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A law of large numbers For large economics 

I. Introduction 

In the analysis of economies with a continuum of agents, the following problem often 

arises. Suppose, each agent has to bear a certain risk. Each agents risk is independent 

from the identical risk, any other agent, faces. Does the risk dissappear upon 

aggregation? 

More concretely, imagine the following insurance arrangement. There is only one 

good. There is a continuum of identical agents i, each of which will independently 

receive an endowment ê  > 0 of that good with probability p or an endowment 

e 9 > e^with probability 1—p. Their endowment can be publicly observed. Suppose, 

agents are risk-averse and have utility functions E[ ln(c) ], say, where E denotes the 

expectation operator. These agents might decide ex ante to enter a contract of 

mutual insurance, in which all endowments are collected and each agent is given the 

expected endowment c = e = pe, + (1-pjeg. It is clear that agents prefer this 

arrangement to autarky, but the question is: is this a meaningful and feasible 

contract? The intuition is, that a law of large numbers should guarantee that we can 

pay e to everybody almost surely. After all, a continuum is "even more" than a 

sequence, and for sequences, the validity of the law of large numbers is well known. 

Examples, in which such a law of large numbers is implicitely or explicitcly assumed 

or used, include Bewley [1], Diamond and Dybvig [4], Green [6], Lucas [10], Marimon 

[111 and Prescott and Townsend [13]. 
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Stochastic continuum economies with a law of large numbers allow us to lift 

insurance-type arrangements , where some agent faces a risk-neutral insurance 

agency, from the microeconomic, partial equilibrium perspective to a macrocconomic, 

general equilibrium framework: it all adds up. Furthermore, while it might be quite 

hard to keep track of the rich world of contingent contracts in a finite random 

economy, many of these contingencies disappear or become trivial in the limit 

[0,l]-cconomy: there is no need anymore to write contracts contingent on certain 

random aggregates. Random [O,l]-economies are often easier to analyze, yet help in 

understanding the "true" object: a given finite economy. Therefore one needs to know 

wether a reasonable law of large numbers holds. 

Formally the problem can be formulated as follows. Let there l>e a random variable 

Xj for each agent le[0.1]. Xj is defined on a probability space (it,E,P) and represents 

e.g. endowment shocks. Suppose, all Xj arc independent and identically distributed 

with finite mean \i and variance a. One likes to have a theorem (the law of large 

numbers), which essentially states 

(*) I X,dl = ,t. 

Observe, that this is a meaningless expression, as long as we do not have a definition 

of the integral on the left hand side. One would like such an integral to have the 

following properties in addition to (*), if possible: 

(i) it blends with economic interpretations of stochastic continuum—economies. 

(ii) the law of large numbers holds "automatically", i.e. it is not just built into 

the mathematical construction. 

(iii) the law of large numbers also holds on a large class of reasonable 
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subgroups of [0,1]. 

(iv) the integral is easy to use and known as a mathematical concept. 

Justifying the intuition, however, turned out to be more problematic than initially 

thought. Judd [9] pointed out that severe measurability problems arise when 

attempting to generalize the strong law of large numbers in a straight-forward 

manner. Different remedies have been considered. Judd himself suggests extending 

the measure space in such a way as to make the law of large numbers hold. Thereby 

he shows that the strong law is not inconsistent with mathematical theory. 

Unfortunately, it does not "automatically" follow either: it is possible to extend the 

measure space in such a way that the law of large numbers never holds1. Feldman 

and Gilles [5] consider relaxing the independence condition. For sequences they solve 

the problem using finitely additive measures or Banach limits. Bewley [1] proposes to 

use a continuum of agents to draw randomly a sequence of ever-increasing finite 

economies. Almost surely then, such a sequence will satisfy the sequential law of large 

numl>ers. Stutzer [16] uses nonstandard analysis and establishes the law of large 

numbers for a hyperfinite set of agents. It seems, however, that his result cannot be 
2 

carried over to models with a continuum of agents. 

The main difficulty that these authors encountered arise from interpreting (*) as a 

strong law of large numbers, i.e. as 

J Xj(o;)dl = //• P.-a.e.. 

But if this should hold not only on [0,1], but also on every nondegenerate subinterval, 
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say, one can easily prove (using Radon—Nikodyms theorem) that X,(o>) has to be 

almost surely constant for almost all (J. 

For these reasons I propose to interpret (*) as a version of Khinchines law of large 

numbers, which is weaker than the strong law, but stronger than the weak law of 

large numbers (see Appendix). My proposed "Lg—law of large numbers" will satisfy 

the properties (ii) to (iv) stated above, interpreting the integral in (*) as a 

Pettis-integral. For the simple case described above and to deliver the intuition of an 

"L 9 - law", we can use a Ricmann-type version of the Pettis integral. 

As for (i), there doesn't seem to be an agreement yet among economists, what we 

actually think of when analyzing a stochastic continuum economy. Lacking such an 

agreement, I give three examples to explore the meaning of a law of large numbers. 

The first example examines the insurance arrangement described above. The 

important feature is that the difference between the utility of an agent living in some 

finite economy to the utility of the agent in the continuum economy is small if the 

finite economy is sufficiently large. Hence, we are not too far off in terms of the 

welfare of people if we consider a continuum economy instead of a given finite 

economy. 

The paper is organized as follows: in section II, we introduce the Pettis integral and a 

Riemann—type version of the Pettis integral and prove the law of large numbers. In 

section III, we discuss distributional properties of the individual shocks, i.e. answer 

the question, what fraction of the population receives a shock in a given set A. 
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Section IV gives a vector-valued version of the law of large numbers when the 

random variables take on values in some Banach space rather than the real line . 

Section V contains two examples for the application and interpretation of the law of 

large numbers and one counterexample. Section VI contains some concluding 

remarks. In the appendix I, we prove relationships between the three sequential laws 

of large numbers. In appendix II, we examine the relationship between the 

Riemann—type integral and the Pettis integral and discuss further the relationships 

between vector-valued integrals, a continuum of random variables and the size of the 

underlying probability space. 

