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ESSAYS ON MARKETS UNDER UNCERTAINTY

ABSTRACT

This thesis consists of a series of essays on the

theory of exchange under uncertainty. The first essay

examines the welfare implications of futures markets in the

context of complete markets for contingent claims. It is

shown that in a C-good, S-state world the equilibrium allocations

resulting from the operation of pre-state noncontingent

futures markets and post-state spot markets may be Pareto

optimal. This proposition turns on the fact that a futures

contract can be interpreted as a security whose state-specific

return is the post-state spot price. If the matrix of spot

prices has rank S, then, with futures and spot markets,

agents can achieve the same allocations over states as with

complete markets for contingent claims.

The second essay examines the Keynes-Hicks theory of

futures markets. In that theory, risk averse hedgers seek

to reduce price risk by selling forward that portion of

supply which is planned or fixed in advance. On the other

side of the market are speculators who seek a profit by

purchasing forward when the futures price is below the spot

price expected to prevail at the time of maturity. The

second essay argues that this partial equilibrium terminology

is not useful. It presents an example in which risk averse
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agents purchase forward the good with which they are endowed;

in a general equilibrium context, futures contracts may be

viewed as a hedge against the random valuation of stochastic

endowments. In general, the direction of trade would seem

to be determined by tastes and endowments as in standard

theory.

The third essay examines the feasibility of fixing a

relative spot price in a two commodity world in which risk

averse agents with stochastic endowments maximize expected

utility over an infinite horizon. It is shown that a price-

fixing scheme will fail with probability one, regardless of

the price set by the government and regardless of the initial

level of buffer stocks. The proof of this proposition turns

on the properties of random walks.

The final essay explores a model in which exchange is

costly and the market structure is endogenous. There is a

set of risk averse agents each of whom is endowed with a

quantity of a capital good and with a stochastic technology

which transforms the capital good into a distribution of the

single consumption good of the model. The distributions for

different agents are such that there are gains to portfolio

diversification. But there are also costs; for each bilateral

deal between agents there is a fixed cost in terms of the

capital good. In the model, agents adopt strategies under

which they are willing to act as intermediaries, buying

shares in investment projects and selling shares in the

resulting portfolio. It is shown that there exist noncooperative
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equilibria for the model, and in those equilibria there are

markets which separate agents into disjoint groups. Subject

to some qualifications, the allocations of a core can be

supported as noncooperative equilibria and all noncooperative

equilibria yield allocations in that core. It is argued

that free entry is crucial in determining the allocation of

resources.
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INTRODUCTION TO THE ESSAYS

Kenneth Arrow [2] and Gerard Debreu [4] have formulated

a theory of exchange under uncertainty. In that theory a

set of states of the world is an exhaustive listing of all

possible outcomes or events. A contingent commodity claim

is a claim on a particular commodity which is binding only

in specified states. By increasing the dimensionality of

the commodity space in this way, classical propositions on

the existence and optimality of a competitive equilibrium

were made applicable to risky environments. Yet many authors,

including Arrow [1], have noted the seeming absence of

markets in which contingent claims are traded, and it has

been suggested that the dearth of such active markets is

inconsistent with the Arrow-Debreu theory. There are markets

in which commodity futures are traded, yet these would seem

to be a far cry from complete markets for contingent claims

in which claims could be traded for any commodity in any

state. Also, there appear to be active spot markets at

every date, but with complete markets spot trading would

not seem to be needed. Nor does the theory explain financial

intermediaries and other trade facilitating institutions.

In short, the theory seems inadequate in the descriptive

sense.
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The absence of markets in which contingent claims are

traded also has normative implications; it suggests that

some mutually beneficial exchange does not take place.

Hence it would seem worthwhile to examine government policy

in such an environment. As suggested by Buchanan [3], the

government may have a role in setting up institutions to

facilitate exchange. Alternatively, in the absence of

complete markets, one may wish to find a second best policy.

Various policies have been suggested; these include limiting

the movements of spot and futures prices and the regulation

of various financial institutions.

This thesis consists of a series of essays which examines

the descriptive deficiency of the Arrow-Debreu theory and

which deals with the policy implications of the absence of

contingent contracts. In the first essay, "On the Optimality

of Futures Markets," I examine the welfare implications of

futures markets in the context of complete markets for

contingent claims. It is shown that in a C-good, S-state

world the equilibrium allocations resulting from the operation

of pre-state noncontingent futures markets and post-state

spot markets may be Pareto optimal. This proposition turns

on the fact that a futures contract can be interpreted as a

security whose state specific return is the post-state spot

price. If the matrix of spot prices has rank S, then, with

futures and spot markets, agents can achieve the same

allocations over states as with complete markets for contingent

claims.
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The interpretation of futures contracts as securities

leads me to examine the standard theory of futures markets.

In the Keynes-Hicks theory, risk averse hedgers seek to

reduce price risk by selling forward that portion of supply

which is planned or fixed in advance. On the other side of

the market are speculators who seek a profit by purchasing

forward when the futures price is below the spot price

expected to prevail at the time of maturity. The second

essay argues that this partial equilibrium terminology is

not useful. It presents an example in which risk averse

agents purchase forward the good with which they are endowed;

in a general equilibrium context, futures contracts may be

viewed as a hedge against the random valuation of stochastic

endowments. In general, the direction of trade would seem

to be determined by tastes and endowments as in standard

theory.

The third essay of the thesis examines government

policy in the absence of complete markets. Jacques Dreze

[5] has suggested that it is the absence of markets in which

farmers can trade crops contingent on the determinants of

supply and demand which had led the government to consider

buffer stock programs. The essay, "Price Fixing Schemes and

Optimal Buffer Stock Policies," examines the feasibility of

fixing a relative spot price in a two commodity world in

which risk averse agents with stochastic endowments maximize

expected utility over an infinite horizon. It is shown that

a price fixing scheme will fail with probability one regardless



of the price set by the government and regardless of the

initial level of buffer stocks. The proof of this proposition

turns on the properties of random walks.

The final essay, "Intermediation with a Nonconvex

Transactions Technology," explores a model in which exchange

is costly and the market structure is endogenous. There is

a set of risk averse agents each of which is endowed with a

quantity of a capital good and with a stochastic technology

which transforms the capital good into a distribution of the

single consumption of the model. The distributions for

different agents are such that there are gains to portfolio

diversification. But there are also costs; for each bilateral

deal between agents there is a fixed cost in terms of the

capital good. This nonconvexity makes standard results on

the existence and optimality of a competitive equilibrium

inapplicable. In the model agents adopt strategies under

which they are willing to act as intermediaries, buying

shares in investment projects and selling shares in the

resulting portfolio. It is shown that there exist noncooperative

equilibria for the model and in those equilibria there are

markets which separate agents into disjoint groups. In this

sense markets may be said to be incomplete. Subject to some

qualifications, the allocations of a core can be supported

as noncooperative equilibria and all noncooperative equilibria

yield allocations in that core. It is argued that free

entry is crucial in determining the allocation of resources.
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ESSAY I

ON THE OPTIMALITY OF FUTURES MARKETS

I. Introduction

In his seminal article, "The Role of Securities in the

Optimal Allocation of Risk Bearing," Arrow [2] provided a

convenient framework in which problems involving choice

under uncertainty could be analyzed. By extending the

dimensionality of commodity space to include the number of

states, classic results on the existence and optimality of a

competitive equilibrium were made applicable to uncertain

situations. Yet many authors have commented on the existence

of only a small number of markets in which contingent claims

are actively traded. In particular, the existence of futures

markets rather than markets for contingent claims is often

taken as prima-facie evidence of some inefficiency.

The purpose of this essay is to show that in some cases

the equilibrium allocation resulting from the operation of

pre-state noncontingent futures markets and of post-state

spot markets may be Pareto optimal. This proposition turns

on the fact that a futures contract can be viewed as a

security whose state specific return is the post-state spot

price. If the rank of the matrix of spot prices is equal to

the number of states, then a restriction to the trading of

futures contracts will not be binding in equilibrium.



Agents can achieve precisely the same allocation across

states as they could with complete markets for contingent

claims in which claims could be traded for any commodity in

any state; all individual budget constraints will be satisfied

and all futures markets will clear at appropriately selected

futures prices.

In his article Arrow [2] stressed that risk bearing is

not allocated by the sale of claims against specific commodities

but rather by the sale of securities payable in money. In

light of such remarks, the interpretation of commodity futures

contracts as securities deserves clarification. An attempt

is made to relate the results of this essay to those of

Arrow.1/

II. Assumptions and Technology of the Model with Contingent

Claims

The model is a pure exchange economy with random endowments.

Before the random endowments are realized, each individual

can decide on the quantity and type of contingent claims to

purchase or issue. After endowments are realized, contingent

claims are executed and trade and consumption take place in

spot markets. In the model no actual transfer or consumption

of resources takes place in forward markets; only claims are

traded. In spot markets there is no uncertainty; every

individual knows his endowment and the market price. An

individual's consumption is not limited to claims acquired

in forward markets--retrading is possible in spot markets.

Such retrading is crucial to the propositions of this paper.



In the model there are C commodities, I agents, and S

states. Let Z. iR denote the exogenous endowment of agent

i in state s with element Z for commodity c. By assumption
isc

for each state s and each agent i, Z. > 0 for some c.
isc

Also Z. > 0 for each state s and each commodity c.
i=1 ise

Let C. CRC denote the consumption of agent i in state s.
is +

Let 7is denote the subjective probability for agent i that

state s will occur. It is assumed that .is > 0 for each-s

agent i and each state s.

Prior to the realization of the state, each agent

maximizes S .1 Uis (C ). It is assumed that
s=l is is

(i) Uis() is a function of class C 2 from RC to R1with

is
strictly positive first partial derivatives; UC (0) = 0
(ii) Uis (*) is strictly concave.

By construction spot markets are mutually exclusive, and

hence commodity C can be taken as the numeriare in each spot

market. Then, from (i) the marginal utility of the numeraire

is infinite at the origin. Under property (ii) each agent

is said to be risk averse. These assumptions on preferences

and endowments are sufficient to ensure the existence of a

competitive equilibrium with complete markets for contingent

claims and the existence of a competitive equilibrium in

2/each state s.-

Let P ER denote the spot prices in terms of commodity
s

C in state s with element Psc for commodity c. Let YisER

denote the expenditures of agent i in terms of commodity C

in state s. Then Yis P sCis. Let his (Yis Ps )gRC
is s 15 15 15'

1



denote the commodity demands of agent i in state s. That

is, hi. (Yi ,P ) is a maximizing choice of C. for the function
is is s is

Uis(Cis) subject to the constraint that Yis = P s C.is An

indirect utility function ViS(*,*) is then defined as

V (Yis' P s ) = Ui s [h i s (Yi s' P s )]. It is important to note

that there is no uncertainty about the price vector Ps which

will prevail in state s, though there may be disagreement

over the probability that state s will occur.

Complete markets for contingent claims are described as

follows. Each agent can issue or purchase contingent claims,

each of which entitles the holder to one unit of the specified

commodity if a particular state occurs. Let Xis. denote the

claims on commodity c in state s held by agent i after

trading in forward markets, with X. ERC . Then, given the

endowments, (X.isc-Zi. sc) is the excess demand for such claims

in forward markets. Equilibrium in the market for claims

exists when 1 (X. - Zisc) = 0 for each state s and each
i=l isc ise

commodity c. Let r denote the price of one claim onsc

commodity c in state s in terms of some abstract unit of

account. The budget constraint for agent i in the market

for claims is that the net value of his excess demands for

claims be zero, or

S C
C r (X.-Z. ) = 0.

s=l c=l

With contingent claims an agent's income in state s is

the value of his commodity claims in state s. That is,

i
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Y. P *X. . By property (i) of Uis(), V1is(0,P) = co for
is s is s

3/
each state s, and therefore in equilibrium Y. > 0.-

is

In summary the objective of agent i is to find a critical

point of the function

S C S C
isT isV  ( L P X. ,P ) - c r sc(X isc-Z )

s=1  c s SC S S "SC
s=1 c1 s=l cl sc sc sc

where X is a Lagrange multiplier. This yields first order

conditions

is y*
is P V (Yi ,P ) - rsc = 0 s=l,...S c=l,....C

S C

rs(X. -z. ) = 0
s=1 c=1 s

where here and below the superscript * denotes maximizing

quantities. As noted, Y. > 0 for each state s.
is

As P = 1 for each state s, in equilibrium r /r = P .
sC sc sC sc

This condition can be derived from the first order conditions

above.

*
In general a maximizing choice {Xis; s=1,...S} will not

be unique. For suppose {Xis; s=1,...S} are maximizing

quantities. Then with spot markets agent i will be indifferent

among all choices {Xi ; s=l,...S} such that P *X. =
is s is

P .X. = Y. . That is, given contingent commodity prices
S iS iS

and future spot prices, agents act as if selecting expenditures

over states. In subsequent spot markets agents can use

those expenditures to acquire maximizing commodity bundles.

An additional restriction consistent with a maximizing

choice of expenditures is that there be no spot markets,
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i.e., that each agent consume the commodities acquired with

claims. This paper examines the constraints associated with

futures contracts. For each agent i and each commodity c,

these constraints are of the form (X. -Z. ) = (X. -Z. )
ISC 1SC 1WC lWC

for all states w and s.

III. The Welfare Implications of Futures Markets

The principal result of this section is that if there

are at least as many goods as states, then futures markets

with subsequent spot markets may achieve an optimal allocation

of risk-bearing.

In the propositions which follow it will be supposed

that there exists a competitive equilibrium with complete

contingent commodity markets and with no trade in subsequent

spot markets. Given the market clearing claim prices

{r s; s=l,...S; c=l,...C}, an S by C matrix P" can be defined

with entries P = r /r . This matrix can be interpreted
sc sc sC

as the matrix of spot prices which is implicit in the initial

is * is *
equilibrium. That is, P = U (X )/U (Xis) for each

sc c is C is

commodity c, each state s, and each agent i. It will be

shown that the matrix P" may also be the matrix of equilibrium

spot prices given a restriction to futures trading.

Proposition I-4/: Suppose that a Pareto optimal allocation

{Xi s; s=l1,...S; i=l,...I} can be supported as a competitive

equilibrium with complete markets for contingent claims and

with no trade in spot markets with endowments

{Zi s; s=l,...S; i=1,...I} and claim prices

I



12

{rsc; s=1,...S; c=l,...C}. Suppose also that the rank of

the matrix P" is S. Then with the same endowments,

{X ; s=l,...S; i=l,...I} can also be supported as a competitive
is

equilibrium with futures contracts and subsequent spot

markets.

Proof: Given that the S by C matrix P" is of rank S, attention

is limited to cases in which C > S. And as P" is of rank S,

it is possible to delete C-S columns from P" and leave a

square matrix P of rank S. Then without loss of generality

commodities can be numbered in such a way that the S commodities

with prices in P are the first S commodities.

