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This purely pedagogical note derives a very important formula

due to Sims without resorting to the frequency domain calculations that

he used to derive it. Most economists are better able to follow calculations

in the time domain than in the frequency domain. The time domain

derivation advanced here makes apparent the interpretation of Sims's

formula as a version of Theil's specification error theorem.

Sims considered the model

(1) y(t) = Ifb(s) x(t-s)ds + u(t)

1/
where b(t) is an absolutely integrable function,- and where y(s), x(s),

and u(s) are continuous time covariance stationary stochastic processes

with means of zero and finite variances. The disturbance process u(s)

is orthogonal to the x(s) process, that is

(2) E[u(s) x(t)] = 0 for all real t, s.

The specification (2) identifies the convolution fob(s) x(t-s)ds,

which is denoted b * x(t), as the projection of y(t) on the entire x(s)

process, sE(-, ).--2

Sims studied the situation where y(t) and x(t) are only

observed at the integers. The data thus consist of the sequences of

random variables

X(n) = x(n)

Y(n) = y(n) , n= ... ,-2, -1, 0, 1, 2, ....

Here X(n) and Y(n) are discrete time stochastic processes. Consider the

least squares distributed lag regression (i.e., the projection) of Y(n)
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on past, present, and future X(r)'s:

00oo

(3) Y(n) = X B(s) X(n-s) + U(n)
S = - o0

where U(n) is the least squares disturbance and where

E[U(n) X(r)] = 0 for all integer n, s.

Sims was interested in studying the relation between B(s) and b(t) and

in investigating the conditions under which B(s) well or poorly represents

b(t) sampled at the integers.

To obtain Sims's formula, we begin by recalling that the

3/
orthogonality condition (4) uniquely determines the B(s)'s.- Substitute

for U(n) from (3) into (4) to obtain

B(s) X(n-s)) X(r)] = 0
S = -

for all integer

n, r, s.

E[Y(n) X(r)] -

00B(s) EX(n-s) X(r) =

X B(s) E[X(n-s) X(r)] = 0.

These are the least squares "normal equations." We write (6) as

00oo

x (n-r) - Y B(s) R-(n-r-s)= 0
S -00

or

(7) Ryx(T) - B(s) RX(T-s) = 0
S -00

where we define the covariance sequences

(4)

(5) E[(Y(n) -

or

(6)
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RX(T) = E[Y(t) X(t-T)] for all t, integer T

RX(T) = E[X(t+T) X(t)] for all t, integer T.

RYX and RX are independent of t by virtue of the covariance stationarity

of Y and X. It is also convenient to define here the covariance functions

R (T) = E[y(t) x(t-T)] for all real t, real T
yx

(9)

Rx(T) = E[x(t) x(t+T)] for all real t, real T.

Clearly, the covariance sequences RYX and RX correspond to the covariance

functions R and R , respectively, sampled at the integers.
yx x

Now from (1) we have that

RY(T) = E[Y(t) X(t-T)] = E[(fob(s) x(t-s)ds + u(t)). X(t-T)]

= f b(s) E(x(t-s) X(t-T))ds + E u(t) X(t-T)

which, applying (2) and (9), equals

fob(s) Rx(T-s)ds

so that

RYX(T) = b * Rx(T) for integer values of T.

So equation (7) becomes

00

(8) b * R (T)= B(s) RX(T-s).
S = _o

-i
Now let RX (s) denote the sequence which is the inverse under convolution

of the sequence RX(s). This inverse is defined by-

(8)
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0o 1

RX (j) RX(n-j)=
j = -_ 0

for n = 0

for n # 0, n an integer.

Convoluting the left side of (8) with RX1(j) gives
Convoluting the left side of (8) with Rx (j) gives

- l
-RX (j)[b * R (T-j)] =

-00O

00

R -- jf b(s) R(T-j-s)ds

J = -ox

(9)
00 (j) R

= J b(s)( R X (j) Rx(T-j-s))ds.

Notice that

X_Rl(j) R (T-j)= RX * R (),
T =_oo

-l
which is the convolution of the sequence RX-1 (j) with the function

5/ -1R (t).- Sims calls this convolution r (T) = R-* R (T). Notice that
x x X x

it is defined for all real T - s. Thus, (9) can be written

fob(s) (RX * R (T-s))ds

-1
=b* RX- * R(T).

x

While this convolution exists for all real T, we are interested in its

values only at integer T (refer again to (8)).

Now convolute the right side of equation (8) with X (j) to
Now convolute the right side of equation (8) with RX (j) to

get

00

= B(s)

S = -00

= B(T).

o0

j -o
RX00 )

X B(s) RX(r-s-j)
S = -0

: -1
j X (J)RX(T-j-s)

-00

Combining the results of convoluting the left and right sides of (8)

with RX-1 gives
with RX gives

o

RXI * B(s) RX(T-s)=
S = --00
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-l
(10) B(T) = b * RX-1 * R(T

or more explicitly

S-oo
B(T) = J_°b(s) ( RX- (j) R (T-j-s))ds.

j -- x

Equation (10) is Sims's formula. It states that B(T) is formed by

-l
weighting b(s) by RX-1 * Rx(T-s) and then integrating over all real s's.

-l
The weighting function RX  * R (T-s) clearly depends on the stochasticXx

structure of the x-process. Sims's paper contains a variety of interesting

and useful results about the shape of the weighting function for various

classes of x-processes.