II. The law of large numbers. 

We propose to interpret the integral in (*) as a Pettis integral. Recall the following 

definitions. 

Definition 1: 

Let X be a Banach space, X' its dual space, (L,A,A) a a finite measure space. 

A function f:L-*X is called weakly A-measurable, if for each x'eX', the function 

x'f is A—measurable. 

(Diestel-Uhl [2], Def. II.1.1) 

A function f:L-OC is called Pcttis-integrable, if f is weakly A-measurable, if 

x'feL^A) for all x'eX' and if for all EGA, there exists a vector * E e X , such that 

x ' x r = Jx'f dA for all x'eX'. 
* E 

In this case, we define the Pettis-integral 
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(P)-JfdA :=x F . 
E 

(Diestel-Uhl [2], Definition II.3.2 or Rudin [15], Def. 3.26) 

In what follows, the Banach space X will be the space L 2(0,E,P) of square integrable 

random variables over some probability space (ft,S,P). (L,A,A) will be the unit 

interval [0,1] with its Borel sets and the Lebesgue measure. We call a collection of 

random variables (XJ) ] 6 JQ jj pairwise uncorrected, if Cov (X | ,X G ) = 0 for all s^t. 

Theorem 1: The law of large numbers for a large economy 

Let (XJ )J 6 JQ |j be a collection of pairwise uncorrelated random variables with 
o 

common finite mean ft and variance a , defined over some probability space 

(n,S,P). Then (X.) is Pettis-integrable in L2(Q,E,P) and we have 

p = (P ) - | X , dA. 

(Observe, that we use somewhat imprecisely the same symbol n to denote the mean 

as well as the random variable Y defined by Y(u>) = fi for all w € (I. The integral of 

(Xj) is really a random variable. ). 

Proof: 

The dual space of Ln is (naturally isomorphic to) L 9 . Thus, let Z € L^- Z operates on 

X e L 9 via Z(X) = E[ZX]. Thus, we have to show that the function g(l) = E[Z(Xj)] is 
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measurable with respect to A and that 

0 = J E[Z(Xj-0)] dA. 

But this is trivial: observe that E[Z(Xp/<)] = 0 for almost every 1 6 L since 
CO 

I (E[Z(X, r//)]) 2 < Var(Z)<x2 

j=0 J 

for any countable selection of different l.'s by Bessel's inequality. 

The Pettis integral is a Lebesgue—type integral for vector valued functions. It has the 

usual properties that changes on a null set do not matter etc. However, familiar 

theorems like the dominated convergence theorem are not easily available for the 

Pettis integral. The other, "nicer" integral for vector valued functions - the Bochner 

integral - is unfortunately not available in our situation, see Appendix II. Thus, the 

Pettis integral is the natural choice here. 

For most applications, it suffices to use the Riemann—type version of the 

Pettis-integral. Furthermore the Riemann—type version offers useful insights and 

provides a powerful tool for computing Pettis-integrals or proving theorems. 

As in Calculus, let 

r = { (n , l ( ) , l p . .J n ,^ . . ,0 n ) I ne{l,2,..}, 

0=l 0 <l r .< l n =l , l H <^<l j , j=l,.-,n } 

be the set of all partitions T of the interval [0,1]. For TeF, we define the mesh 

C(T) :=max { l . - l . ^ | je{l,..,n} }. 

In order to define the integral, we need a convergence concept for random variables. 
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We chose the mean square as a measure of distance. What we want to define is the 

Riemann—type integral of a vector-valued function: 

Definition 2: 

Let (Xj)]GjQ jj be a collection of random variables, defined on the probability 

space (Q,S,P). If there is a random variable Y, such that 
n 

we write 

Y = | Xj dl 

and call Y the integral of (^i)je[Q jj-

We call (Xj) Ricmann-typc integrable.0 

It is possible to prove the following result: 

Theorem 2: 

Every integrable collection (Xj)je|Q jj (in the sense of Definition 2) with 

Xj6L 9(0,E,P) is Pettis-integrable and we have 

J Xjdl = (P)-j Xj (1A. 

The proof is in Appendix II. 

Thus the following Corollary comes at no surprise. We provide an independent proof, 

since it, is this proof which gives the intuition that we are dealing with an "L^ l aw of 

•1 
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large numbers" and since the bounds in the proof are useful in comparing finite 

economies with continuum economies. 

Corollary 1: The law of large numbers for a large economy 

Let (X])iG[0 be a collection of pairwise uncorrected random variables with 
2 

common finite mean // and variance a . Then (Xj) is Riemann-type integrable and 

we have 
H = | X, dl. 

Proof: 

Calculate 
n n 

j=i J j=i J 

• l w v 

j=l 
n 

< c n > 2 £ ( i r i H ) 
j=l 

= C(T)(72 

converging to zero as £(T) converges to zero. This completes the proof. 

We note for later purposes, that the rate of convergence of the Riemann-sums to the 
9 

integral is given by C(T)<7*\ 
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It is clear, that the proof of Corollary 1 is not "tight", i.e. that we can prove the 

following improved version: 

Proposition 1: 

Let (X|)]gjQ |j be a stochastic process of pairwise uncorrected random variables 

with finite mean fu and variance <Tj , such that the function f:[0,l] -»(R, f(l) := //̂  

is Lj and the variances are bounded above by some constant M , say. 

Then JQ J] >s integrable with 

j //., (1A - | Xj dA. 

If f is (bounded and) Riemann integrable, then (Xj) is Riemann—type integrable. 

Proof: 

The proof for the Pettis integration is completely analoguous to the proof in Theorem 

Lgiven Z e L.2, we have E[ZXj] = //jE[Z] (argue with XJ/CTJ). 