Given the endowments {Zis; s=1,...S; i=l,...I}, define

implicit endowments of futures contracts

{E. ; c=l,...S; i=l,...I} to satisfy the following equations:

C

P P ... P Ei Zilc P
11 12 lS il 1 lc

c=l

C
PS P EiS Z is PSc

S1  SS ZiSc Sc
c=l

or PE. = Y.. As P is of full rank, this equation is well
1 1

-1
defined and E. = P Y.. That is, agent i can issue futures

1 1

contracts on commodities one through S up to the limits of

his ability to honor those claims in spot markets as given

by the incomes P *Z. for each state s. If the optimal

allocation {X. ; s=1,...S; i=1,...I} is to be achieved,

agent i must enter the spot markets holding futures contracts

{Qic; c=l,.. .S} where
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cl

P S1 PSS QiS iScSc

c=1

* -1 *
or PQ. = Y. and Q. = P Y.. It is claimed that such an

allocation of futures contracts cahen frbe achieved in futures

markets at appropriately selected futures prices.

First it must be shown that individual budget constraints

are satisfied.

S C
D= 2G(Q E D(Y .r)

scic- sG sc isc isc1 1 1 1

c=1 c=1

Summing down rows

S S S C
I (Q. -E. )( r ) = r (X. -Z. ).
c=i s=1 s=1 c=l c i

But by hypothesis

S C
r (X. -Z. ) = 0.

SC iSC 1SC
s=l c=1 c

Hence

S

(Q. ic-Ei. )f = 0.

c=1
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S

Here f = Si r s can be interpreted as a futures price of

commodity c. It remains to show that all such actions by

individuals are consistent in the sense that futures markets

clear. From above,

1I I ^

(Q.-Ei) = P (Yi-Y ) => (Q.-E.) = (Y.-Y.).
i=1l1 1 i=l 1
i 1 i=1

But

C I . C

C (Y.-Y.) =P (X. -Z.

1 1 (isc-Zisci=lsci=1 .

By hypothesis

I
) = 0.

(Xiscisc
i=1l

Therefore

I

(Q.-E.) = 0,
1 1i=l

and futures markets clear.

Finally it is argued that each spot market is in equilibrium

at prices P . All agents act as if the matrix P" is the

matrix of spot prices given a restriction to futures markets.

It has been shown that at those prices agents can achieve

the same distribution of incomes across states as in the

initial allocation. That is, each agent is on the same
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budget line in each state as in the initial allocation. As

spot markets were in equilibrium initially at prices Ps,

spot markets of the restricted model are also in equilibrium

at those same prices. Q.E.D.

It should be noted that in the proof of Proposition I

it is not required that actual delivery be made in spot

markets of commodities which were sold forward. It is

supposed that agents accept delivery of all commodity bundles

which when valued at spot prices yield incomes equivalent to

the yield of the futures contract in question.

Proposition II: Suppose there exists an equilibrium in

complete markets for contingent claims and no trade in spot

markets in which the matrix P" is of rank S. Then at least

one equilibrium to the model with complete markets for

contingent claims and subsequent spot markets has the property

that all contracts are unconditional. The allocation of

that equilibrium will be Pareto optimal.

Proof: The proof follows immediately from Proposition I and

the optimality of the initial equilibrium. Q.E.D.

An attempt is now made to relate these results to those

of Arrow [2]. His principal conclusion is that an optimal

allocation of risk-bearing can be achieved by competitive

5/
securities markets with subsequent spot markets.-- He

emphasizes that a security is a claim payable in money in

contrast to claims against specific commodities. Yet in the

context of a pure exchange economy, money is no more than a

numeraire. For example, if the Cth good is selected as a
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numeraire in each of the mutually exclusive spot markets, a

pure security yielding one monetary unit if state s occurs

and zero otherwise is nothing other than a contingent claim

on commodity C in state s. It can be shown by a proof quite

similar to that of Proposition I than any optimal allocation

can be achieved with S securities whose returns are linearly

independent; in a pure exchange economy, securities are

linear combinations of contingent commodity claims, and

security returns are in terms of equilibrium spot prices.

Hence futures contracts are securities, and Proposition I

may be viewed as an extension of Arrow's initial results.

The hypothesis that the matrix P" be of rank S should

be subject to some scrutiny. In what follows an example is

given in which P" is not of rank S and in which an optimal

allocation would be attained though trade be restricted to

futures contracts with subsequent spot markets. In a second

example in which P" is not of rank S, an optimal allocation

would not be attained given such a restriction. The hypothesis

that P" be of rank S in Proposition II cannot in general be

weakened though there are special cases in which it is not

necessary.

Example One

Consider an economy in which I agents have identical,

homothetic, state independent utility functions U(') over

two goods, (X) and (Y). Suppose in addition that all agents

have identical endowments over states as in Table I, with

is = for all agents i and j for each state s.is is
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Table I

Endowments of [(X),(Y)]

state one (x,y)

state two (ox,ey)

Here 0 < e. The equilibrium relative spot price will depend

only on the ratio of the aggregate endowment of (X) to the

aggregate endowment of (Y) and will be constant over states.

Hence P" is of rank one. Yet, trivially, agents will consume

their endowment across states; optimal allocations will be

attained in a competitive equilibrium with no active markets

of any kind.

Example Two

Consider an economy in which I agents have identical,

homothetic, state independent utility functions U(') over

two goods, (X) and (Y). Agents can be divided equally into

two groups, A and B, the endowments of which are listed in

Table II.

Table II

Endowments of [(X),(Y)]

group A group B

state one (x+e,y) (x-e,y)

state two (x-e,y) (x+e,y)
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It is assumed that il =  i2 = 1/2 for each agent i. In a

competitive equilibrium with complete markets, agents of

group A will agree to give up e units of (X) contingent on

state one for e units of (X) contingent on state two, and

conversely for agents of group B. In such an equilibrium

each agent will have the same consumption bundle across

states. However the equilibrium spot price will again be

constant over states. If trading were restricted to futures

contracts with subsequent spot markets, no futures contracts

would be actively traded; to avoid arbitrage the relative

futures price must be the same as the relative spot price,

and a futures contract would not alter the distribution of

income across states. An optimal allocation would not be

achieved.

As noted in the proof of Proposition I, if S > C, P"

cannot be of rank S. It is useful to consider the way in

which the proof of Proposition I fails for such economies.

From Proposition I there is need of an equation of the form

PQi = Y. where P is an S x C matrix, Qi is a C x 1 column

vector, and Y. is an S x 1 column vector. With S-C more
1

equations than unknowns, such systems will in general be

inconsistent. A necessary condition for allocations to be

Pareto optimal is that the rate of substitution of contingent

commodities be equal for all individuals. With complete

markets all agents face the same price ratios for all pairs

of commodities and equality of rates is ensured. The
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inconsistency of the above equation suggests that with

S > C, there are not enough prices or trading instruments to

achieve such an equality of rates.

This can be illustrated in rather heuristic fashion by

consideration of a special case--three states and two commodities.

Suppose the rates of commodity substitution were equal for

all individuals. Let RCS' denote the rate of substitution

of the first commodity in state one for the second commodity

in state two, and let RCS" denote the rate of substitution

of the first commodity in state one for the second commodity

in state three. Let f denote the forward price of the first

commodity in terms of forward units of the second commodity.

Let Xi F denote the net forward purchase by individual i of

the first commodity in the market for claims. Then the

following equations must hold:

is iF
7. PIVI [P Z. +Z. +X (P -f),P ]

RCS 11 11 1 11 ill i12 11 11

7. Vis [PZ.+Z +X" (P - f ) ,P712V 1 P21 Zi21 22+ X  21 'P21

RCS" = ilIV .ill

. Vis [P Z + Z  +XiF (P -f),P ]

is iF
s(., P ) is continuous with respect to X with

V sl
1

V (O,Psl) = oo, and so the existence of a solution for each

equation follows from the intermediate value theorem. Yet

iF
in general there is no X which solves both equations. In

general then, with S > C, the equilibrium of the restricted

model is not Pareto optimal. It also follows that there

exists in general an allocation which is Pareto superior and
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which could be supported with a state dependent redistribution

program by a competitive equilibrium in complete markets for

6/
contingent claims.-

If tastes were identical, state independent, and homothetic,

it would be possible to make sharper welfare comparisons.

As noted above, spot prices would then be independent of the

direction and type of forward contracts. If there were

active forward markets, and if an individual chose not to

participate in such markets, then his consumption possibility

set would be as it would have been had there been no forward

markets; the possibility of forward transactions can only

make him better off. Hence the allocation of the model

restricted to futures contracts with subsequent spot markets

would be Pareto noninferior and possibly Pareto superior to

the allocation with all forward markets prohibited.

IV. Concluding Remarks

Jacques Dreze [3] has stressed the need for research

into the functions and shortcoming of existing institutions

and for the application of standard welfare economics based

on Pareto optimality to limited exchange opportunities for

risk-bearing. The objective of this essay was to examine

the workings and welfare implications of futures markets and

to place those markets in the context of complete markets

for contingent claims. It was found that with at least as

many goods as states, pre-state futures markets with post-

state spot markets may support Pareto optimal allocations.



21

A future contract can be viewed as a security whose state

specific return is the endogenous market-clearing spot

price.

It is assumed in Propositions I and II that agents know

the distribution of spot prices which is consistent with

their actions in forward markets. If the full set of markets

is available prior to the realization of the state, then

the market-clearing spot prices are known to everyone. If

only futures markets are permitted, then the prices of

forward markets do not convey information as to the future

spot prices. Hence agents are assumed to have common if not

7/rational expectations.- This assumption may be more palatable

if for example tastes are identical and homothetic, for then

spot prices are independent of the direction and type of

contracts made by agents in forward markets. Without such

an assumption, the distribution of spot prices will in

general depend on the actions of all agents in the forward

markets. It is this type of simultaneity that has led

Radner [5] to question the existence and optimality of a

competitive equilibrium if there are futures markets with

subsequent spot markets. Jerry Green [4] has dealt with the

question of existence of a temporary equilibrium given

exogenous subjective distributions over future spot prices,

yet he does not propose a mechanism of expectation formation.

Though rational expectations have been assumed by many

authors, the objections raised by Radner are deserving of
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further analysis. However such an analysis goes well beyond

the scope of this paper.

The ultimate intent of a essay of this sort is to

explain why futures contracts with subsequent spot markets

is a prominent institutional configuration. If agents were

indifferent between complete markets for contingent claims

and futures contracts with subsequent spot markets, and if

there were a cost associated with the former contracts which

is not associated with the latter, then one structure would

emerge endogenously. A cost which might be associated with

contingent but not with futures contracts could be the cost

of state verification. It is in this sense that the requirement

that P" be of rank S is fundamentally disappointing. If P"

is of rank S, then no two rows of P" can be identical.

Agents will be fully informed by the spot market prices of

which state has occurred. State verification is costless

and is no obstacle to the making of contingent contracts.

Futures contracts with subsequent spot markets may allow

agents to do just as well, but there is nothing in the model

to lead them to choose one structure over the other. Making

the choice of market structure endogenous is fundamental to

coherent economic models. This is being pursued in further

research.

1



FOOTNOTES

-/To facilitate comparison some of Arrow's [2] notation

is retained.

2/
-See Arrow-Hahn [1]. As each agent has strictly

positive marginal utility for each good, all agents are

resource related.

3/In equilibrium in state s, P is strictly positive by

virtue of property (i).

- I am indebted to Paul Anderson who initially suggested

the condition that P be of full rank.

5/
- This conclusion is based on the premise that the spot

price which will prevail in each state is known to all

agents.

6/
6/I am indebted to Steve Salant for this comment.

7/7/For a distinction between common and rational expectations

see Radner [6, p. 53].
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ESSAY II

A NOTE ON THE DIRECTION OF FUTURES TRADING

IN A GENERAL EQUILIBRIUM MODEL

I. Introduction

A standard dichotomy for traders in futures markets

originated with the work of Keynes [8] and Hicks [4]. In

their theory, risk averse hedgers seek to reduce price risk

by selling forward that portion of supply which is planned

or fixed in advance. On the other side of the market are

speculators who seek a profit by buying forward when the

futures price is below the spot price expected to prevail at

the time of maturity. It is the essence of speculation that

the speculator puts himself into a more risky position as a

result of his forward trading.

This essay argues that such a partial equilibrium

terminology for traders in futures markets is not useful.

It is shown that in a pure exchange economy with random

endowments, risk averse agents use futures contracts as a

hedge against the random valuation of those endowments. In

such a model, agents do not seek to reduce risk by purchasing

comsumption bundles forward; this is illustrated by an

example in which agents buy forward the good with which they

are endowed. It is argued that in general the direction of

trade in futures markets depends on tastes and endowments as

25
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in standard theory. It is also argued that there need be no

special relationship between a futures price and the price

expected to prevail in spot markets; as with the direction

of trade, the relationship of a futures price to spot prices

depends on all the parameters of the model.

II. Assumptions and Technology of the Model

The model is a pure exchange economy with random endowments.

Before the random endowments are realized, each agent can

decide on the quantity and type of futures contract to

purchase or issue. After endowments are realized, futures

contracts are executed, and trade and consumption take place

in spot markets. In the model no actual transfer or consumption

of resources takes place in futures markets; only claims are

traded. In spot markets each agent knows his endowment and

the market price. An agent's consumption in spot markets is

not limited to initial endowments and forward purchases--

retrading is possible. Such retrading is crucial to the

central propositions of this paper.

In the model there are two goods, denoted (x) and (y),

and m agents. Let Q denote a set of n states with typical

element w. Let Z (w)' = [Z (w), Z (w)] where Z (w) denotes
x y J

the exogenous endowment of commodity j in state w for agent

i. For each state w and for each agent i, Zi(w) > 0 for

some commodity j. Also = 1Zi(w) > 0 for each state w and

each commodity j.

Each agent is assumed to maximize expected utility.

Let c.(w) denote the consumption of commodity j in state w
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by agent i. Let g(w) denote the probability that state w

will occur. It is assumed that g(w) > 0 for each state w.

Then agent i acts as if to maximize Lw g(w) U [Ci(w) Ci(w)
weQ x y

with respect to Ci(w), j = x,y. Note that the function Ui(",')
J

does not depend on the state w. The following properties

are assumed:

(i). U (,) : R2 + R1 is of class C 2 with first partial

derivatives U ( ' , ' ), U ( ' , ' ) strictly positive. Also

U1(0,0) = + o

(ii). The Hessian of Ui(",*) is negative definite.

Under property (ii), U i(, " ) is strictly concave, and all

agents are said to be risk averse.

