowers the certainty equivalent consumption of agents with extremely

high values of τ . In contrast, a Tobin tax benefits agents with values of τ close to the mean

value τ̄(z), as these agents do not wish to trade shares but do benefit from the lump sum

transfer of tax revenue. This observation that agents with values of τ close to the mean value

of τ tend to benefit from a Tobin tax and those with extreme values of τ , either low or high,

tend to lose from a Tobin tax does not directly allow us to compute the covariance term that

determined the change in welfare in equation (53). Instead, we make progress on computing

that covariance as follows.

First observe that the total gain in certainty equivalent consumption for those agents that

are buyers of shares (and hence have values of τ > τ̄(z)) is positive if and only if the endogenous

fall in the share price that results from the tax is sufficiently large in magnitude, i.e.,

− ∂D̄i
1(z; 0)

∂ω
≥

∑
τ :s(τ ;z;ω)≤1

µ(τ |z). (55)

That is, buyers of shares, in the aggregate, benefit from a Tobin tax if the magnitude of the

fall in the share price in response to the tax is larger than the fraction of agents who are sellers

of shares. Since the equilibrium change in the share price that results from the imposition of
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a Tobin tax depends on the elasticities of demand of buyers and sellers of shares, this result is

the version of the classic public finance result that the sellers of a good (here, shares) subject

to a tax bear the incidence of the tax if their individual demands are relatively inelastic, and

thus the equilibrium price falls by more than the weight of these sellers in the population. To

derive inequality (55), use equations (50) and (54) to compute

∑
τ :s(τ ;z;ω)>1

d

dω
Ci

1(τ ; z; 0)µ(τ |z) = J(z)TV i(z; 0)

(−∂D̄i
1(z; 0)

∂ω
− 1

)
+

∑
τ :s(τ ;z;ω)>1

µ(τ |z)


and recall that both J(z) and trade volume are positive.

That inequality (55) is satisfied in our model is simply a reflection of the classic result in

finance that an agent’s elasticity of demand for risky shares is increasing in that agent’s risk

tolerance. In fact, given our assumption of equicautious HARA preferences, we can derive a

very simple formula for the equilibrium decline in the share price that occurs in response to

the imposition of a Tobin tax. To derive this formula, we first compute the changes in demand

for shares by each type τ of agent as a function of the change in price and lump sum transfer

induced by the tax. The implied equilibrium change in price then follows from the share market

clearing condition.

Consider the derivatives of agents’ demands for shares with respect to a change in the price

of shares and a lump sum transfer. The first-order condition for the risky asset trade is

E [U ′τ ( y + (S (τ ; z,D, T )− 1) (y −D) + T ) (y −D) | z] = 0, . (56)

where the expectation is taken with respect to the random variable y. Differentiating this

first-order condition and evaluating it at the equal wealth equilibrium, we obtain the following

result.

Lemma 1. Let S(τ ; zD, T ) be defined as the solution of (56) evaluated at the equilibrium price

D = D̄1(z) for equal wealth and at transfer T = 0. Then:

∂S(τ ; z;D,T )

∂D
= φe(τ, z)

E
[
U ′τ̄(z) (y) |z

]
E
[
U ′′τ̄(z) (y) (y −D)2 |z

] + (φe(τ, z)− 1)
E
[
U ′′τ̄(z) (y) (y −D) |z

]
E
[
U ′′τ̄(z) (y) (y −D)2 |z

]
∂S(τ ; z;D,T )

∂T
= −

E
[
U ′′τ̄(z) (y) (y −D) |z

]
E
[
U ′′τ̄(z) (y) (y −D)2 |z

] .
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Three comments about this lemma are in order, as these results play an important role

in our calculation of the welfare impact of a Tobin tax. First, observe that the derivative of

share trades of an agent with risk tolerance τ with respect to the price is increasing in the risk

tolerance of that agent. That is, agents who are more risk tolerant adjust their share demand

more in response to a change in price than do agents who are less risk tolerant. Second, observe

that the second term in the derivative of agents’ demand for shares with respect to a change in

price D, the term which reflects the income effects on demand from a change in price, cancels

out when aggregated across all agents, since the market for shares clears. This result is also

an implication of the result that equicautious HARA preferences satisfy Gorman aggregation.

Third, the result that the derivative of agents’ demand for shares with respect to a transfer

is common across all agents is simply an implication of the result that equicautious HARA

preferences satisfy Gorman aggregation.

These second and third features of the demand for shares in our economy allow us to

compute the change in price that arises from a change in the Tobin tax simply as a function of

trade volume in shares and the fractions of agents who are buyers and sellers of shares. Other

parameters of preferences do not enter into this calculation. In particular, using Lemma 1 and

these conditions, we derive the following characterization for the impact of prices of a Tobin

tax.

Proposition 11. Let D̄(z;ω) be equilibrium price of a claim to the aggregate endowment with

a tax on trade ω introduced in the equal wealth equilibrium. Assume, to simplify, that there are

no marginal investors, i.e., µ has no mass point at τ = τ̄ . Then the price D̄(z;ω) received by

sellers decreases by the fraction of shares held post-trade by buyers times the Tobin tax, i.e.,

dD(z; 0)

dω
= −

∑
τ>τ̄

φe(τ ; z)µ(τ |z) = −

[
TV e(0; z) +

∑
τ>τ̄

µ(τ |z)

]
∈ (−1 , 0) . (57)

From equations (55) and (57), we have that, in the aggregate, buyers of shares (relatively

risk-tolerant individuals) benefit from a Tobin tax if and only if the initial equilibrium trade

volume exceeds the difference between the measure of buyers of shares and the measure of sellers

of shares. This observation gives as an immediate result that if the distribution of preference

shocks µ(τ |z) is symmetric, so that the measures of buyers and sellers are equal, then, on

average, those experiencing negative shocks to risk tolerance (sellers of shares) lose certainty

equivalent consumption and those experiencing positive shocks to risk tolerance (buyers of

shares) gain certainty equivalent consumption. In fact, the next proposition, proved in the
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online appendix, shows that the average gains (or losses) for buyers (and sellers) of the risky

asset after the introduction of a small transaction tax ω are an extremely simple function of

trade volume prior to the introduction of taxes.

Proposition 12. Assume that µ(·|z) is symmetric around τ̄ . Then the average consumption

equivalent gain among all buyers (respectively, losses among sellers) of the risky asset is pro-

portional to the square of trade volume:

Avg. Gain Buyers ≡
∑
τ>τ̄

d

dω
Ce

1(τ ; z; 0)
µ(τ |z)∑

τ ′>τ̄ µ(τ ′|z)
ω = +2 J(z) [TV e(z)]2 ω,

Avg. Loss Sellers ≡
∑
τ<τ̄

d

dω
Ce

1(τ ; z; 0)
µ(τ |z)∑

τ ′<τ̄ µ(τ ′|z)
ω = −2 J(z) [TV e(z)]2 ω .

Three comments about this proposition are in order. First a corollary of this proposition is

that in the case of a symmetric distribution µ(·|z) with only two values of τ , there is a first-

order welfare loss of introducing a Tobin tax ω. This is because the marginal utility of buyers

of risky assets is discretely below the marginal utility of sellers. Second, since this result gives

a strict inequality, it suggests that in the case of two values of τ , one can relax the assumption

of symmetry of µ(·|z). Indeed, Proposition 13 shows that. Third, and more subtly, the result

in Proposition 12 does not imply that, assuming symmetry, there is a first-order loss in welfare

for a Tobin tax ω. The reason why this is not sufficient is that, in general, there is also a

redistribution of certainty equivalent consumption among sellers and among buyers, as those

who have intermediate values of τ sell or buy only a small quantity of shares and hence do

not suffer from tax-induced changes in share prices while still benefiting from the lump sum

transfer of tax revenue. Proposition 14 imposes extra conditions on the utility function V so

that these potential redistributional effects do not overturn the result that a Tobin tax has a

first-order negative impact on welfare.

We now prove our result that a Tobin tax imposes a first-order welfare loss in an economy

with only two possible realizations of τ . We then present this result in an economy with a

symmetric distribution of shocks to risk tolerance µ(τ |z).

Proposition 13. Fix a value of z. Consider an economy with only two types of agents, τ ∈
{τ1, τ2} with τ1 < τ̄(z) < τ2, and thus φe(τ1; z) < 1 < φe(τ2; z). Assume that V is strictly

concave. Then, when agents have equicautious HARA preferences, a Tobin tax on asset trade

imposed on the equal wealth equilibrium has a negative first-order ex-ante welfare effect if and
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only if

(φe(τ2; z)− 1)µ(τ2; z) > µ(τ1; z)− µ(τ2; z). (58)

Note that µ(τ2|z) > 1/2 is a sufficient condition for the Tobin tax to induce a first-order

welfare loss. Also, symmetry of the distribution of τ implies that µ(τ2|z) = 1/2 and hence

satisfies condition (58). Inequality (58) is, of course, again our condition that buyers of shares

(relatively risk-tolerant individuals) in the aggregate benefit from a Tobin tax if and only if the

initial equilibrium trade volume exceeds the difference between the measure of buyers of shares

and the measure of sellers of shares. With only two types of agents, this condition is sufficient

to sign the covariance term in equation (53) and thus prove our result that a Tobin tax has a

first-order negative impact on welfare.

Now we extend the result to the case of a general symmetric distribution µ(·, z) and where

V is concave with derivatives that alternate signs.

Proposition 14. Fix a state z. Assume that there are no marginal investors, i.e., µ(·|z) has no

mass point at τ = τ̄ , and that the distribution of τ is symmetric, i.e., µ(τ̄ − a; z) = µ(τ̄ + a; z)

for all a. Furthermore, assume that the ex-ante utility V is analytical, strictly increasing, and

strictly concave, with all derivatives evaluated at C̄1(z) alternating signs, i.e., the utility function

is “proper”:

sign

(
∂n+1V (C)

∂Cn+1

)
= −sign

(
∂nV (C)

∂Cn

)
evaluated at C = C̄1(z), and all n = 1, 2, 3, . . .

(59)

Then, when agents have equicautious HARA preferences, a Tobin tax on asset trade on the

equal wealth equilibrium has a negative first-order ex-ante welfare effect for each z. Moreover,

approximating the change on ex-ante utility in terms of moments of τ , and using the first leading

term, we obtain

d

dω
W e(0; z) ≈ J(z)V ′′(C̄1(z))

[
Ā(z)

]2 (
C̄1(z)− D̄1(z)

)
TV e(z)V ar(τ |z), (60)

where TV e is the trade volume in the equal wealth equilibrium.

A few comments are in order. Functions with alternative signs as in (59) are called “com-

pletely monotone” and satisfy several properties. First, the assumption that the derivatives

of V change sign includes the case of polynomials, such as quadratic utility. Second, since V

is concave, this assumption is consistent with V displaying prudence, a key property that we

use above in the asset pricing implications. Third, although we did not emphasize this in the
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statement of the proposition, in the proof we show that every extra term in the approximation

corresponding to higher order derivatives is negative. Fourth, the most commonly used utility

functions satisfy the condition that derivatives of higher order change signs; for instance, they

include all the HARA utility functions. Fifth, Pratt and Zeckhauser (1987) have shown that

completely monotone utility functions are “proper,” so that independent risks exacerbate each

other (i.e., a decision maker with a proper utility function finds that an undesirable lottery

cannot be made desirable by adding an independent undesirable lottery to it). Sixth, Caballe

and Pomansky (1996) studied the characterization and properties of the choices of decision

makers using this type of utility function.

Finally, we can evaluate the expression (60) for the particular case where Uτ is CARA

(so that γ → ∞) and y ∼ N(µ, σ2
y(z)). In this case, C̄1(z) − D̄1(z) = .5σ2

y(z)/τ̄(z), and

J(z) = 1. Additionally, if µ(·|z) is uniform, then V ar(τ |z) = [TV e(z)]2 [τ̄(z)]2 64/12. Hence,

writing the expected utility W e(ω; z) in ex-ante equivalent terms, i.e., defining Ce
w(ω; z) as

V (Ce
w(ω; z)) =

∑
τ V (Ce

a(τ ; z;ω))µ(τ), we get

d

dω
W e(0; z) ≈ 16

3

V ′′(C̄1(z))

V ′(C̄1(z))

σ2
y(z)

2τ̄(z)
[TV e(z)]3 .

Thus, the welfare loss of a Tobin tax is proportional to the curvature of the utility function

V , the representative agent time t = 1 risk premium 0.5σ2
y(z)/τ̄(z), and the cube of the trade

volume.

Note that in this economy, when a Tobin tax has a first-order negative impact on welfare

if applied to the equilibrium allocation with incomplete markets, then a Tobin subsidy to

trade must have a positive first-order impact on ex-ante welfare. This observation raises the

question of what the optimal subsidy to trade looks like. We take up this question in the online

appendix where we present a mechanism design approach to study the optimal non-linear taxes

and subsidies to trade.

