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Abstract

Most firms begin very small, and large firms are the result of typically decades

of persistent growth. This growth can be understood as the result of some form

of capital accumulation– organization capital. In the US, the distribution of firm

size k has a right tail only slightly thinner than 1/k. This means that most capital

accumulation must be accounted for by incumbent firms. This paper describes

a range of circumstances in which this implies aggregate convergence rates that

are only about half of what they are in the standard Cass-Koopmans economy.

Through the lens of the models described in this paper, the aftermath of the

Great Recession of 2008 is unsurprising if the events of late 2008 and early 2009

are interpreted as a destruction of organization capital.

1. Introduction

Between December 2007 and December 2009, the US civilian employment-population

ratio plunged from 62.7% to 58.3%. As of December 2017, it has recovered to only 60.1%.

∗This is a substantially revised and expanded version of my working paper “Slow Convergence in

Economies with Firm Heterogeneity”(Luttmer [2012]). More detail on some of the proofs is available

at www.luttmer.org.
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If the gap between trough and peak is shrinking at a constant rate, this implies a half-life

of about 8 × ln(4.4/2.6)/ ln(2) ≈ 6.1 years. Why is it taking so long for employment

to recover? This paper argues that such a slow recovery is a robust implication of a

model of the aggregate economy with heterogeneous firms that grow by accumulating

some sort of organization capital.

The distribution of employment across US firms is very skewed. Although there are

as many as 6 million employer firms, about half of aggregate employment is accounted

for by the roughly 18,000 firms with more than 500 employees. And the 1,000 or so firms

with more than 10,000 employees account for nearly a quarter of aggregate employment.

To a first approximation, the distribution of employment size k of US firms is Pareto

with a right tail that behaves like k−ζ , with ζ ≈ 1.10, just inside the ζ > 1 region where

the mean of a Pareto distribution is finite (the ζ ↓ 1 limit is known as Zipf’s law.) Most

new firms start out with only a few employees, and it took the largest firms in the US

economy decades of rapid and persistent growth to reach their current size.1

These facts are consistent with a very simple model of firm size: there is a constant

flow f of new firms that start with size k = 1, grow at some rate g, and exit randomly

at a mean rate ε > g. An easy calculation, reported in Section 3, shows that this yields

ζ = ε/g > 1. Furthermore, this process of firm entry, growth, and exit implies that

the aggregate size Kt evolves according to dKt = −εKtdt + (gKt + f)dt. That is, the

aggregate mean reversion rate is ε − g = (1 − 1/ζ)ε. Holding fixed ε, this implies slow

aggregate convergence precisely when ζ > 1 is close to 1, when the size distribution of

firms is very skewed. In particular, Zipf’s law implies no aggregate convergence at all.

In the US, firm entry and exit rates are around 10% per annum, and so the implied

aggregate mean reversion rate is ε − g ≈ (1 − 1/1.1)0.1 ≈ 0.01. This implies a half-life

of almost 70 years. Even longer half-lives emerge when not all exit is random (Luttmer

[2011]).

Obviously, the US economy recovers more quickly from recessions than suggested

by this simple calculation. But this account of firm growth and aggregate convergence

conveys an important intuition: entry, exit, and non-stationarity at the level of individual

firms very naturally add up to stationary thick-tailed cross-sectional distributions and

slow aggregate convergence.2 This paper builds on this observation by interpreting firm

1These facts are well known. See Luttmer [2010] for sources and a survey of some explicit models.
2Not unlike in Penrose [1959], surviving firms in this economy keep growing. This is in contrast to,
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growth as organization capital accumulation and allowing the flow of entrants f and the

rate g at which firms choose to accumulate organization capital to respond to the state

of the economy. The convergence rate of the economy is then characterized in terms

of factor supply elasticities, factor share parameters, and curvature parameters. This

characterization continues to suggest an important connection between slow aggregate

convergence and skewed firm size distributions. A benchmark calibration, in which the

quality of organization capital is heterogeneous across firms, so that different types of

firms choose to grow at different rates, produces a half-life of slightly more than 6 years.

An attempt to argue that the destruction of organization capital (or, alternatively,

a sudden realization that the stock of organization capital is below its long-run steady

state) can be an important element of what happens in recessions has to overcome the

implied wealth effect on labor supply. In a Cass-Koopmans economy with an elastic

supply of labor and standard preferences, a low capital stock tends to result in high

investment that is made possible by a combination of both low consumption and high

employment. High employment is the opposite of what characterizes a typical recession.

This diffi culty is avoided here by introducing managers and workers, and recognizing

that they are not used with the same intensity in producing consumption and new

organization capital. Workers are assumed to supply labor that can only be used to

produce consumption goods, under the supervision of managers, while managers can

divide their time between two distinct tasks: overseeing workers and producing new

organization capital. The need for managerial supervision means that fewer workers can

be employed when managers are particularly busy producing new organization capital.3

In the model, managers can produce new organization capital by replicating existing

organization capital, which leads to incumbent firm growth, or by using a fixed factor

(scientists, certain locations, say) to create new organization capital from scratch, inter-

preted as entry. The equilibrium g and f will be above their steady state levels when the

organization capital stock, worker employment, and aggregate consumption are below

their steady states. This endogenous response of organization capital accumulation to

the level of the capital stock ensures that, even in the ζ ↓ 1 limit, the economy recovers

for example, Atkeson and Kehoe [2005] and much of the large literature that follows the tradition of

Hopenhayn [1992] and Hopenhayn and Rogerson [1993].
3This is taken from Luttmer [2013]. Many authors use the Greenwood, Hercowitz, and Huffman

[1988] preference specification to eliminate the wealth effect on labor supply.
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at a strictly positive rate. The Zipf limit ζ ↓ 1 arises when labor and managerial ser-

vices inputs are abundant relative to the fixed factor required for firm entry. Although

entry rates remain positive in this limit, the contribution of entry to new employment

becomes negligible relative to the contribution of incumbent firm growth. The Zipf limit

produces a good approximation for the observed firm size distribution, and the rate of

convergence of the economy varies continuously as ζ ↓ 1. The question then arises: what

governs the speed of adjustment of the ζ ↓ 1 economy?

The paper gives detailed analytical answers to this question by making two strong

parametric assumptions. One is the fairly common simplifying assumption that flow util-

ity is a logarithmic function of consumption and additively separable across consumption

and leisure. The second assumption is that consumption is produced using organiza-

tion capital and team services, with a technology for team services that is Leontief in

labor and managerial services. Everything else is non-parametric. In particular, there

are separate roles for factor share parameters and curvature parameters (or, implicitly,

substitution elasticities).

Throughout, an important determinant of the speed of convergence is the factor

share of managers in replicating organization capital. A small factor share means that

g cannot vary much with the supply of managerial services per unit of capital, and

hence, other things equal, with the aggregate capital stock itself. This leads to slow

convergence. Slow convergence also follows when the curvature of g, as a function of

managerial services per unit of capital, is high. Strongly diminishing returns then imply

that it cannot be optimal to increase managerial services per unit of capital much beyond

what is optimal in the steady state.