By construction spot markets are mutually exclusive,

and hence (x) can be taken as the numeraire in each spot

market. Then let P(w) denote the price of (y) in terms of

(x) in state w. Let p(w) = [1,P(w)]. Let I (w) denote the

expenditures in terms of (x) in state w by agent i. Then

I (w) = P(w)C (w) + C (w). Let h i [I (w), P(w)] denote the
y x J

demand for commodity j in state w by agent i as a function

of I (w) and P(w). Then, taking Ii(w) and P(w) as parameters,

h [I (w), P(w)] is a maximizing choice of Ci(w) for the
J J

function U [C (w), C (w)] subject to the constraint that
x y

P(w)Ci(w) + C (w) = I (w). An indirect utility function
y x

V ( ' ,') is defined as

Vi[i(w), P(w)] = Ui{hi[i(w), P(w)], hi[ i ( w)  P(w)

x y

In pre-state futures markets each agent can make commitments

to purchase or sell in post-state spot markets specified
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amounts of specified commodities at specified prices independent

of the state which occurs. More formally, let Xi and Yi

denote the forward purchases of (x) and (y) respectively by

agent i. As futures markets and spot markets are mutually

exclusive, (x) may also be taken as the numeraire of futures

markets. Let F denote the price of (y) in terms of (x) in

futures markets. The budget constraint for agent i in

futures markets is then of the form

(1) X + FY = 0

Then from equation (1)

I i (w) = p(w) Zi (w) + Yi[p(w)-F]

In summary, taking spot and futures prices as parameters,

agent i acts as if to maximize

(2) H (F,Y i ) = wQwg(w)Vi{p(w) Z(w) + Y [P(w)-F], P(w)}

with respect to Yi subject to constraints of the form Ii(w) > 0

for each state w. By property (i) of U i (.,.), Vl [0,P(w)] = + m,

and therefore in equilibrium in each state w, li(w) > 0.

(Note also that by property (i), 0 < P(w) < oo in a competitive

equilibrium for each spot market.)

In a competitive equilibrium with spot and futures

markets, the spot prices which each agent takes as parameters

in choosing futures contracts must also be prices for which

spot markets are in equilibrium. More formally, equilibrium

spot prices are those for which mw P(w)] - Z(w)} = 0

for each commodity j and each state w. In general, equilibrium

spot prices will depend on the existence and direction of
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futures trading. For purposes of simplification the following

property is assumed:

(iii). Preferences of all agents are identical and homothetic.

The superscript on utility functions is now deleted.

Under property (iii) the equilibrium spot price of state w

will be a function of the ratio of the aggregate endowment

of (x) in state w to the aggregate endowment of (y) in state

w. That is,

m m m

U2[Z z (w), Z (w)] (w
i=l x i=l y i1

P(w) = = 8

m i m m i
U z (w), Zi (w) ]  Z (w)
i=1  x i=1 Yi=l

with 0 (.) strictly monotone increasing. Hence under (iii),

equilibrium spot prices will be independent of the existence

and direction of futures trading. Note also that the assumptions

on preferences and endowments made above do ensure the

existence of a unique competitive equilibrium in each state

1/
w.- There remains the task of verifying the existence of a

futures price F for which futures markets are also in equilibium,

2/
i.e., -

m m
x i -  Y i= 0.

i=1 i=l

III. Competitive Equilibrium with Futures Markets

The purpose of this section is to establish the existence

of a competitive equilibrium with spot and futures trading

with the technology and preferences assumed thus far. In

the process some characteristics of the demand for futures

contracts are derived.
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Let P' = Min P(w) and P" = Max P(w). If P' = P",

then in an equilibrium with futures markets F = P"; if

F # P", riskless arbitrage would make Hi(F,Yi) unbounded.

For F = P' = P", futures contracts will not alter the distribution

of expenditures across states, and therefore futures markets

will not be active. It is assumed subsequently that P' < P".

Let E = (P', P"). From the above remarks the search for a

market clearing futures price can be limited to FEE.

Lemma 1: For each FEE, V1 1[., P(w)] < 0 and Hi(F,.) is

strictly concave.

Lemma 1 follows from property (ii) and the proof is not

given here.

By homotheticity hl[I (w),P(w)] is a linear and hence

continuous function of I (w). Then V[., P(w)] is continuous,

and therefore Hi(F,.) is continuous. Given some fixed FEE

let S1 = {w: F-P(w) > 0} and let S 2 = {w: F-P(w) < 0}.

Then from the constraints that li(w) > 0 for each state w

Max (w Z w) < Min p(w) Zi(w)
WES F-P(w) wES F-P(w)

i

Hence for each FEE a maximizing choice of Yi does exist as a

continuous function on a compact set achieves a maximum on

that set. By lemma 1 the choice must be unique. This

optimum value of Yi will be denoted Y = ' (F). A necessary

and sufficient condition for a maximum is the first order

condition:

(3) C g(w)[P(w)-F]V1{p(w) Z(w) + Yi [P(w)-F], P(w)} = 0
wEQ
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i )* i* i *
Let I (w) = p(w) Z'(w) + Y [P(w)-F]. As noted I i (w) > 0

for each state w. Hence Y will be an interior solution.

Lemma 2: Given properties (i)-(iii) of U(*,.*), i(F) has a

continuous derivative.

Proof: Let

G (F,Y ) = g(w)[P(w)-F] V1 {p(w) Zi(w) + Y [P(w)-F], P(w)}

w C

Then for each FE, G [F, (F)] = 0; G (.,.), G (*,*) are

i i
continuous with respect to F and Y ; and G2 (.,.) < 0 by

lemma 1. Hence the implicit function theorem applies. Q.E.D.

Lemma 3: Under properties (i)-(iii) of U(*,*), ii(F) - +c as

F - P' and g(F) - - oo as F - P".

Proof: Suppose it were not the case that i(F) + oas

F P'.

Then one can construct a sequence {F } in E such that

F - P' as n + o and the corresponding sequence (l(F ) is always
n n

less than some positive number K. From the constraints that

li(w) > 0, there exists some N1 and some B such that for all

n > N, (Fn) > B. Hence i(Fn ) is bounded in some left-

deleted neighborhood of P'. Let W = {w:P(w) = P' }. Then

there exists some N 2 such that for all n > N2 and for each

w U, P(w) > F . Then
n

lim Gi [F, i (F )] =
F P' n n

n

lim 7 g(w)V{p(w) Zi (w) + i(Fn) [P(w)-F ], P(w)}[p(w)-F n] +
F P' wW n n

n

lim Z (w) (

F n n
n
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> 0 + wg(w)V1 {p(w) Zi (w) + K[P(w)-P'], P(w)}[P(w)-P'] > 0

since V 1 [*,P(w)] is continuous and strictly positive. This

is the desired contradiction as for each FEE, Gi[F, i(F)] = 0.

The proof that '(F) - co as F + P" follows similarly.

Q.E.D.

Proposition I: Under properties (i)-(iii) of U(.,.), the

model with futures contracts and subsequent spot markets

possesses a competitive equilibrium.

Proof: Define (F) = i= 1  (F). By lemma 2, i (F) is

continuous on E. By lemma 3 there exist F' and F" in E such

that p(F') > 0 and 4(F") < 0. Therefore by the intermediate

value theorem there exists some F* such that (F*) = 0.

This establishes existence. Q.E.D.

IV. On the Direction of Futures Trading

The purpose of this section is to examine the essential

workings of futures markets in the stochastic general equilibrium

framework of the model. It is shown that risk averse agents

use futures contracts as a hedge against the random valuation

of initial endowments. In general the direction of trade

and the equilibrium futures price depend on tastes and

endowments as in standard theory.

Some additional restrictions on preferences and endowments

are needed. It is assumed that all agents are endowed with

either (x), agents of group A, or (y), group B.
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Hence

i(w) SiX(w), icA
Z (w) = x

iiB

i  S Y, i8B
Z - y

0 i A

)Si =1; Si = 1; 0 < Si < 1; 0 < Si < 1.
iA x  y x y

iCA iB X

X(w) represents the aggregate over all individuals of the

economy's endowment of (x) in state w. Y is nonstochastic

and represents the aggregate endowment of (y). One can

interpret the model as consisting of two groups. One group,

farmers, produces only wheat, the output of which is exogenous

and stochastic. Bad weather is assumed to diminish the crop

to the same extent for all farmers. The other group produces

only manufactured goods, the output of which is certain. In

terms of the technology of section II, individuals of group

B have degenerate distributions of holdings of (y), and

members of group A have identically distributed holdings of

(x) up to a constant of proportionality. Without loss of

generality it is assumed that X(w) is strictly increasing

over the total of n states. Hence P(w) is also strictly

increasing.

An additional property is assumed:

(iv). All individuals have constant relative risk aversion.

A coefficient of relative risk aversion, C , is defined

in terms of the indirect utility function:

W
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Ci = Ci [ i(w), P(w)] = -V 1 1 [I i (w), P(w)]li(w)/V 1 [I (w), P(w)]

Constancy means that Ci is independent of both prices and

incomes.

A coefficient of absolute risk aversion, D , is defined

as follows:

Di i(w), P(w)] =-Vll[Ii(w), P(w)]/V1l[I(w), e(w)

Then Di[I (w), P(w)] = Ci/li(w) and Di is strictly decreasing

in i (w) and independent of P(w). (For notational purposes

Di will be taken as a function of li(w) alone.)

Lemma 4: Given properties (i)-(iv) of U(-,), (F) is

3/
strictly monotone decreasing.-

Proof: By lemma 2 i(F) is differentiable, and

i yi*
i( -G (F,Y )

dF i yi*
G2(F,Y )

G (F,yi*) = -Y g(w) [P(w)-F]V (w) P(w)-
w c

l' *
(g(w)Vw1, P(w)]

G2 (F,Y * ) - g(w)[P(w)-F] 2 V[ (w) * , P(w)] < 0
wgQ

It remains to establish that GI(F,Y ) < 0. For suppose

[P(w)-F] > 0 and that Yi* > 0. Then

Di {p(w)Z(w) + Yi [P(w)-F]} < D'[p(w) Zi(w)]
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Hence

[P(w)-F]V1 1 {p(w) Z (w) + Y i*[P(w)-F], P(w)} >

-V l {p(w) Zi (w) + *[P(w)F],(w)-F], P(w)} D [p(w) Z (w)][P(w)-F]

If [P(w)-F] < 0, this relationship still holds. Hence,

- g(w) [P(w)-F]V11[Ii(w),P(w)] >

- g(w)[P(w) -F ]D [p (w) Zi(w) ]Vli

For members of group A, Di[p(w) Zi(w)] = D [SiX(w)] is

strictly monotone decreasing with respect to w. For individuals

of group B, D [SyY P(w)] is strictly monotone decreasing
y

with respect to w. Hence, from the first order condition

(3),

Sg(w) [P(w)-F]V1 1 [I (w) , P(w)] > 0

wcQ

and dli(F)/dF < 0. The case of Yi* < 0 is similar with

appropriate changes in sign. Q.E.D.

Following Arrow [2], if relative risk aversion is

constant, the willingness to accept a bet should remain

unchanged as the bet and income are increased proportionately.

Formally, this leads to lemma 5.

Lemma 5: In this example, with properties (i)-(iv) of

U(*,*), let Y denote an optimal choice given exogenous

endowment p(w) Z(w), and some fixed FEE. Then, if the

endowment changes to k[p(w) Zi(w)], the optimizing choice

will change to kYi* for the same fixed F.
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Proof: Following Stiglitz [9], constant relative risk

averse functions are of one of the following forms where

a(.) and d(*) are functions of P(w):

V[Ii(w), P(w)] = a[P(w)] In [li(w)] + d[P(w)]

V[I i (w), P(w)] = a[P(w)][ i (w)] c + + d[P(w)]

The proof follows immediately from the first order

(3). Q.E.D.

Corollary to Lemma 5:

p(w) Zi (w) changes to

From lemma 5 one

of two individuals in

and B has all of (y).

-1 < c< 0

conditions

If Yi*= 0 initially, then as

i 
*

k[p(w) Z (w)], Y will remain zero.

may treat the economy as if consisting

which A has all of (x) in all states

Each individual treats prices as

parameters.

The following property is also assumed:

(v). U(',') displays constant elasticity of substitution 6.

Here

d{log [Ci/C i ] }
6 = x y

d{log[U2 (C ,C)/U (C ,Cy) ] }

Let R(w) = X(w)/P(w)Y. The findings are summarized in the

following proposition.

Proposition II: Under the assumptions of the example with

properties (i)-(v) of U(",*),

(i). if a > 1 then YA < 0,

(ii). if a = 1 then yA*= yB* = 0,

(iii). if 0 < c < 1 then YA* > 0.
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Proof: Case (i) will be considered in detail. In the

argument which follows, it is useful to refer to Figure 1.

Let

GA(F, yA) =

c g(w)[P(w)-F]V1 {X(w) + YA[P(w)-F], P(w)}.
wEQ

By lemma 2 and lemma 3 there exists some F" such that

GA(F ' , 0) = 0. Define scQ such that P(s) < F" < P(s + 1).

Let

GB(F, yB) =

L g(w)[P(w)-F]V1 P(w)Y + YB[P(w)-F], P(w)}.
wcQ

By homotheticity, with a > 1, R(w) is a strictly increasing

function of w. Let k = 1/R(s). Then X(w)/R(w) > kX(w),

w = s + l,...n. By lemma 1, V1 1 (,.) < 0, and by construction

P(w)-F" > 0 for w = s + 1,...n. Therefore,

n

g(w) [P(w)-F"]V1[X(w)/R(w),P(w)] >
w=s+l

n

g(w) [P(w)-F"]V1[kX(w),P(w)].
w=s+l

Similarly, for w = 1,2,...s, X(w)/R(w) > kX(w) and

P(w) - F" < 0. Therefore,

B n
G (F", 0 ) > g(w) [P(w)-F"]V1 [kX(w),P(w)].

w=1

But by the corollary to lemma 5,

n
GA (F",0) = 0> [ g(w)[P(w)-F"]Vl [k(w),P(w)] = 0.

w=1

Therefore, GB(F",0) > 0. By a similar argument there exists

an F' such that GB(F',0) = 0 and GA(F',0) < 0. By lemma i,
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An Equilibrium With Futures Markets

Yi*

0I I

0 P I1) F" F * F '

Figure 1

1
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GB (F ", 0) > 0=>B(F") > 0 and GA (F',0 )< O=>A(F ' )< O.

Define (F) = A(F) + B(F). By lemma 2, 4(F) is continuous.

As (F") > 0, f(F') < 0, there exists an F* such that

F" < F* < F' and 4(F*) = 0. F* is an equilibrium forward

rate with A(F*) < 0. Uniqueness follows immediately from

montonicity of lemma 4.

Case (ii). If a = 1, then P(w)Y/X(w) = k and by lemma 5,

A and B will always be on the same side of the market. The

equilibrium solution must be YA* = YB* = 0.