6 Other Motives for Trade

To this point, we have considered a model of the relationship between trade volumes and asset

prices based on the idea that agents face the risk of uninsurable idiosyncratic shocks to their

risk tolerance. As we have seen above, a negative idiosyncratic shock to an agent’s risk tolerance

leads that agent to sell shares of aggregate risk at t = 1 and to receive lower certainty equivalent

consumption in equilibrium. In particular, we showed that when agents have HARA subutility
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functions Uτ (·), their trading of shares of aggregate risk and their equilibrium certainty equiv-

alent consumption are both linear and increasing in the difference between their risk tolerance

and the risk tolerance of the representative agent (see equations 30 and 31). This result gave

us very tractable formulas for both trade volumes at t = 1 and asset prices as of t = 0. This

result is also central to the normative implications of our model for a Tobin tax: that such a

tax has a first-order negative impact on welfare because it is borne by sellers of aggregate risk

who are also experiencing a negative shock to their certainty equivalent consumption.

In this section, we consider the implications of two alternative specifications of our model

for trade volumes and asset prices when agents’ desire to trade is driven by shocks to their

needs to hedge the risk in their non-traded endowments of consumption at t = 2 in addition to

or in place of shocks to their risk tolerance. In particular, in both alternative specifications of

our model, we assume that agents are identical at time t = 0, but that they are each endowed

at t = 1 with an idiosyncratic claim to consumption at t = 2. We assume that this claim is non-

traded, but that there are sufficient traded securities so that agents can trade these securities

at t = 1 to hedge the risk in their non-traded endowment.

In the first alternative specification of our model, we retain the shocks to agents’ risk tol-

erance and add risk in agents’ non-traded endowments. We assume that this endowment risk

is diversifiable risk. Thus, this risk can be hedged by offsetting trade of non-systematic secu-

rities (or an insurance contract) without paying a risk premium. We specify this non-traded

diversifiable risk so that it results in no shock to agents’ budget constraint for certainty equiv-

alent consumption in equation (15). Hence, uncertainty over non-traded endowments in this

case does not introduce risk over certainty equivalent consumption and thus does not affect

asset prices at t = 0. But realizations of non-traded endowments induce agents to trade assets

with non-systematic risk to hedge their endowment risk. The conclusion from this alternative

specification of our model is that the positive and normative results regarding the relationship

between trade volume and asset prices from our baseline model carry over as long as one focuses

on trade in systematic risk, which we have termed “portfolio rebalancing,” and not on trade in

assets that are claims to diversifiable risk.

In the second alternative specification of our model, for simplicity, we assume that agents

all have common preferences at t = 1. Instead of preference shocks, agents receive at t = 1 an

idiosyncratic shock to their non-traded endowment to consumption at t = 2 that has exposure

to aggregate risk and which has an impact on their budget constraint for certainty equivalent

42



consumption at t = 1. Agents thus have two motives to trade aggregate risk and riskless assets

at t = 1. One is to hedge their endowment of non-traded exposure to aggregate risk. The other

is due to endogenous changes in their risk tolerance that arise with changes in their wealth at

t = 1. Under the assumption that agents have HARA preferences, we develop simple extensions

of our formulas for equilibrium trading volume and certainty equivalent consumption (equations

30 and 31). These extensions allow us to apply the asset pricing formulas we have developed

in section 4. In contrast, the normative results regarding Tobin taxes do not directly apply

because it is no longer the case that one can show that sellers of aggregate risk at t = 1 also

experience lower certainty equivalent consumption.

6.1 Model with Idiosyncratic Non-Systematic Exposure Shocks

In this model there are K securities, with payoffs dk(y, z) at time t = 2. Agents receive at time

t = 1 a random endowment of one of the securities. Each security pays dk(y, z) = y + εk where

εk is, conditionally on z, statistically independent of y. Moreover, we assume that conditional

on (z, y)

1

K

K∑
k=1

εk = 0 (61)

with probability one, so each εk is a diversifiable risk. We let the k = 0 security be the market

portfolio, i.e., d0(y, z) = y. We assume that at time t = 1, conditional on the realization of

z and τ , each agent draws an idiosyncratic random variable k denoting the security that the

agent is assigned. Additionally, we assume that each agent is endowed the same amount ᾱ of

this security. In particular for each τ , we let %(k|τ, z) be the probability that an agent with risk

tolerance τ when the state is z will receive ᾱ of the security k ≥ 1. Additionally, each agent is

assigned 1− ᾱ of the market portfolio or security k = 0. We assume that at time t = 1, agents

can only trade in bonds, and in the k = 0, 1, . . . , K securities.8

The equilibrium in this model is, essentially, the same as the one in the benchmark model.

In particular, interest rates and risk premia for any security with systematic risk are exactly the

same as in the benchmark model. This is because the price of any security k ≥ 0 is the same

as the the price of the market portfolio, i.e., P1(z; dk) = P1(z; d0), since for the representative

agent, P1(z; εk) = 0.9 Second, at time t = 1 we can decompose the trade of agents in two parts,

8Alternatively, we can have a richer model where ᾱ is a random variable. Such model has the same implica-
tions, so we avoid its extra notational complexity by assuming a degenerate distribution.

9Given this property of the prices, we could have equally assumed that the holdings are known as of time
t = 0, but that the market for these transactions takes place at time t = 1.
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since agents will hedge the non-systematic risk included in the k ≥ 1 security assigned to them.

They will do so because they strictly prefer not to bear the non-systematic risk, which can be

avoided at no cost. What they trade against the k ≥ 1 security is not uniquely determined.

We assume that they sell ᾱ(K − 1)/K of it and buy ᾱ/K of the remaining K − 1 securities.

In this way, given our assumption about {εk}Kk=1, agents will eliminate their idiosyncratic risk

and effectively will end up with one unit of the market portfolio, as in our benchmark case.

Additionally, depending on the realization of τ , agents will buy (or sell) additional units of the

market portfolio against bonds, exactly as in the benchmark model. We refer to the second

type of trade as “rebalancing trade.”

Thus, agents trade in the K + 1 securities has a factor structure, with all agents selling, for

large K, most of the quantity ᾱ of the security k that was assigned to them and buying ᾱ/K of

each of the other securities. The volume of rebalancing trade relative to the total trade volume

depends on the values of ᾱ and K. Hence, all the results of the benchmark model apply to this

version when trade volume is interpreted as rebalancing trade volume. Yet, rebalancing trade

accounts for a fraction of the total trade.

6.2 Model with Idiosyncratic Systematic Exposure Shocks

In this model, to simplify, we assume that there is no idiosyncratic shock to agents’ risk tol-

erance, so that for each z as of t = 1, agents use the same utility function to value t = 2

payoffs. As in the benchmark case, we use HARA utility function, so τ = τ̄(z) with probability

one. Instead, each agent receives a wealth shock equal to ω at time t = 1. An agent with a

wealth shock ω gets units of assets that are worth ωD̄1(z). Thus, we will index agents by ω as

opposed to τ . Abusing notation, we let µ(·|z) denote the conditional distribution of ω for each

z. Agents are identical as of time t = 0, i.e., they all face the same ω risk at time t = 1. Since

the shock is idiosyncratic, we have that
∑

ω µ(ω|z) = 0 for all z. Using the properties of the

HARA utility function, we have that C̄1(z), p̄(y; z), D̄1(z) depend only on the preferences of the

representative agent and the distribution of the aggregate endowment at t = 2, and hence are

identical to those in our baseline model.

Using essentially, the same type of arguments as in the analysis of the baseline case, given
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z at time t = 1, the conditionally efficient allocation of consumption at t = 2 is given by10

c (ω, y; z)

γ
+ τ̄(z) = φ̂(ω; z)

(
y

γ
+ τ̄(z)

)
for some

∑
ω

φ̂(ω; z) = 1. (62)

Since the equilibrium with incomplete markets is conditionally efficient, the equilibrium alloca-

tion is linear in y with some exposure φe(ω; z) determined by the wealth of an ω agent. Given

the observation that an agent with realized type ω has to finance his or her purchases of secu-

rities with wealth (1 + ω)D̄1(z), we obtain the following expression for φe and the equilibrium

certainty equivalent Ce
1 of an ω agent as

φe(ω; z) = 1 + ω D̄1(z)
Ā(z)

γ
and (63)

Ce
1(ω; z) = C̄1(z) + ωD̄1(z)

[
1 +

(
C̄1(z)− D̄1(z)

) Ā(z)

γ

]
. (64)

The effect on the certainty equivalence is clear: higher wealth increases certainty equivalent

consumption in a linear fashion. How much the agent trades depends upon which security

the non-traded endowment ωD̄1(z) resembles. Consider two different cases. In the first case,

we assume that the agent receives a non-traded endowment that pays off ωD̄1(z) units of

consumption at t = 2 with certainty. In this case, the agent hedges his or her exposure by

trading in the market portfolio. Here, the rebalancing trade of the ω agent is

φe(ω; z)− 1 = ω D̄1(z)
Ā(z)

γ
. (65)

In this case, there is trade at t = 1 only because of the effect of wealth on risk tolerance. Note

that in the CARA case (obtained as γ → ∞), these shocks do not lead to trade. For finite γ,

trade is driven by the fact that risk tolerance changes endogenously with wealth. For γ > 0

absolute risk tolerance increases with wealth, and hence the agent receiving a positive wealth

shock ω will like to buy more shares of the market portfolio. The reverse is true if γ < 0.

In the second case, we assume that the shock consists of the agents receiving ω units of the

market portfolio. In this case, the rebalancing trade of an ω agent is

φe(ω; z)− (1 + ω) =− ω τ̄(z)
Ā(z)

γ
. (66)

Note that the sign of this rebalancing trade depends on the product of γτ̄(z), where each of the

terms can be positive or negative. The difference between the first and the second case arises

10As before, we define conditionally efficient allocations as those maximizing the weighted average of the time
t = 1 expected utility with weights λ̂(ω; z).
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because now there are two effects. As in the first case, there is trade due to impact of wealth on

risk aversion, given by Ā(z)/γ. The other effect is the direct effect on desired trade that comes

from the need to hedge the aggregate risk in the non-traded endowment. Importantly, in either

of the two cases, the extent of rebalancing trade is proportional to the size of the wealth shock,

although the expression and quantitative size depends on the case. Additionally, the effect on

the certainty equivalence is exactly the same and monotone in ω.

From (64) it follows, as expected, than in equilibrium an agent with higher value of ω has

higher certainty equivalent consumption, since this agent has higher wealth. Whether this

agent will sell the extra shares ω is s more subtle question as explained above, and depends

on whether the shock consists of a non-traded or a traded security. For instance, in the case

in which the shock is in terms of labor income (i.e., a non-traded security), so agents hedge it

with their rebalancing trade φe(ω; z)− 1, the rebalancing trade volume is

TV e(z) ≡ 1

2

∑
ω

|φe(ω; z)− 1|µ(ω; z) =
D̄1(z)

2

Ā(z)

|γ|
∑
ω

|ω|µ(ω; z). (67)

Continuing with the case of hedging labor income, and using (64) and (63), we can rewrite

certainty equivalent consumption as a function of trade as in the benchmark model, whose

expression we write next to it to facilitate the comparison:

Ce
1(ω; z) = C̄1(z) +

(
C̄1(z)− D̄1(z) +

γ

Ā(z)

)
[φe(ω; z)− 1]

Ce
1(τ ; z) = C̄1(z) +

(
C̄1(z)− D̄1(z)

)
[φe(τ ; z)− 1] .

In both expressions, the last term in square brackets is the rebalancing trade of the agent

with either ω or τ realization. For both specifications of our model, the difference between

the certainty equivalent consumption of an individual agent and that for the representative

agent is proportional to the rebalancing trade of that agent. This is the crucial aspect of

the model, from which we obtain the same relationship between trade volume on asset prices

as in the benchmark model. In particular, we obtain the decomposition of risk premium of

Proposition 7, the comparative statics of trade volume and interest rates of Proposition 8, and

the comparative statics of trade volume and risk premium of Propositions 9 and 10.

One difference between the benchmark case with shocks to risk tolerance and this version

of the model is the sensitivity of certainty equivalent consumption to rebalancing trade. In the

benchmark case with shocks to risk tolerance, it is C̄1− D̄1, which is approximately given by a

risk premium; see (32). Instead, in the hedging model, there is an extra term C̄1 − D̄1 + γ/Ā,
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which can be substantially larger given a positive value of γ and a negative value of τ̄(z). Note

that this configuration corresponds to the one-period version of the preferences in Campbell

and Cochrane (1999). Indeed, in this case, we can let V = Uτ̄ and consider the case of expected

utility.
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Bhandari, Anmol, Jaroslav Borovička, and Paul Ho. 2016. “Identifying ambiguity shocks in

business cycle models using survey data.” Working Paper 22225, National Bureau of Eco-

nomic Research. 8

Caballe, Jordi and Alexey Pomansky. 1996. “Mixed risk aversion.” Journal of Economic Theory

71 (2): 485–513. 41

Calvet, Laurent E., John Y. Campbell, and Paolo Sodini. 2009. “Fight or flight? Portfolio

rebalancing by individual investors.” Quarterly Journal of Economics 124 (1): 301. 9

Campbell, John Y. and John H. Cochrane. 1999. “By force of habit: A consumption-based

explanation of aggregate stock market behavior.” Journal of Political Economy 107 (2):

205–251. 8, 47

Campbell, John Y., Sanford J. Grossman, and Jiang Wang. 1993. “Trading volume and serial

correlation in stock returns.” Quarterly Journal of Economics 108 (4): 905–939. 7

Cho, Sungjun. 2014. “What drives stochastic risk aversion?” International Review of Financial

Analysis 34: 44–63. 8

Constantinides, George M. and Darrell Duffie. 1996. “Asset pricing with heterogeneous con-

sumers.” Journal of Political Economy 104 (2): 219–240. 1, 3, 17, 24, 32

Diamond, Peter A. 1998. “Optimal income taxation: an example with a U-shaped pattern of

optimal marginal tax rates.” American Economic Review 88 (1): 83–95. 74

48



Drechsler, Itamar. 2013. “Uncertainty, time-varying fear, and asset prices.” Journal of Finance

68 (5): 1843–1889. 8

Duffie, Darrell, Nicolae Gârleanu, and Lasse Heje Pedersen. 2005. “Over-the-counter markets.”