For the Riemann-type integrability, let // = } //j dl Let e > 0, c < 1/2 be 

arbitrary and choose S > 0 small enough, so that for all Partitions T with £(T) < b, 

we have 
n 

j=l J 

and ((T)M < f/2. 

For these partitions, we now calculate: 
n 

mp-I v i r i H ) ) 2 ] 
j=i J 



n n 

j=i J J j=i J ' 
n li 

,2 2 
j = i J j = i J 

< C(T)M + ( 2 

< c. 

Since 0 < t was arbitrary, our claim follows. 

It is often useful to apply Theorem 1 via the following, trivial "functional principle": 

suppose S is some abstract set and f: S -• R a function. Let X,: ft -» S be mappings 

associated with the agents le[0,l]. If (f(Xj)) constitutes a collection of measurable, 

pairwise uncorrected random variables with common finite mean //f and variance 
n 

at, then iif= ( f(X,) dl and |// f| < sup |f(s)|. 
1 1 1 1 seS 

III. Distributional properties of the individual shocks. 

In our large economy, it is desirable to have a result, in which the fraction of the 

population experiencing a certain type of shock is equal to the probability of this 

shock. This statement is as vage as the statement (*) in the beginning, that the 

average shock equals the expectation of these shocks. We can make this statement 

precise with the help of our integral from Definition 1. With a finite population 

I={l,..,n} and a function f: I -»R , the fraction of the population receiving a certain 
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D 
"shock" f(j) e A c R is ^ £ XfiJ. f(J) ) > where X\ i s t r i e characteristic function. 

j=l 

Thus, the fraction of the population [0,1] experiencing a certain type of shock A c R 

should be 

I X A (X,) dl, 

where now this integral is an integral in the sense of Definition 1: 

Corollary 2: 

Let (Xj)jejg jj be a collection of pairwise independent and identically distributed 

random variables Xj. Let A be a Borel—measurable subset of R. Then 

J X a ( X J ) dl = P( X i A ), 

where X is some random variable with the same distribution function as any Xj. 
Proof: 

Obviously, (A'^lXj)) is a collection of pairwise uncorrected random variables with 

mean fi = P( X < A ) and finite, constant variance. Hence, the claim follows 

immediately from Theorem 1 resp. the functional principle with f being the 

indicator—variable x^-

It is easy to find similar conclusions for more general situations, applying e.g. 

Proposition 1. 

IV. A vector—valued version of the law of large numbers. 

It is often desirable to let X, take values in a (possibly infinite dimensional) vector 
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space V rather than just in the real line. The most desirable setup would be as 

follows. Let V be a Banach space, we denote the norm by ||-||. . We assume that 

X,eL 9(P,V), the Lebcsguc-Bochner space of P-Bochner integrable functions X:ft-»V 

the norms). For Definitions, see appendix II of this paper resp. Dicstcl-Uhl [2]. 

Definition 2 now has to be altered appropriately. The most obvious way would be to 

require that 

The question then is: is there a version of Corollary 1 or Theorem 1 in this context? 

This is as yet an unsolved problem. 

However, there is a version for vector-valued random variables using weak 

convergence instead of strong convergence, exploiting the functional principle 

mentioned in section II. We need the concept of Pettis integration on two levels: we 

need it to reduce our vector-valued random variables to of real-valued random 

variables and we need it to find the law of large numbers via integrating a collection 

of these real—valued random-variables (obtained from a collection of vector-valued 

random variables). To reduce notation and introduce a few new concepts, we need to 

following Definitions. These concepts also seem to be useful, when describing limiting 

concepts via limits of distributions of distributions for finite random economies to 

continuum random economies. 

Definition 3 : 

ii 
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Let (fi,E,P) be a probability space. Let V be a locally convex topological 

vector space and V its dual space. Let X : Q -» V be a mapping. 

a) If for every v6V, Xv :fl -> IR is measurable and Xv e [^(fyEjP), we 

call X a Pettis -square-integrable random-vector. We write 

/ ' v := E| Xv ] 

and 

al := Var[ Xv ]. 

(Compare to Definition 1 in section II of this paper). 

b) Let X and Y be two Pettis -square-intcgrable random vectors. Let 

v 6 V. We write 

Cov y( X , Y ) := Cov( Xv , Yv ) 

and call this the Pettis covariance of X and Y in direction v. 

We call X and Y weak uncorrected, if Cov y( X , Y ) = 0 for all 

vG V. 

Definition A: 

Let (ft,£,P) be a probability space. Let V be a locally convex topological 

vector space and V its dual space. Let f^Ple[0 1] ^ a c o " c c , ' o n °^ 
* 

Pettis -square integrable random vectors X] : Q, -* V" . 

a) (Xj) is called uncorrected collection, if X| and X g are weak 

uncorrected for all s#t. 

b) If there is a weak -measurable mapping Y : f t - » V (i.e., if Yv is 

measurable for all VGV) such that. 

Yv = (P)-J X,v dl for all veV, 
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where the integral is a Pettis-integral in the sense of Definition 3, then 

we write 

Y = j X, dl 
* 

and call Y the Pettis —Pettis—integral of (Xj). 

Theorem 3: A vector-valued law of large numbers for a large economy 

Let V be a Banach space and (XJ ) | £ JQ JJ be an uncorrected collection X j : fl-» V 

with common finite mean /*v and variance a y for all v 6 V. Assume that 

Iff I < M-|lv|| 

for some constant M, independent of v. 
* 

Then the Pettis -Pettis-integral of (Xj) exists and is constant tp for some tpe\n. We 

have 

<p = \ X, dl (w) for P.a.e. wef i . 