Case (iii) follows from case (i) with appropriate

changes in sign. Q.E.D.

Roughly speaking, if a > 1, the value in terms of (x)

of the exogenous endowment of B increases less as w increases

than does the exogenous endowment of A. In the terminology

of Hildreth [6], for a given forward rate, B is less anxious

to engage in a venture, the outcome of which is negatively

correlated with w. This difference in insurance values

creates a forward market despite agreement on the probability

distribution of future spot rates. With a = 1, A's and B's

exogenous endowments in terms of (x) are perfectly correlated,

and a forward contract has the same insurance value for

each. It should be noted that with a > 1, A will buy (x)

forward even though A is endowed with (x) only and can

anticipate consuming (y) in all states. With active spot

markets, optimal behavior under risk aversion does not

necessarily involve the "elimination of risk" by purchasing

the consumption bundle forward. From the proof of Proposition II



40

it is clear that the equilibrium futures price F* depends on

all the parameters of the model.

V. Concluding Remarks

This essay has argued that a distinction between speculators

and hedgers is not useful in a general equilibrium context.

In a pure exchange economy the direction of trade would seem

to depend on preferences and endowments as in standard

theory. Nor need there be some special relationship between

the futures price F* and the expected spot price Qg(w)P(w).

The expectations hypothesis that F* = weFg(w)P(w) would

seem to have measure zero among all possible configurations

of prices. Attempts to find a suitable definition of speculation

in general equilibrium models may lead to terminological

4/
debates which serve no useful purpose,- while a more general

theory may explain phenomena inconsistent with the Keynes-

Hicks dichotomy.-



FOOTNOTES

1ISee Arrow-Hahn [1].

2Jerry Green [3] has analyzed conditions necessary for

the existence of a temporary equilibrium in a model in which

subjective price distributions may differ. Though more

general than the model of this paper in many respects, the

Green model assumes that endowments are certain and that

utility functions are bounded. The purpose of this paper is

to reveal the essential workings of futures markets by way

of some particular examples.

3/
3/This proof was suggested by a reading of Arrow [2].

4/Recently Hirshleifer [7] has proposed a definition of

speculation in the context of a pure exchange economy with

random endowments.

5/Hieronymus [5] cites a USDA report on the holding of

corn futures on January 27, 1967 which revealed that farmers

held more than a third of the net long speculative position

and were also hedging in the wrong direction.
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ESSAY III

PRICE FIXING SCHEMES AND

OPTIMAL BUFFER STOCK POLICIES

I. Introduction

In actual economies uncertainty as to the direction and

extent of future price movements is pervasive. This has

led some government policy makers to argue that government

buffer stock programs which attempt to fix prices could

reduce uncertainty and increase economic welfare. J. M.

Keynes argued for the establishment of an ever-normal granary

to eliminate the violence of individual price fluctuations

associated with an unregulated competitive system [8].

Other economists respond with the long-held belief that

prices play a crucial role in allocating resources efficiently.

Waugh [11] and Oi [9] have even argued that price instability

may be beneficial, though Samuelson [10] showed that the

fluctuations proposed in a partial equilibrium setting were

not really feasible in a closed model.

To some extent confusion on these issues stems from the

failure of economists to provide coherent stochastic models.

Most economic models are deterministic and hence give the

impression that uncertainty is an anomaly rather than a fact

of life. As for stochastic models, most are partial equilibrium

and hence leave open the question of whether the uncertainty

43
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can be eliminated. This essay takes a modest step toward

the formulation of a coherent general equilibrium model in

which one can analyze price-fixing schemes.

The model adopted is a pure exchange economy in which

the endowments of two goods, (x) and (y), are stochastic.

In each period the aggregate endowments of (x) and (y) are

independently distributed, and each series is assumed to be

independent and identically distributed over time. Both

goods can be stored with no storage costs and no depreciation.

Acting competitively, each of m risk averse individuals

maximizes expected utility over an infinite horizon by

choice of the amount of each good to consume in each period

and the amount to carry over to the following period. The

rate at which (x) exchanges for (y) in each period is the

price upon which the analysis focuses.

Presumably the simplicity of the model is one of its

desirable features. One would suspect that the government

is more apt to set the "right" price if the economy and the

stochastic processes of the economy are not complicated.

For the specific model examined it turns out that regardless

of the price set by the government and regardless of the

initial level of buffer stocks, a price-fixing scheme eventually

fails with probability one. The proof of this proposition

turns on a well-known theorem that random walks with no

drift in R2 pass any boundary with probability one.

The essay proceeds as follows. Section II gives the

assumptions and technology of the model. Section III presents
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a proof that price-fixing schemes will fail eventually with

probability one. The proof is by contradiction; properties

of individual storage decisions are derived on the assumption

that the price will remain fixed, and these properties are

then shown to be inconsistent with the initial level of

government stocks. Section IV discusses the properties of

the model without government and shows that the class of

economies which possess competitive equilibria without

government is nonempty. Section V offers some suggestions

for further research.

II. Assumptions and Technology of the Model

The stochastic nature of the endowments is now made

precise. In each time period there is a finite set of

states Q. Let F be the set of all subsets of Q, and let P

be a probability measure with 0 < P(w) for each ceQ. Then

(QF,P) is a discrete probability space. Let X and Y

denote the economy's total endowment of (x) and (y) respectively

at time t. Xt and Yt are assumed to be independent, non-

negative, Borel measurable functions on (Q,F). Further, X
t

and Yt are each independent and identically distributed over

time. It is also assumed that there exists some wEQ such

that Xt() = Yt(W) = 0. Let Xt = E(X t ) + xt and

Y = E(Y t) + E t where E and E are symmetric and take on
t t yt xt yt

values in the integer lattice. There will also be need of

an infinite product space. Let Q = Q and F = F for all t.t t

Then (t= Rt't=l Ft' ) is the desired space where 1 t=1t
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is the set of all sequences (wi,w 2 ,...) such that wt St for

all t and It=Ft is the smallest sigma-field containing the

cylinder sets.

The maximization problem of each of the m individuals

of the economy is now stated formally. Each individual is

assumed to have a fixed and constant proportion of the

aggregate endowment of each good, 6J and 6j being the jth
x y

individual's share of X t and Yt respectively. Let

ZJ = [6JX ,6Yt]. Let K and K denote the jth individual's
t xt y t x,t y,t

stocks of (x) and (y) respectively at the end of the period

t, to be chosen during period t. Let X and Y denote the
t t

jth individual's consumption of (x) and (y) respectively at

time t. Let Rt denote the relative price of (y) in terms

of (x) at time t. Let r t  [1, Rt ]. Then, regarding as

parameters current and futures prices {Rt; t=1,2,...} and

initial stocks {K j  > 0, Kj  > 0), the objective of individual
x,0 y,0

j is to maximize EO t=1 t-lU (X ,YJ) with respect to
O tl t t

{K , Kj  XJ YJ; t=1,2,...} subject to the following
x,t y,t t t

constraints:

(i X + R YJ < K + RK +
t t t -- x,t-1 t y,t-1

rZ j - Kj  - RK j  t=,2,..
t t x,t t y,t

(ii). X+ RY > 0 t=l,2,...
t t t-

(iii). K 0; K > 0 t=,2,
x,t y,t --

Here 0 < B < i, and Et(') denotes the expectation conditioned

on all realizations up to and including time t. Constraint

(i) is the budget constraint for individual j at time t; to
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be noted is the imposed absence of borrowing possibilities

and forward contracts. Constraint (ii) states that expenditures

at time t must be non-negative. Constraint (iii) states

that the stocks of each good must be non-negative.

U
J (*,) is assumed to have the following properties:

(i). Uj (*,*) = gJ[Hj (*,.)] where gJ(.) is of class C2

with first derivative g (*) > 0 and second derivative

g ("
) < 0. Also

g (0) = 0, g (H) -+ 0 as H + co, and g (H) -+ as H + 0.
j 2 1 2

(ii). H(,): R2  R is of class C with strictly
+ +

positive first partial derivatives. Also H1 (-,-) < 0,

H H H
11 12 1

H H H3
21 22 2 >0

H H0 0
1 2

(iii). i(*,*) is homogeneous of degree one.

(iv). H (X3 ,Yl ) - as (X ,Y ) + (0,Y) for each Y > 0

H2(X' Y') °o as (X ,Y ) (X,0) for each X > 0
2 t t as

Thus Uj (,') is a positive monotonic transformation of a

homogenous of degree one function and is said to be homothetic.

U
J ( , *) possesses properties (ii) and (iv), among others.

III. The Eventual Failure of Price Fixing

The analysis of this section consists of a proof by

contradiction. It is supposed that a government maintains a fixed

price by its willingness to exchange (x) for (y) with the public

at the specified price. In general such a policy requires
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that the government maintain stocks of both goods. Assuming

that the policy is feasible, the behavior relations of

agents are derived; much of the analysis of the paper consists

of solving the stochastic dynamic programming problem with

which each agent would be confronted. The crucial property

which emerges is that individual stocks are bounded. Then,

using the properties of random walks in R 2 , a contradiction

is obtained; with probability one the government's stocks

will be insufficient to maintain the fixed price.

The assumption that price will remain fixed for all

time does not eliminate uncertainty from the decision problem

of the individual; endowments are still stochastic. Yet,

each individual need be concerned only with the total value

of stocks of (x) and (y) in terms of one of the goods, say

(x). The exchange of (y) for a predetermined amount of (x)

in any future period is guaranteed by the government. The

individual's decision problem may be viewed in two stages.

In a given period and state, the individual has available a

known amount of savings in terms of (x) of the previous

period and the realized value of his endowment in the specified

state. He decides on his optimal amount of savings in terms

of (x) and consequently on his current expenditures in terms

of (x). With this timing problem solved, the individual

then chooses his current consumption of (x) and (y) at the

specified price.

To state this more formally the following notation is

needed. Let R denote the relative price of (y) in terms of
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(x) fixed by the government. Then, by assumption, Rt = R

for all t > 1. Let r = [1,R]. Let Kt  K + RK .
t x,t y,t

Let I = X + RYJ. Then, by the strict monotonicity of
t t t

preferences, I = K + rZ j - Kj . By virtue of the separability
t t-l t t

of the objective function over time, maximizing choices of

X and YJ can be expressed as functions of I j and R only.
t t t

Let h (I ,R) and h (I ,R) denote maximizing choices of X
x t y t t

and YJ respectively for the function UJ(X t,Y) subject to

t t tJhe +n i RY It Then an indirect utilitythe constraint that Xt  t t

function V ( " ") is defined by Vj(I ,R) = U [h j (I J , R ) ,h j (I ,R)].
t x t y t

Upon substitution, given K] > 0, the objective of individual
0

j is to maximize E0 Tt- t-l (K-l + r  - tR)with

respect to {K9 ; t=1,2,...} subject to the following constraints:

(i). K + rZ - K > 0 t=l,2...
t-1 t t--

(ii). Kj > 0 t=1,2,...
t -

Constraint (ii) is apparently weaker than the restriction

that Kj  and K each be nonnegative. However, the
x,t y,t

imposition of the latter constraint would not alter the

optimal storage rules for {Kt; t=l,2,...}.

From the homogeneity of H (*,* ) the demand functions

h 3 (,R) and h j (,R) are linear. It follows that V (",R) is
x y

1/ vj 1
strictly concave.- Clearly V (',R) is of class C and

strictly increasing. From property (i) of U j ( * , *) ,

Vj (I,R) + x as I - 0 and V (I,R) + 0 as I m.
1 1

First to be established are the existence and properties

2/
of the solution to the individual's optimization problem.-
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Let W = K + r'Z denote the wealth of individual j at
t t-1 t

time t in terms of (x). The idea is to find a function

fJ(.,.) such that

(1) f (WJ,R) = Sup . .[VJ(W'-Kj,R)+BEtf (rZj +K ;R)I.
0 < Kt < Wt

- t-- t

fJ ( ,) is found by assuming the horizon is finite and

taking the appropriate limit. Let

(2) f 'N(WJ,R) = Max [Vj (W. N,R)+lENf'N-(r.Z- 1 +KN,R)]
0< < W

N

where fjN(.,*) denotes the maximum of expected utility of

individual j with N periods left in the individual's planning

horizon. (Note also that in equation (2), time is measured

with respect to the number of periods left in the agent's

planning horizon.)

From the properties of VJ(.,R) and equation (2) it is

established by induction that fJ'N(W,R) is strictly concave

in W for each N and monotone increasing with respect to N

for each W. (See lemmas 1-5 in the Appendix.) From the

discount rate B and the property that X and Y are bounded
t t

from above, it follows that fJ'N (W,R) is uniformly bounded

with respect to N for each W. (See lemma 6.) Hence for

jleach W > 0, the limit of f 'N(W,R) exists as N o, and this

limit is denoted fJ(W,R). (See lemma 7.) It follows that

fJ (,R) is concave on [0, ° ) and continuous on (0, ° ) with

finite partial derivatives from the left, fJ (W,R), and from1-
the right, f+ (W,R); f (W,R) > f (W,R). (See lemma 3.)

Also fJ(,R) satisfies the functional equation (1). (See
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lemma 8.) Though continuity of fJ(*,R) at zero is not

established, a maximum to the right side of equation (1) is

attained on [0,W ]. (See lemma 9.) As fJ (,R) and V (.,R)

are strictly concave, this maximizer is unique and is denoted

KJ O j (WJ,R). The maximizing level of consumption in terms
t t

of (x) is denoted 3J(W j R).
t,

Given that {KJ; t=1,2,...} is a sequence of current

actions and contingent plans which maximize

V J(WJ -K9R)+ E fJ (KJ+r" ZJ'R)'
t t t t t+l'

it follows that {K j) maximize
t

00

Vj (Wj -KJ ,R) + E T-tvJ(r Z j+ K j  -Kj ,R).
t t t I T-1 T

(See lemma 11.) This justifies the functional equation

approach.

Next to be established are the properties of the Markov

processes K &J (KJ  +rZJ ,R), j=1l2,...m. First, 0 < KJ < W.
t t-1 t t t

For suppose that K t 0. Then IJ  (w) 0. But V (0,R) = 00,
t t+l 1

and hence this could not be optimal; individual stocks are

never zero. Similarly, if K W j, then I 0, and this
t t' t

could not be optimal.

The differentiability of fJ (,R) everywhere has not

been established, but necessary and sufficient conditions for

an optimum with respect to K are

-V.(W-K R) +BE f (r'Z +Kj R) > O0

-V (W -Kj R) +BE fJ (rZ j +K R) < 0.1 t Utl+ t+l t'
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It follows that 4 (.,R) is nondecreasing and J (.,R) is

strictly increasing. (See lemma 12.) Both are continuous.

(See lemma 13.) Also f] (W,R) + 0 as W -+ xo. (See lemma 14.)1+

The important results on the boundedness of individual

stocks are contained in Proposition I.