Econometrica 73 (6): 1815–1847. 10

Gordon, Stephen and Pascal St-Amour. 2004. “Asset returns and state-dependent risk prefer-

ences.” Journal of Business & Economic Statistics 22 (3): 241–252. 7

Grant, Simon, Atsushi Kajii, Ben Polak, and Zvi Safra. 2010. “Generalized utilitarianism and

Harsanyi’s impartial observer theorem.” Econometrica 78 (6): 1939–1971. 3

Guiso, Luigi, Paola Sapienza, and Luigi Zingales. 2018. “Time varying risk aversion.” Journal

of Financial Economics 128 (3): 403–421. 7

Guo, Hui, Zijun Wang, and Jian Yang. 2013. “Time varying risk return tradeoff in the stock

market.” Journal of Money, Credit and Banking 45 (4): 623–650. 8

Kim, Kun Ho. 2014. “Counter-cyclical risk aversion.” Journal of Empirical Finance 29: 384–

401. 8

Kozak, Serhiy. 2015. “Dynamics of bond and stock returns.” Working Paper 1277, Ross School

of Business. 8

Kreps, David and Evan L Porteus. 1978. “Temporal resolution of uncertainty and dynamic

choice theory.” Econometrica 46 (1): 185–200. 2

Lenel, Moritz. 2017. “Safe assets, collateralized lending and monetary policy.” Working paper

17-010, Stanford Institute for Economic Policy Research. 8

Lo, Andrew W and Jiang Wang. 2000. “Trading volume: definitions, data analysis, and impli-

cations of portfolio theory.” Review of Financial Studies 13 (2): 257–300. 9

———. 2006. “Trading volume: Implications of an intertemporal capital asset pricing model.”

Journal of Finance 61 (6): 2805–2840. 9

Lucas, Robert E. Jr. 1980. “Equilibrium in a pure currency economy.” Economic Inquiry

18 (2): 203–220. 7

49



Mankiw, N. Gregory. 1986. “The equity premium and the concentration of aggregate shocks.”

Journal of Financial Economics 17 (1): 211–219. 1, 3, 17, 24, 32

Mirrlees, James A. 1971. “An exploration in the theory of optimum income taxation.” Review

of Economic Studies 38 (2): 175–208. 74

Mongin, Philippe and Marcus Pivato. 2015. “Social preference and social welfare under risk

and uncertainty.” In Oxford Handbook of Well-Being and Public Policy, edited by Matthew

Adler and Marc Fleurbaey. Oxford University Press. 3

Pratt, John W. and Richard J. Zeckhauser. 1987. “Proper risk aversion.” Econometrica 55 (1):

143–154. 41

Santos, Tano and Pietro Veronesi. 2017. “Habits and leverage.” Research Paper 16-220, Uni-

versity of Chicago Booth School of Business. 8

Seade, Jesus K. 1977. “On the shape of optimal tax schedules.” Journal of Public Economics

7 (2): 203–235. 79

Selden, Larry. 1978. “A new representation of preferences over ‘certain x uncertain’ consumption

pairs: The ‘ordinal certainty equivalent’ hypothesis.” Econometrica 46 (5): 1045–1060. 2, 6

Steffensen, Mogens. 2011. “Optimal consumption and investment under time-varying relative

risk aversion.” Journal of Economic Dynamics and Control 35 (5): 659–667. 7

Uslu, Semih. 2015. “Pricing and liquidity in decentralized asset markets.” Johns Hopkins Carey

School of Business. 10

Vayanos, Dimitri and Jiang Wang. 2012. “Liquidity and asset returns under asymmetric infor-

mation and imperfect competition.” Review of Financial Studies 25 (5): 1339–1365. 9

———. 2013. “Market liquidity: Theory and empirical evidence.” In Handbook of the Economics

of Finance, edited by George Constantinides, Milton Harris, and Rene Stulz, chap. 19. North

Holland. 9

50



Figure 1: Event tree for three-period model

C0

z1

τ ∼ µ(·|z1)
−U ′τ
U ′′τ

= c(τ,y;z1)
γ

+ τ

y1
∑

τ c(τ, y1; z1)µ(τ |z1) = y1ρ(y1|z1)

y2 . . .

y3 . . .
π(z1)

z2

τ ∼ µ(·|z2)
−U ′τ
U ′′τ

= c(τ,y;z2)
γ

+ τ

y1 . . .

y2 . . .

y3
∑

τ c(τ, y3; z2)µ(τ |z2) = y3ρ(y3|z2)

π(z2)

t = 0

t = 1

shocks to risk tolerance

t = 2

shocks to output

Figure for the case of two values for z ∈ {z1, z2} and three values for y ∈ {y1, y2, y3}.
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Figure 2: Time line of three-period model

time t = 0 time t = 1 time t = 2

aggregate shocks: z ∼ π(·) y ∼ ρ(·|z)

idiosyncratic shocks: Uτ (·) w/risk tolerance shock τ ∼ µ(·|z)

certainty equivalent(s): C̄(z), Ce(τ ; z)C0 c(τ, y; z)

rebalance portfolio, price assets P1(z; d)price asset P0(d) payoff d(y; z)
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A Online Appendix

This appendix has two sections. In the first section, we present proofs of propositions. In

the second section we present our results regarding a mechanism design approach to optimal

non-linear Tobin taxes on asset trade.

B Proofs

Proof of Proposition 1. To simplify the notation of the proof, we omit the values of z and τ

from all the expressions. Take two vectors ~ca and ~cb and a scalar θ ∈ (0, 1). We want to show

that

θU−1

(∑
y∈Y

U(ca(u))ρ(y)

)
+ (1− θ)U−1

(∑
y∈Y

U(cb(y))ρ(y)

)

≤ U−1

(∑
y∈Y

U (θca(y) + (1− θ)cb(y)) ρ(y)

)

if and only if U has concave risk tolerance.

Theorem 1 in Ben-Tal and Teboulle (1986) shows that for any vector x and conformable

random vector W of the same dimension, the function v(x) = U−1
(
E
[
U(xTW )

])
is concave

in x if and only if the risk tolerance of U is a concave function, where the expectation is

taken with respect to the distribution of the random vector W . We use this result for the

case with two-dimensional x and W where the two dimensions of the random vector W are

perfectly correlated, taking as many values as the cardinality of Y , with probabilities ρ(y).

Moreover the realizations of each of the dimensions of W are as follows. The first dimension

of W coincides with the values of ~ca and the second with the values of ~cb. This means that

Pr {W = (ca(y), cb(y))} = ρ(y) for all y ∈ Y . Moreover, take xa = (1, 0) and xb = (0, 1). We
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thus have

v(xa) = v((1, 0)) = U−1
(
E
[
U(xTaW )

])
= U−1

(∑
y∈Y

U(ca(y))ρ(y)

)

v(xb) = v((0, 1)) = U−1
(
E
[
U(xTbW )

])
= U−1

(∑
y∈Y

U(cb(y))ρ(y)

)
v(θxa + (1− θ)xb) = v((θ, 1− θ)) = U−1

(
E
[
U((θxb + (1− θ)xb)TW )

])
= U−1

(∑
y∈Y

U(θcb(y) + (1− θ)cb(y))ρ(y)

)
.

Hence if v is concave, so is C1. Likewise, if C1 is concave, so must be v. �

Proof of Proposition 2. Given that agents have the same beliefs ρ and that they use expected

utility, an allocation is conditionally efficient if and only if it maximizes the following objective

function for each y:∑
τ

λ̂τUτ (c(τ, y; z)) ρ(y|z)µ(τ |z) + p̂(y; z)
∑
τ

(y − c(τ ; y; z))µ(τ |z),

where p(y|z) is the multiplier of the feasibility constraint for each y. The first-order conditions

of this problem are

U ′τ (c(τ, y; z)) =

(
c(τ, y; z)

γ
+ τ

)−γ
=
p̂(y; z)

ρ(y|z)

1

λτ
,

where the first equality uses the assumption that utility is of the equicautious HARA class. We

can rewrite this expression as

c(τ, y; z)

γ
+ τ =

(
p(y; z)

ρ(y|z)

)− 1
γ

(λτ )
1
γ .

Multiplying this expression by µ(τ |z), adding across τ , and using feasibility, we obtain

y

γ
+ τ̄ =

(
p̂(y; z)

ρ(y|z)

)− 1
γ ∑

τ

(λτ )
1
γ µ(τ |z),

or

U ′τ̄(z) (y) ρ(y|z) =

(
y

γ
+ τ̄

)−γ
ρ(y|z) = p̂(y; z)

[∑
τ

(λτ )
1
γ µ(τ |z)

]−γ
,

which gives the expression for the Lagrange multipliers. Using again the first-order conditions

of each agent, her consumption is

λτ

(
c(τ, y; z)

γ
+ τ

)−γ
ρ(y|z) = p̂(y; z) =

(
y + τ̄

γ

)−γ
ρ(y|z)

[∑
τ

(λτ )
1
γ µ(τ |z)

]γ
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or (
c(τ, y; z)

γ
+ τ

)
=

(
y

γ
+ τ̄

)
(λτ )

1
γ∑

τ ′ (λτ ′)
1
γ µ(τ |z)

.

Defining

φ̂(τ ; z) ≡ (λτ )
1
γ∑

τ ′ (λτ ′)
1
γ µ(τ |z)

,

we can write our first desired result:(
c(τ, y; z)

γ
+ τ

)
= φ̂(τ ; z)

(
y

γ
+ τ̄

)
.

Then raising both sides to (1− γ) and multiplying them by γ
1−γρ(y|z), we get(

γ

1− γ

)(
c(τ, y; z)

γ
+ τ

)1−γ

ρ(y|z) = φ̂(τ ; z)1−γ
(

γ

1− γ

)(
y

γ
+ τ̄

)1−γ

ρ(y|z).

Using that this proportionality must hold for all y and adding across all y, we have∑
y∈Y

(
γ

1− γ

)(
c(τ, y; z)

γ
+ τ

)1−γ

ρ(y|z)

= φ̂(τ ; z)1−γ
∑
y∈Y

(
γ

1− γ

)(
y

γ
+ τ̄

)1−γ

ρ(y|z).

Recall that U−1
τ (u) = γ

([(
1−γ
γ

)
u
] 1

1−γ − τ
)

. So multiply each side by (1− γ)/γ and raise the

resulting expressions to the (1/(1 − γ)), and subtract τ from both sides and multiply by γ to

obtain

γ

[∑
y∈Y

(
c(τ, y; z)

γ
+ τ

)1−γ

ρ(y|z)

] 1
1−γ

− τ

 = γ

φ̂(τ ; z)

[∑
y∈Y

(
y

γ
+ τ̄

)1−γ

ρ(y|z)

] 1
1−γ

− τ

 .

Use the definition of C1(τ ; z) and multiply both sides by µ(τ |z) and add across τ ′s to obtain

∑
τ

C1(τ ; z)µ(τ |z) = γ

∑
τ

φ̂(τ ; z)

[∑
y∈Y

(
y

γ
+ τ̄

)1−γ

ρ(y|z)

] 1
1−γ

µ(τ |z)−
∑
τ

τµ(τ |z)

 .

Using that
∑

τ φ̂(τ ; z)µ(τ |z) = 1 and the definition of τ̄ , we get

∑
τ

C1(τ ; z)µ(τ |z) = γ

[∑
y∈Y

(
y

γ
+ τ̄

)1−γ

ρ(y|z)

] 1
1−γ

− τ̄

 = C̄1(z),
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which establishes the last desired result. �

Proof of Proposition 3. In an incomplete market equilibrium, all agents have the same

wealth at time t = 1, since they are identical as of time t = 0, and hence the budget constraint

is

D̄1(z) ≡
∑
y

yp̄(y; z) =
∑
y

c(τ, y; z)p̄(y; z).

Using that the allocation is conditionally efficient, we have c(τ, y; z)/γ + τ = φ̂(τ ; z) (y/γ + τ̄).

Replacing consumption in the budget constraint then gives

D̄1(z) =
∑
y

[
φ̂(τ ; z) (y + γτ̄)− γτ

]
p̄(y; z) = φ(τ ; z)D̄1(z) + γ

(
φ̂(τ ; z)τ̄ − τ

)
,

where we have used the definition of D̄1(z) again, as well as the normalization of prices. Solving

for φ̂ gives

φ̂(τ ; z) =
D̄1(z)/γ + τ

D̄1(z)/γ + τ̄
or φ̂(τ ; z)− 1 =

τ − τ̄
D̄1(z)/γ + τ̄

.

Setting φe(τ ; z) = φ̂(τ ; z) we obtain the desired result for φe.