It also follows that 

tpv = (jXjdl)(v) = [Xjv dl = // y = E(X rv) 

for all veV and re[0,lj 

Proof: 

Apply the functional principle to find 

JXjV dl = / V = E(X fv). 
* 

Define ip{v):=fiv , it remains to show, that peV (the weak -measurability is then 

trivial, since our function Y is constant). Observe, that tp is linear by the linearity of 
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the expectation-operator, tp is continuous, since by assumption | y?(v) | < M ||v||. Thus, 

our claim is proved. 

Of course, in many cases we have to get X artificially into a dual space: if X maps 

into a Banach space V, apply the theorem to the mapping X which maps into the 

bidual V " via the natural embedding of V into V" . 

For particular applications, we need the full power of Theorem 3: like normally 

distributed random variables with real values, random vectors might take values 

anywhere in the Banach space V and there is no way around checking the condition, 

that the means / i y are uniformly bounded across v. However, in some cases, the 

random vectors are already bounded themselves, in which case this condition is easy 

to check. Since we consider this an important special case, we formulate this as 

Corollary 3. 

Corollary 3: 

In Theorem 3, replace the condition |/* v| < M-||v|| by the condition that for some 

constant K, 

II Xj(w) || < K 

for all 1 e [0,1] , and all u 6 ft. Then the conclusions of Theorem 3 hold, i.e. for some 

(pEV\ we have 

ip = j X, dl (a>) for P.a.e. w 6 Q. 
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Proof: 

This follows from the inequality mentioned with the functional principle in section I 

and Theorem 3, since then 

E(X,v) < K ||v||. 

V. Interpreting the law of large numbers: the "large economy" as an approximation 

for a "large" but finite economy. 

By now, the relationship of nonrandom continuum economies with finite economies is 

fairly well understood (see e.g Ilildenbrand [8] or Mas-Co lei 1 [12]). This, however, is 

not true for random continuum economies of the type we are dealing with in this 

paper. The biggest obstacle is, that we cannot approximate a continuum of 

independent and identically distributed random variables (with nonzero, finite 

variance) through a sequence of finite sets of such random variables in a sensible way: 

random variables that are independent of each other are just too far apart" . 

Nonetheless, random continuum economies are appealing because they match certain 

aspects of a possibly large, but finite economy that we are ultimately interested in 

analyzing. As of now, there is just not a precise agreement on what this analogy 

between the finite case and the continuum case is all about. Lacking such an 

agreement, I provide two examples in which I show how to derive useful insights 

about some given finite economy, using the "approximate" continuum economy and 

the proposed integral instead. I also show a counterexample to the claim that results 

of the finite economies always carry over (compare to similar results in limiting game 

theory). The examples are meant to be simple and instructive. 
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Example 1: An insurance scheme 

We imagine an economy in which agents engage in risk sharing. More precisely 

suppose, that I denotes a set of agents ,where I is a finite set or the continuum. 

Each agent i 6 I is endowed with Xj, but X ( depends on the state of nature a>. X! 

could e.g. represent net income after a possible car accident, medical costs or other 

insurable risks. Xj(w) can be publicly observed. For simplicity, let Xj be 

one-dimensional and positive, i.e. X J G R + . We imagine all Xj to be independent and 

identically distributed with finite mean // and variance a according to a distribution 

function F. Also, we imagine all agents to have the same utility function, i.e. agents 

maximize expected utility U(c) = E[ u(c) ], where consumption c is a random 

variable taking values in R + and u is a utility function, bounded from below, 
7 I 

monotone increasing, continuous and concave. Recall L 9(Q,E,P) = 

{ f G L2(ft,E,P) | f(o>) > 0 P.a.e. }. We need the following 

Iximma 1: 

a) U is a uniformly continuous function on L ^ O ^ P ) . 

b) Let c G L«(ft,£,P) and (i = E[c]. Suppose one of the following conditions: 

(i) u is differentiate on the range of c with sup u'(c(o»)) < M. 

(ii) inf c(a>) = c > 0. Set M := (u(c) - u(0))/c. 

Then 

|U(c)-u(/i)| < M(Var(c)) 1/ 2. 

Proof: 
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Assume w.l.o.g. u(0)=0. Choose some e>0. Fix some x>0 and let M=u(x)/x. Fix a 

at a:=c/(2M(x+l)). Note that u must be equicontinuous, so choose a />>0 to c/2. 

Finally note that we can find u>Q, u<l so that c,d e Lt(Q,£,P) and E[(c-d)2] < v 

implies P(|c—dj><5) < a. Distinguish the cases where |c-d|<<!> or otherwise |c|<x 

resp. |d|<x.Use |u(a)-u(b)|<M|a-b| for a,b>x and the Cauchy-Schwartz 

inequality to find immediately 

|U(c) -U(d) | < (l-a)e/2 + aMx + aUv{l2 < c. 

The second claim is an immediate implication of the mean value theorem and the 

Cauchy-Schwartz inequality, q.e.d.. 

Now, if the utility fuction u is strictly concave, agents are risk-averse and it is clear 

that they prefer cx ante to share all risks rather than consuming whatever 

endowments they get, i.e. they prefer mutual insurance over autarky. Suppose then, 

that they sign a. contract before anybody knows the realization of his or her random 

endowment, in which they agree to split the total endowment in equal parts. In the 

case of the finite economy, each agent gets the average 

— i " cj = X = I £ X, 
1 "1=1 1 

of all individual endowments. Observe, that X and hence Cj is a random variable. 

To relate this with the continuum economy and our integral, we restrict our attention 

to partitions T where all 1- are equidistant, i.e l-=j/n, j=0,..n. We imagine the finite 
J J 

economy as being drawn from the continuum economy in the sense that we select, for 

each j , some 0- e ( 1- , , 1. ] and set X. := X ' , , where the latter represents the 
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individual risks Xj for agents 1 e [0,1] in the continuum economy. 

Now, X is nothing but the Riemann sum corresponding to the partition T and we 

proved in Theorem 1, that 

E[( J X j d l - X ) 2 ] < <r2C(T) = <72/n. 