The elasticity of substitution between capital and team services in the production

of consumption plays an important role. If this elasticity is below one, then the factor

share of capital is increasing in the ratio of team services to capital (and thus the labor-

capital ratio, given that the technology for team services is Leontief). This implies a

high capital share when the capital stock is low, creating strong incentives to produce

more capital. A consumption sector with a low elasticity of substitution between capital

and team services therefore speeds up the rate at which the economy converges.4 The

4This is also true in the Cass-Koopmans economy. Jones and Manuelli [1990] produce long-run

growth (no convergence) by assuming a very high elasticity of substitution.
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effect of this on the shape of equilibrium trajectories can be quite strong. In an economy

that operates below its steady state, the incentives to reallocate managers away from

overseeing workers are weak when the technology is Cobb-Douglas, and strong enough

to create a sharp drop in worker employment when the elasticity of substitution between

capital and team services is significantly below one.

In an economy with two types of capital, it may well be that only firms with high-

quality capital choose to replicate organization capital. In the benchmark calibration

that generates a half-life of slightly over 6 years, the number of such firms is relatively

small, and they grow at an annual rate of about 25% in the steady state. Low-quality

firms choose not to grow at all. Furthermore, the curvature in g is strong enough that

fast-growing firms choose not to grow much faster when the economy is not too far

below its steady state. Figure 1 in Luttmer [2012] provides suggestive evidence that

this is indeed the case. At the same time, the higher capital prices that prevail when

the economy is below its steady state do not pull low-quality firms off their corner:

organizational capital may be a bit more valuable, but not by enough to turn a stagnant

firm into a “gazelle.”5

The picture that emerges is one in which there is a continuous reallocation of labor

from low-quality firms to high-quality firms, both in the steady state and away from it.

When a recession hits, say because some low-quality organization capital is destroyed,

fast-growing firms do speed up somewhat, but not by enough to quickly absorb the

workers fired by the firms that experienced the destruction of low-quality capital.

Related Literature The connection between the thickness of the right tail of the firm

size distribution and the aggregate convergence rate of an economy was first pointed

out in Luttmer [2012]. The idea is reminiscent of how Granger [1980] obtained long

memory processes, by aggregating heterogeneous but still stationary processes. Gabaix

et al. [2016] use the same idea to explain why the simplest random growth model cannot

account for the fairly rapid changes observed in the US earnings and wealth distributions.

The current paper remains focused on firms and argues that the equilibrium trajectories

associated with slow aggregate convergence are not dissimilar to what has happened

following recent US recessions. The observation that recent recessions seem to give rise to

5The persistent rapid growth of some firms led Birch [1979] to introduce the term “gazelles” to

describe such firms. There are also many small firms that hardly grow (Hurst and Pugsley [2011]).
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slow (some argue “jobless”) recoveries has received significant attention.6 In particular,

organization capital is a key factor in the account of Koenders and Rogerson [2005].

But the underlying firm dynamics in their model is too simple to make contact with the

evidence on how firms grow and the resulting thick-tailed stationary size distributions.

Outline Section 2 lays out the economy in detail. Section 3 describes the steady

state implications for the firm size distribution. The circumstances in which this size

distribution approximates Zipf’s law are given in Section 4. The characterization of the

speed of convergence is in Section 5. Section 6 introduces heterogeneity in the quality of

organization capital and describes quantitatively how the model can generate recessions

followed by slow recoveries.

2. The Economy

Organization capital is taken to be a type of capital that can be used simultaneously to

produce consumption and more organization capital. But the technologies for producing

consumption and new organization capital are assumed to be different. Labor is a specific

factor for the consumption sector, while managerial services are used in both sectors.

Heterogeneous ability and comparative advantage determine the aggregate supplies of

labor and managerial services.

2.1 Households

There is a unit continuum of identical infinitely lived households who consume and supply

primary factors of production. Each household is made up of a heterogeneous continuum

of members with types indexed by h = (hc, hu, hv, hw) ∈ R4
++. The distribution of

types in each household is assumed to be time invariant and denoted by Ψ. Time is

continuous, and household preferences are recursive and additively separable across time.

The contribution of a type-h household member to flow utility at time t is hc ln(Ct(h))+

hu(1 − ιt(h)), where Ct(h) is flow consumption and ιt(h) ∈ {0, 1} is a labor market
participation decision. It will be convenient to normalize the mean of hc to be equal

to 1, so that the marginal utility of household consumption is going to be 1/Ct when

6Notable examples are Bachmann [2012], Berger [2016], Jaimovich and Siu [2015] and Koenders and

Rogerson [2005].
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Ct =
∫
Ct(h)Ψ(dh). The distributionΨ is also assumed to be suffi ciently smooth that the

employment lotteries proposed in Rogerson [1988] are not needed. Household preferences

over flows of consumption, labor, and managerial services are then

U(C,L,M) =

∫ ∞
0

e−ρt (ln(Ct)− V (Lt,Mt)) dt,

where ρ is strictly positive, and where V (L,M) is the household disutility from supplying

L units of labor and M units of managerial services,

V (L,M) = min
(ιv(·),ιw(·))∈{0,1}2
ιv(·)+ιw(·)≤1

∫
hu[ιv(h) + ιw(h)]Ψ(dh)

s.t.
∫
hwιw(h)Ψ(dh) ≥ L,

∫
hvιv(h)Ψ(dh) ≥M.

Households can earn w̃t per unit of labor and ṽt per unit of managerial services, both

measured in units of consumption per unit of time.

Households are endowed with an equal share of the assets in the economy, and mar-

kets are complete. As a result, every household will consume the same amount of

consumption Ct and supply the same amounts of labor and managerial services. The

risk-free rate in this economy is related to aggregate consumption growth via the usual

Euler condition rt = ρ+ DCt/Ct.

2.1.1 Factor Supply Curves

Let λt denote the marginal utility of wealth of the typical household at time t. The

potential earnings of a type-h household member are max{ṽthv, w̃thw}, and it is op-
timal for this household member to participate in the labor market if and only if

λt max{ṽthv, w̃thw} ≥ hu. The smooth heterogeneity assumed here means that ties

do not affect aggregate factor supplies. Since λt = 1/Ct, this can also be written as

max{vthv, wthw} ≥ hu, where

(vt, wt) = (ṽt, w̃t)/Ct

is the vector of marginal utility weighted factor prices. Throughout the rest of the paper,

“factor prices”or “wages”will always refer to these marginal utility weighted prices. The
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resulting aggregate supplies of labor and managerial services are then

L(vt, wt) =

∫
hwι [wthw > max {hu, vthv}] Ψ(dh), (1)

M(vt, wt) =

∫
hvι [vthv > max {hu, wthw}] Ψ(dh). (2)

The fact that these supply curves only depend on the marginal utility weighted factor

prices relies heavily on the assumption that households are identical. Without such

an assumption, aggregate factor supplies would depend on the equilibrium distribution

of wealth across households– a potentially important complication that is abstracted

from here. The following assumption and lemma summarize the important properties

of (1)-(2).

Assumption 1 The type distribution Ψ has finite mean and is suffi ciently smooth to

ensure that V (L,M) is continuously differentiable.

Lemma 1 Suppose Assumption 1 holds. Then L(v, 0) = M(0, w) = 0 for all positive v

and w. Furthermore, the slopes of these supply curves satisfy

D1M(v, w) ≥ 0, D2L(v, w) ≥ 0, D2M(v, w) = D1L(v, w) ≤ 0.

In addition L(θv, θw) and M(θv, θw) are both increasing in θ > 0. This implies that

own price elasticities are larger in absolute value than cross price elasticities.

The symmetry follows because Lt = L(vt, wt) and Mt = M(vt, wt) solve [wt, vt] =

DV (Lt,Mt), and D2V (Lt,Mt) will be symmetric. Write [EL,v,t, EL,w,t] and [EM,v,t, EM,w,t],

respectively, for the elasticities of the labor and managerial services supply curves, eval-

uated at equilibrium prices and quantities. The last observation in Lemma 1 then says

that −EL,v,t/EL,w,t and −EM,w,t/EM,v,t are both in (0, 1).