Using the equality c(τ, y; z)/γ + τ = φ̂(τ ; z) (y/γ + τ̄) with φ̂(τ ; z) = D̄1(z)/γ+τ

D̄1(z)/γ+τ̄
into the

definition of certainty equivalent consumption, we obtain the expression in equation (31).

We omit the subindex z in several of the expressions to simplify the notation. For the same

reason, we omit the index τ̄(z) for the function Uτ̄(z)(·). First we show that C̄1 > D̄1. To show

this, we construct the function F (θ) = E
[
U
(
(1− θ)y + θC̄1

)]
. Note that F is strictly concave

in θ since it is the expected value of the composition of a strictly concave function with a linear

function. In particular, F ′′(θ) = E
[
U ′′
(
(1− θ)y + θC̄1

) (
C̄1 − y

)2
]
< 0. Direct computation

gives F (0) = E [U (y)] and F (1) = U
(
C̄1

)
, and thus by definition of C̄1 we have F (0) = F (1).

Summarizing, F is a strictly concave function that attains the same value at θ = 0 and θ = 1,

and hence the maximum of F is attained in θ ∈ (0, 1). Thus, F must be strictly increasing at

θ = 0, or F ′(0) > 0. Direct computation gives F ′(0) = E
[
U ′ (y)

(
C̄1 − y

)]
and using F ′(0) > 0

we have C̄1 E [U ′ (y)] > E [U ′ (y) y], which after rearranging and using the definition of D̄1, gives

the desired result.

Now we find the expression for the first order expansions. The one for C̄1 can be obtained by

differentiating C̄1 with respect to σ2
y. We begin by expanding E[U ′(y)] = U ′(ȳ)+(1/2)U ′′′(ȳ)σ2

y+

o(σ2
y) where o(σ2

y) denotes an expression of order smaller than σ2
y . And E[U ′(y)y] = U ′(ȳ)ȳ +

(1/2)[U ′′′(ȳ)ȳ + 2U ′′(ȳ)]σ2
y + o(σ2

y). Using these expansions, D̄1 is given by

D̄1(σ2
y) =

U ′(ȳ)ȳ + (1/2)[U ′′′(ȳ)ȳ + 2U ′′(ȳ)]σ2
y + o(σ2

y)

U ′(ȳ) + (1/2)U ′′′(ȳ)σ2
y + o(σ2

y)
.
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Differentiating this expression with respect to σ2
y and evaluating at σ2

y = 0, we obtain

D̄′1(0) =
U ′′(ȳ)U ′(ȳ)

U ′(ȳ)2
=
U ′′(ȳ)

U ′(ȳ)
.

Thus, a Taylor expansion of D̄1 gives D̄1 = ȳ + U ′′(ȳ)/U ′(ȳ)σ2
y + o(σ2

y).

Finally, we can evaluate U ′′(c)/U ′(c) at either c = ȳ or in c = ȳ + aσ2
y for any differentiable

function of a of σ2
y. Thus, we can evaluate the desired expressions at either ȳ or ȳ − Āσ2

y, and

the difference is of an order smaller than σ2
y . �

Proof of Proposition 4. We can rewrite equation (31) for the equilibrium certainty equivalent

consumption as

Ce
1(τ ; z) = C̄1(z)

[
D̄1(z)
γ

+ τ

D̄1(z)
γ

+ τ̄(z)

]
− (τ − τ̄(z))

(
D̄1(z)

D̄1(z)
γ

+ τ̄(z)

)

= C̄1(z)φe(τ ; z) − (τ − τ̄(z))

(
D̄1(z)

D̄1(z)
γ

+ τ̄(z)

)
,

where the second equation uses the expression for φe. Dividing by γ and adding τ to both sides,

we obtain

Ce
1(τ ; z)

γ
+ τ =

C̄1(z)

γ
φe(τ ; z) − (τ − τ̄(z))

(
D̄1(z)
γ

D̄1(z)
γ

+ τ̄(z)

)
+ τ

= φe(τ ; z)

(
C̄1(z)

γ
+ τ̄(z)

)
.

From here we get

U ′τ (C
e
1(τ ; z)) = (φe(τ ; z))−γ U ′τ̄(z)(C̄1(z)).

Likewise, we can use the relationship between consumption in a conditionally efficient allocation

in (25) and the weights corresponding to the incomplete market equilibrium φ̂(τ ; z) = φe(τ ; z)

in (30) to obtain
ce(τ, y; z)

γ
+ τ = φe(τ ; z)

(
y

γ
+ τ

)
.

Then, raising both sides to −γ, multiplying by ρ(y|z), and adding across y, we obtain∑
y

U ′τ (ce (τ, y; z)) ρ(y|z) = (φe(τ ; z))−γ
∑
y

U ′τ̄(z) (y) ρ(y|z).

Taking the ratio of the two expressions for the marginal utility, we cancel the factor (φe(τ ; z))−γ

and obtain the desired result. �
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Proof of Proposition 9. By the assumption that d has constant sensitivity to z in both

economies, i.e., that E(d|z)/E(d) = 1 is independent of z, we have that, since in the first

economy L(z) = 1 for all z, using (43),

1

E0,2(d)
=
∑
z

Q∗(z)π(z′)∑
z′ Q

∗(z′)π(z′)

[
1

E1,2(z; d)

]
,

and for the second economy we have

1

E0,2(d)
=
∑
z

Q∗(z)L2(z)π(z′)∑
z′ Q

∗(z′)L2(z′)π(z′)

[
1

E1,2(z; d)

]
.

For both economies, the terms E1,2(z; d) ≥ 1 are the same and equal to the one for a representa-

tive agent economy. Using the assumption that the cash flow d has systematic exposure, these

excess returns are increasing in marketwide risk aversion, and hence decreasing in z, so that

its reciprocal i 1/E1,2(z; d) is increasing in z. By assumption L2(z) ≥ 1 and decreasing in z.

Thus, the induced distribution Q∗(z)L2(z)π(z′)/[
∑

z′ Q
∗(z′)L2(z′)π(z′)] for the second economy

is stochastically lower than the distribution Q∗(z)π(z′)/[
∑

z′ Q
∗(z′)π(z′)] corresponding to the

first economy. Hence, 1/E0,2(d), is smaller for the second economy than for the first economy,

and thus its reciprocal, E0,2(d), is higher for the second economy than for the first economy. �

Proof of Proposition 10. Direct computation gives E1[d̃|z]/E0[d̃] = ẽ(z)/E0[ẽ(z)] and E1[d|z]/E0[d] =

e(z)/E0[e(z)]. Using the specification for d and d̃ and that ρ(y|z) = ρ̄(y), we have

E1,2(z; d̃) =
ẽ(z)

∑
y δ(y)ρ̄(y)

ẽ(z)
∑

y p̄(y)δ(y)ρ̄(y)
=

e(z)
∑

y δ(y)ρ̄(y)

e(z)
∑

y p̄(y)δ(y)ρ̄(y)
= E1,2(z; d) ≡ Ē1,2.

Using that ρ(y|z) = ρ̄(y), we have that Q∗(z) = Q̄∗. Thus, we have, using (43),

1

E0,2(d̃)
=

1

Ē1,2

∑
z

Q̄∗L(z)π(z)∑
z′ Q̄

∗L(z′)π(z′)

ẽ(z)

E0 [ẽ(z)]
=

1

Ē1,2

∑
z

L(z)π(z)∑
z′ L(z′)π(z′)

ẽ(z)

E0 [ẽ(z)]

=
1

Ē1,2

E0

[
L(z)

E0[L(z)]

ẽ(z)

E0 [ẽ(z)]

]
=

1

Ē1,2

{
1 + Cov0

[
L(z)

E0[L(z)]
,

ẽ(z)

E0[ẽ(z)]

]}
.

Likewise:

1

E0,2(d)
=

1

Ē1,2

{
1 + Cov0

[
L(z)

E0[L(z)]
,

e(z)

E0[e(z)]

]}
.

Since, by assumption, ẽ(z)/e(z) decreases with z, then

Cov0

[
L(z)

E0[L(z)]
,

e(z)

E0[e(z)]

]
≤ Cov0

[
L(z)

E0[L(z)]
,

ẽ(z)

E0[ẽ(z)]

]
.
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Then, 1
E0,2(d̃)

≥ 1
E0,2(d)

or E0,2(d̃) ≤ E0,2(d). �

Proof of Proposition 11. To render the notation manageable, we suppress the z index for all

variables and let D(ω) = D̄1(z;ω). Under the assumption of no marginal investors, for a small

tax ω, then S(τ) > 1 if τ > τ̄ and S(τ) < 1 if τ < τ̄ . We can differentiate market clearing to

obtain

0 =
∑
S(τ)>1

{
∂S(τ,D, 0)

∂D

[
dD(0)

dω
+ 1

]
+
∂S(τ,D, 0)

∂T
TV

}
µ(τ)

+
∑
τ<τ̄

{
∂S(τ,D, 0)

∂D

dD(0)

dω
+
∂S(τ,D, 0)

∂T
TV

}
µ(τ).

Rearranging, we have

0 =
∑
S(τ)>1

∂S(τ,D, 0)

∂D
µ(τ) +

dD(0)

dω

∑
τ

∂S(τ,D, 0)

∂D
µ(τ) + TV

∑
τ

∂S(τ,D, 0)

∂T
µ(τ)

or

dD(0)

dω
=

∑
S(τ)>1

∂S(τ,D,0)
∂D

µ(τ)

−
∑

τ
∂S(τ,D,0)

∂D
µ(τ)

+ TV

∑
τ
∂S(τ,D,0)

∂T
µ(τ)

−
∑

τ
∂S(τ,D,0)

∂D
µ(τ)

.

Using the characterization of the partial derivative of S(τ) with respect to D in the previous

lemma, we have∑
τ

∂S(τ,D, 0)

∂D
µ(τ) =

∑
τ

φ(τ)µ(τ)
E [U ′τ̄ (y)]

E
[
U ′′τ̄ (y) (y −D)2] +

∑
τ

(S(τ)− 1)µ(τ)
E [U ′′τ̄ (y) (y −D)]

E
[
U ′′τ̄ (y) (y −D)2]

=
E [U ′τ̄ (y)]

E
[
U ′′τ̄ (y) (y −D)2] .

Likewise, using the partial derivative of S(τ) with respect to T in the previous lemma, we have∑
τ

∂S(τ,D, 0)

∂T
µ(τ) = − E [U ′′τ̄ (y) (y −D)]

E
[
U ′′τ̄ (y) (y −D)2] ,

and finally, ∑
S(τ)>1

∂S(τ,D, 0)

∂D
µ(τ) =

∑
S(τ)>1

φ(τ)µ(τ)
E [U ′τ̄ (y)]

E
[
U ′′τ̄ (y) (y −D)2]

+
∑
S(τ)>1

(S(τ)− 1)µ(τ)
E [U ′′τ̄ (y) (y −D)]

E
[
U ′′τ̄ (y) (y −D)2] ,

or using the expression for TV , we have

∑
S(τ)>1

∂S(τ,D, 0)

∂D
µ(τ) =

E [U ′τ̄ (y)]

E
[
U ′′τ̄ (y) (y −D)2]

 ∑
S(τ)>1

φ(τ)µ(τ)

+ TV
E [U ′′τ̄ (y) (y −D)]

E
[
U ′′τ̄ (y) (y −D)2] .
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Thus, we have

dD(0)

dω
=

E[U ′τ̄ (y)]

E[U ′′τ̄ (y)(y−D)2]

(∑
S(τ)>1 φ(τ)µ(τ)

)
+ TV E[U ′′τ̄ (y)(y−D)]

E[U ′′τ̄ (y)(y−D)2]

− E[U ′τ̄ (y)]

E[U ′′τ̄ (y)(y−D)2]

− TV
E[U ′′τ̄ (y)(y−D)]

E[U ′′τ̄ (y)(y−D)2]

− E[U ′τ̄ (y)]

E[U ′′τ̄ (y)(y−D)2]

=

E[U ′τ̄ (y)]

E[U ′′τ̄ (y)(y−D)2]

(∑
S(τ)>1 φ(τ)µ(τ)

)
− E[U ′τ̄ (y)]

E[U ′′τ̄ (y)(y−D)2]

= −
∑
S(τ)>1

φ(τ)µ(τ) = −
∑
τ>τ̄

φ(τ)µ(τ) = −
∑
φ(τ)>1

φ(τ)µ(τ) ∈ (−1 , 0)

since
∑

τ φ(τ)µ(τ) = 1 and φ(τ) ≥ 0, µ(τ) ≥ 0 for all τ . �

Proof of Proposition 13. Again we omit z to render the notation simpler. We want to

compute

d

dω
Ce

1(τ1; z) =
E[U ′τ̄ (y)]

Uτ̄ (C̄)

[
−(φ(τ1)− 1)

∂

∂ω
D̄(0) + TV

]
.