With the Lemma above, it now follows that for any such finite economy which is 

sufficiently large, the difference between the expected utility U(X) in the finite 

economy and the expected utility \i(fi) = U( / Xj dl ) in the continuum economy is 

smaller than some given oO. 

This is the kind of result we arc interested in: ultimately, we have to deal with one 

large, but finite economy, and not with a continuum economy or with some sequence 

of finite economies. Given certain characteristics of this finite economy, we want to 

make sure that we are not too far off in terms of the welfare of the people if we 

consider a continuum-model instead. It is an important step in any particular 
o 

application of the law of large numbers to establish this. 

How much then does an agent receive as a result of the insurance in the continuum 

economy? Regardless of the slate of nature u, the agent receives n (with probability 

1). This contract is feasible, because the Riemann-sums X of the finite economics 

arc computed "a; by a;". X is close to the random variable j Xj dl in the Lg—sense if 

the finite economy is large enough - and that is all we need to guarantee closeness of 
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the utilities. 

Observe furthermore, that the results above did not depend on mutual independence 

of the Xj: as long as the integral Z = j Xj dl exists in L"t,(Q,,l,,P), X will approach Z 

in L 9 (and it will do so at the rate a^/n under reasonably weak assumptions about 

mutual cross-correlations) and thus U(X) will approach U(Z) at a corresponding rate 

due to the uniform continuity of U. This can be especially important if there is a high 

amount of correlation between the individual risks (as an extreme example, consider 

X] = X, i.e. every agent faces exactly the same risk!). Our construction of the integral 

is robust against such variations. 

One might consider decentralized versions of this model, in which agents trade in 

contingency claims. The insurance contracts above are then the outcome of a 

symmetric equilibrium. Observe that we need claims contingent on the aggregate 

outcome in the finite economics. There is no need for that in the continuum case: the 

only contingency relevant for an agent is the variation in his own endowment. The 

analysis becomes simpler. 

Example 2: Infering the distribution of the risk. 

The following problem arises e.g. in the analysis of bank—runs (see Drees [3]). 

Suppose agents line up at a bank counter. In the "good" equilibrium (which is the 

only one we want to consider here), each agent withdraws money according to their 

24 



preferences of allocating consumption goods across time without taking into account 

the possibility of a bank run. Let us assume that the withdrawal Xj of each agent i is 

random and realized according to some distribution F with finite variance. However, 

F is unknown to the agents in the line and for this example, we want to assume that 

agents want to inferc wether F=F^ or F=F 2 , both of which seem equally probable a 

priori. Let us assume that Fj is actually the true distribution. The action of the 

agents then might depend on their inference and we want to assume for simplicity, 

that agents get consumption w if they make the correct inference but face an extra 

loss d < w and thus consume only w-d if they come up with the wrong conclusion. 

How do agents arrive at their decision about which distribution to choose? One very 

simple method (although not the best one for our agent but good enough for our 

example) works as follows: let b be a real number so that (w.l.o.g.) F^(b) < F9(b). 

Let a = (Fj(b) + F2(b))/2. Now, if k people are before you in the line and exactly j 

of them withdraw no more than b, calculate the ratio R = j/k. If R>a, settle on F 2 

and if R<a, choose F ( . Suppose that p is the probability of making the wrong 

inference. 

As in example 1, agents ultimately care about U(c) = E[ u(c) ], where consumption c 

is now a random variable, taking value w with probability 1—p and w—d with 

probability p. We imagine the line in front of the bank counter to be normalized to 

unit length. We suppose that for finite economics there will be one agent per 1/nth of 

the line. The distribution of agents in the continuum case is of course uniform. 
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Suppose now, an agent is located at position s of the line, say. The ratio R that he 

calculates is a random variable and it will converge in the L9-sonse to the 

corresponding "ratio" in the continuum case, i.e. to the constant random variable 

Q : = ? i W x i ) d l 

= r = F 1(b) ) 

using Corollary 1. In the continuum case, our agent is bound to make the correct 

decision (with probability 1). Moreover, we can find an upper bound for the 

probability p by calculating 

p = P(R>a) < P( |R-r|>a-r ) 

< Var(R-r)/(a-r) 2 

< r(l-r)/((a-r)'2sn), 

which converges to zero as n tends to infinity. As p converges to zero at a certain 

speed, so does the utility of the agent converge to u(w) at the same rate. This is what 

we ultimately care about. The rate of convergence is the slower, the smaller s is, 

reflecting the fact that agents early on in the line have to base their inference on less 

data than agents that have a position which is closer to the cnd.^ 

What then does an agent in our continuum economy observe, given a state of nature 

u ? He observes the "ratio" 

Q(^) = i j . v ( ^ b ] ( x 1 ) d i M = r. 

and a casual look might suggest, that he has to know the outcome of Xj's across all 

states of nature to compute that. This however is not true: he truly observes the 

realization of the random variable Q which is the limit of ratios R observed in the 
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finite economies - and these ratios are calculated ui by u>. The limit-concept that we 

choose is the L^-convergence which is enough to ensure convergence of the welfare of 

our agents. It is this link that makes the use of our integral and stochastic continuum 

economies economically meaningful. 

A counterexample 

Here we want to take up a variation of example 1 that convergence of the outcome of 

the finite economies to the outcome of the continuum economy is not always 

guaranteed, i.e. that the correspondence of allocations achievable by contracts is not 

upper hemicontinuous. 

Suppose we have the same economy as in example 1, but we assume now that the 

individual realizations of the random variable Xj is private information. Let us 
n 

assume however, that the aggregate outcome nX = ^ Xj is public information. The 
i=l 

transfer payment c(mj ,^m.,X) to (resp. transfer tax on) an individual shall now 

depend on messages nij, in which the agent i announces his realization Xj. A contract 

consists of this function c and (invoking the relevation principle) the truth—telling 

clause that agents truthfully announce im = Xj. Such a contract has to obey the 

incentive compatibility constraint that 

( I C ) c ( X i i ^ X j , X ) > c ( m i , I ^ X j , X ) , 

for all ui G ft and all m. G K. 
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Let us assume that ruin Xiw) > EX. - max X.(a;) + 2e for all j and some e > 0. 