These aggregate factor supply elasticities abstract from effort and are completely

driven by the numbers of households who are at the margins between not working,

supplying labor, and supplying managerial services. The only household members who

move in and out of the labor force with fluctuations in the state of the economy are

those who have both low hv/hu and low hw/hu.
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2.2 The Technology for Producing Consumption

Consumption is produced using capital Kt and the services of a team of managers and

workers. The technology for team services is Leontief. The input requirements for a

unit of team services are one unit of labor and β units of managerial services. In any

equilibrium, managerial and labor services will be used in exactly this proportion, and

so Lt = L(vt, wt) measures both labor and team services. The output of consumption

is then Ct = F (Kt, Lt), where F is a constant returns to scale production function

that is assumed to be smooth and strictly increasing in both factors. Because of the

logarithmic utility assumption, the production function F will turn out to affect the

dynamic properties of this economy only via the factor share

A(k) =
D2F (k, 1)

F (k, 1)
. (3)

This is the factor share of team services when Kt/Lt = k. The Leontief technology

for team services implies that the marginal utility weighted cost of a team is βvt + wt

per unit of team services. Equating the cost of a team with its marginal product and

clearing the labor market gives

(βvt + wt)L (vt, wt) = A(kt), kt =
Kt

L(vt, wt)
. (4)

This determines functions wt = w(Kt, vt) and kt = k(Kt, vt) that describe how wages

and the capital-labor ratio vary with Kt and vt in any equilibrium.7 It is easy to see

that a destruction of capital has a negative direct effect (that is, holding fixed vt) on wt
and L(vt, wt) if A(·) is increasing. This will be the maintained assumption.8

Assumption 2 The production function F for consumption is strictly increasing in

capital and team services, suffi ciently smooth, concave, and exhibits constant returns to

scale. The implied factor share of team services A(·) ∈ (0, 1) is non-decreasing.

The team factor share is increasing in Kt/Lt if F is a CES production function with

an elasticity strictly below 1. The function A(·) is constant if F is Cobb-Douglas, and

7What is very special here is that F depends on labor and managerial services only through the

team services composite good. The Leontief assumption can be relaxed.
8Section 6 generalizes by introducing heterogeneity in the quality of capital. There, an increasing

A(·) implies that the factor share of high-quality capital is also high.
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then the dependence of the right-hand side of (4) on Kt vanishes. The capital stock can

still affect wages and worker employment in that case, but only indirectly through its

effect on the price vt of managerial services. If β > 0, then there are two such indirect

channels: an increase in vt raises the cost of a team of managers and workers, and it

lowers the supply of labor because marginal households switch from supplying labor to

supplying managerial services. Only this second channel remains if β = 0, and then (4)

implies that vt and wt co-move, weakly. If the cross price elasticities of L(vt, wt) and

M(vt, wt) are also zero, then wt = w̃t/Ct and the supply of labor are both constant.

Lemma 2 describes the much richer set of possibilities that can arise when β is positive

and F is not Cobb-Douglas.

Lemma 2 Write EA,t for the elasticity of the labor share function A(·) defined in (3).
Let wt = w(Kt, vt) and kt = k(Kt, vt) be the solution to (4). Assumptions 1 and 2 imply

that these functions are well defined, and their elasticities are[
Ew,K,t Ew,v,t
Ek,K,t Ek,v,t

]
=

1
wt

βvt+wt
+ (1 + EA,t) EL,w,t

×

 EA,t −
(

βvt
βvt+wt

+ (1 + EA,t) EL,v,t
)

wt
βvt+wt

+ EL,w,t
(

βvt
βvt+wt

)
EL,w,t −

(
wt

βvt+wt

)
EL,v,t

 .
This implies Ek,K,t ∈ (0, 1] and Ew,K,t ≥ 0. And Ek,v,t > 0 but the sign of Ew,v,t <
−EL,v,t/EL,w,t < 1 is ambiguous.

The elasticity Ew,v,t is strictly negative if the cross price elasticities EL,v,t and EM,w,t are

zero. More generally, the sign of Ew,v,t is ambiguous because the expenditures (βvt +

wt)L(vt, wt) on teams of managers and workers may rise or fall with vt. Holding fixed

Kt, the factor prices vt and wt will move in opposite directions if the factor share of

managers in teams of managers and workers is substantial.

2.2.1 The Residual Supply of Managerial Services

Using the wage function wt = w(Kt, vt) implied by (4), define

S(Kt, vt) = M(vt, w(Kt, vt))− βL(vt, w(Kt, vt)). (5)

This is the residual supply of managerial services available to the sector producing new

capital. The elasticities ES,K,t and ES,v,t of S(Kt, vt) are easy to compute from (5) and
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Lemma 2. It is immediate that S(Kt, vt) is weakly decreasing in Kt under Assumptions

1 and 2. An increase in the capital stock raises the wages of workers, by Lemma 2, and

this unambiguously reduces the supply of managerial services and raises the demand

for managerial services that arises from team production. It is also immediate that

S(Kt, vt) is increasing in vt if wt = w(Kt, vt) is decreasing in vt. More generally, assuming

for the simplicity of this argument that all elasticities are non-zero, the upper bound

Ew,v,t < −EL,v,t/EL,w,t together with (5) implies

ES,v,t
EM,v,t

>
M(vt, wt)

S(Kt, vt)

(
1− EM,w,t

EM,v,t

× EL,v,tEL,w,t

)
.

This lower bound is positive because cross price elasticities are smaller than own price

elasticities.

Lemma 3 Assumptions 1 and 2 imply that the residual supply of managerial services

S(Kt, vt) is weakly decreasing in Kt (strictly if and only if A(·) is strictly increasing)
and strictly increasing in vt.

2.3 The Technology for Producing New Capital

New capital can be produced in two ways. Managerial services can be used to produce

new capital from scratch. Using nt units of managerial services generates an aggregate

flow of f(nt) of new units of capital. The production function f is subject to decreasing

returns to scale. For example, it could be that managerial services have to be combined

with a production location, and that these production locations are heterogeneous and

in fixed supply. Or there could be a fixed supply of experts whose inputs are needed for

every start-up.

The second way capital can be produced is by replicating existing capital. One

unit of capital can be replicated using mt units of managerial services, at the average

rate g(mt). Capital is assumed to be homogeneous, and so the aggregate output of

new capital produced by replication is Ktg(mt). The production function g exhibits

decreasing returns to scale. The aggregate stock of capital then evolves according to

DKt = (g(mt)− δ)Kt + f(nt). (6)

The production functions f and g are taken to satisfy the following assumption.
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Assumption 3 The production functions f and g are strictly increasing, strictly con-

cave, and smooth. Furthermore,

(i) f(0) = g(0) = 0,

(ii) the marginal products Df(n) and Dg(m) range throughout (0,∞).

Part (i) of this assumption implies that managerial services are essential inputs in pro-

ducing capital. In particular, g(0) = 0 means that the type of autonomous growth of

capital that occurs in the AK economies of Jones and Manuelli [1990] and Rebelo [1990]

cannot happen here. Part (ii) serves to rule out corner solutions– there will always be

some entry and some replication.