Relation to Theil's Specification Theorem

Let the least squares projection of a random variable z on a

1 x k vector of random variables Z be Za where a is the k x 1 vector of

regression coefficients. Partition Z as Z = (Z 1 Z 2 ) where Z1 is (ixkl)

and Z2 is (lxk2 ) with k 1 + k 2 = k. Theil's specification theorem

states that the projection of z on Z1 is ZlS where 5 is (klxl) and

5= r c
klxk kxl

k1

where the projection of the i element of Z on Z is .. Z.;
ji Zjj=1

r.. is the partial regression coefficient of the i t h dependent variable

th
on the j Z. The preceding equation can be written

k

(11) ( = r a
S i=l ij '

which says that the coefficient on Z. in the projection of z on Z
11
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equals the vector product of a with the vector of ith partial

regression coefficients in the regressions of all of the variables in Z

on the subset Z1 .

Now consider the projection of x(t) on the sampled x-process,

X(n),

00

y -t X(j)

t

where there is one such projection, and hence one sequence Y. , for each

t
real t. The regression coefficients yj. are uniquely determined by the

orthogonality requirement

00

E[(x(t) - y.t X(j)) X(n)] = 0

or

Rx(n-t) = t R(n-j)

-l
Convoluting both sides of the above equation with RX-1 gives

t -1
Yn = RX (j) Rx(n-t-j)

j .-= 

x

(12)
t -1

Yn RX * R (n-t)
a n(x

t
In equation (12), yn gives the regression coefficient on X(n) in the

projection of x(t) on the X(r) sequence.

Theil's specification formula (11) leads us to expect that

(13) B(n) = J_ b(t) y dt.

Substituting (12) into the above equation convinces us that the above

6/
equation is equivalent with Sims's formula,-
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oo -1
B(n) = _ 0 0 b(t) (R X  * Rx(n-t))dt

x x

-l
= b * RX  * R (n).Xx

Geweke's Formula

The preceding approach can be used to derive Geweke's generalization

of Sims's formula where in (1) b(s) is now interpreted as a 1 x k vector

at each s, x(t) is a (kxl) vector stochastic process, X(n) is the (kxl)

vector discrete time stochastic process corresponding to x(t) sampled at

the integers, and the orthogonality condition (2) is modified to be

E[u(s) x'(t)] = 0 for all real t, s.

lxl lxk lxk

Now B(s) is 1 x k at each integer s.

The orthogonality condition implies

00

E[(Y(n) - B(s) X(n-s)) X'(r)] = 0 n, s, r integers

which implies the normal equations

(14) RYX(n-r) = B(s) RX(n-r-s)
S =-00

where RYX(T) = E[Y(t) X'(t-T)]

lxk lxl ixk

RX(T) = E(X(t) X'(t-T)).

kxk kxl lxk

-l
Let RX (j) be the (kxk) inverse under convolution of the matrix RX,

-where lj) is the sequence defined by
where Rx (j) is the sequence defined by
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ooI s=O
0 -1 kxkRX (j) RX(s-j) = {kx

j =-0 0 s#0

-l
Convoluting both sides of (14) with RX-1 then gives equation (10), only

where all quantities are now interpreted as the matrices defined above,

B(T) = b* -1 * R (T).

This is Geweke's formula.



FOOTNOTES

1/
-- The results do not actually require that b(t) be absolutely

integrable. They will remain true if b(t) is viewed as a generalized
function, for example, a train of delta functions or derivatives of
delta functions. See Sims [ ]. For an introductory discussion of
the properties of delta functions and other generalized functions, see
Papoulis [ ].

2/
- That condition (2) uniquely determines the projection is

proved, for example, by Ash [p. 121].

3/
- Again, see Ash [p. 121].

- Readers familiar with lag operators may find the following
helpful. The covariance generating function or z-transform of RX is

00

pX(z) = RX(T)z
T =- 

c

so that the coefficient on z is the covariance at lag T. The z-transform
-i

of the inverse under convolution of RX, PX (z) must satisfy

-l

pX(z)p-x (z) = 1 .

Suppose, for example, that x t follows the moving average process
2

x = B(L)E, E white noise with variance o and B(L) =
t t t E n

(1-b L-b 2 L - .. - bL ), where L is the lag operator, Lx =xt1 2 p t t-n
It is easy to show that PX(z) is given by

X(z) = 2 B(z) B(z-1 )

(e.g., see Nerlove [ ]). Then the inverse under convolution of R has

z-transform

-1 1 1
p (z) = 1 1

J B(z) B(z )

-1For example, suppose B(L) = (l-blL) , so that x is first-order Markov.
Then

2 1 1
-bZ) ((z = l-bz 1 )

X-I _1 -
X 2 (l-blz) (l-blz )

1 -+ (l+b 2)blZ
- 2 (-blz +(l+b 1 )-blz)



The value of RX-1(n) is the coefficient on zn in the above expression.

5/Although RX- * R(T) is well defined in the preceding

equation of the text, naming it the convolution of a sequence with a
-1

function is a slight abuse. More precisely, RX  * Rx(T) is the convolution
-1x

of the generalized function, say RXg , corresponding to the sequence
-1

RX -l with R . That is, define

RXg (t) = RX-l(n) 6(t-n) ,
n = -

-1 -1
so that RXg (t) is the generalized function with "mass" RX (n) at

integer n, and value zero elsewhere. Then we have

-1-1m1
Xg x x x X00RXgI x Rx(t) Rx * x( t = R(t-)-(n) (t-n)dTn = -

= R-l(n) f_ Rx(t-T) 6(t-n)dT

n=-C1

= R (n) Rx(t-n)
n = -00

which agrees with the definition in the text. In line with the

pedagogical purpose of this note, I have kept generalized functions out

of the text.

6/ t
6/Notice that for t an integer we must have Yn =1 for n = t,

Yn = 0 for all n # 0. This follows because the projection of x(t) on
t -1

the sequence X(s) is simply X(t) = X(n) for t = n. Since YO = RX *

-1
R x(-t), this shows that the weighting function RX * R(t) must be

unity at t = 0 and zero at all other integers.
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