Observe that the contract with c specified by 
r / „ v 7 \ _ f - max X. - c if x/n+y #z qx,\,/ j - z _ x j if x / 1 1 + y = z 

works and complete insurance is possible in the truth-telling Nash equilibrium simply 

since we can always deduce the true realization of Xj from the truthful messages of 

the other agents. 

This contract however will no longer satisfy the incentive compatibility constraint in 

the continuum economy since the individual outcome is negligible: it always pays for 

the individual to claim poverty. Autarcy will be the only solution here. 

Obviously, the aggregate X only reveals information about the individual agents in 

the finite economy. 

VI. Concluding remarks 

Our Definitions 1 and 2 give an uncomplicated and straightforward way of 

interpreting (*). We can easily prove a version of the law of large numbers, using 

Pettis integration or mean square convergence. It seems upon first sight , however, 

that this interpretation is not the best one, one would like to have. A strong law of 

large numbers, interpreting (*) a,s pathwise integration, would be nicer. However, it is 

clear (due to the measurability problems mentioned in the introduction), that one 

cannot hope for a sensible strong law which e.g. also works on subintervals. The 

examples in section V indicate that this might not be a big loss, especially since the 
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use of the mean square metric enables us to compare results in large finite economics 

to continuum economics. We find e.g. that expected utility changes continuously with 

the mean square of the random consumption, so that we do not make a big error in 

terms of welfare of the people, if we consider the continuum econmy and use our law 

of large numbers instead of analyzing a (sufficiently big) finite economy. Even if a 

strong law were available, it probably would not add any improvement here. 

Further research has to be done on a better understanding of the properties of the 

integral proposed in Definition 1 and the economic relevance of the law of large 

numbers derived from it. It is clear, that the link between large, but finite stochastic 

economies and our models of stochastic economies with a continuum of agents is not 

very well understood at this point (sec Section V). The question of the "validity" of a 

certain interpretation of the integral (*) for a specific problem crucially depends on 

this link resp. on the interpretation of large, stochastic economies for the "real 

world". 
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Appendix I 

Let ( x

n ) "_ i be a stochastic process of i.i.d random variables on the probability space 

(n,E,P) with finite mean // and variance a . The well known strong law of large 

numbers (Kolmogorov's Theorem) states, that 
N 

n=l 
i.e. except on a set of measure zero, the sample average converges to the mean. The 

weak law of large numbers (Chebyshcv's Theorem) states, that 
N 

for every c > 0, | | £ Xn)(u.-) -p \>e } -> 0, 
* n=l 

i.e. the sample average converges to the mean in probability. In between lie the 

p̂—laws of large numbers (Khinchine's Theorem) (l<p<oo): 
N 

n=l 

Of special importance is the L—law of large numbers, stating that the variance of the 

sample averages converges to zero. It is easy to prove, that these ^-laws imply the 

weak law. They are implied by the strong law, using Lebesgucs dominated 

convergence theorem, as the following proposition shows: 

Proposition: 

Let l<p<(». Let (X n) be a sequence of random variables with finite means jtQ . 

Suppose , that for some r>p and all positive integers n, E[|Xn—£*n| r] exists and that 

for some M and all positive integers n, 

E [ | X n - / g r ] < M . 
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Let 
N 

S N : 4 I ( W 
n=l 

Suppose, that the "strong law of large numbers" holds, i.e. that 

S N -4 0 P-a.c.. 

Then the ( —law of large numbers holds, i.e. 

E [ | S N | P H 0 . 

Proof: 

Recall that for any set E, the characteristic function x-£ is defined as 1 for all xeE 

and as 0 for all x0E. Let c>0 be arbitrary. Let q be such that 1/q + p/r = 1. First 

calculate, that by Minkovsky's inequality, 
N 

E [ | s N i r ] < ( ^ i m\\-i'n\r\)l/1')r 

n=i 

< M. 

Hence by the general Chebyshev—inequality, we can find a (large) positive number K, 

such that 

P({|S N |>K}) < ( € - M " p / r ) q for all N. 

Let Q N : = S N • X { | | < K } and R N : = S N - Q N = S N - X { j s N | > K } - N o w observe, that 

E [ |S N | P ] = E[ |R N |P ] + E[|Q N |1 ) ] , 

for the sets {|SlN,|<K} and {|S^T|<K} are disjoint. Since QN~»0 P.a.e. by assumption 

and since | Q J P < K P , it follows immediately from the theorem of Lebesgue on 
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dominated convergence, that 

K [ |Q N | P ] - 0. 

From Iloelders inequality, it follows, that 

E [ l % l P ] = ( E [ ( | S N | . X { | s N | > K } ) P ] ) 
N" 

r i P / r . F . f v , . „ . . . . P ^ / q 
N 

< E [ i s N n w r - E [ , { | s l > K ) 

= E [ |S N | r ]P / r .P ( { |S N | >K } ) 1 / q< e . 

Since c>0 was arbitrary, our claim follows. 

Appendix II 

Relationships between the Pettis integral, the Riemann type integral and the 

Bochner—integral. 

We want to prove Theorem 2 from above, that the Riemann—type integral 

corresponds in a measure-theoretic setting to a (vector-valued) Pettis integral. 

Recall the following Definitions (see Diestel-Uhl [2]) 

Definition 5: 

Let X be a Banach space, X 1 its dual space, (L,A,A) a finite measure space. 