Proposition I: Given R > 0, let Mj = Max r'Z t() > 0.
wE-2 t

(i). For every R > 0, there exists a unique K , possibly

depending on R, such that q (K +M J ,R) = K > 0.

Also J (O,R) = 0.

(ii). For every R > 0, let A = [0,K ]. Then if K EA, K A
Tt

for all T > t.

(iii). For all K > 0, p{KJAJ i.o.} = 0.
3/

Proof of (i):-

It is useful to refer to Figure 1. As VJ(0,R) = o,

J (Mj ,R) > 0. This establishes a positive intercept in

Figure 1. Now suppose that J03 (K_+M ,R) > KJ for all
t-1 t-l

Kt > 0 so that J(. ,R) stays above the 450 line of Figure 1.

Then it would be the case that for all Ki > 0
t-1-

-Vi(Mj ,R) + Etaf+(r Z ++K -,R) > 0.

Then

lim E8 f (r' Z +K j  ,R) > V (M ,R) > 0.
t 1+ t+l t-1 - 1

K + C
t-1

But f (W,R) + 0 as W + oo and this establishes a contradiction.

Therefore there exists some K such that cJ(K+MJ,R) < Kj .

By continuity and the intermediate value theorem there
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A Fixed Point For (.,R)

A(* ,R)

o K

qA(Kt-1+MJ ,R)

Kjt-1

Figure 1
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exists some KJ such that j(K +M ,R) = K . Uniqueness

follows from the strict monotonicity of J(.,R). As V (O,R) = o,
KJ > 0. Clearly J(0,R) = 0.

Proof of (ii):

Suppose KJ AJ. Then by monotonicity:
t

(KJ+r Z ,R) <  (K +M ,R) = K
t t+l

J(KJ+rAZJ ,R) > 4 J (0,R) = 0.
t t+l

Proof of (iii):

Suppose K > K. Then if for T > t-l, K < K
Suppose Kt_ 1  •, _'T-

case (ii) applies and (iii) is proved. Suppose that K > K*
jt

for all t. It can be shown K K as t + . For suppose
t

that K > K > K *  Then
t-- t-l *

-V(M j R) + BE fj (K +r Z ,R) > 0.
1 ' t 1+ * t+l'

But,

(M +K R) = Kj => -V](M j R) + Etfj (Kj+r Z R) < 0.
* 1'' t 1+ t+l'

Therefore, by contradiction Kj < K and Kj  B > K* as
t t-l t

t ° . By continuity j (B+M,R) = B. By uniqueness B = K3.

Now ~ (K ,R)-K, < 0. By the continuity of J (',R) there

exists some o > 0 such that for all KJE(K ,K +C),

(K ,R)-K < 0. As Kt - K as t - oo, there exists some Tt '

such that for all t > T, < K + . Recall that r'Z + () = 0
t+ t-

and without loss of generality let T = 0. As t=l [1-P ( )] < m,

the probability of never getting a realization of w is zero.

Hence y({K > K i.o.} = O. Q.E.D.
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From Proposition I, it is clear that KJ eventually
t

enters the set AJ with probability one. Hence it is assumed

that K A and hence that Kj is bounded above by K, for all
0 t

t.

Having shown that there exists a solution to each

individual's optimization problem given that the government

is maintaining a fixed price, there will be determined some

{I j=1,2,...m; t=1,2,...}. Given It, individual j will

purchase utility maximizing quantities of (x) and (y) at the

fixed price R. For the policy to be feasible it is specified

that R be an equilibrium price in the sense that any excess

demand for (x) by individuals be matched by an excess supply

on the part of the government. It is now shown that no

price can be maintained indefinitely far into the future

regardless of the initial level of government stocks.

The proof of this proposition turns on associating with

each fixed price R set by the government a pure exchange,

nonstochastic, no-storage economy for which R is a competitive

equilibrium price. In some sense the most difficult price

for which to prove the infeasibility of price fixing is the

competitive equilibrium price for the model with endowments

E(Xt) and E(Yt) for (x) and (y) respectively. Such a price

corresponds to the competitive equilibrium price of the

"average" economy in the model without storage but with

random endowments. For this price, properties of a random

walk in R2 with zero drift are used. Roughly speaking, with

probability one there will be runs over a number of periods
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in which there are smaller than average endowments of (y)

and higher than average endowments of (x). Total incomes

will be at their average values, and agents will wish to

consume average amounts of (y) at the fixed price. But (y)

is in short supply, and eventual failure is inevitable. For

all other prices, properties of random walks with nonzero

drift are used; if the government sets a price of (y) which

is in some sense too low, there will be an excess supply of

(x).

More formally, consider a static pure exchange economy

with fixed endowments. Each agent j has the same utility

function UJ (,') of the stochastic model with storage. Also

let Z = [6JX,6 Y] denote the endowment of agent j where the
x y

share parameters S and J are the same as in the stochastic
x y

model with storage. Then for X > 0 and Y > 0 there exists a

unique competitive equilibrium price R = (X,Y) where

7(',.):(0,° ) - R1 . It is shown by the implicit function

theorem and properties (i) and (iv) of Uj (",) that r(',')
is continuous. (See lemma 15 in the Appendix.) Also by

property (iv), r(X,Y) - 0 as X - 0 for each Y > 0 and W7(X,Y) + co
as Y - 0 for each X > 0. (See lemma 16.)

Proposition II: Given any fixed price RE[0,00) and any

initial level of government stocks of (x) and (y), there

exists with probability one some T* at which those stocks

will be insufficient to maintain the fixed price.

Proof: There are four cases to be considered.

Case (i): R = 0

I
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By property (ii) of U (.,.) agents are never satiated

with respect to consumption of (y). Hence if R = 0, government

stocks of (y) will be depleted in the first period of operation.

Case (ii): R = 7[E(Xt), E(Yt)].

Let GO denote the stock of (y) held by the government

at t = 0, At denote the cumulative net amount of (y) sold to

individuals by the government in exchange for (x) up through

and including time t, and Y denote the aggregate of (y)
t

over all individuals made available for consumption from

private wealth in period t. Also let Sy = T
yT t=1 yt'

SxT x T' and S = [S ,S ]. Then S is a random walkxT t=1xT T xT'yT T

in R and has the property that for any integers B and Bx y

there exists some T* < Oo such that S = B and S = B
xT* x yT* y

4/
with probability one.-- For the proof let B be the largest

y

integer less than or equal to -G -1-j m (K /R), and let B
0 j1* x

be such that m h(6B +6 B R-K ) > 0. This last choice is
j1 y xx y y

possible by the linearity of hj(°,R). In period t the
y

government must sell h(It ,R)-Yt units of (y) to the

public. Then the cumulative net sales of (y) at time T*

will be

T* m m T* T*
A*= [ h j ( I j ,R)-Y ] = h]h( I ,R) - Y

T y t t y t t
t=l j=l j=1 t1 t= 1 t

using the linearity of hJ(*,R). Also,
y

T* * TT* (K J/R) and T t T sjX +6 j ytR) -K
t=1 t - t=l t j=l Kt=1 t - = *xt Y ) K*

From these two inequalities and by substitution one obtains

the following inequality:
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AT* > j (h [6 E(X )T*+6 xS +6 E (Y )RT*+6 S R-K R]}-
T* J. l y x t x xT* y t y yT*

m

E(Y)T* - S - (KJ/R) =
t yT* J=

j=1m

T*{ X hJ[6]E(Xt)+6 JE(Y )R,R] - E(Y )} +y  x t y t t
j=1

m m .

h ( 9 B +6 B R-K ,R) - B - (K /R)
j=1 y  xx y y * y j=l

But by the choice of R,

m
hJ[6SJE(X )+§ E(Yt )R,R] - E(Y ) 0.

y x t y t t
j=1

Hence by the choice of Bx and By, AT, > GO + 1 > G O .

Case (iii): 0 < R < 7[E(Xt),E(Yt ) ].

)(*,*) is continuous and Tr[X,E(Yt)] - 0 as X 0.

Hence by the intermediate value theorem there exists some

X*, 0 < X* < E(Xt), such that R = 7[X*,E(Y t ) ]. Let y = E(Xt)-X*.

Then X = X* + (y+E ), with E(E t+y) > 0. Let ST = T (E+Y)
t xt xt XT t=1 x t

and let S T . As in case (ii) let B be the
yT t=l yt y

largest integer less than or equal to -G -1- jm (K /R).

Then by Feller [5, pp. 202-3], Sxt visits (- oo,a) a finite

number of time for all a > 0. Hence there exists some T*

such that SyT, = By and SxT, is large enough that

mhJ ( 6 S +6 S R-K,R) > 0. Then as in case (ii)

j~=1 yi xxTy yT* *''
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A >T*{ hJ [6 X*+J E(Y )R,R] - E(Y t ) } +
T* j=ly x y t t

m .m o
h (& S +6s s R-K,R) - S - (KR) > G.

y x xT* y yT* yT* j

Case (iv): 7[E(Xt),E(Yt)] < R < oo.

By a proof quite similar to case (iii) initial stocks

of (x) will be insufficient to maintain the fixed price.

Q.E.D.

It might be argued that the expected time of failure is

infinite, and that this mitigates the conclusions of

Proposition II. However, Proposition II asserts that failure

occurs with probability one in finite time; it is inconsistent

for agents to act as if the government would never run out

of stocks at the fixed price.

IV. Competitive Equilibrium Without Government

The principal result of this paper is that a price-

fixing policy is not feasible. This result would be vacuous

if the model without government possessed no equilibria.

Though the model without government is difficult to analyze

in any generality, it is argued by way of an example that

the set of economies which possess competitive equilibria is

nonemp ty.

It is useful first to consider the source of the difficulty.

In the absence of government, individuals will not act in

such a way as to fix a price. For let GO = 0 and suppose

that agents acted in such a way as to fix a price. By

Proposition II a contradiction will be obtained. As the
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relative price will not be constant over time in a competitive

equilibrium, agents may not be indifferent between maintaining

stocks of (x) and stocks of (y). Hence in the absence of

all types of forward contracts one might anticipate relations

of the form

[K J  ,KJ  ] = (KJ ,K j  JX X J Y ,R ,R ... )
y,t t t x,t-l y,t-l x t y t tRt+l

where K and K denote the optimal choice of storage of (x)
x y

and (y) respectively at time t by agent j and a function of

previous stocks of (x) and (y), current endowment, current

price, and all future prices in all states. Yet in an

equilibrium with rational expectations, the anticipated

distribution of future prices should be the distribution

consistent with current choices of stocks for each good by

all agents. This is the analytical difficulty mentioned

above. Assuming existence, one might anticipate that the

model could be described by reduced form equations

[Kj  Kj  ] =x,t y,t

(K ,K ,K2 ... Km ;X,Y ) j=1,2,...m.
x,t-l' y,t-l x,t-l' y,t-I t t

For the example it is assumed that agents have identical

preferences and endowments. Then each agent can be treated

in isolation; in a rational expectations equilibrium each

will act as if he would never trade with another agent. It

remains therefore to establish the existence of a solution

to each agent's dynamic programming problem in such a model.

The analysis is similar to that of the earlier programming

problem.
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Let Zt denote the endowment of agent j at time t, a

2 i *vector in R . Then Zt = (X/m,Yt/m). Also let Kt (K3 ,K3 )x,t y,t

and W t = Zt + Kt i . The idea is to find a functional equation

2 1
f(*):R R such that

(4) f(W t ) =Sup [U(Wt-Kt)+Etf (Z +Kt)].
0 <K <W t t+1 t

- t- t

The function f(') is found by assuming the horizon is finite

and taking the appropriate limit. Let

(5) fN(WN) = Max [U(WN-KN)+EN f N - 1 I(K +ZN _ 1)].
0 < KN _< W

From the properties of U(') it is established by induction

that fN(W) is strictly concave for each N and monotone

increasing with respect to N for each W > 0. (See lemmas

1'-5' in the Appendix.) From the discount rate 3 and the

property that Zt is bounded from above it follows that fN(W) is

uniformly bounded with respect to N for each W. (See lemma

6'.) Hence for each W > 0, the limit of fN(W) exists as

N -°, and this limit is denoted f(W). (See lemma 7'.)

f(W) is concave on [0,coo) and continuous on (0,co). (See

lemma 3'.) Also f(W) satisfies the functional equation (4).

(See lemma 8'.) It is argued that the right side of (4)

will achieve a maximum on [0,Wt ] with respect to K t as

boundary values can be ruled out by properties (i) and (iv)

of U(*). (See lemma 9'.) The unique maximizer is denoted

Kt =(Wt). The sequence }Kt is shown to maximize

EOC t=1B t-U(Zt+Kt-1-Kt). (See lemma 11'.)
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As one might expect, the distribution of prices of the

competitive equilibrium of this model displays some "smoothness"

as compared with the distribution which would prevail if

storage by individuals were prohibited. Such a prohibition

might be based on the belief that individual speculation is

"destabilizing," a proposition which has been much discussed

in the literature. As preferences are identical and homothetic,

(X t/m) +K -KX t

(7) R = t x,t- x,
t (Y'/m)+K -K

(t/-y,t- y,

where e (.) is continuous and strictly monotone increasing.

It is a property of the equilibrium with individual storage

that consumption of each good is never zero. In contrast

suppose no stocks were held by the government or individuals.

From property (iv) of U(.) and the fact that there exist

zero realizations of Yt, it follows that R t may be infinite

with positive probability. The effect of individual storage

is to introduce serial correlation into the price series; in

some sense prices are stabilized.

V. Concluding Remarks

This essay takes a modest step toward the formulation

of a coherent general equilibrium framework in which price-

fixing schemes and other government buffer stock policies

can be analyzed. In the model, attempts by a government to

set a price fail with probability one. The next step might

be to examine the sensitivity of these results to the various
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restrictive assumptions employed. In particular the effect

of more general utility functions and stochastic processes

could be analyzed.

In the essay attention is limited to the feasibility of

fixing a relative price, and this may give the unintended

impression that such a rigid policy has been pursued in the

past or proposed for the future. Historically, government

buffer stock programs have been implemented to limit sharp

reductions in prices and to "stabilize" farm incomes. As

for the future, it is not clear what policy makers have in

mind. An essay of this sort is useful if it only serves to

make policy proposals more precise.

Jacques Dreze has suggested that one reason government

buffer stock programs are considered is the absence of

markets in which agricultural output could be traded contingent

on the determinants of supply and demand. This suggests

that one should examine the welfare implications of a class

of feasible government buffer stock policies in a model with

a limited number of markets. Yet, unlike the model of this

paper, a restriction of the numbers and types of forward

markets ought not to be exogenous. In the context of such a

model one could examine the efficiency of competitive equilibria

with individual storage and verify the existence or nonexistence

of government policies which yield second-best allocations.