2.3.1 The Price of Capital

This economy features joint production: the same unit of capital is combined, simulta-

neously, with labor to produce consumption, and with managerial services to replicate

capital. Both activities generate income that accrues to the owners of capital. Write

q̃t for the price of a unit of capital, measured in units of consumption. The usual asset

pricing equation says that

rtq̃t =
(1− A(kt))Ct

Kt

+ max
m
{q̃t(g(m)− δ)− ṽtm}+ Dq̃t,

where kt is the capital-labor ratio determined by (4). That is, the required return on a

unit of capital comes in the form of earnings from producing consumption, earnings from

replicating capital, and capital gains. The first-order condition for replicating capital

is ṽt = q̃tDg(mt), and the first-order condition for producing capital from scratch is

ṽt = q̃tDf(nt). This is where Assumption 3 comes in to avoid the need to consider

corners. Write qt = q̃t/Ct for the marginal utility weighted price of a unit of capital.

The first-order conditions for mt and nt are then

qtDf(nt) = vt = qtDg(mt),

and the Euler condition rt = ρ+ DCt/Ct yields

ρqt =
1− A(kt)

Kt

+ qt(g(mt)− δ)− vtmt + Dqt. (7)

As is standard, the optimality conditions for this economy also include a transversality

condition that requires e−ρtqtKt to go to zero as t becomes large.
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Share and Curvature Parameters It is convenient to write Sg,t = Dg(mt)mt/g(mt)

for the managerial factor share and Cg,t = −D2g(mt)mt/Dg(mt) for the curvature of g(·),
evaluated at the equilibrium value of mt. The implied elasticity of substitution between

managerial services and organization capital is (1−Sg,t)/Cg,t. The analogous share and
curvature parameters for f(·) are Sf,t and Cf,t.

2.4 The Static Equilibrium Conditions

Holding fixed Kt and qt, the static equilibrium conditions for this economy can be

summarized as

vt = qtDf(nt) = qtDg(mt), mtKt + nt = S(Kt, vt). (8)

This requires solving [Dg]−1(vt/qt)Kt + [Df ]−1(vt/qt) = S(Kt, vt) for vt and then mt and

nt follow. The fact that S(Kt, ·) is upward sloping and Assumption 3 imply that the
solution is unique and interior. Inspection of the static equilibrium conditions (8) shows

that mt and nt must co-move. More precisely, the first-order conditions vt = qtDg(mt)

and vt = qtDf(nt) imply[
Kt
mt

∂mt
∂Kt

qt
mt

∂mt
∂qt

Kt
nt

∂nt
∂Kt

qt
nt
∂nt
∂qt

]
=

[
1/Cg,t
1/Cf,t

] [
−Kt

vt
∂vt
∂Kt

1− qt
vt
∂vt
∂qt

]
, (9)

where the elasticities on the right-hand side are the elasticities of the managerial factor

price vt that solves the static equilibrium conditions (8) in terms of (Kt, qt).9 The relative

magnitude of the elasticities of mt and nt depends only on the curvatures of g(·) and
f(·): mt responds less than nt if and only if the curvature of g(·) exceeds that of f(·),
and vice versa.

An explicit calculation of the elasticities of vt with respect to (Kt, qt) implied by (8)

gives

[
Kt
vt

∂vt
∂Kt

, qt
vt
∂vt
∂qt

]
=

[
mtKt

mtKt+nt
− ES,K,t, mtKt

mtKt+nt
1
Cg,t + nt

mtKt+nt
1
Cf,t

]
ES,v,t + mtKt

mtKt+nt
1
Cg,t + nt

mtKt+nt
1
Cf,t

. (10)

From Lemma 3, recall that ES,K,t ≤ 0 and ES,v,t > 0 under Assumptions 1 and 2. So

the elasticity of vt with respect to Kt is positive, and the elasticity of vt with respect

9All prices and quantities at a point in time are functions only of (Kt, qt). Here and below, the

notation ∂/∂Kt and ∂/∂qt will be used exclusively for the partial derivatives of these functions.
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to qt is in (0, 1). The intuition is that an increase in qt is distributed over an increase

in the factor price vt = qtDg(mt) and an increase in the quantity mt. In turn, this is a

consequence of the fact that mt and nt must co-move, together with the fact that the

supply of managerial services is upward sloping.

Combining (9) and (10) shows thatmt and nt are both decreasing inKt and increasing

in qt. As expected from 1 = Df(nt)/Dg(mt), Cf,t ↓ 0 drives the elasticities of mt with

respect to Kt and qt to zero. Neither of the inputs (mt, nt) responds much to changes

in qt if the residual supply of managerial services is particularly inelastic. But even

with an inelastic residual supply of managerial services, something has to give when Kt

changes, and the response of mt to Kt becomes unit elastic (with a negative sign) when

mtKt/(mtKt + nt) is close to 1 and ES,K,t is small (as in the Cobb-Douglas case).
The dependence on (Kt, qt) of the capital-labor ratio implied by (4) is characterized

by [
Kt
kt

∂kt
∂Kt

qt
kt
∂kt
∂qt

]
=
[
Ek,K,t + Ek,v,t × Kt

vt
∂vt
∂Kt

Ek,v,t × qt
vt
∂vt
∂qt

]
, (11)

where Ek,K,t and Ek,v,t are defined in Lemma 2. Together with (10) this implies that the
capital-labor ratio in the consumption sector is increasing in both Kt and qt.

2.5 Equilibrium

The derivatives DKt and Dqt given in (6) and (7) are explicit functions of the state

(Kt, qt), the allocation of managerial services (mt, nt), and the capital-labor ratio kt.

The allocation of (mt, nt) follows from the static equilibrium conditions (8), and then

(4) determines kt. This pins down the trajectory of (Kt, qt) given an initial value (K0, q0).

The initial value of K0 is given. As usual, the transversality condition will be needed to

pin down q0.

2.6 Alternative Formulations

The notion of “organization capital” adopted here is abstract. It can be made more

explicit by taking capital to be discrete at the micro level. One unit of capital could

then be a blueprint that can be used at the same time by only one team or a few teams

of managers and workers, or in only a restricted number of geographical locations. And

g(·) can then be interpreted as a Poisson arrival rate that describes the rate at which
blueprints can be replicated. Models of customer capital (e.g., Steindl [1965], Luttmer
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[2006], and Gourio and Rudanko [2014]) have a very similar structure.

The Trouble with Homogeneous Labor Inputs The properties of the residual

supply curve of managerial services S(Kt, vt) described in Lemma 3 continue to hold,

and are easy to see by inspection, if it is assumed that labor and managerial services

are perfect substitutes. Given an appropriate choice of units, wt = vt at all times, and

(4) becomes an equilibrium condition that determines a labor demand curve L(K, v)

via (1 + β)vL(K, v) = A(K/L(K, v)). It is easy to see that Assumption 2 implies that

L(K, v) is increasing in K and decreasing in v. Assumption 2 also implies that the

implied capital-labor ratio k = K/L(K, v) is increasing in both K and v. The residual

supply of labor not used to produce consumption is then S(K, v) = M(v, v) +L(v, v)−
(1 + β)L(K, v). This is clearly weakly decreasing in K and Lemma 1 ensures that it is

strictly increasing in v.

The cost of this simplification is that it forces both vt and wt and M(vt, wt) and

L(vt, wt) to move together along any equilibrium trajectory. This rules out the possibility

that different types of labor are affected differently by a destruction of organization

capital. In particular, if F is Cobb-Douglas, then L(K, v) no longer depends on K and

this would rule out the possibility that a destruction of organization capital could cause

a reduction in aggregate employment.