A function f:L-»X is called simple, if there exist Xj,x 9,...,x neX and 
n 

EpEgvjEjjGA, such that f= J X j * E , where Xg (t) = l> if l€Ej and 
t=l 1 1 

Xv (') = 0' if ^ E - ( Xx? is called the characteristic function of E-). 
L i 1 L i 1 

A function f:L-*X is called weakly A—measurable, if for each x'eX', the function 

x'f is A—measurable. 

32 



A function f:L-»X is called A—measurable, if there exists a sequence (f f l) of 

simple functions with 1 im ||fn-f|| = 0 A—almost everywhere. 

(Diestel-Uhl [2], Def. II.1.1) 

Definition G: 

Let X be a Banach space and (L,A,A) a finite measure space. 

A function f:L-»X is called Pcttis-intcgrable, if f is weakly A-measurable, if 

x'feLj (A) for all x'eX' and if for all EeA, there exists a vector XpGX, such that 

x'x.,= fx' fdAforal lx 'eX'. 
L E 

In this case, we define the Pettis-integral 

( P ) - | f d A : = x E . 

(Diestel-Uhl [2], Definition II.3.2 or Rudin [15], Def. 3.26) 

A function f:L-0( is called Bochner—integrable, if f is A—measurable and if 

there exists a sequence of simple functions (fn), such that 

l im j || f - f || dA = 0. 
n T n 

In this case, the Bochner—integral } f dA is defined for each EeE bv 
E 

[ f dA = l im { f dA, 
E n E n 

where ^ fR dA is defined in the obvious way. 

(Diestel-Uhl [2], Definition II.2.1). 

In our context, X is the space I^ft,^,?) of random variables with finite variance, 

where (Q,S,P) is a probability space (different from (L,A,A), in general). In the 

sequel we shall refer to Riemann integrals of real valued functions only when they are 
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computed "directly", i.e. without taking limits for certain points within the interval 

over which we integrate. This implies, that we only Riemann-integrate bounded 

functions. 

Lemma 2 : 

An integrable collection (X| ) l 6 j 0 ^ (i.e. in the sense of Definition 1) with 

XjGL9(Q,E,P) is weakly A-measurable, where A is the Lebesgue-measure on the 

Borel-sets of [0,1]. For every Z G L 2 ( Q , S , P ) , the function fz:[0,l]^R, fz(t):= E(ZXj) is 

Ricmann-integrable and we have 

} fz(t) dl = E(ZY), 

where Y = / X,dl. 

More suggestively, we can write the formula above as 

/ E(ZXj)dl = E(Z| Xjdl). 

Observe the different meanings of the integrals. 

Proof: 

The dual space of I,9(n,E,P) is (canonically isomorphic to) L9(ft,£,P) itself. 

Therefore, let ZGL 2(fi,S,P)^L 2(n,S,P)'. The duality is given by Z(X) = E[ZX] for 

XfL 2(Q,E,P). Consider a partition T G F . Then 
n n 

\E[ZY)-l f z ( ^ ( l r l H ) l = | E ( Z ( Y - I X ^ ( l r l H ) ) ) | 
j=l j=l J 
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n 
< E ( Z 2 ) 1 / 2 E ( ( Y - 2 X ^ ( 1 . - 1 H ) ) 2 ) 1 / 2 

j=l J 

(with Cauchy—Schwarz), which converges to zero, as C(T)-»0 by definition of our 

integral. This proves, that f̂  is Riemann—integrable with j f(l) dl = E(ZY). Since 

Riemann— integrable functions are measurable, we have proved the weak 

A measurability of (Xj). 

Theorem 2: 

Every Riemann—integrable collection (X])jg^Q jj (in the sense of Definition 2) with 

Xj6L2(^,S,P) is Pettis—integrable and we have 

/ X,dl = (P)-j f dA, 

where f:[0,l]-*L2(O,S,P) is defined by f(l):=X,. 

Proof: 

It is clear, that \ Xjdl e I^fyS.P) (argue with an approximating partition). 

Recall, that every Riemann—integrable function on [0,1] must be 

Lebesguc—integrable, since it is bounded and is the a.e.-pointwise limit of 

step-functions. Hence, for every Z e l ^ n ^ P ) ' , we have f^GL^A), using Lemma 2. 

Since furthermore by Lemma 2, our function f is weakly A—measurable, an application 

of Lemma II.3.1 in Diestel-Uhl [2] together with the reflexivity of L g ^ E j P ) proves 

the claim. The equality of the Pettis-integral with our integral is clear with Lemma 

2, q.e.d.. 

The Pettis-integral is not a very "powerful" (but a rather general) vector-integral. 
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Some of the facts known about the Pettis-integrals are: 

If f is Pettis-integrable, then /j(E):=(P)-J fdA is a countably additive 

A-continuous vector measure on A. (Diestel—Uhl [2], Theorem II.3.5). 

Furthermore, the set {p(E)| EG A} is a relatively weakly compact subset of the 

bidual space X"(Diestel-Uhl [2], Corollary II.3.9). 

It has not been possible to uncover much additional information about the 

Pettis-integral beyond the results established in the original paper by Pettis 

(Diestel-Uhl [2], II.5). 

The Bochner-integral however, possesses all the nice properties, we are accustomed 

to from Real Analysis (e.g. the Theorem on dominated convergence holds, see 

Diestel-Uhl [2], II.2). It would therefore be nice, if one could Bochner-integrate our 

integrable stochastic processes^. This is possible for a certain class of stochastic 

processes, as the next Theorem shows. 

Theorem A: 

Let (XJ)J 6JQ jj be a collection of random variables Xj G L 9(fi,£,P) such that the 

function f: [0,1] -» L 9(ft,E,P) , f(l) := Xj is continuous. 

Then (Xj) is integrable, f is Bochner-integrable and we have 

} Xjdl = [ f dA. 