We have from the previous proposition:

∂

∂ω
D̄(0) = −µ(τ2)φ(τ2) and TV = (φ(τ2)− 1)µ(τ2),

thus,

d

dω
Ce

1(τ1; z) =
E[U ′τ̄ (y)]

Uτ̄ (C̄)
[(φ(τ1)− 1)µ(τ2)φ(τ2) + (φ(τ2)− 1)µ(τ2)]

=
E[U ′τ̄ (y)]

Uτ̄ (C̄)
µ(τ2) [φ(τ1)φ(τ2)− 1]

=
E[U ′τ̄ (y)]

Uτ̄ (C̄)
φ(τ1)(1− φ(τ1))

[
1− µ(τ2)

1 + φ(τ1)

φ(τ1)

]
,

so

d

dω
Ce

1(τ1; z) =
E[U ′τ̄ (y)]

Uτ̄ (C̄)
φ(τ1)(1− φ(τ1))

[
1− µ(τ2)

1 + φ(τ1)

φ(τ1)

]
,

and thus,

dW e

dω
= β

∑
z

π(z) [V ′(Ce
1(τ1; z))− V ′(Ce

1(τ2; z))]
d

dω
Ce

1(τ1; z)µ(τ1; z) thus

dW e(0)

dω
= β

∑
z

π(z) [V ′(Ce
1(τ1; z))− V ′(Ce

1(τ2; z))] ×

E[U ′τ̄ (y)|z]

Uτ̄ (C̄1(z))
φ(τ1; z)(1− φ(τ1; z))

[
1− µ(τ2; z)

1 + φ(τ1; z)

φ(τ1; z)

]
µ(τ1; z).
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Since V ′′ < 0 and Ce
1(τ1; z) < Ce

1(τ2; z), then

dW e(0; z)

dω
< 0 ⇐⇒ µ(τ2; z) >

φ(τ1; z)

1 + φ(τ1; z)
. (68)

�

Proof of Proposition 14. Again we omit z to render the notation easier to follow. Recall

that in an equal wealth equilibrium

Ce
1(τ)− C̄1(0) = (τ − τ̄)

C̄1 − D̄1

τ̄ + D̄1/γ
≡ χ(τ − τ̄)

φe(τ)− 1 =
τ − τ̄

τ̄ + D̄1/γ
≡ η(τ − τ̄)

TV e =

∫ τH

τ̄

(φe(τ)− 1)µ(τ)dτ = η

∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

D̄′1(0) = −
∫ τH

τ̄

φe(τ)µ(τ)dτ = −
[
η

∫ τH

τ̄

(τ − τ̄)µ(τ)dτ +

∫ τH

τ̄

µ(τ)dτ

]
,

where η ≡ 1/(τ̄ + D̄1/γ) and χ ≡ (C̄1 − D̄1)/(τ̄ + D̄1/γ). Also, since we assume that V is

analytical, we can write

V ′(c) =
∞∑
n=0

V n+1(C̄1)

n!

(
c− C̄1

)n
for any c,

where V n+1
(
C̄1

)
≡ ∂nV

(
C̄1

)
/∂cn.

Using the expression (54), the ex-ante change on welfare of a small Tobin tax can be written

as

d

dω
W e(0; z) = J(z)TV e

∫ τH

τL

V ′(Ce
1(τ))µ(τ)dτ

− J(z)D̄′1 (0)

∫ τH

τL

V ′(Ce
1(τ)) (φe(τ)− 1)µ(τ)dτ

− J(z)

∫ τH

τ̄

V ′(Ce
1(τ)) (φe(τ)− 1)µ(τ)dτ

= J(z)η

[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

][ ∞∑
n=0

χn
V n+1(C̄1)

n!

∫ τH

τL

(τ − τ̄)nµ(τ)dτ

]

− J(z)D̄′1 (0) η

[
∞∑
n=0

χn
V n+1(C̄1)

n!

∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ

]

− J(z)η

[
∞∑
n=0

χn
V n+1(C̄1)

n!

∫ τH

τ̄

(τ − τ̄)n+1µ(τ)dτ

]
.
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We can rewrite this expression as

d

dω
W e(0; z) = J(z)ηχn

V n+1(C̄1)

n!
×

∞∑
n=0

{[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

] [∫ τH

τL

(τ − τ̄)nµ(τ)dτ

]
− D̄′1 (0)

[∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ

]
−
[∫ τH

τ̄

(τ − τ̄)n+1µ(τ)dτ

]}
.

Now we analyze the term for each of the derivatives V (C̄). For n = 0, 2, 4, we obtain

0 = ηV 1(C̄)

{[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

]
− D̄′1(0)× 0−

∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

}
.

We split the contribution of the remaining term into those with even and odd order of the

derivatives of V . Using the symmetry of µ for these values of n, we have[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

] [∫ τH

τL

(τ − τ̄)nµ(τ)dτ

]
− D̄′1 (0)× 0−

[∫ τH

τ̄

(τ − τ̄)n+1µ(τ)dτ

]
=

1

2

[∫ τH

τL

|τ − τ̄ |µ(τ)dτ

] [∫ τH

τL

|τ − τ̄ |nµ(τ)dτ

]
− 1

2

[∫ τH

τL

|τ − τ̄ |n+1µ(τ)dτ

]
< 0,

since E[xy] = E[x]E[y] + Cov(x, y) can be applied to x = |τ − τ̄ | and y = |τ − τ̄ |n, which

are clearly positively correlated. Finally, since this term is multiplied by V n+1(C̄), which for

these n is positive by hypothesis, the terms with n = 2, 4, 6, ... have a negative contribution to

d
dω
W e(0; z).

For n = 1, 3, 5, ... we have, using the symmetry of µ,[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

]
× 0−D′ (0)

[∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ

] [∫ τH

τ̄

(τ − τ̄)n+1µ(τ)dτ

]
= −D̄′1 (0)

∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ − 1

2

∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ[
1

2
+ η

∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

] ∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ − 1

2

∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ

= η

[∫ τH

τ̄

(τ − τ̄)µ(τ)dτ

] ∫ τH

τL

(τ − τ̄)n+1µ(τ)dτ > 0,

where we use that symmetry implies that −D̄′1(0) = 1/2 + η
∫ τH
τ̄

(τ − τ̄)µ(τ)dτ . Finally, since

this term is multiplied by V n+1(C̄), which for these n is negative by hypothesis, the terms with

n = 1, 3, 4, ... have a negative contribution to d
dω
W e(0; z).

The expression for the approximation is obtained by using the term for n = 1. �
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C Mechanism design approach to optimal Tobin taxes

We now consider a mechanism design approach in which we assume that agents’ realized type

τ is private information at t = 1. This is a natural assumption for the risk tolerance parameter

τ and a reasonable justification for the assumption of a lack of time t = 0 insurance against

the realization of time t = 1 value of τ in previous sections, i.e., a reasonable justification for

the assumption of incomplete markets. We discuss several specifications of this mechanism

design problem. First we briefly discuss the case in which a mechanism designer is able to

control the consumption of an agent. For this case, we show that the optimal allocation is

not incentive compatible. We then consider a version of the problem in which the mechanism

designer can allocate claims to consumption at t = 2, but agents can trade a complete set of

contingent claims themselves at t = 1. This restriction implies that the planner must choose

among conditionally efficient allocations of consumption. In this case, we show that, if the

distribution of risk tolerance τ has a density, then the equal wealth equilibrium allocation is

the only conditionally efficient allocation that is incentive compatible. This result implies that,

if τ has a density and agents can trade securities at t = 1, then the solution to this mechanism

design problem must be to trade off the conditional efficiency of the allocation of risk at t = 1

against the risk agents perceive as of t = 0 of shocks to τ affecting their desire to hold such risk.

We then turn in the next section to the main case where the designer must use an investor-

specific portfolio of shares of the aggregate endowment at t = 2 and uncontingent transfers

(bonds). There we explore the extent to which the solution to this mechanism design problem

resembles a Tobin subsidy to trade.

We now specify the mechanism design problem in which the planner can fully control agents’

consumption. Consider a given allocation of consumption at t = 2 contingent on agents’

announced type τ ′ at t = 1 and the realized value of y at t = 2 denoted by c(τ ′, y). For

simplicity, we suppress reference to the aggregate shock z realized at t = 1. The certainty

equivalent consumption obtained by an agent of type τ who announces type τ ′ at t = 1 is given

by

C(τ, τ ′) = U−1
τ

[∑
y

Uτ (c(τ
′, y))ρ(y)

]
.

An allocation {c(τ ′y)} for all τ, y is incentive compatible if

C(τ, τ) ≥ C(τ, τ ′) for all τ, τ ′. (69)

We then have the following result.
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Lemma 2. The optimal allocation is not incentive compatible.

Proof. This lemma follows directly from the definition of risk tolerance. In the first-best alloca-

tion, we have all agents receiving the same certainty equivalent consumption C(τ, τ) = C(τ ′, τ ′).

But if τ ′ > τ and there is any uncertainty in the allocation of consumption to type τ , then we

have that the agent with higher risk tolerance obtains a higher certainty equivalent consump-

tion from the allocation assigned to type τ than does that type, i.e. , C(τ, τ) < C(τ, τ ′). But

then incentive compatibility requires that C(τ, τ) < C(τ ′, τ ′), which is a contradiction.

This lemma highlights the fundamental tension in this economy. Risk sharing requires

equating the allocation of certainty equivalent consumption across agents, but incentive com-

patibility implies that agents with higher risk tolerance must receive higher certainty equivalent

consumption.

We now consider what incentive compatible allocations of consumption can be achieved if

the planner makes transfers to agents at time t = 1 based on their announced risk tolerance

and then lets agents trade at t = 1 based on these post-transfer endowments. The allocations

implemented in this way are conditionally efficient. We now show that, when τ has a distribution

with a density µ, then the equal wealth equilibrium allocation is the only incentive compatible

allocation among conditionally efficient allocations. That is, the planner cannot improve on

this allocation through a mechanism that makes transfers to agents based on their reported

risk tolerance and allows agents to engage in trade after these transfers.

Lemma 3. Assume that there is a continuum of types of agents τ , and let µ(τ) denote the

strictly positive density of agents of type τ . Then the only conditionally efficient allocation that

is incentive compatible is the equal wealth equilibrium allocation.

Proof. Recall that conditionally efficient allocations c(τ, y) take the form

c(τ, y) = φ(τ)y + γ(τ̄φ(τ)− τ).

One necessary condition for incentive compatibility is

∂

∂τ ′
C(τ, τ ′)

∣∣∣∣
τ=τ ′

= 0,

which can be written as∑
y

U ′τ (c(τ, y)) [y + γτ̄ ] ρ(y)φ′(τ) =
∑
y

U ′τ (c(τ, y))γρ(y)
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or ∑
y U
′
τ (c(τ, y))

[
y
γ

+ τ̄
]
ρ(y)∑

y U
′
τ (c(τ, y))ρ(y)

=
1

φ′(τ)
.

Using the form of conditionally efficient consumption given above, together with the speci-

fication of Uτ (·), we have

1

φ′(τ)
=

∑
y

(
y
γ

+ τ̄
)−γ (

y
γ

+ τ̄
)
ρ(y)∑

y

(
y
γ

+ τ̄
)−γ

ρ(y)
=
D∗1
γ

+ τ̄ .

This result, together with the requirement that the shares
∫
φ(τ)µ(τ)dτ = 1 integrate to one,

implies that

φ(τ) =

D∗1
γ

+ τ
D∗1
γ

+ τ̄
,

which is the form for φ(τ) given in equation (30) for the equal wealth conditionally efficient

allocation.

This lemma can be interpreted as a justification for our focus on the incomplete markets

equilibrium.

C.1 Optimal Non-linear Tax on Trade

We now study a mechanism design problem in which the planner allocates to each agent a

portfolio of shares of the aggregate endowment y at t = 2 and an uncontingent transfer which

can be interpreted as a bond. The incentive compatible mechanisms we study correspond to

a menu of uncontingent bonds and risky equity from which the investor must choose only

one point on the menu, so that they are not allowed to retrade. These mechanisms can be

interpreted as the allocations implemented by a non-linear tax/subsidy on trade in assets at

t = 1. Below we compare the features of this optimal tax/subsidy with the Tobin tax/subsidy

analyzed in the main paper.

The specification of our mechanism design problem is as follows. To simplify the notation,

assume that there is only one possible value of z and suppress that in the notation. Then

the mechanism design problem is one of choosing a menu of shares S(τ) and bonds B(τ) as

functions of agents’ reported risk tolerance τ with corresponding allocation of consumption at

t = 2, c(τ, y) = B(τ) + S(τ)y. This allocation of portfolios induces an allocation of certainty
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equivalent consumption as a function of agents’ true risk tolerance τ and reported risk tolerance

τ ′ given by

C(τ, τ ′) = U−1
τ (E [Uτ (B(τ ′) + S(τ ′)y)]) , (70)

where the expectation is taken with respect to y as of t = 1.

The second-best allocation of shares and uncontingent transfers solves the problem of max-

imizing ex-ante welfare,

W = E [V (C(τ, τ))] ,

subject to the constraints that C(τ, τ ′) is given by equation (70) for all τ, τ ′, the resource

constraints on portfolios,

1 = E [S(τ)] , (71)

0 = E [B(τ)] , (72)

and the incentive constraints (69). In the objective of this problem and in the constraints (71)

and (72), the expectation operator E is respect to τ as of t = 0.

We first consider the case in which there are only two values of τ . We then turn to the

problem in which τ is a continuous random variable with a density function.