Long-Run Growth A simple way to introduce long-run growth is to replace Ct =

F (Kt, Lt) by Ct = ztF (Kt, Lt) with zt growing exponentially. The formulation of pref-

erences ensures that the supplies of labor and managerial services are constant when

consumption and factor prices grow at a common rate. Because zt only affects the out-

put of consumption goods, growth is balanced even though production functions need

not be Cobb-Douglas. Much richer formulations, in which capital quality is hetero-

geneous and growth is endogenous, are possible but beyond the scope of the current

paper.

Monopolistic Competition It is possible to re-interpretKt as the number of goods in

an economy with monopolistic competition and a technology for producing differentiated

commodities that is linear in team services. If Ct is a symmetric CES composite good

of differentiated commodities, with an elasticity of substitution greater than 1, then the
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A(·) in (4) is a constant equal to 1 minus the reciprocal of the elasticity of substitution.

The resulting economy is isomorphic to a competitive economy in which F is Cobb-

Douglas. Everything that follows for the competitive Cobb-Douglas economy applies.

For more general but still symmetric preferences over differentiated commodities, the

elasticity of the demand curves faced by individual producers will depend only on the

number of goods Kt. The function A(·) in (4) is then no longer a function of the capital-
labor ratio Kt/L(vt, wt), but of the number of goods Kt only. This makes a difference

for the dynamic properties of this economy. A detailed analysis is left to future work.

3. The Firm Size Distribution

This economy will be shown to have a unique steady state, with (mt, nt) = (m,n), and

both f(n) and δ − g(m) positive. That is, existing capital is replicated at a lower rate

than the depreciation rate δ, and capital produced from scratch makes up the difference.

The flow f(n) of new capital produced from scratch can be interpreted as a flow of

new firms, each with one unit of start-up capital. Firms then grow by replicating capital.

Because the allocation of capital across firms does not matter, an arbitrarily small trans-

action cost is enough to keep all capital produced directly or indirectly from the initial

unit of start-up capital within the same firm. From (6), note that K = f(n)/(δ− g(m))

in the steady state. The contribution of firm entry to aggregate investment is thus

f(n)

g(m)K + f(n)
= 1− g(m)

δ
∈ (0, 1).

So the contribution of entry will be small precisely when δ−g(m) > 0 is close to zero. Of

course, even though new firms contribute very little to aggregate capital accumulation,

their subsequent contribution as incumbents can be very large.

Suppose now that the capital embodied in firms can depreciate in two distinct ways:

incumbent firm capital depreciates continuously at a rate δk ∈ [0, δ), and all of the

firm’s capital is destroyed simultaneously and randomly at the complementary rate δf =

δ− δk ∈ (0, δ). That is, δf is a firm exit rate, and a firm’s exit results in the destruction

of all of its capital. In a steady state, this means that the age distribution of firms

is exponential with mean 1/δf . Incumbent firms grow at the net rate g(m) − δk as

long as the random exit shock does not hit, and so the size of a firm of age a will be

k = e(g(m)−δk)a, measured in units of capital. Assume that g(m)− δk is positive, so that
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firms can grow beyond their start-up size. The distribution Φ of firm size will then be

Φ(k) = 1− e−δf ln(k)/(g(m)−δk) = 1− k−ζ , k ∈ [1,∞).

This is a Pareto distribution on [1,∞), and

ζ =
δf

g(m)− δk
is the tail index of the distribution. The mean of this distribution is finite if and only

if ζ > 1. The limiting distribution associated with ζ = 1 is known as Zipf’s law. The

steady state implies 0 < δ − g(m) = δf − (g(m) − δk), and the assumption is that

the equilibrium is such that g(m) − δk > 0, so that incumbent firms do in fact grow.

Together, these inequalities imply that ζ > 1. Moreover, as long as g(m) − δk > 0 is

bounded away from zero, δ − g(m) ↓ 0 is the same as ζ ↓ 1.

In this economy, the capital of incumbent firms depreciates continuously at the rate

δk. If, instead, individual pieces of capital of incumbent firms depreciate randomly in one-

hoss-shay fashion at the rate δk, the resulting firm size distribution will be not be Pareto

but an analog of the Pareto distribution that has discrete support (a generalization of

the Yule distribution associated with the special case δk = 0). In particular, the right

tail of that distribution will still behave like k−ζ (Luttmer [2011]).

Firm employment scales with firm capital because, in the steady state, capital-labor

ratios are constant both in the production of consumption and in the replication of

capital. In US data, the employment size distribution of firms has a tail index ζ of

about 1.06 (Luttmer [2007]), and the interpretation given here means that δ − g(m)

must be small. From (6), Kt converges at precisely the rate δ − g(m) when (mt, nt)

is fixed at the steady state value (m,n). That is, slow aggregate convergence happens

precisely when the tail index ζ of the firm size distribution is close to 1, as is the case

in US data.

3.1 An Economy with Two Types of Capital

Growth rates have an enormous amount of persistent heterogeneity that any calibration

will have to confront. Without exception, very large firms have had histories of very

rapid and persistent growth, and large firms account for an important share of aggregate

employment. As was emphasized in Luttmer [2011], this heterogeneity is precisely what

is needed to account for the relatively young age of large US firms.
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To show how this heterogeneity affects the connection between aggregate convergence

rates and the firm size distribution, suppose there are only two types of capital that differ

in quality.10 High-quality capital allows workers to produce more consumption than low-

quality capital. Write Kj,t for the aggregate stock of capital of type j ∈ {1, 2} and qj,t
for its marginal utility weighted price. As before, suppose nt units of managerial services

generate units of new capital randomly at the mean rate f(nt). The type of a new unit

of capital is j ∈ {1,2} with probability φj. Let mj,t be the managerial services used

to replicate capital of type j. The technology is the same as before, for both types of

capital, and so capital of type j will be replicated at the rate g(mj,t). Finally, suppose

that capital of type j = 2 changes into capital type j = 1 randomly, and once and for

all, at the mean rate θ. The dynamics of the aggregate stock of capital is then

D

[
K1,t

K2,t

]
= −

[
δ − g(m1,t) −θ

0 δ + θ − g(m2,t)

][
K1,t

K2,t

]
+

[
φ1

φ2

]
f(nt). (12)

The effi cient rate of entry is determined by (φ1q1,t +φ2q2,t)Df(nt) = vt, and the optimal

replication rates follow from qj,tDg(mj,t) = vt. High-quality capital will be more expen-

sive than low-quality capital. It follows that high-quality capital will be replicated more

quickly than low-quality capital. Note that q2,t > q1,t not only because of the differ-

ent profits generated by producing consumption but also because high-quality capital is

replicated more quickly than low-quality capital.

If the difference between q2,t and q1,t is large near the steady state, relative to the

dynamics in each of these prices near the steady state, then the gap g(m2,t) − g(m1,t)

can be large even though f(nt), g(m1,t), and g(m2,t) are relatively stable near the steady

state. Approximate this by setting f(nt), g(m1,t), and g(m2,t) at their steady state

values in (12). The steady state equilibrium conditions will force the eigenvalues −(δ +

θ − g(m2)) and −(δ − g(m1)) to be negative. And this will be consistent with a large

gap between g(m2) and g(m1) if the rate θ at which quality depreciates is high. The

smallest eigenvalue, in absolute value, determines the aggregate rate of convergence.