Proof: 

We show the Bochner-integrability first. The A—measurability of f follows 

immediately from Lemma 2 and Pettis's measurability theorem, Theorem II. 1.2 in 
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Diestel—Uhl [2], observing that f has a separable range, since it is a continuous 

function on [0,1]. As sequence of simple functions f approximating our function f 

according to the definition of the Bochner—integral, consider 

11 

f n : - X l /n* [0 , l /n ] + I X j/n*((j-l)/n,j/n]' 
3=2 

i.e. t belongs to the partion 

T =(n,0,l/n,2/n,...,l,l/n,2/n,...,l). 

For any 8 > 0 , define 

w^:= sup{ E(X,-X s ) 2 ) ) | \s-t\<8}. 

We find 

, l , r - y , d ^ j i | ( H ) / n ! j / n f ( x r V V / ^ W 

converging to 0, as n-»oo. Hence, f is Bochner-integrable. Let Y:= 1 i m J f dA. 
n-t(» 

For the integrability in the sense of our Definition 2, we repeat the same 
n 

exercise, but now for functions g T = ) X , (L—1. T a partition. We find 
j=] .1 

J||f-grp|| dA < ( w ^ T ) ^ A I K ' ' S C ' E A R ' T N A T ^ O R E V E R V f > 0 ' w e c a n fin(i 1 1 

sufficiently large and 6>0 sufficiently small, so that for all £ (T )<# , we have 

( ^ (Y-g j . ) 2 ) ) 1 7 2 = HY-g T l l 

< ||Y-|f ndA|| + J||fn-f||dA + i||f-gT||dA 

< c 
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This proves the integrability (in the sense of Def. 2) and the equality of this integral 

to Y, the Bochner—integral. 

The Theorem above seems promising at first. However, it is not possible to generalize 

it to the case of pairwise uncorrected random variables, with which we started out: 

(The following Proposition is essentially a reminder of well-known facts) 

Proposition 2 : 

Let (XJ )J^Q jj be a collection of pairwise uncorrected random variables 

X,eL 2(Q,E,P). Let there be a 6>0, such that Var(Xj)>£ for all le[0,l]. 

Then the function f:[0,l]-»L2(Q,£,P) is not A-measurable and hence not 

Bochner—integrable. 

fl is not a separable metric space. 

Proof: 

Calculate, that for l^s, 

| |X,-X s | | > (Var (X 1 -X s ) 1 / 2 

= ( Var(X,) + Var(X s) 

> (26) ll2 =: d, 

i.e. two different random variables of our stochastic process have at least distance d. 

But then for any uncountable subset A of [0,1], the set {Xj | leA} cannot be 

separable in L 2(ft,S,P). Hence, using Pettis's measurability theorem (Theorem II. 1.2 

in Diestel-Uhl [2]), f cannot be A-measurable. 

Furthermore, the same theorem implies, that L 9(fi,E,P) cannot be separable. 
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Hence 0 cannot be a separable metric space. 

The Proposition above might shed some further light on the difficulty of proving laws 

of large numbers in large economics: quite in contrast to probability spaces 

"sufficient" for a sequence of independent and identically distributed random 

variables, we have to choose much "bigger" probability spaces in the case of large 

economies! 
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The other problem with this approach is, that the law still doesn't hold on a 
large class of subgroups of agents. Green(1987), however, showed how to get 
around that problem to a certain extent. 

On a more technical level, observe that not every hyperfinite sequence of 
random variables Fj, j in the hyperfinite unit interval grid T, gives rise to a 
collection of random variables Xj, le[0,l] by the rule Xj=FQ in a well-defined 

way (consider the example, where Fj is identically 1 for every nonstandard odd 
number j*L and identically 0 else. This is an internal object and therefore 
"limit" of standard, "real" objects). But then the hyperfinite sequences, that do 
carry over, might be an ill-behaved set and we are back in our original 
problem. 

As a byproduct, covariances for infinite dimensional random variables are 
defined. 

Observe that we could have chosen convergence P-a.e. instead of 
L^-convergence. We would then essentially be back at a formulation for the 
strong law and encounter all the problems mentioned in the introduction. 

Notice the similarity to the Ito—integral which is also defined by using the 
Lvj-distance. Let W, be the Brownian motion on [0,1] and Xj its "derivative", 
"white noise", which we understand as independent and standard normally 
distributed. Let Z be a random variable with standard normal distribution. 
Then the Ito-integral and some heuristics yields / Xj dl = / dWj = Z. The 
reason that the result differs from ours is that other weights are used in the 
definit ion of the Ito-integral. We have 

M 
l i m E [ (Z-l X . ( 1 . -L j ) 1 / 2 ) 2 ) = 0 , 

C(T)-o A *j J J 1 

i.e in the Ito-integral we use (lpIj_j)*' 2 instead of (K—K ^). We conjecture 
that this result relates to our Theorem 1 like the central limit theorem to the 
law of large numbers for sequences. 

Bewley [I] thus suggested drawing such sequences at random from the 
continuum economy and analyzing the continuum via these sequences. This 
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approach then leads him to his version of the law of large numbers mentioned in 
the introduction. 

This of course excludes the favorite u(c) = ln(c) . But it is clear that one can 
obtain a version similar to Lemma 1 even for this utility function in most 
applications: usually, it is possible to restrict the relevant set of random 
variables in L+(n,E,P) to e.g. the set { f € L ^ f t & P ) I f > c m m }, where 
cmin > ® ' s § ' v e n a P1"'0™ o r t 0 a bigger set of random variables that don't put 
too much mass close to zero. If a restriction like that is not possible, one might 
want to be cautious to use the continuum model! 

This is actually a problem in Bcwleys approach [1]. While for any randomly 
selected sequence of finite economies, the randomness disappears in the limit, 
we have no idea how fast this happens. Furthermore, the convergence speed 
depends on the (random) choice of the sequence. 

Again, I don't see, how Bewlcy's approach [1] can deliver this type of analysis. 

It is an interesting question, how the Bochner integral relates to pathwise 
measurability of the process (X,). 
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