__



APPENDIX

Lemma 1: If F3 (r 'Z3 +KJ,R) is a concave function of K3
t+l t t

and VJ (,R) is strictly concave, then V (Wt -K t ,R) +
t t

E FJ (rZt+l+K ,R) is a strictly concave function of W and

K j .
t

Proof: The proof follows immediately from the definition of

concavity.

Lemma 2: If V (W -KJ,R) + BE Fj (rZ j +KJ,R) possesses a
t t t t+l t

maximum with respect to KJ on [0,Wj ], then that maximum is a

strictly concave function of Wj [0,00).t

Proof: See Bellman [1, lemma 1, p. 21].

Lemma 3: If F j (W,R) is concave with respect to W on [0,c),

then F j (,R) is continuous on (0, ) with finite partial

derivatives from the left, F (W,R), and from the right,
1-

FJ (W,R); F (W,R) F (WR).

1+ 1- 1+

Proof: See Katzner [7, lemma B. 2-4, p. 187].

Lemma 4: For each N > 1, fj,N(,R) is strictly concave on

[O,).

Proof: The proof is by induction.

fj (W,R) = Max V (W-KJ R)

- 1J-

64
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Clearly fj'l(.,R) is strictly concave on [0,oo). Assume

fjN(.,R) is strictly concave on [0,oo).

fj,N+(WR) =

Max [V j (W- R1 R) + BEN+1' ( +r 'Z ,R)]
O < KN+1<W

The strict concavity of V j (,R) and f J'N(,R) with V (O,R) = 00

ensures the existence and uniqueness of a maximum. By

lemma 2, fJ'N+l(.,R) is strictly concave on [0,0).

Lemma 5: For each W > 0, fjN(W,R) is monotone increasing

with respect to N.

Proof: The proof is by induction.

f 1 (W, R) = MAX . V (W-K,R)} = V (W,R)jR--)
0 <K<W < W
-1-

(W,R) = MAX . ({V W-K ,R) + BE fj' (rZj+K ,R) >
0 2' ) 2 1 20 <K <W

- 2 -

V (W,R) + BE2 fJ (r Z1,R) > (W,R)

Assume fj'N(W,R) > fj'N-1(W,R), and let the maximizing value

of K be denoted . Then

fj N+(W,R) =

MAX {Vj (W-K+ 1 ,R) + BEN+1f'N(rZ + +1R)}

o < K+I < W

Vj ( W-  ,R) + BEN+ ,N(rZ +K ,R) >

Vj (W-K,R) + BENfJ'N-(r'Z - ~1 ,R) = fjN(W,R).

L
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Lemma 6: For each W > 0, f 'N(W,R) is uniformly bounded in N.

Proof: The highest level of discounted expected utility

for agent j is dominated by that associated with agent j

receiving all of (x) and (y) of the economy in each state in

every period, the maximum of aggregate income over all

states being realized in each state in every period, and

agent j acting as if he knew in the current decision period

that he would receive such endowments in the future. Then

the endowment of individual j in each state in every period

would be M = Max p[Xt(w) + RY t()]. Assume that in addition

to this endowment agent j receives current wealth each

period. Then there would be no storage in any period and

for all N,

N
fj'N(W,R) < tVj(W+MR) < Vt-vJ (W+M,R) =

t=l t=1

Vj (W+M, R) / (1-f3).

JN-
Lemma 7: For each W > 0, the limit of f 'N(W,R) exists as

N oo and is concave with respect to W. This limit is

denoted fJ(W,R).

Proof: Existence follows from lemma 5 and lemma 6. Concavity

follows from lemma 4.

Lemma 8: fJ(W,R) satisfies the functional equation (1).

Proof: See Bellman [1, pp. 12-13].

Lemma 9: The objective function V (WJ-K ,R) +B E fJ (rZ 3  +K R)
t t t t+l t

achieves a maximum with respect to K on [0,W ].
t t
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Proof: By concavity fJ(. ,R) is continuous on (0,oo). If

fJ (,R) were continuous at zero then a maximum is achieved

as the objective function is continuous with respect to Kj
t

on the compact set [O,W ]. Suppose f (.,R) possesses a
t

discontinuity at zero and that no maximum is attained.

Recall that r ZJ(W) = 0, P() > 0. Then
t

Sup {Vj (W-K J R) + E fJ(r J+K ,R)} =Su ] t t' t Zt+l t
K E[0,j ]t t

lim Vj ( Wj - K j ,R) + SE f J(r Zj  +Kj R)}.
t t t t+l t

KJ + 0
t

Also

f (O+K ,R)

Sup { VJ(KJ-K ,R) + E f (r Z +K I ,R)}.S  K t t+l t+l t+2 t+1
K E [0,K K]t+l t

Both sides of this equation are nonincreasing with respect

to Kj . Taking the limit on both sides as Kj 
- 0,

t t

lim f (K ,R) = V ( 0 ,R) +B E lim f (r' Z3  +K j  R)
t t+l t+2 t+l1

K t 0 KJ  0
t t+l

Hence

Sup VJ (W -KJ,R) + E fJ(rZ J  +K ,R
t t t t+l t

KJ [O,Wj ]
t t

V (W , R) + Q P () [V (0,R) + E lim
t t+lK 0

t+l

fJ (rZJ +K , R) ] +
t+2 t+l

B _ P(")fJ [r'Z ( ) , R ] .
B W ) t+l

But VJ(O,R) 00, and this establishes a contradiction.
1

r , i 4 --- _ -t -"

)}=
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Lemma 10: fJ(.,R) is strictly concave.

Proof: This follows from lemma 2 and the functional equation

(1).

Lemma 11: Given that Kj , t=1,2,...} is a sequence

actions and contingent plans which maximize

V (Wt-K ,R) + BE f J(rZJ +K ,R),
t t t t+l t

then (K , t=1,2,...} also maximizes
t

Vj (W -K 3 ,R) + Et
t t t

of current

T-tV (rZ +K -K ,R).
T T-1 T

1=t+1

Proof: (The proof follows a rough outline of T. Muench.)

It is sufficient to argue the case at t=1.

T t . J.J. -.E l tvJ (r ZJ+K -Kj ,R) =
t=1

E {f (W , R) + [V (W -K , R)+Sf (W ,R)-f (W ,R)]}-1t= t t t+ t
t=l

E BTfJ w ,R) =
1 T+1

W1 1 t t t+l tt=1
E B T fj (Wi ,R)
1 T+l

Note that

f (W ,R) = MAX
MAX {(w j t-K R) + rBEtfJ J ,R)}t t ' (Wt+l

0 < K j < Wj

- t- t

Let K = j ( WJ,R). Then
t t

V (W -Kt R) +EfJ(wJ ,R) - f (W ,R) 0.tt'R) + Et t+l t

0 0
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For each etdl t, t l j (r'ZJ+KJt--KJ'R) < oo. By the

monotone convergence theorem,

E Bt-1V(r'ZJ+KJ -K j R) = f (Wj R) - lim E STf (Wi ,R).
1t t-1 t 1' T+1

t=l T + 0

By the strict concavity of f (*,R), ElBTf j (W+ ,R) + 0 as

T -+ c. Therefore,
00

fJ(Wi,R) = E1  B t-1vJ(wj K j R).
t=1

Lemma 12: P (*,R) is nondecreasing and I(*',R) is strictly

increasing.

Proof: Vj (,R) and f (*,R) are strictly concave and strictly

increasing with Vj (,R) differentiable.

Lemma 13: & (',R) and i (',R) are continuous.

Proof: See Brock and Mirman [2, p. 490].

Lemma 14: fJ+(W,R) + 0 as W - c.
1+

Proof: From lemma 6 and lemma 7, fJ(W,R) < Vj (W+M,R)/(1-R)-
and V (W+M,R) - 0 as W + oo.

Lemma 15: Tr(*,*) is continuous.

Proof: R is chosen so that jm [h (6SX+SjYR ,R) - 6 Y] = 0.
j=l y x y y

Let J[X,Y,R] = jm [hi (6X+6 YR ,R ) - 3 Y]. Thenj=1 y x y y

J[X,Y, (X,Y)] = 0. By properties (i) and (iv) of

U (",*) and the implicit function theorem, h (6 x+6 YR,R)
y x y

is of class C with respect to X,Y, and R. Hence the

first partial derivatives of J(*,*,*) are all continuous

with respect to X,Y, and R. By linearity, the income

effect in the standard Slutsky equation is nonnegative,
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and therefore J3 (' , *,") < 0. Hence the implicit function

theorem applies and Tr(, ") is continuous.

Lemma 16: T (X,Y) - 0 as X + 0 for each Y > 0. Tr(X,Y) + -m as

Y + 0 for each X > 0.

Proof: The proof is by contradiction. Suppose that for

some Y > 0, Tr(X,Y) -4>0 as X + 0. Then one can construct a

sequence {X } such that Xn + 0 as n -+ oo and for which the

corresponding sequence of equilibrium prices, Tr(Xn,Y) is

bounded from below by some R" > 0. For each agent j,

h [ SX +JYT(X ,Y), (X ,Y)] - 63Y <
y x n y n n y-

h [6 X +6 YR",R"] - 6 Y.
y xn y y

But

lim h [6JX n+61 YR",R"] - 6JY = h [6 YR",R"] - 6 Y < 0.
n y oo n y y Y y y

Hence as Xn -+ 0, the excess supply of (y) is bounded away

from zero, and this establishes the desired contradiction.

The following lemmas are numbered in such a way as to establish

a correspondence with the earlier lemmas of the first programming

problem.

Lemma i': If G(Zt+KtT) is a concave function of Kt_ 1 and

U(.) is strictly concave, then U(Wt-K t ) + BEtG(Zt +K ) is a

strictly concave function of W t and Kt

Proof: The proof follows immediately from the definition of

concavity.

I
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Lemma 2: If U(W -K t ) +B EtG(Zt+l+Kt ) possesses a maximum

with respect to K t with 0 < Kt < W, then that maximum is a

strictly concave function of Wt .

Proof: See Bellman [1, remarks p. 33].

Lemma 3': If G(W) is concave for W > 0, then G(W) is continuous

for W > 0.

Proof: See Katzner [7; Theorem B. 4-5, p. 196].

Lemma 4': For each N > 1, fN(W) is strictly concave for

W > 0.

Proof: See lemma 4 and the boundary properties (i) and (iv)

of U(.).

Lemma 5': For each W > 0, fN(W) is monotone increasing with

respect to N.

Proof: See lemma 5.

Lemma 6': For each W > 0, fN(W) is uniformly bounded in N.

Proof: Let MER denote the maximum realizations of X and
+ t

Y . Then as in lemma 6, it can be shown that fN(W) < U(W+M)/(1-Q).
t

Lemma 7': For each W > 0, the limit of fN(W) as N - o exists

and is concave with respect to W. This limit is denoted

f(W).

Proof: Existence follows from lemmas 5' and 6'. Concavity

follows from lemma 4'.
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Lemma 8': f(W) satisfies the functional equation (4).

Proof: See Bellman [1, pp. 12-13].

Lemma 9': U(W -K t ) + BEt f(Z t+l+Kt) achieves a maximum with

respect to Kt with 0 < Kt < W.

Proof: Analogous to the proof of lemma 9, suppose a maximum

is not attained on [0,Wt] and consider the following cases:

(i). [K ,Ky, ]  [0,Ky], K > 0
x,t y,t y y

(ii). [Kx, Ky, ]  [Kx,0], K > 0
x,t y,t x x

(iii). [Kx, t,Ky, t] [0,0]

A contradiction can be obtained by the boundary conditions

(i) and (iv) of U(*).

Lemma 10': f(W) is strictly concave.

Proof: This follows from lemmas 7' and 2' and the functional

equation (4).

Lemma 11': Given that {K } is a sequence of current actions

and contingent plans which maximize U(Wt-Kt) + BE f(Zt+l+Kt ) ,

then {K t } also maximizes U(Wt-Kt) + Et  T-tU(Z +K -K)

t t t t tT T-l T
T t+l

Proof: See lemma 11.



FOOTNOTES

V- (*,R) = g[V(*,R)] where V 3 ( * , R ) , the indirect

utility function for H(*,.), is linear. Strict concavity of

VJ (,R) then follows from the strict concavity of gJ (.).

Note also that this implies that Uj(.,.) is strictly

concave. Let D denote the determinant of the bordered

Hessian of U (.,.). It can be shown that

V = (U 1U22-U 2U~1)/(-D). By property (ii), D > 0 and so
11 11 22 12 21

the numerator is positive. Also U 1 = 1(H )2+g H1 < 0.

Hence the Hessian of U(.,.) is negative definite.

2
/This stochastic dynamic programming problem is really

a choice between consumption and savings in one good model

in which future income is subject to random shocks. After

completing this paper it has come to my attention that Foley

and Hellwig [4] have solved a similar problem in the context

of a different model.

3/Elements of this proof were first suggested by John

Danforth, but the author alone is responsible for any errors.

4/See Jain and Orey [6, p. 796].
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ESSAY IV

INTERMEDIATION WITH A NONCONVEX
TRANSACTIONS TECHNOLOGY

I. Introduction

In the existing literature on equilibrium with transactions

costs, the marketing technology is assumed to be convex.

See Foley [2], Hahn [4], and Kurz [6]. The imposition of

such a technology allows standard theory to be applied.

But, as is well known, the same convexities prevent the

model from explaining specialization. In a model of the

structure of trade, it prevents the endogenous emergence of

specialized marketing activities or of what might be called

intermed iat ion.

This essay proposes a simple model of trade with a

nonconvex transactions technology. There is a set of risk

averse agents, each of whom is endowed with a quantity of a

single capital good and with a stochastic technology that

transforms the capital good into a distribution of the

single consumption good of the model. The distributions for

different agents are such that there are gains to portfolio

diversification. But there are also costs; for each bilateral

deal between agents there is a fixed cost in terms of the

capital good.

76
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As noted, these nonconvexities make classical results

on the existence and optimality of a competitive equilibrium

inapplicable. What is needed then is an alternative formulation

in which optimal allocations are defined and in which the

behavior of agents is consistent with some type of equilibrium.

The essay proceeds as follows. Section II gives the technology

of the model and describes the nature of a competitive

equilibrium in the model without transactions costs. Section III

describes optimal allocations in the model with a fixed cost

of exchange. An allocation is said to be optimal if it is

in the core, where the core is defined taking into consideration

the costs of exchange. In Section IV it is shown that,

subject to some qualifications, the allocations of the core

can be supported as noncooperative equilibria and that all

allocations of noncooperative equilibria are in the core.