As in the one-type case, suppose a firm is the collection of all capital that is produced

by replication from a particular initial unit of capital. Let δf > 0 be the rate which the

entire firm exits, and δk = δ − δf > 0 the rate at which individual units of its capital

are destroyed. Suppose that the quality depreciation event is a firm-specific event: all

10What follows is a minimal description of this economy. The full specification appears in Section 6.

18



units of capital in a particular firm transition from high to low quality at the same time.

This implies that all units of capital within the firm are replicated at the same rate. The

resulting firm size distribution is similar to the one derived for the one-quality case. In

particular, suppose that g(m2) − δk > 0 so that high-quality firms grow at a positive

rate. Then the distribution of firm capital will behave like k−ζ for large firm capital

stocks k, and the tail index is given by

ζ = min

{
δf

[g(m1)− δk]+
,

δf + θ

g(m2)− δk

}
. (13)

The calculation is shown in Appendix A. US data imply that ζ > 1 is close to 1. One

possibility is that g(m1)− δk > 0 and that ζ = δf/(g(m1)− δk) is close to 1. This means

that δf + δk− g(m1) = δ− g(m1) > 0 is close to zero. The alternative possibility is that

ζ = (δf+θ)/(g(m2)−δk) is close to 1. This implies that δf+δk+θ−g(m2) = δ+θ−g(m2)

is close to zero. In either scenario, the result is that at least one of the two eigenvalues

is close to zero when ζ > 1 is close to 1. This implies the same connection between the

aggregate convergence rate and the size distribution of firms as in the one-type economy.

But now this connection can be accounted for without invoking large firms that

are much older than they are in the data (Luttmer [2011]). And this description of

firm growth can account for the fact that large firms tend to have histories of at least

several decades of very rapid growth, and these growth rates are hardly affected by the

business cycle. The picture that emerges is one in which employment is continuously

reallocated across firms in very persistent and predictable ways, motivated by long-term

considerations. These long-term considerations are the dominant determinants of firm

growth, and from the perspective of rapidly growing firms, business cycles are mere blips

that do not materially affect their growth trajectories.

4. The Steady State and the Zipf Asymptote

Steady states are defined by DKt = 0 in (6) and Dqt = 0 in (7), together with the static

equilibrium conditions (8) and the capital-labor ratio implied by (4). The condition

DKt = 0 says that K = f(n)/(δ − g(m)), and Dqt = 0 is the same as qK = (1 −
A(k))/(ρ+ δ − [g(m)−Dg(m)m]). It will be convenient to write

n[m] = [Df ]−1(Dg(m))
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and define

m∞ = sup{m : g(m) < δ}.

Since g(m) is assumed to be strictly increasing, m∞ <∞ if and only if g(m) ≥ δ for m

large enough. In any case, the steady state managerial services needed for replicating

capital, mK = mf(n[m])/(δ − g(m)), explode as m approaches m∞ from below.

What follows proves the existence and uniqueness of a steady state by first estab-

lishing the result for the Cobb-Douglas case, where A(k) = α ∈ (0, 1) identically. This

Cobb-Douglas economy implies a capital-labor ratio k(α) that can be computed from

(4), resulting in a map α 7→ k(α). The steady state for an economy with a non-constant

A(·) is simply a fixed point of the map α 7→ A(k(α)). Assumption 2 is enough to

guarantee a unique fixed point.

4.1 The Cobb-Douglas Case

Suppose the labor share in the consumption sector is equal to A(k) = α ∈ (0, 1) identi-

cally. Construct the steady state demand curve D(·) for managerial services by varying
m ∈ (0,m∞) and computing (v,D(v)) from

v =
Dg(m)

ρ+ δ − [g(m)−Dg(m)m]

1− α
f(n[m])/(δ − g(m)

, (14)

D(v) = m× f(n[m])

δ − g(m)
+ n[m]. (15)

Taking into account the steady state conditions DKt = 0 and Dqt = 0, (14) follows from

v = qKDg(m)/K and (15) from D(v) = mK +n. Although Dg(m) and ρ+ δ− [g(m)−
Dg(m)m] are both decreasing in m, an easy derivative calculation shows that the second

factor in (14) is a strictly decreasing function of m ∈ (0,m∞). It follows immediately

that (14) defines v as a strictly decreasing function of m ∈ (0,m∞). It is clear from

(15) that D(v) itself is strictly increasing in m ∈ (0,m∞), and so (14)-(15) traces out a

strictly decreasing demand curve for managerial services.

The residual supply curve S(·) is determined by

α = (βv + w)L(v, w), (16)

S(v) = M(v, w)− βL(v, w). (17)

This supply curve is just a version of (5) with A(k) = α identically. As was shown in

Lemma 3, it is strictly increasing.
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0
0

v

S(v)
D(v)
lim

Λ→ ∞
D(v/Λ)/Λ

Figure 1 Steady State Demand and Supply for Managerial Services

Figure 1 shows an example. Since the supply and demand curves are strictly in-

creasing and decreasing, respectively, it is immediate that the market clearing condition

D(v) = S(v) can have at most one solution, and so there can be at most one steady

state. The existence of a steady state is guaranteed by the following proposition.

Proposition 1 Given Assumptions 1 and 3 and a labor share α ∈ (0, 1), the Cobb-

Douglas economy has a unique steady state, defined by (14)-(17), together with K =

f(n[m])/(δ − g(m)) and qK = (1− α)/(ρ+ δ − (g(m)−Dg(m)m)).

Proof It suffi ces to show that the demand for managerial services is well defined for

every v ∈ (0,∞). Consider what happens as m ↓ 0. The assumption that g has a

marginal product that ranges throughout (0,∞) implies that Dg(m) → ∞. Effi ciency
requires that n declines as m ↓ 0, and g(m) − Dg(m)m ∈ (0, g(m)) means that both

g(m) and g(m) − Dg(m)m go to zero as m ↓ 0. So the right-hand side of (14) goes to

∞ as m ↓ 0. The demand (15) is certainly well defined when m < m∞, and so varying

m ∈ (0,m∞) traces out a well-defined demand curve for all v large enough. Next consider

what happens as m ↑ m∞. If m∞ < ∞, then δ − g(m) ↓ 0 and Dg(m) ↓ Dg(m∞) ∈
(0,∞). Since n increases with m, it also follows that f(n) converges to a finite limit. So

the right-hand side of (14) converges to 0. Alternatively, if m∞ =∞, then Dg(m)→ 0

as m→ m∞. And ρ+ δ− [g(m)−Dg(m)m] > ρ ensures that the denominator of (14) is
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bounded away from zero. So the right-hand side of (14) converges to 0 again. That is,

varying m ∈ (0,m∞) near m∞ traces out the demand curve for all v near 0. So varying

m ∈ (0,m∞) causes v to vary throughout (0,∞). This results in a well-defined D(v) for

every such v ∈ (0,∞).�

In preparation for the general case, consider how the steady state of a Cobb-Douglas

economy depends on the labor share α. Note that an increase in α shrinks the demand

curve D(v) toward the quantity axis, essentially because it lowers the price of capital

q, holding fixed K. At the same time, it is easy to see from (16) that an increase in

α, holding fixed v, raises w. By (17), this reduces the household supply of managerial

services and raises the supply of labor, lowering the residual supply S(v) on both counts.

So an increase in α moves the supply curve S(v) toward the price axis. It follows that

an increase in α lowers D(v) = S(v). The definition (15) makes D(v) an increasing

function of m, and so a reduction in D(v) has to go together with a reduction in m.