Two Types τ . With only two types of τ , the incentive compatibility constraints (69) simplify

to a single constraint that the agent with high risk tolerance does not want to report that he

or she has low risk tolerance C(τ2, τ2) ≥ C(τ2, τ1). The result that this is the only one of the

two incentive constraints that is binding follows from the single crossing property of agents’

indifference curves over shares s and bonds b that can be shown when agents have equicautious

HARA preferences. Moreover, given that we know that the solution of this problem without

the incentive constraint is not incentive compatible, we have that the incentive constraint must

bind as an equality.

The solution to this mechanism design problem has several features in common with the

allocation that arises if a small Tobin subsidy is imposed on the equal wealth equilibrium

allocation.

First, the solution to this mechanism design problem must offer the risk-averse agents higher

certainty equivalent consumption than they achieve in the equal wealth equilibrium allocation

(denoted with a superindex e), i.e., C(τ1, τ1) > Ce(τ1), and vice versa for the risk-tolerant

agents, C(τ2, τ2) < Ce(τ2).
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Second, the solution to the mechanism design problem allocates aggregate risk to the risk-

tolerant agent, i.e., S(τ2) > S(τ1), and bonds B(τ2) < B(τ1) such that the risk-tolerant agents

are indifferent between these two portfolios, C(τ2, τ2) = C(τ2, τ1).

Third, if we add the assumption that agents have CARA preferences, then the solution

to this mechanism design problem implies more trade than in the equal wealth equilibrium.

That is, in the solution to the mechanism design problem, the risk-tolerant agent has a higher

exposure to aggregate risk than would be the case in the equal wealth equilibrium and vice-versa

for the risk-averse agent.

These three results are summarized in the following proposition.

Proposition 15. Assume that τ ∈ {τ1, τ2}. Then

(i) The second-best allocation has higher certainty equivalent consumption for the risk-averse

agents than these agents receive in the equal wealth equilibrium C(τ1, τ1) > Ce(τ1) and

vice versa for the risk-tolerant agents C(τ2, τ2) < Ce(τ2).

(ii) Assume also that Uτi are both CARA, so that γ →∞. In any allocation that has a binding

incentive constraint and that is conditionally efficient, ex-ante welfare can be improved by

a small deviation. In particular, the allocation that improves ex-ante welfare by a small

deviation satisfies
S(τ1)

τ1

<
φe(τ1)

τ1

=
1

τ̄
=
φe(τ2)

τ2

<
S(τ2)

τ2

. (73)

(iii) Assume that Uτi are both CARA, so that γ → ∞. If the set of feasible and incentive

compatible allocations is convex, then the second-best allocation also has more dispersed

risk exposure, i.e., (73) holds for the second best.

(iv) A sufficient condition for the convexity of the feasible set when both Uτi are CARA is that

ϕ′′′(·) ≤ 0 and µ2 ≤ µ1, where ϕ is defined in (74), and it is a function solely of the

distribution of y.

Proof. (i) Consider first the observation that C(τ1, τ1) > Ce(τ1) and vice versa for the risk-

tolerant agents. This result follows from the observation that the incentive constraint

is slack at the equal wealth equilibrium allocation with discrete types since the risk-

tolerant agents are able to purchase the equilibrium allocation of the risk averse agents

but choose not to. Because this constraint is slack in the equilibrium allocation, it is

possible to strictly improve ex-ante welfare by transferring bonds from the risk-tolerant
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agents to the risk-averse agents and thus bring their certainty equivalent consumption

closer together. Hence, similar to the case of the Tobin subsidy, the optimal incentive

compatible mechanism effects a transfer of certainty equivalent consumption from risk-

tolerant to risk-averse agents via the incidence of the mechanism.

(ii) To simplify the notation in the remainder of the proof, we use the subindex 1 and 2

instead of the arguments τ1 and τ2 for all variables. Also we use that for CARA utility

we can write the certainty equivalent as Ci ≡ Bi + τiϕ(Si/τi) where ϕ(·) is defined in

expression (74). We impose the binding IC constraint

B2 + τ2ϕ(S2/τ2) = B1 + τ2ϕ(S1/τ2)

and the feasibility constraint

0 = B2µ2 + B1µ1

1 = S2µ2 + S1µ1.

Using these three constraints, we can parameterize the set of allocations that are feasible

and have binding IC, which involve four variables (B1,S1,B2,S2), as a one-dimensional

manifold. In particular, we write them as a function of B1.

The certainty equivalent consumption for each type is thus:

C2 = B2 + τ2ϕ(S2/τ2)

C1 = B1 + τ1ϕ(S1/τ1).

We can thus write ex-ante welfare as a function of B1 :

E[V ](B1) = V (C1(B1))µ1 + V (C2(B1))µ2.

We show that, evaluated at the feasible allocation with a binding IC constraint that is

conditionally efficient, then S2/τ2 = S1/τ1 = x and dE[V ](B1)
dB1

> 0, and hence a decrease in

S1 and an increase in S2 improve ex-ante welfare.

We consider the deviations in (B1,S2,B2,S2) that are feasible and where the IC constraint

holds with equality, i.e.,

dB2 = −µ1

µ2

dB1

dS2 = −µ1

µ2

dS1

dB2 + ϕ′(S2/τ2)dS2 = dB1 + ϕ′(S1/τ2)dS1.
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Substituting feasibility into the binding IC constraint, we have

−µ1

µ2

dB1 − ϕ′(S2/τ2)
µ1

µ2

dS1 = dB1 + ϕ′(S1/τ2)dS1

−
(
ϕ′(S2/τ2)

µ1

µ2

+ ϕ′(S1/τ2)

)
dS1 = dB1

(
1 +

µ1

µ2

)

−

(
1 + µ1

µ2

)
(
ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

)dB1 = dS1.

The change in ex-ante utility is

dE[V ] = V ′(C1)dC1µ1 + V ′(C2)dC2µ2

= V ′(C1) [dB1 + ϕ′(S1/τ1)dS1]µ1 + V ′(C2) [dB2 + ϕ′(S2/τ2)dS2]µ2.

Substituting feasibility, we have

dE[V ] = V ′(C1) [dB1 + ϕ′(S1/τ1)dS1]µ1 − V ′(C2) [dB1 + ϕ′(S2/τ1)dS1]µ1

= [V ′(C1)− V ′(C2)] dB1µ1 + [V ′(C1)ϕ′(S1/τ1)− V ′(C2)ϕ′(S2/τ2)] dS1µ1.

Substituting the IC constraint we have

dE[V ]

µ1

= [V ′(C1)− V ′(C2)] dB1 −

(
1 + µ1

µ2

)
[V ′(C1)ϕ′(S1/τ1)− V ′(C2)ϕ′(S2/τ2)](
ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

) dB1.

Denoting by x1 = S1/τ1 and x2 = S2/τ2, we have

1

µ1

dE[V ]

dB1

= [V ′(C1)− V ′(C2)]−

(
1 + µ1

µ2

)
[V ′(C1)ϕ′(x1)− V ′(C2)ϕ′(x2)](
ϕ′(x2)µ1

µ2
+ ϕ′(x1τ1/τ2)

) .

Note that if x1 = x2 = x, we have

1

µ1

dE[V ]

dB1

= [V ′(C1)− V ′(C2)]−

(
1 + µ1

µ2

)
(
µ1

µ2
+ ϕ′(xτ1/τ2)

ϕ′(x)

) [V ′(C1)− V ′(C2)] > 0,

since C1 < C2 and hence V ′(C1) > V ′(C2). Using the binding IC and feasibility con-

straints, we have, starting at x2 = x1 = x (which characterize the constraint efficient

allocations), that ex-ante welfare can be improved by increasing B1 and since

dS1 = −

(
1 + µ1

µ2

)
(
ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

) < 0

by decreasing S1.
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(iii) Now we show that if µ2/µ1 ≤ 1 and φ′′′ ≤ 0, then in the optimal allocation, x2 >

1/τ̄ > x1. To prove this, we show that the set of feasible allocations is convex. If this

set is convex, then E[V ](B1) must be concave, since V is a concave function. Hence, if

∂E[V ](B1)/∂B1 > 0 evaluated at x1 = x2 = 1/τ̄ , then the optimal must have B1 larger

than that amount, and thus the x’s must be more dispersed. To establish the convexity

of the feasible set, note that the feasibility constraints are linear, so that they define, as

inequalities, a convex set. The remaining constraint is incentive compatibility, which can

be written as

G(B2,B1,S2,S1) ≥ 0 where

G(B2,B1,S2,S1) ≡ B2 + τ2ϕ(S2/τ2)− B1 − τ2ϕ(S1/τ2).

If G is a concave function, then the set of values for which G ≥ 0 is convex. Since G

is linear in B2 and B1, it suffices to show that it is concave in S1,S2. We substitute the

feasibility constraint for S in G, obtaining

G(B2,B1,S2, (1− S2µ2)/µ1) ≡ B2 + τ2ϕ

(
S2

τ2

)
− B1 − τ2ϕ

(
(1− S2µ2)/µ1

τ2

)
.

Thus, G is concave if and only d2

dS2
2
G ≤ 0. Direct computation gives

d

dS2

G(B2,B1,S2, (1− S2µ2)/µ1) ≡ ϕ′
(
S2

τ2

)
+ ϕ′

(
(1− S2µ2)/µ1

τ2

)
µ2

µ1

d2

dS2
2

G(B2,B1,S2, (1− S2µ2)/µ1) ≡ 1

τ2

[
ϕ′′
(
S2

τ2

)
− ϕ′′

(
(1− S2µ2)/µ1

τ2

)(
µ2

µ1

)2
]
.

Since ϕ′′ ≤ 0 and we have assumed that µ2

µ1
≤ 1,

d2

dS2
2

G(B2,B1,S2, (1− S2µ2)/µ1) =
1

τ2

[
ϕ′′
(
S2

τ2

)
− ϕ′′

(
S1

τ2

)(
µ2

µ1

)2
]

≤ 1

τ2

[
ϕ′′
(
S2

τ2

)
− ϕ′′

(
S1

τ2

)]
≤ 0,

where the last inequality follows by ϕ′′′ ≤ 0 and if S2 ≥ S1.

The last step is to show that S2 ≥ S1. For this, as a contradiction, assume that S2 < S1.
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In this case, note that

1

µ1

dE[V ]

dB1

= [V ′(C1)− V ′(C2)]−

(
1 + µ1

µ2

)
[V ′(C1)ϕ′(S1/τ1)− V ′(C2)ϕ′(S2/τ2)](
ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

)
≥ [V ′(C1)− V ′(C2)]−

(
1 + µ1

µ2

)
[V ′(C1)ϕ′(S1/τ2)− V ′(C2)ϕ′(S2/τ2)](
ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

) ,

where the inequality follows from the concavity of ϕ and from τ2 > τ1. Rearranging the

right-hand side, we can write

1

µ1

dE[V ]

dB1

≥ V ′(C1)

1−

(
1 + µ1

µ2

)
ϕ′(S1/τ2)

ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

− V ′(C2)

1−

(
1 + µ1

µ2

)
ϕ′(S2/τ2)

ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)


= V ′(C1)

µ1

µ2

[
ϕ′(S2/τ2)− ϕ′(S1/τ2)

ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

]
− V ′(C2)

[
ϕ′(S1/τ2)− ϕ′(S2/τ2)

ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

]

=

[
V ′(C1)

µ1

µ2

+ V ′(C2)

][
ϕ′(S2/τ2)− ϕ′(S1/τ2)

ϕ′(S2/τ2)µ1

µ2
+ ϕ′(S1/τ2)

]
.

Thus, if S1 > S2, then ϕ′(S2/τ2)−ϕ′(S1/τ2) > 0 and dE[V ]
dB1

> 0, which means that S1 > S2

cannot be optimal.

A few comments on this proposition relating it to a small Tobin subsidy are in order. First,

with Uτ CARA, the equilibrium allocation as well as all the conditionally efficient allocations

satisfy φe(τ1)/τ1 = 1/τ̄ = φe(τ2)/τ2 as in equation (73). Second, note that a small Tobin

subsidy for the case of two types is essentially the same as the deviation in item (ii). Third, if

equation (73) holds, the volume of trade in shares at t = 1 as measured by E|S(τ)−1| is higher

in the second-best allocation than in the equal wealth competitive equilibrium. Fourth, below,

we give examples of distributions for which ϕ′′′ ≤ 0. For instance, ϕ′′′ = 0 when y is normally

distributed, a case that it is often used together with CARA utility functions Uτ . Fifth, there

are many ways to decentralize the second-best allocation.11

We now give a description of how to decentralize this allocation with a non-linear tax/subsidy

on trade implemented with simple policies.

11One way is to give agents a menu of portfolios containing only the two second-best portfolios. Alternatively,
we can define the largest set of portfolios that decentralize the second-best allocation.
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Decentralization of second-best allocation in the case of two values of τ . In the case

with only two values of τ , the solution to the mechanism design problem can be implemented

with a piecewise linear menu of share and bond portfolios. In particular, each agent has a

piecewise linear budget set for shares and bonds that arises from a fixed fee (in terms of bonds)

to enter the market that is specific to buyers and sellers of shares, a Tobin subsidy of the shares

purchased by agents of type τ2 from agents of type τ1 (so that the buying price is lower than

the selling price), with a cap on the subsidy limiting it to the share sales 1 − S(τ1) mandated

by the mechanism (or equivalently, a tax on further sales of shares by agents of type τ1 beyond

the quantity 1− S(τ1)).