Agents adopt strategies under which they are willing to act

as intermediaries, buying shares in investment projects and

selling shares in the resulting portfolio. These strategies

include prices and fixed fees, and in this way intermediaries

act as auctioneers. The noncooperative equilibria are

defined with respect to these strategies. In such equilibria,

markets separate agents into disjoint groups, and in this

sense markets may be said to be incomplete. It is argued

that free entry is crucial in determining the allocations of

resources. Section V offers some concluding remarks.
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II. Competitive Equilibrium Without Transactions Costs

The model consists of a set of I traders. To each

agent jeI there is associated a production possibility set

YJ ERS+ where S is the number of states in a set Q. For any

element y JYJ, let the first element y denote the input of

the single factor of production of the model. The remaining

S elements consist of the output of the unique produced good

over states. Hence, for each y EY, y < 0 and y > 0, WEQ;

1Y J 0 implies J 0. It is further assumed that YJ is a

closed convex cone. The Y , jEI, completely describe

production possibilities in the model.

From the production possibility frontier of Y define a

production function -X y where X is a nonnegative Borel
B

measurable function on a probability space (0),F j , )

Here F j is the set of all subsets of 2J, and uJ is a discrete

measure of F j . It is supposed that the J , jEI are independen

and identically distributed so that each is defined on

(Q,F,p) where Q = J.I, F F n F and { cQ:<a}

jIJ{9 c 9:X 3 <a}. Let v(w) Ti . It is supposed that TI > 0

for each wcE.

The consumption posssibility set Xj for each agent j is

S+I
R . Each agent is assumed to maximize expected utility

Vj (x) = Uj (c) where x j X , and c JR denotes the
uj

consumption of agent j in state c. U (*) is strictly concave,

continuous, and strictly increasing. It is further assumed

that tastes as represented by UJ (.) are identical for all

individuals and display constant relative risk aversion.

t
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Each agent is endowed with some of the factor of production,

hereafter called capital and denoted K . Let xJR+l be the

initial endowment of agent j. Then x j = (KJ,0,0,...) with

Kj > 0 for each jEI. KJ is perfectly divisible. It is

further assumed that initial endowments are identical for

all agents.

It was claimed earlier that convexities prevent models

from explaining specialized marketing activities or intermediation.

In view of such remarks, it is useful to consider the properties

of a competitive equilibrium in this model without transactions

costs. If the set I were finite there would exist such a

competitive equilibrium; see Arrow-Hahn [1]. Given prices

s+l S+l S+l
peA = {p-R ;p1j0;iiPi=l}, the income of agent j would

be pl K + sp .pyJ. As Kj > 0, all households are resource
yJE yJ

xjrelated. There exists a consumption allocation xpEX , a

production allocation yJYYJ, and a price pceAs+1 which

constitutes a competitive equilibrium in that

(i). P* > 0

(ii). xJ < y + xJ
jCI jeI jel

(iii). yJ maximizes pyJ, yJ EY

(iv). x maximizes V (x ) subject to px + pyJ > pxj.

It is argued that in a competitive equilibrium of the

model agents will act as if purchasing shares in investment

projects, where one share in project j entitles the holder

to X units of the consumption good, a random variable. As
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production functions are of constant returns to scale, in

the competitive equilibrium all shares must sell for a price

of one in terms of the capital good. As the 2J are independent

and identically distributed, if each agent is restricted to

purchasing shares, each will purchase equal numbers in all

projects, including his own; see Samuelson [8]. (Such a

portfolio will be referred to subsequently as completely

diversified with respect to the set of traders I.) As

endowments are identical, this will give all agents the same

amount of the consumption good in any state, and hence with

identical tastes each will have the same rates of commodity

substitution across states. Hence,this allocation constitutes

competitive equilibrium. Such an allocation will be Pareto

optimal.

It should also be noted that even if there were some

initial reallocation of the capital good among agents,

agents would still act as if trading shares. If each agent

purchased an equal number of shares in all projects, each

would have the same distribution of the consumption good

over states up to a constant of proportionality. As the

UJ () display constant relative risk aversion, it follows

that each agent would have the same rates of commodity

1/substitution across states.-

For purposes of subsequent reference it is useful to

consider the properties of the limiting allocation of the

competitive equilibria as the number of agents in I increases.

The portfolio of each agent will remain completely diversified
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with respect to I, and by the law of large numbers the yield

on this portfolio will approach the mean of each Xi. The

number of shares that each agent purchases in any one project

2/will approach zero.-2

Implicit in the definition of a competitive equilibrium

is the existence of complete markets for contingent claims

in which agents can trade claims on the consumption good for

each state w, a claim which is binding only if the specified

state occurs. Agents are assumed to have perfect information,

and exchange per se is costless. Also, there is no explicit

mechanism for the determination of the prices which agents

take as parameters; one can introduce an auctioneer as deus

ex machina who calls out prices until markets clear, but

such an agent is not endogenous to the model. Under these

implicit assumptions there can be no nontrivial role for an

intermediary. Each agent acting on his own in competitive

markets with full information can do just as well as in any

coalition.

III. Core Allocations with Transactions Costs--

A Cooperative Economy

It is assumed subsequently that the set of traders I is

countably infinite and that exchange is not costless. There

is a fixed cost of 2a in terms of the capital good for each

bilateral trade, a per agent. Suppose there were three

agents and each were making two bilateral exchanges as in

Figure l(a). Total transactions costs would be 6a. Such a

situation may be inefficient. Transactions costs could be
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reduced to 4a if agent h were to act as an intermediary for

the market consisting of three agents; see Figure l(b). To

formalize this the following definitions are needed. Let NJ

denote the set of agents with whom agent j deals directly.

Then, a set of agents M is said to constitute a market if

for each jEM, NJ C M, and there exists no proper subset A of

M, such that for each jcA, NJ C A. A market is thus defined

to be the smallest set of agents for which every agent of

the set deals with at least one other agent of the set and with no

agent outside the set.

An agent h is said to act as an intermediary for a

market M if

h if j # h, jeM

M - h if j = heM.

Let m denote the number of agents in M.

In the cooperative economy specified agents are designated

as intermediaries. Each intermediary selects a group of

agents for projects in his portfolio. These sets are assumed

to be disjoint, so that in effect intermediaries are forming

markets. Each agent in a market agrees to sell shares in

his project to the intermediary for a price of one in terms

of the capital good, and the intermediary sells shares in

his portfolio for a price of one in terms of the capital

good. A share in the portfolio of an intermediary in a

market M with m agents entitles the holder to XieMi/m

units of the consumption good. All transactions costs are
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Exchange Without Intermediation

h

Figure 1(a)

Exchange With Intermediation

i

h

Figure 1(b)
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shared equally by all agents in a given market. For m

agents in M these transactions costs will be (m-1)(2a). In

these circumstances agents in a market will trade shares

with the intermediary on a one-to-one basis up to the limits

of their initial endowments, less transactions costs. Each

intermediary determines the number of agents m in his market,

and each will act to maximize

(1) E U{[Kj - ( 2 a ) (m-1) i/m ]m
iEM

with respect to m. Here E denotes expectation with respect

to (Q,F, I).

Let r denote the set of positive integers which maximize

(1). As m varies over integers it is difficult, in general,

to characterize a maximum in terms of first-order conditions.

The set r need not be a singleton, nor must it be nonempty.

As the size of the market increases, marginal transactions

costs go to zero. But the marginal gain from increased

diversification also goes to zero as by the law of large

numbers n 1 1/n + E( ) almost surely as n -+ . If {1}c

there can be an autarkic allocation for the cooperative

economy in which each agent claims the returns only on his

own project. If {2} c there can be a sequence of bilateral

deals among pairs of agents. In general, for nor there will

be a sequence of markets, each with n agents. If F is not a

singleton it is not required that each market have the same

number of agents.
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Unfortunately, one cannot rule out F = 0. In what

follows it will be assumed that P # 0, so it is important to

examine the generality of this assumption. It is claimed

that if Kj < 2a, then 1 # 0. For suppose P = 0; then there

exists a subsequence of integers {n } such that (1) is
v

strictly monotone increasing with respect to successive

elements of the subsequence. But if K j < 2a, then there

exists n E{n } such that Kj < (2a)(n -1)/n . Clearly this

is not feasible. If 0 < KJ = 2a then

(2a) (n -1) nv
lim E U{[Kj -  n ][ ai/n ] } = U(0)

v - co v i=l

and this also contradicts the strict monotonicity of (1)

with respect to {n }.
v

It is also useful to show that with 1 # 0, the allocation

need not be autarkic. As an example, consider the function

b i
U(w) w with b .10. Let each X have a finite distribution

with two realizations, m-e and m+e, occurring with probability

one half. Let K j = 2a, m = 100, e = 100, and a = i. To

show that the equilibrium is not autarkic it is sufficient

to show that expected utility in (1) is greater for n = 2

than for n = 1. With the specified parameters, expected

utility with autarky is .91 and expected utility with a

bilateral trade is 1.21.

There also exist economies in which Kj > 2a > 0 and

S# 0. As an example, let U(w) = w , O < b < i. Suppose

that for each bE(0,1), P = 0, and as above consider the

* xi
subsequence {n }. Let X = Max (m). For every bE(0,1),

V
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nv i b *b *b
i( /nv) < ( ) with (x ) < c. Also by the strong law

of large numbers and the continuity of U(*),

n bb
(XAi /nv) + [E(Xi)]b almost surely as v oo. Therefore,

by the dominated convergence theorem,

n

lim E[( i/n )b] = [E(i)]b
V -+o i=1

Therefore, for each be(0,1),

n
(2a)(n -1) v b i b

lim E{[K- n ]b[ i/n]b} = [K -2lb [E(x )]b
v +- v i=1

It follows by the construction of the subsequence {nv} that

for all integers n and for all be(0,1)

E{[K-(2)(n-)] X i/n] b } < [KJ-2a]b[E(X )] b
i=1

Fix some n and take the limit on both sides as b - 1. Then

Kj (2a)(n-1) < Kj - 2.
n -

This establishes a contradiction. Hence, there exist values

for the parameter 'b' such that r # 0 with Kj > 2a > 0.

If F1 0, the objective function (1) does not possess a

maximum with respect to the set of positive integers. As

the number of agents m in a market M of the cooperative

economy increases, transactions costs per agent have limit

20z and the yield on the portfolio of the intermediary for

M has limit E(Xi ) almost surely. By the dominated convergence

theorem, levels of expected utility are bounded above by a

limit of U{[K-2ci] [E('i)]}.
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It is now argued that for ' 0, the allocations of the

cooperative economy are optimal in that they are in an

appropriately defined core. An allocation is said to be in

the core if it can be achieved with the resources and technology

of the model and cannot be blocked by any finite coalition.

An allocation can be blocked by a coalition if there exists

an alternative allocation that is feasible for that coalition,

and in which at least one agent of the coalition is better

off and no agent of the coalition is worse off than in the

initial allocation. Here feasibility means that the coalition

is able to achieve the alternative allocation with its own

resources. It seems natural in the model to define feasibility

in the context of the initial endowments K j , the technology

X , and the transactions costs a. Hence, it is supposed

that agents in a coalition take into consideration the

transactions costs necessary to effect an exchange with

other agents in the coalition.

Proposition I: If r # 0, the allocations of the cooperative

economy are in the core.

Proof: The proof is by contradiction. Suppose a set of

agents B of number n were able to block an allocation of the

cooperative economy and that those agents constitute a

market. Consider exchange, production, and consumption

decisions which result in Pareto optimal allocations for the

set B; an allocation which is Pareto optimal for B is one

which is feasible for B and for which no agent of B can be

made better off without making some agent of B worse off.
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As U(.) displays constant relative risk aversion, a necessary

condition for a consumption allocation to be optimal for B

is that c = e c for each wcQ and for each iCB, with

0 < 6i < 1, jB j = 1. Then to determine an optimal
- - jE

production allocation it is sufficient to maximize

X 11U(c) = Xc)
WCQ WEt jRB

for any i. As 1U(*) is strictly concave, equal amounts

should be invested in all projects of B. With total transactions

costs minimized at 2c(n-l), this yields

Yj Kj - (2ca)(n-1)
1 n

for each jEB. Consider a symmetric allocation of the consumption

good over states so that 8J = 1/n for each jcB. Then

cj= [KJ (2a)(n-1)][ 1 Xi(w)/n].
C n

iEB

By construction this allocation is Pareto optimal for B, and

all agents of B have a level of expected utility which is at

most equal to the level of the cooperative allocation.

Hence, the coalition B could not block the cooperative

allocation. If B did not constitute a market, then one can

consider separately the subsets of B which do constitute

markets. As above, no agent in any subset can be better off

than in the cooperative allocation without making some other

agent of the same subset (and hence of B) worse off. Hence,

no finite coalition can block, and the cooperative allocation

3/is in the core.- Q.E.D.
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Proposition II: If F = 0, there do not exist core allocations

with a finite number of agents in each market.

Proof: The proof is by contradiction. Suppose that there

did exist a core allocation with a finite number of agent in

each market. In any such market 14 with some number of

agents m, exchange, production, and consumption decisions

must result in an allocation which is Pareto optimal for M;

otherwise M could block the core allocation, contradicting

the definition of the core. Furihermore, in a core allocation

4/
all agents of I must have the same level of expected utility.

As all agents of M have the same level of expected utility,

the allocation of the consumption good must be symmetric in

M so that

cj Kj (2a)(m-1) A][ 1() ]
SmM

i M

for each j in M. But as F - 0 there exist some number of

agents n > m which could form a market with efficient

production and exchange and with symmetric consumption

allocations in which all agents are better off than initially.

This is the desired contradiction. Q.E.D.

Proposition III: If there exists a core allocation with a

finite number of agents in each market, then F # 0 and the

core allocation is an allocation of the cooperative economy.

Proof: That P # 0 follows from the contrapositive of

Proposition II. As in the proof of Proposition II, in each

market M of the core with m agents, production and exchange
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must be efficient with a symmetric consumption allocation. As

there do not exist blocking coalitions, it follows that mer.

Q.E.D.

It has been shown that allocations of the core with a

finite number of agents in each market and allocations of

the cooperative economy with F # 0 are equivalent. These

allocations are of the form:

y Kj  _ (2ca)(m-l) cj = KJ(2a)(m-l)[ i()/m]
m 'm) m

icM

where M has some mGc agents. All such allocations may be

said to be optimal in the sense that there do not exist

alternative allocations with a finite number of agents in

each market which are Pareto superior for the set of all

agents I.

IV. Intermediation Strategies and Noncooperative Equilibria

It is now argued that the cooperative allocations can

be supported as equilibria of the model. However, the fixed

costs introduce a fundamental nonconvexity into the analysis,

so the equilibria referred to cannot be competitive in the

classic sense. For suppose agent j were to sell shares in

his project to agent h at cost. Then the production possibility

set for agent h acting as an intermediary for j would appear

as in Figure 2.