This lowers the steady state capital stock K = f(n[m])/(δ − g(m)). It turns out that

L(v, w) is increasing in α. A sketch of the proof is in Appendix B. So an increase in α

lowers the capital-labor ratio, proving the following lemma.

Lemma 4 Given Assumptions 1 and 3, the steady state capital-labor ratio in the Cobb-

Douglas economy is decreasing in the labor share α.

4.2 The General Case

Now consider a more general production function F , with a labor share A(k) that is non-

decreasing in k. The conditions for a steady state are then the Cobb-Douglas conditions

(14)-(17) together with the requirement that α = A(k), where k = K/L(v, w) and K =

f(n[m])/(δ−g(m)). To set up a fixed point condition for the labor share, start with any

α ∈ (0, 1) and use (14)-(17) to construct a unique steady state for the associated Cobb-

Douglas economy. This can be done by Proposition 1. Take the associated (v, w,m) to

compute

α′ = A(k), k =
f(n[m])/(δ − g(m))

L(v, w)
. (18)

This produces a well-defined mapping α 7→ α′, from (0, 1) into (0, 1). If α′ = α, then all

the steady state equilibrium conditions for the general economy are satisfied. Proving

the existence and uniqueness of a steady state now requires proving that α 7→ α′ has
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precisely one fixed point. By Lemma 4, the mapping α 7→ k implied by the Cobb-

Douglas economy is decreasing. Assumption 2 requires A(·) to be weakly increasing. As
a result, α 7→ A(k) = α′ is a weakly decreasing map. Such a map can cross the line

α′ = α only once. Because α 7→ α′ is well defined for any α ∈ (0, 1) and continuous, it

follows that there is a unique fixed point.

Proposition 2 Given Assumptions 1-3, the economy has a unique steady state.

Constant elasticity of substitution production functions with an elasticity of substitution

greater than 1 have A(·) decreasing instead of increasing. This was used by Jones and
Manuelli [1990] to construct a one-sector economy without a steady state, with kt →∞
and A(kt) ↓ 0 over time. Here, the mapping α 7→ A(k) = α′ becomes increasing, and it

is no longer obvious that this mapping will have a fixed point. But F in this economy

only determines Ct = F (Kt, L(vt, wt)), and output of new capital is the maximum of

g(mt)Kt + f(nt) subject to the constraint mtKt +nt ≤ S(Kt, vt). A production function

F that generates long-run growth in Jones and Manuelli [1990] may very well result in a

unique steady state here. A tractable example is discussed below, for a limiting economy

in which g(m) ↑ δ.

4.3 The g(m) ↑ δ Limit

If Df(0) is finite, contrary to Assumption 2, then the steady state may very well have

f(n) = 0 together with δ = g(m) and an exponentially declining number of ever larger

firms. Such a steady state would not be able to account for the fact that entry and

exit rates in the US are around 11% and 10% per annum, or for the implied stability

of the per-capita number of firms, or for the stability of the firm size distribution.

But the tail index ζ ≈ 1.10 of the US size distribution of firms does suggest that

δ − g(m) = (g(m) − δk)(ζ − 1) must be very small. We therefore need to describe a

scenario in which δ − g(m) is close to zero even though f(n) is not.

Assumem∞ <∞, so that g(m) > δ is a technical possibility. Sincem and n co-move,

a small value of δ−g(m) inevitably means a large capital stock K = f(n[m])/(δ−g(m)),

and then mK + n[m] implies a large demand for managerial services. The supply of

managerial services is bounded above by M(∞, 0) <∞, and so g(m) ↑ δ is not possible
unless the supply of managerial services can somehow be expanded.
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To describe such a scenario, suppose the supplies of managerial and labor services

are of the form

M(v, w) = ΛM1(Λv,Λw), L(v, w) = ΛL1(Λv,Λw), (19)

where M1 and L1 are baseline supply curves that satisfy Assumption 1, and Λ is a

positive parameter. One interpretation is that the household characteristics (hw, hv) and

hv are replaced by (Λhw,Λhv) for all households in the population. The household choice

probabilities implied by (Λhw,Λhv) are then the same as they would be if (v, w) were

replaced by (Λv,Λw) without a change in household characteristics. But multiplying

(hw, hv) by Λ also multiplies the supplies of managerial and labor services.

An alternative interpretation is simply that Λ measures the size of the population

of households. Per-capita consumption is then C/Λ, and so (Λv,Λw) = (ṽ, w̃)/(C/Λ)

are the marginal utility weighted prices that matter for household choices. In either

interpretation, the maintained assumption is that the fixed factor implicit in f(·) is not
scaled by Λ.

As before, it is useful to first consider the Cobb-Douglas case.

Proposition 3 Suppose Assumptions 1 and 3 hold and F is Cobb-Douglas with labor

share α ∈ (0, 1). Assume that g(m) > δ for m large enough and consider the factor

supplies (19). Then Λ[δ−g(m)], Λv, and Λw converge to limits in (0,∞) as Λ becomes

large. As a consequence, g(m) ↑ δ and f(n) ↑ f(n[m∞]), implying that the capital stock

diverges and that the tail index of the firm size distribution converges to 1.

Proof Recall the Cobb-Douglas steady state conditions (14)-(17) and let S1 be the

residual supply curve of managerial services implied by M1 and L1 and (16)-(17). Write

u = Λv and observe that the steady state equilibrium condition S(u/Λ) = D(u/Λ) can

be written as S1(u) = D(u/Λ)/Λ. Fix some u ∈ (0,∞) and replace the left-hand side

of (14) by v = u/Λ. Letting Λ → ∞ then forces m ↑ m∞, no matter what the value of
u ∈ (0,∞). In other words, (14) implies

lim
Λ→∞

Λ[δ − g(m)] =

(
(1− α)Dg(m∞)

ρ+ Dg(m∞)m∞]

)−1

f(n[m∞])u. (20)

The right-hand side of this equation is well defined and in (0,∞). From (15), the limiting

scaled demand for managerial services is then

D∞(u) = lim
Λ→∞

D(u/Λ)/Λ =
Dg(m∞)m∞

ρ+ Dg(m∞)m∞

1− α
u

. (21)
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This hyperbola is guaranteed to intersect the strictly increasing supply curve S1(u)

precisely once, and so the limiting market clearing condition S1(u) = limΛ→∞D(u/Λ)/Λ

has a well-defined and unique solution for the scaled factor price u.�

As the proof of Proposition 3 shows, the scaled demand curve D(u/Λ)/Λ for managerial

services is unit elastic in the large-Λ limit. In other words, D(v) is close to unit elastic

for small v.11 The underlying reason is that qK = (1− α)/(ρ+ δ − [g(m)−Dg(m)m]),

and thus vK = qKDg(m) converge to well-defined limits as m ↑ m∞, while K =

f(n)/(δ − g(m)) diverges. This means that D(v) = mK + n is dominated by mK and

that K = qKDg(m)/v behaves like 1/v when m is close to m∞. It turns out that the

demand curve D(v) can be quite close to a hyperbola even when g(m)/δ is well below

1. An illustration is provided by the example given in Figure 1, which has δ = 0.10,

g(m) ≈ δ/2, and m ≈ 0.22m∞.

Notice that the proof of Proposition 3 does not depend directly on the labor sup-

ply curve L(v, w), only via the residual supply of managerial services. One can keep

L(v, w) = L1(v, w) and instead replace β with Λβ to obtain a residual supply of man-

agerial services of the form used in the proof of Proposition 3. The interpretation is

that managerial services improve with Λ > 1 only to the extent that they are used to

replicate, and not when used to form production teams with labor. In that case, Λv and

w converge to limits in (0,∞), and the capital-labor ratio used to produce consumption

diverges. Since the Cobb-Douglas technology has a constant labor share, this exploding

capital-labor ratio does not alter the incentives to produce and replicate capital.