In the case of a continuum of τ ’s, there are many more incentive constraints, and hence the

menu is essentially uniquely characterized. We turn to that case next.

The case of a continuum of values of τ . We now consider the version of our mechanism

design problem in which the distribution of agents’ types τ has a density µ(τ). As we saw in

Lemma 3, in this case, the equilibrium allocation is the only incentive compatible conditionally

efficient allocation. Thus, a planner must necessarily trade off the conditional efficiency of the

allocation of portfolios at t = 1 against the risk sharing properties of the allocation evaluated

as of t = 0. We refer to the solution of this problem as the second-best allocation.

We obtain a more limited set of results relative to what we found with the two-type case.

In particular, we focus on developing results regarding the allocation of aggregate risk in the

second-best allocation and the pricing of that risk as reflected in agents’ marginal rate of

substitution between shares and bonds at t = 1 as a function of their realized risk tolerance τ .

We show that agents with extremely low and high values of τ take on more aggregate risk in

the second-best allocation than is the case in the equal wealth equilibrium, while agents with

intermediate values of τ take on less risk. We explore the extent to which one can interpret

this allocation of aggregate risk as arising from a non-linear subsidy to trade, both in terms of

the portfolios of the agents with extreme values of τ and in terms of overall trade volumes.

We specialize our analysis to the case of CARA preferences. We first describe the mechanism

design problem and then present our results.

When agents have CARA preferences, the certainty equivalent consumption of the investor

with shares S(τ ′) and transfer B(τ ′), once the realization of her risk tolerance τ is known to

72



her, is given by C(τ, τ ′) = τϕ(S(τ ′)/τ) + B(τ ′), where the function ϕ is given by

ϕ (x) ≡ − logE
[
e−xy

]
= − log

∫
e−xyρ(y)dy. (74)

In what follows, for some results we must also specialize the model to the case in which the

endowment at t = 2, y, has a normal distribution. Note that if y ∼ N(µy, σ
2
y), then ϕ (x) =

xµy −
σ2
y

2
x2.

Properties of ϕ. Define ϕ as in (74), then

ϕ(0) = 0 , ϕ(1) > 0 , ϕ′(x) > 0 for all x if y ≥ 0 a.s. , ϕ′(0) = µy , (75)

ϕ′′(x) < 0 for all x , ϕ′′(0) = −σ2
y.

These properties are obtained as follows. Let κ(t) ≡ logE[ety] be the cumulant generating

function of y. We then have

ϕ (x) = −κ(−x). (76)

The nth derivatives of these two functions are related by

∂n

∂xn
ϕ (x) = (−1)(n+1) ∂n

∂xn
κ(−x) for n = 1, 2, ... (77)

Since the cumulant generating function is a convex function, then ϕ(x) is concave. Alternatively

computing ϕ′′(x), we obtain

ϕ′′(x) = −

[
E[e−yxy2]

E[e−yx]
−
(
E[e−yx]y

E[e−yx]

)2
]
≡ −V arx(y) < 0, (78)

where V arx(y) denotes the variance of the distribution of y computed with the slanted density

φ(y) exp(−yx)/[
∫

exp(−y′x)ρ(y′)dy′]. For the first derivative, direct computation gives ϕ′(x) =

E [e−xyy] /E [e−xy]. It is well known that the first two derivatives of the cumulant generating

function are the expected value and variance, i.e., κ′(0) = µy and κ′′(0) = σ2
y.

Below we give examples of ϕ and its associated function Φ for some distributions.

Normal case. Suppose that y is normal N(µy, σ
2
y). Then

Φ(x) = ϕ (x)− ϕ′ (x)x =
σ2
y

2
x2 , Φ′(x) = σ2

yx > 0 and Φ′′(x) = σ2
y > 0 .

Poisson. If y is Poisson with mean µy then

ϕ(x) = −µy
(
e−x − 1

)
and Φ′′(x) = µye

−x [1− x] , (79)
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so Φ′′(x) > 0 for x < 1 and Φ′′(x) < 0 for x > 1. Thus in this case, Φ′ is not monotone.

Binominal. Suppose y is distributed as the outcome of n trials each with success with

probability p. In this case,

ϕ(x) = − log
(
1− p+ pe−x

)
and Φ′′(x) =

n(1− p)ex

[(1− p)ex + p]3
[x(1− p)ex + p(1 + x)] > 0. (80)

In this case Φ′ is monotone.

Exponential. Suppose that y is exponential with parameter λ. In this case,

ϕ(x) = log

(
λ+ x

λ

)
and Φ′′(x) =

λ− x
(λ+ x)3

, (81)

so Φ′′ > 0 if x < λ and Φ′′ < 0 if x > λ.

The planner wants to maximize ex-ante expected utility, where we assume that investors

evaluate expected utility over their certainty equivalent consumption using utility function V ,

which we assume to be strictly increasing and strictly concave. Thus, the planner seeks to

maximize ∫
V

(
τϕ

(
S (τ)

τ

)
+ B(τ)

)
µ(τ)dτ (82)

by choosing functions S(·) and B(·), subject to the physical constraints (71) and (72) and the

incentive compatibility constraint (69) for each τ with certainty equivalent consumption given

by the menu of portfolios as above.12

Structure of solution to planning problem. To solve the planning problem, we first take

as given (θs, θb) and convert its first-order conditions in the solution of two ordinary differential

equations subject to two known boundary conditions. The second step is to solve for the values

of (θs, θb), using implied values for these differential equations for two integral equations, namely

the feasibility conditions. We first turn to the description of the differential equation system

given (θs, θb). For this we need to use the first-order condition for x(τ) and solve it as a function

of τ and λ. We denote such function as x = X(λ, τ ; θs, θb). Then we use the following system

for τ ∈ (τL, τH):

C ′(τ) = Φ (X (λ(τ), τ ; θs, θb)) (83)

λ′(τ) = −V ′ (C(τ))− µ′(τ)

µ(τ)
λ(τ), (84)

12The specification of this mechanism design problem is close but not identical to the one in Diamond (1998),
which itself is a version of the problem in Mirrlees (1971) with quasilinear utility.
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with boundary conditions

λ(τH) = 0 and λ(τL) =
θb

µ(τL)
.

To solve this two-boundary value problem, we implement a shooting algorithm. We evaluate

the system of (83)-(84) with initial condition λ(τL) = θb/µ(τL) and some guess for the value for

C(τL). Then we check if the resulting value of λ(τH) satisfies the boundary condition, namely,

if λ(τH) = 0. If not, we change the guess for C(τL) and repeat the procedure. The next lemma

ensures that there exists a unique solution to which this procedure converges by studying the

properties of the implied mapping between CτL and λ(τH).

Lemma 4. Fix two arbitrary values of (θs, θb). Assume that V ′(·) is strictly decreasing and that

there is a value for C0 such that V ′(C0) = θb. Let λH(CL) = λ(τH) be the value of the solution of

the system of two ordinary differential equations (83)-(84) where λ(·) is evaluated at τH , taking

as initial conditions C(τL) = CL and λ(τL) = θb/µ(τL). There exists a unique value C∗L that solves

λH(C∗L) = 0. Furthermore, we can find an interval
[
CL , C̄L

]
so that λH(CL) > 0 > λH(C̄L) and

∂
∂CL

λH(CL) > 0 for all CL ∈ [CL , C∗L].

Proof. First we note that λH(CL) = 0 if and only if θb =
∫ τH
τL

V ′(C(τ, CL))µ(τ)dτ where we let

C(τ, CL), and for future reference λ(τ, CL), the solution of the system of differential equations

with CL = C(τL). Throughout this lemma, we keep the initial condition λ(τL) = θb/µ(τL). We

proceed in three steps.

Step 1. We show that λH(CL) < 0. To see this, we use that the solution to the first-order

condition of x(τ) given λ and τ , which we denote X(λ, τ ; τbτs), is bounded from above by x̄(τ),

which in turn is the solution to

θs
θb
− ϕ′(x̄(τ)) = −Φ′(x̄(τ))

τµ(τ)

∫ τH

τ

µ(t)dt.

Given this upper bound we can construct an upper bound for C(τH , CL), namely,

C(τH , CL) ≤ CL + (τH − τL)Φ̄ ≡ CL + (τH − τL) max
τ

Φ(x̄(τ)).

Thus by setting CL small enough V ′(C(τ, CL)) > θb, and hence θb <
∫ τH
τL

V ′(C(τ, CL))µ(τ)dτ .

Step 2. We show that λH(CL) > 0. Since C(τ, CL) is increasing in τ , then for C(τL) large

enough θb >
∫ τH
τL

V ′(C(τ, CL))µ(τ)dτ .
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Step 3. We now show that λH(·) is strictly increasing whenever λH < 0. To see this, we

totally differentiate the system of differential equations with respect to CL :

∂

∂CL
λ (τ, CL) = − 1

µ(τ)

[∫
τL

V ′′(C(t, CL))
∂

∂CL
C (t, CL)µ(t)dt

]
∂

∂CL
C (τ, CL) = 1 +

∫ τ

τL

∂Φ(X(λ(t, CL), t))

∂x

∂X(t, CL), t)

∂λ

∂

∂CL
λ (t, CL) dt

for all τ ∈ [τL, τH ]. From the first-order conditions, we have

∂X(λ, τ)

∂λ
=

Φ′(x)/(τθb)

ϕ′′(x)− Φ′′(x)
τµ(τ)

Ψ(τ, λ)
where x = X(λ, τ) and Ψ(τ, λ) =

µ(τ)λ

θb
−
∫ τH

τ

µ(t)dt.

We can also write

Ψ(τ, λ(τ, CL)) =
1

θb

∫ τ

τL

[θb − V ′(C(t, CL))]µ(t)dt.

Thus, if θb <
∫ τH
τL

V ′(C(τ, CL))µ(τ)dτ then Ψ(τ, λ(τ, CL)) is non-positive and single peaked, then

∂X/∂λ > 0 since ϕ′′ < 0 and Φ′′ > 0. Evaluating the derivatives above for each τ , noticing

that it is a recursive system, we have that ∂
∂CL

λ (τ, CL) > 1 and thus λH(CL) > 0.

The next lemma shows that in the case of CARA utility function V , given a solution for

the ordinary differential equations above —in particular, given the path for {x(τ)}τHτL — we can

analytically solve for the value of θb and C(τL), keeping the ratio θs/θb constant which ensures

that the feasibility constraint for uncontingent claims holds.

Lemma 5. Assume that V is a CARA utility function, i.e., V (C) = −τV exp(−C/τV ) for

some τV > 0. Assume that the path {x(τ)}τHτL and ratio θs/θb solve the first-order conditions

with C(τL) = 0, i.e. ,

θs
θb
− ϕ′(x(τ)) =

Φ′(x(τ))

τµ(τ)

∫ τ

τL

µ(t)

1−
V ′
(∫ t

τL
Φ(x(t))dt

)
∫ τH
τL

V ′
(∫ t

τL
Φ(x(s))ds

)
µ(τ(s))ds

 dt (85)

for all τ ∈ [τL, τH ], and that the path {x(τ)}τHτL also satisfies the feasibility constraint for shares.

Then the boundary C(τL) and θb

C(τL) = −
∫ τH

τL

Φ(x(τ))

[∫ τ

τL

µ(t)dt

]
dτ +

∫ τH

τL

τϕ(x(τ))µ(τ)dτ

θb = e−C(τL)/τV

∫ τH

τL

V ′
(∫ τ

τL

Φ(x(t))dt

)
µ(τ)dτ

satisfy the feasibility condition for bonds, and thus give the complete solution to the problem.
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Proof. The proof is immediate, since with CARA the first-order condition (85) is independent

of C(τL).

The next proposition partially characterizes the allocation of aggregate risk in the second-

best allocation. We do so in terms of the variable x(τ) ≡ S(τ)/τ for the second-best allocation

and for the equilibrium with equal wealth (or any other conditionally efficient allocation). The

variable x(τ) represents the allocation of shares of aggregate risk to an agent relative to the

risk tolerance of the agent. We have shown above that, in any conditionally efficient allocation,

x(τ) is constant at 1/τ̄ for all values of τ . As shown in the next proposition, in the second-best

allocation, x(τ) is U-shaped — lower for intermediate values of τ and equal to a common value

at both extremes. This proposition, together with the resource constraint for shares of aggregate

risk, implies that, in the second-best allocation, the allocation of aggregate risk to agents with

extreme (intermediate) values of τ is greater (smaller) than in the equilibrium allocation.

Proposition 16. Assume that µ(τ) > 0 for all τ ∈ [τL, τH ]. Denote x(τ) ≡ S(τ)/τ . Let θb

and θs be the Lagrange multipliers of the constraints (72) and (71), respectively. Then ϕ′(x(τ))

at the top and bottom of the support of τ are the same as the ratio of the Lagrange multipliers,

but it is higher for intermediate values:

θs
θb

= ϕ′(x(τH)) = ϕ′(x(τL)) < ϕ′(x(τ)) for all τ ∈ (τL, τH). (86)

Proof. Rearranging the first order condition with respect to x(τ),

θs
θb
− ϕ′(x(τ)) =

Φ′(x(τ))

τµ(τ)

[
µ(τ)λ(τ)

θb
−
∫ τH

τ

µ(t)dt

]
. (87)

The left-hand side gives the different shadow prices, or implicit tax rates faced by agents. The

right-hand side determines the sign. It is proportional to the difference between two functions,

namely, µ(τ)λ(τ)/θb and
∫ τH
τ

µ(t)dt. Both functions start at the value of one at τL and decrease

to zero as τ increases to τH .