Let

= (Y,z)ER z = 0 if 0 _ -yl 2a

0 < z < - y  - 2 a if -y > 2 a

where z denotes the number of shares in project j. Clearly

the set Y is not convex. One approach to economies with
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nonconvex sets is to replace those sets by their convex

hulls, to apply standard existence properties to the convexified

economies, and then to show that in some sense the excess

demands of the resulting social approximate equilibrium are

bounded and go to zero as the number of agents increases;

see Arrow-Hahn [1] and Starr [9]. The convex hull of Y is

the set below the forty-five degree line from the origin,

and that set is not closed. Also Y is not of finite inner

radii. As these properties violate two assumptions that are

used in the approach outlined above, an alternative approach

must be examined.

The resource allocation mechanism is now described as a

type of noncooperative game. Prior to the realization of

the state, each agent h adopts a strategy under which he is

willing to act as an intermediary for some specified market.

This strategy is denoted Sh with components:

SOh= the proposed market of agent h.

h

Sh = the yield in terms of the consumption good for one

share in the portfolio of agent h, a random variable

on (Q,F,j).

h
S 2 = a price in terms of the capital good at which

agent h is willing to buy an unlimited number of

shares in any project j of S

shj= a fixed fee in terms of the capital good for the

purchase of shares in the portfolio of agent h by

h
agent j of SO .
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A Production Possibilities Set for Shares

\/\ z

450

yl -2 0

Figure 2
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Sh = a price in terms of the capital good at which

agent h is willing to sell shares in his portfolio

h
to agents j of S O .

The following notation is also needed:

d j h I the number of shares purchased by agent j in the

portfolio of agent h, h # j.

Dhj = the number of shares purchased by agent h in

project j, j # h.

n j = the number of agents in Nj .

1 if agent j purchases shares in the portfolio of

Ajh = agent h,

O otherwise.

Agents must act on the strategies Sh, hCI prior to the

realization of the state. Once the state has occurred,

agents make the transfers of the consumption good required

to honor the claims issued under those strategies. Given

that intermediaries have been selected in some way, all

other agents regard the strategies Sh as parameters and

maximize expected utility. Hence, if agent j is not an

active intermediary so that d
ij = 0 for each icI-j, agent j

acts as if to maximize

(2) h [Aj h][E U(dJhSh+yjXj-D h j j)]

h: j S0

with respect to {y3 ,Dh,d j h,Ajh) subject to the following

constraints:

(3) [ .h h(Ajh)(KJ +DhSh-djhSh-ShJ- -Y ) ] > 0
h:jcSO 2 4 3 1 -
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(4) { h[A ][d S ( , + y  ) - D (D X ]} > 0 for each weS
h: jS 0

(5) Aj h = 1 => Aj i = 0 for each iEl-h.

Constraint (3) is the budget constraint prior to the realization

of the state. Constraint (4) requires that agent j be able

to honor all claims on shares which he issues on his project.

Constraint (5) limits agent j to choosing one intermediary

in which to invest.

An intermediary who is active for his proposed market

S will have expected utility

(6) E U( h D h j h+y1h- d h S I )

j£S0  jESQ

It is required that the strategy Sh be feasible in that the

following constraints be satisfied:

(7) (Kh+ h D j hS+ hS3j- hDh j Sh2 h-y) > 0

JLS 0  JES0  j£S0heSO hSO jO

(8) [ Dh Xj ()+Y h()- d h d jh ()] > 0 for each weS.
jES0  j S 0

O O

Constraint (7) is the budget constraint and (8) ensures that

claims issued on the strategy Sh can be honored.

The determination of who is to act as an intermediary

is not exogenous to the model; each agent is free to announce

any feasible intermediation strategy, and it is assumed that

all agents select strategies in such a way as to maximize

expected utility. This leads to the following definition of

a blocking strategy.
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Definition: A feasible strategy Sb for some agent bel with

Sb finite is said to block a consumption allocation {x,;jl}

b
if when (2) is maximized for each agent jcSo-b subject to

constraints (3)-(5) with A jb = 1 for each jeSo-b, the resulting

consumption allocation {x * * ;jSb} yields V j (x ) > V (x,)

b b
for all jSb. S. is a blocking strategy.

Agents do not cooperate as in the cooperative economy.

All inactive agents take the strategies of intermediaries as

given and maximize expected utility. See Nash [7]. Agent

b above finds it in his own interest to announce a blocking

strategy. Roughly speaking, agent b may be viewed as a firm

who is aware of demand curves and seeks to enter profitable

markets. This type of free entry will be crucial in determining

the allocation of resources.

In what follows an equilibrium will be described in

part as an allocation for which there exist no blocking

strategies for any agent. A desirable characteristic of an

equilibrium would also be that there does not exist an

excess supply of intermediary services, i.e., that for an

equilibrium consumption allocation {x,,jEl}, an active

intermediary h for a market M has expected utility V(x h ) 
< V(x J )

for each j M. If V(xh) > V(x ) for some jM, agent j would

wish to act as an intermediary for the market M, and, by

adopting slightly lower fees and prices, could attract all

agents of M other than h to the newly proposed market. It
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will be shown below that in an equilibrium the condition

that there be no blocking strategies implies that there is

no excess supply of intermediary services in this sense.

An equilibrium is now defined.

An equilibrium is a set of actions and strategies

{D* ,d i,A i,S ;iI} for each agent jEI, a set of allocations

{x EX , y  EY ; j E I } , and a set of markets T such that:

(i). If d - 0 for each ieI-j, then {y ,,D ,d ,A }

maximize (2) for agent j subject to constraints

h h h
(3)-(5) and to S h  S for each h such that jeSh

hh + y hjhj cj
dJhdSh ( ") + y XJ(W) - h D X(o) =

h:jS h:jSO*

for each WF8Q.

(ii). U M = I; for each MET there exists an heM such that
MET

h Ah
SO, = M; for each jCM-h, A h  1; for every such h

(Kh+ h h dj h4 h S- h DhSh -  * )  0

jES jeS jESo*

h Dh Xj(o) + yh h (W - h * (W* =h

*jES 0 *

(iii). There does not exist a blocking strategy for any

agent of I.

Proposition IV: If there exists an equilibrium, the equilibrium

allocation is in the core.

Proof: The proof is by contradiction. Suppose an equilibrium

allocation x ,y,;jeI~} were not in the core. As in the

proof of Proposition I, suppose without loss of generality
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that there exists a blocking coalition B of n agents which

constitutes a market and in which exchange, production, and

consumption decisions result in a Pareto optimal allocation

for B. This yields an allocation

j Kj - (2x)(n-l)
1 n

cJ = e[nKJ-( 2 a)(n-1)][ . Xi/n]
W iEB

0."*

for each jCB with jEB j = 1.

By the definition of the core and the strict monotonicity of

preferences, it is possible to choose {J ;jeB} in such a way

that V (xJ,) > VJ(x j ) for each jEB. Let some agent bcB

b b i b b
adopt the following strategy: S = B, S1  X l /n, S2 = S = 1,

iEB
Sb = a[2(n-1) J-1] + KJ[l-n j ] for each jEB-b. If each

agent jCB-b maximizes (2) subject to constraints (3)-(5)

with Aj b = 1 for each jEB-b, then the allocation {c jjB}

would be achieved. This contradicts property (iii) of the

equilibrium. Hence, the equilibrium allocation must be in

the core. Q.E.D.

Proposition V: All core allocations in which there are a

finite number of agents in each market can be supported as

equilibria.

Proof: By Proposition III any core allocation with a finite

number of agents in each market is also an allocation of the

cooperative economy with P # 0. It is claimed that the

following actions, strategies, and markets support such an

allocation.



98

(i). T is a set of markets with each Me'

the core allocation. Hence, each

agents, and U M = I.
MET

(ii). For each MCT there exist some agen

strategy:

h h Xi/m h hS = M, S = , S = S = i,
S1 icM2 4

iEM

h j  O if m = 1
S3= for eac]

3 (a)(m-2)/m if m > 2

(iii). For each agent jEM-h, S = 0.

(iv). dh = Dhj Kj - (2a)(m-l) for eacl
m

T a market of

MET has some mcY

t hEM with

h
h jES 0"

h jeM-h

Aj h 1= for each j M-h

j j  (2a) (m-l)
y = K -for each jEM1 m

cj = [KJ_(2a)(m-1) Xi( )/m] for each wcQ andW m
i eM

for each jE0.

For each jM-h, jeS h only. Given that j is not active, he

will maximize (2) subject to (3)-(5) regarding the strategy

h h h
of Sh under (ii) as fixed. With S2  Sh = 1, such an agent

2 4

j will be willing to invest in h (so that Aj h = 1), trading

his own shares in project j for shares in the portfolio of

h up to the limit of his endowment less fixed fee; to satisfy

constraint (4),

j hj = Kj (2(m-1)
y1 m

It should also be noted that agents of M will not collude in

their dealings with h. If one agent were to act as a conduit

for the funds of another to avoid the fixed fee for one of
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the agents, an additional transactions cost of c-[(a)(m-l)/m]

would be incurred for the pair. Constraint (3) is also

satisfied for each j8M-h. Hence, equilibrium condition (i)

is satisfied.

Equilibrium condition (ii) follows from properties (i)

and (ii) above with constraints (7) and (8) satisfied for

each active intermediary h.

As the initial allocation is in the core, no finite set

B can be made better off. Hence, there exist no blocking

strategies for any agent, and equilibrium condition (iii) is

satisfied. Q.E.D.

Several other aspects of the model are noted in passing.

1. In an equilibrium all agents have the same level of

expected utility. Hence there is no excess supply of

intermediary services, and all are indifferent as to who is

acting as an intermediary with the equilibrium strategies.

2. There may be other schemes by which intermediaries can

recoup fixed costs. Let Sh denote a minimum purchase
5

requirement for shares in the portfolio of intermediary j

for jeS 0 . Then under condition (ii), for m > 2, consider
0-

the strategies:

h i h hS = /m, S2 = 1,S 3 = 0,
1 7 3LM

h K - h j ( 2a)(m-1)

4 K - [(2)(m-1)/m] 5 m



100

Each agent jM-h will act to maximize

(2)' E U(d j hSh+yj J-D h j JXi

subject to constraints

(3)' (K+Dhj-djhSh - ) > 0

4 
1

(4) [djhS -Dhj )] 0 for each wse.

(9) dh > S
- 5

Agent j would like to purchase less than S5 shares in the

intermediary at prices Sh greater than one. However, he is

constrained to purchase at least that amount and will not

purchase more. Expenditures remain as before and the new

strategies constitute an equilibrium for the model. The

h h
quantity S4 - S2 can be interpreted as a type of bid-ask

spread. It is on this margin that the intermediary covers

transactions costs.

3. One may wish to determine whether the parametric behavior

specified is incentive compatible. Following Hurwicz [5],

a resource allocation mechanism is said to be individually

incentive compatible if the behavior patterns specified are

consistent with agents' natural inclinations. If an agent's

project were essential to the portfolio offered by an

intermediary, then it could be argued that such an agent

h
might not sell passively at S2 but attempt to bargain.

However, the model is constructed in such a way that the

agent acting on his own has no bargaining power. As I is

countably infinite, the removal of one agent from the model

has no effect on the equilibrium allocation.
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4. Finally it should be noted that if I were finite and a

were zero, the noncooperative equilibria of the model would

also be competitive equilibria. All agents would be in one

market with completely diversified portfolios. Although one

h h
agent would act as an intermediary, at prices S2 = S = 1

and a fee S = 0, the role of that agent as intermediary
3

would be inessential. In this sense, the noncooperative

equilibrium as defined in this paper is a generalization of

the definition of a competitive equilibrium, a generalization

which can cope with nonconvexities.

V. Concluding Remarks

This essay has proposed a theory of intermediation. In

the model a fixed cost of bilateral exchange creates a

fundamental nonconvexity. Strictly speaking there do not

exist competitive equilibria. However, there do exist

noncooperative equilibria which are defined with respect to

agent's strategies. These strategies include prices and

fees at which agents are willing to act as intermediaries,

buying shares in investment projects and selling shares in

the resulting portfolio. These intermediaries emerge endogenously

because they are able to economize on the fixed costs of

exchange. Though agents take prices of intermediaries as

given, all agents are free to choose their own intermediation

strategies. This type of free entry is crucial in determining

the allocation of resources. In this sense, the equilibria

are competitive.
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An allocation is said to be in the core if there are no

finite coalitions which block, given the transactions costs

of the model. It is shown that all allocations of the core,

in which there are a finite number of agents in each market,

can be supported as noncooperative equilibria and that all

allocations of noncooperative equilibria are in the core.

All such allocations are optimal in the sense that there do

not exist Pareto superior allocations with a finite number

of agents in each market. In this sense, incomplete markets

may be efficient. These results are achieved by the levying

of fixed fees, or, alternatively, by bid-ask spreads with

minimum purchase criteria.

The model is a particularly elementary one. Agents are

assumed to have identical tastes which display constant

relative risk aversion and identical initial endowments.

These facts are known to all agents. An effort to relax the

assumption that tastes and endowments are identical would

complicate the model. In particular, a restriction to the

trading of shares might be binding and hence not satisfactory.

Yet, in principle, the kind of analysis suggested above

could be carried out. Intermediaries would take into consideration

the desires of agents with diverse attitudes toward risk to

trade contingent claims. Acting in their own interest,

intermediaries may support efficient allocations.

However, if tastes and endowments are not known, there

are new difficulties. Though an equilibrium may exist, it

may not be optimal and incentive compatible. Agents may
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understate their willingness to pay fixed fees to support a

given market. This is a problem which has arisen in the

context of models for the allocation of public goods.

Though the work of Groves and Ledyard [3] suggests that the

problem may not be insuperable, the effect may be to limit

the number of agents in a market. A model with imperfect

information may also be rich enough to account for the

relatively limited number of types of assets which are

traded in active markets. This is a subject of further

research.



FOOTNOTES

1/1/Functions which display constant relative risk aversion

are of one of the following forms:

U(c j ) = In(c j )

U(c j ) = (cJ)b 0 < b < 1.
W CW

Hence, if ci = Oc for each CQE, then

U1(c1)/U1 (c) = U(c)/fVU (ecs) = u u (cl)/U sU(c s)
W1 S1 s W1 W s s W l S s

for each s and w in Q.

2/This last point would be the source of some difficulty

if the set of traders were countably infinite, a case for

which the existence of a competitive equilibrium has not

been proved.

3/It should be noted that if the set of agents I were

finite, it might not be possible for all agents to be in a

market with a number of agents in F # 0. In such cases

there would not exist allocations in the core.

4/Consider some market M of the core and its complement

with respect to I, Mc. As there are no blocking coalitions,

V(x ) > V(x j ) for each jeM and each ieM c . Suppose that for

some igMc V(xi ) > V(x j ) . But then again, by the monotonicity

of preferences, the allocation could not be in the core.

Hence, V(x) = V(x) for each igMc and each jEM.
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