Evaluating the first-order condition for x at τH and τL, and assuming that µ(τL) > 0 and

µ(τH) > 0, we obtain

θs
θb
− ϕ′(x(τH)) =

θs
θb
− ϕ′(x(τL)). (88)
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Then differentiating the first-order condition of x with respect to τ ,

θs [µ(τ) + τµ′(τ)] + θb Φ′′(x(τ))x′(τ)

[∫ τH

τ

µ(t)dt

]
− θb Φ′(x(τ))µ(τ)

= θb ϕ
′(x(τ)) [µ(τ) + τµ′(τ)] + θb τ ϕ

′′(x(τ))x′(τ)µ(τ)

+ Φ′′(x(τ))x′(τ)µ(τ)λ(τ)− Φ′(x(τ))V ′ (C(τ))µ(τ).

Rearranging, we obtain

x′(τ) =

[
ϕ′(x(τ))− θs

θb

]
[µ(τ) + τµ′(τ)] + Φ′(x(τ))µ(τ)

[
1− V ′(C(τ))

θb

]
Φ′′(x(τ))

[∫ τH
τ

µ(t)dt− µ(τ)λ(τ)
θb

]
− τ ϕ′′(x(τ))µ(τ)

.

Evaluating this at the extremes, using the values of λ(τ)µ(τ), and that Φ′(x) = −ϕ′′(x)x, we

obtain

x′(τL) =
x(τL) [θb − V ′ (C(τL))]

θbτL
and x′(τH) =

x(τH) [θb − V ′ (C(τH))]

θbτH
.

The equality

θb =

∫ τH

τL

V ′ (C(τ))µ(τ)dτ

follows by integrating with respect to τ both sides of the first-order condition with respect to

C)(τ) at τ ∈ (τL, τH), obtaining

−
∫ τH

τL

V ′ (C (τ))µ (τ) dτ =

∫ τH

τL

[λ′(τ)µ(τ) + µ′(τ)] dτ = λ(τH)µ(τH)− λ(τL)µ(τL),

and evaluating the right hand side using the first-order conditions with respect to C(τ) at the

two extremes values, i.e., τ = τL and τ = τH . Using that C(τ) is increasing in τ ,

V ′ (C(τH)) < θb < V ′ (C(τL)) .

Hence, x′(τH) > 0 > x′(τL). To show that θs/θb − ϕ′(x(τ)) < 0 in the interior we analyze the

function

Ψ(τ) ≡ µ(τ)λ(τ)

θb
−
∫ τH

τ

µ(t)dt,

since we can write θs/θb − ϕ′(x(τ)) = Φ′(x(τ)/[τµ(τ)]Ψ(τ). Thus, we have

Ψ(τ) =

∫ τ

τL

µ(t)

[
1− V ′ (C(t))∫ τH

τL
V ′ (C(s))µ(τ(s))ds

]
dt. (89)

Note that

Ψ(τL) = Ψ(τH) = 0 and Ψ′(τ) = µ(τ)

[
1− V ′ (C(τ))

θb

]
.
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Using that C ′(τ) > 0, and that V ′ (C(τH)) < θb < V ′ (C(τL)), so that Ψ′(τL) < 0, Ψ′(τH) > 0 and

Ψ′(τ ∗) = 0 at a unique value of τ for which V ′ (C(τ ∗)) = θb. Hence, it has a unique minimum,

and thus Ψ(τ) < 0 for all τ ∈ (τL, τH). Since Φ′(x)/[µ(τ)τ ] > 0, this gives the result that

θs/θb − ϕ′(x(τ)) < 0 in the interior.

Finally we show that x(τ) is single peaked in τ . For this we show that at τ ∗ for which

x′(τ ∗) = 0, we have that x′′(τ ∗) > 0. To do so, we write

x′(τ) =
f(τ)

g(τ)
so that x′′(τ ∗) =

f ′(τ ∗)

g(τ ∗)
where

f(τ) =

[
ϕ′(x(τ))− θs

θb

] [
1 +

τµ′(τ)

µ(τ)

]
+ Φ′(x(τ))

[
1− V ′ (C(τ))

θb

]
g(τ) =

Φ′′(x(τ))

µ(τ)

[∫ τH

τ

µ(t)dt− µ(τ)λ(τ)

θb

]
− τ ϕ′′(x(τ)),

where we have used that x′(τ ∗) = 0. Since
∫ τH
τ

µ(t)dt − µ(τ)λ(τ)
θb

> 0, Φ′′(x(τ)) > 0 and

ϕ′′(x(τ)) < 0, we have that sign (x′′(τ ∗)) = sign (f ′(τ ∗)). Direct computation gives

f ′(τ ∗) =

[
ϕ′(x(τ ∗))− θs

θb

] [
∂

∂τ

τµ′(τ)

µ(τ)

]
τ=τ∗
− Φ′(x(τ ∗))

V ′′ (C(τ ∗))
θb

Φ(τ ∗),

where we have repeatedly used that x′(τ ∗) = 0. Since we have shown that ϕ′(x(τ ∗))− θs
θb
> 0,

and we have that Φ(τ ∗) > 0, Φ′(τ ∗) > 0, and V ′′ (C(τ ∗)) < 0, then the assumption that

∂
∂τ

τµ′(τ)
µ(τ)
|τ=τ∗ > 0 implies that f ′(τ ∗) > 0, hence x achieves a minimum at τ ∗, and thus it is

single peaked.

This result is not surprising — it is the famous result that there are no distortions at the

bottom and the top in the Mirrlees model. This result, as shown by Seade (1977), requires

bounded support for the types, continuous type density, and interior allocations, which are all

conditions satisfied in our setup.

Figure 3 illustrates Proposition 16 by plotting x(τ) = S(τ)/τ for the second-best case and

for the equilibrium with equal wealth (or any other conditionally efficient allocation). As stated

in the proposition, x is U-shaped with the same values at both extremes. This is done for a

particular numerical example where y is normally distributed, where τ is uniformly distributed,

and where the utility function V is also CARA; see the parameter values indicated in the notes

to the figure.

We next consider the marginal rates of substitution between shares and bonds for agents

under the second-best and equilibrium allocations. We show that this marginal rate of substi-
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tution is equal to ϕ′(x(τ)). Accordingly, we refer to ϕ′(x(τ)) as the shadow value of risk. This

shadow value of risk is the rate at which an agent perceives that he or she can trade bonds and

shares at the margin under the optimal non-linear tax/subsidy scheme.

We let M = {(S,B)} be the menu of contracts offered to investors. Each point on the

frontier of this set corresponds to the values of B = B(τ) and S = S(τ) for some τ ∈ [τL, τH ],

where the functions S(·),B(·) are the solution to the mechanism design problem.

We compare the slope of the frontier of M with the slope of the budget line in the equal

wealth equilibrium and in the optimal allocation. In the equal wealth equilibrium and in the

optimal allocation, agents’ marginal rate of substitution is constant across τ . In the equal

wealth equilibrium, it is dBe/dS = −D̄1. In the optimal allocation, it is dB∗/dS = −C̄1. Now

consider any allocation defined by functions x̂ : [τL, τH ] → R and B̂ : [τL, τH ] → R that are

incentive compatible (IC) and feasible — in the sense that (72) and (71) hold. Define M̂ as the

menu of contracts that decentralize the allocation x̂, B̂. Note that Ŝ(τ) ≡ x̂(τ)τ . We have the

following simple result that we use to evaluate agents’ marginal rate of substitution between

shares and bonds.

Lemma 6. The slope of the frontier for M̂ is given by

−dB(τ)

dS(τ)
= ϕ′(x̂(τ)) for all τ ∈ [τL, τH ] (90)

−dB
e

dS
= ϕ′(1/τ̄) < −dB

∗

dS
= τ̄ϕ(1/τ̄). (91)

Proof. We now compute dB̄(S(τ))/dS = B′(τ)/S ′(τ). We have S(τ) = τx(τ) so S ′(τ) =

x(τ) + τx′(τ). Likewise, we have B(τ) = C ′(τ) − ϕ(τ) − τϕ(x′(τ))x′(τ). From the incentive

constraints we have C ′(τ) = ϕ(x(τ))− x(τ)ϕ′(x(τ)). Thus, combining them, we have

dB̄(S(τ))

dS
=
B′(τ)

S ′(τ)
=
−x(τ)ϕ′(x(τ))− τϕ(x′(τ))x′(τ)

x(τ) + τx′(τ)
. = −ϕ′(x(τ)).

For the equal wealth incomplete markets equilibrium, we have

Se = 1 +
τ − τ̄

τ̄ + D̄1/γ
and Be = −[τ − τ̄ ]

D̄1

τ̄ + D̄1/γ
so

dBe

dS
= −D̄1 = −ϕ(1/τ̄).

For the complete markets equilibrium with the first-best allocation, we have

S∗ = 1 +
τ − τ̄

τ̄ + C̄1/γ
and B∗ = −[τ − τ̄ ]

C̄1

τ̄ + C̄1/γ
so

dB∗

dS
= −C̄1 = −τϕ(1/τ̄),

where we use that in both the equal wealth and complete market equilibrium, x is constant,

and hence it must be equal to 1/τ̄ . Also since the complete market allocation is conditionally
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efficient, then x∗(τ) = 1/τ̄ for all τ . In the complete markets equilibrium allocation we have that

C̄1(τ) = τϕ(1/τ̄) + B̄(τ) is the same for all τ . Multiplying by µ(τ), integrating it across τ , and

using that uncontingent transfers have zero expected value across τ ’s, we have C̄1 = τ̄ϕ(1/τ̄).

Finally, since ϕ is concave, and ϕ(0) = 0, then ϕ(1/τ̄) > (1/τ̄)ϕ′(1/τ̄) or C̄1 = τ̄ϕ(1/τ̄) >

ϕ′(1/τ̄) = D̄1. �

Normal y case. In the case in which y ∼ N(µy, σ
2
y), then ϕ′(x) = µy − σ2

yx is linear in x. In

this case we have that a feasible and incentive compatible allocation x̂(τ) must satisfy∫ τH

τL

dB̄(τ x̂(τ))

dS
µ̃(τ)dτ = −D̄1 where µ̃(τ) ≡ τµ(τ)∫ τH

τL
τµ(τ)dτ

for all τ ∈ [τL, τH ] . (92)

So, in the CARA-normal case, IC and feasibility imply that the weighted average of the shadow

value of risk should be the same as the one in the equal wealth incomplete market equilibrium.

We illustrate the nature of the second-best allocation as well as its differences with a Tobin

tax/subsidy in Figure 4. We do so for a CARA-normal example. The function V is also

assumed to have the CARA form. The parameter values are listed in the notes to the figure.

In this figure, we plot the value of the shadow value of risk ϕ′ (x̂(τ)) for different allocations.

In the case of the equal wealth incomplete market equilibrium allocation, this shadow value is

constant for all τ and equal to ϕ′(1/τ̄). In the case of a Tobin subsidy to trade financed with

an entry fee paid in terms of bonds, this shadow value is given by the declining step function

shown in the figure. In that allocation, sellers of shares (with S < 1) receive a selling price

that is higher than the price paid by buyers of shares (with S > 1) with the gap equal to the

subsidy to trade ω. For the second-best allocation, we plot the shadow value of risk ϕ′
(
Ŝ
)

,

as well as the average of this shadow value, by integrating the marginal shadow value from the

value of τ1 such that S(τ1) = 1 to τ . Note that the pattern for the average prices in the second

best “resemble” the prices for a Tobin subsidy in the sense that they are higher for “sellers” of

shares (with S(τ) < 1) than for “buyers” of shares (with S(τ) > 1).

Finally, we consider the implications of our model for trade volumes measured as E|S(τ)−1|.
Figure 5 plots the ratio of this statistic computed for the second-best allocation relative to the

value of this statistic in the equal wealth equilibrium. The ratios are computed for several

values of σy and the ratio τL/τH for the same specification as in the previous plots. As can be

seen, trade volume in the second best is between 1% and 12% higher than in the equal wealth

equilibrium as we compute both allocations for different parameter values.
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Figure 3: Risk exposure, normalized relative to risk tolerance
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Notes: CARA-CARA-normal-uniform case.
Parameters µy = 1, σ = 0.07, τ̄ = 1/10, τL = 0.001, τH = 0.199, τV = τ̄ .
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Figure 4: Marginal & Avg. Prices in the 2nd Best, and Prices in Equal Wealth Eqbm
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Notes: CARA-CARA-normal-uniform case.
Parameters µy = 1, σ = 0.07, τ̄ = 1/10, τL = 0.001, τH = 0.199,
τV = τ̄ , (ω/D1(0))× 100 = −0.358(36basispoints),

TV e = 0.2475, TV 2nd Best = 0.2645.
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Figure 5: Trade Volume in the 2nd Best relative to Trade Volume in Equal Wealth Equilibrium
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Notes: CARA-CARA-normal-uniform case.
Parameters µy = 1, σy ∈ [0.2, 0.1], τ̄H = 1/10, τL ∈ [0.001, 0.51], τv = τ̄ .
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