With A(k) increasing, an exploding capital-labor ratio k would drive the factor share

1 − A(k) of capital down to zero unless A(∞) < 1 (that is, unless F is approximately

Cobb-Douglas for large capital-labor ratios). This would upset the argument used in

Proposition 3 to prove that the derived demand for managerial services is an approximate

hyperbola. Maintain, therefore, the factor supplies described in (19).

Proposition 4 Suppose Assumptions 1-3 hold and that g(m) > δ for m large enough,

and that the factor supplies are of the form (19). Then the conclusions of Proposition 3

apply.

11More precisely, limv↓0D(v)v ∈ (0,∞). This implies but is not implied by limv↓0D(λv)/D(v) = 1/λ,

which says that D(v) is regularly varying of degree −1 near zero (Bingham, Goldie, and Teugels [1987,

p.21]).
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Proof The proof uses the fact that the limiting economy obtained by letting Λ → ∞
will also have a unique steady state that is a fixed point of a mapping constructed as in

Proposition 2 based on the limiting Cobb-Douglas economy described in Proposition 3.

The details are somewhat intricate and are given in the online appendix.�

Consider the Cobb-Douglas economy with some α ∈ (0, 1). The limit described in

Proposition 3 says that the capital-labor ratio used to produce consumption will satisfy

lim
Λ→∞

k = lim
Λ→∞

f(n[m])/L1(Λv,Λw)

Λ(δ − g(m))
∈ (0,∞),

since m → m∞ and Λ(δ − g(m)), Λv and Λw converge to well-defined limits in (0,∞).

The factor supplies (19) are such that both L(v, w) and M(v, w) become large as Λ

becomes large. This stabilizes the capital-labor ratio used to produce consumption. In

turn this stabilizes the mapping α 7→ A(k) = α′, and then Proposition 4 follows.

Robust Entry Note that n increases to the positive limit n[m∞] as the supply of

managerial services becomes large. So there will be robust entry in the limit, and

the number of firms converges to f(n[m∞])/δ. But because the average size of firms

diverges, the contribution of new firms to the aggregate accumulation of capital will be

negligible– both n/(mK + n) and f(n)/(g(m)K + f(n)) converge to zero as Λ becomes

large. A large-Λ economy is an economy in which the managerial resources needed to

produce capital are abundant. Entry is one way in which these resources can be used,

but the marginal product of f(n) converges to 0 as n becomes large. On the other hand,

the marginal product of g(m) is bounded away from 0 on the interval [0,m∞). In a

steady state, this directs suffi ciently abundant managerial resources mostly toward the

process of replicating existing capital.

4.4 A Counterexample

By Proposition 2, the assumption that the labor share A(k) is increasing in k is suffi cient

to guarantee existence of a steady state. But a decreasing A(k) is not necessary for

existence of a unique steady state. The limiting economy can be used to construct a

transparent counterexample.

Simplify by taking β = 0 and assuming that the large-Λ factor supplies implied by
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(19) are determined by supply curves L1(v, w) = L(w) andM1(v, w) =M(v).12 That is,

managers are not needed to produce consumption, and there are separate populations

of households who supply only labor or only managerial services. In the Cobb-Douglas

version of such an economy, steady state wages are determined by α = wL(w), and the

supply of managerial services available to produce capital is simplyM(v). The limiting

demand curve D∞(v) for managerial services is defined in (20)-(21). It is the hyperbola

vD∞(v) = (1 − α)X∞, where X∞ = Dg(m∞)m∞/(ρ + Dg(m∞)m∞). So the market

clearing condition for managerial services is simply (1 − α)X∞ = vM(v), which makes

v a decreasing function of α. The resulting capital stock is then K = M(v)/m∞. In

this setting, it is easy to verify that the elasticity of the capital-labor ratio k = K/L(w)

with respect to α satisfies

(1− α)× α

k

∂k

∂α
= −

(
α× EM,v

1 + EM,v

+ (1− α)× EL,w
1 + EL,w

)
.

The key observation is that the right-hand side must be in (−1, 0). In turn, the concavity

of F requires that −DA(k)k/A(k) ≤ 1 − A(k).13 At a steady state, α = A(k), and so

the elasticity of α 7→ A(k) = α′ is smaller than 1 in any steady state. This rules out the

possibility of multiple steady states, even when A(k) is a decreasing function.

0 1
0

1
organization capital
one sector

Figure 2 Existence When A(k) Is Decreasing

12Note well that the arguments of these supply curves are the large-Λ limiting values of the scaled

factor prices (v, w) = (ṽ, w̃)Λ/C.
13The elasticity of A(k) is equal to the curvature of F (1, l) evaluated at l = 1/k, minus 1−A(k).
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Figure 2 shows an example in which there is a steady state, even though A(k) decreases

monotonically and converges to 0 as k becomes large. As argued, this steady state

is unique in (0, 1). The production function F is a CES production function with an

elasticity equal to 2, and labor and managerial services supplies have unit elasticities.

For comparison, Figure 2 also includes the mapping α 7→ α′ for a Cass-Koopmans

economy with the same CES production function. In such an economy, the steady state

capital-labor ratio k must solve ρ + δ = D1F (k, 1). The mapping α 7→ α′ can then be

defined by α′ = A(k[α]) with k[α] solving (ρ + δ)/F (1, 1/k[α]) = α. An elasticity of

substitution greater than 1 implies F (1, 0) > 0, and so k[α] is not well defined for any α

close enough to 0, which is what rules out a fixed point and generates growth in Jones

and Manuelli [1990].

A Note on Prior Work The interpretation of Zipf’s law implied by Propositions 3

and 4 is, in essence, the one given in Luttmer [2011]. But there one type of labor is

used to produce consumption and replicate capital, while another type of labor is used

to create capital from scratch. Here the human factors of production that are used to

replicate capital and create capital from scratch are perfect substitutes and distinct from

the labor that is also needed to produce consumption. It is clear that one can generalize

and take all these human inputs to be imperfect substitutes in production.

5. Aggregate Dynamics

The pieces are now in place to examine aggregate convergence rates when replication

and entry rates can respond to prices.

5.1 First Examples

Suppose β = 0 and that the supply of managerial services is completely inelastic, equal to

a constantM . As long as the price of capital is positive, the net flow of new capital DKt

is then simply the maximum of (g(m)− δ)Kt + f(n) subject to the resource constraint

mKt + n ≤ M . Managerial services are good for nothing else and are simply used to

produce as much capital as possible. The first-order and envelope conditions immediately
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imply that

−∂DKt

∂Kt

= − ∂

∂Kt

max
m,n
{(g(m)− δ)Kt + f(n) : mKt + n ≤M}

= δ − g(mt) + Dg(mt)mt. (22)

In the Zipf limit, δ = g(m∞), and so this reduces to Dg(m∞)m∞ = δSg. Because a low
capital stock implies more inelastically supplied managerial services per unit of capital,

the capital stock converges to the steady state, even in the Zipf limit. The rate at which

this happens is simply δSg. A 10% depreciation rate would imply half-lives of at least 7
years, and half-lives will be longer the lower is the factor share of managerial services.

This simple logic extends to scenarios with β > 0 when the supply of labor is also

inelastic, at some L < M/β. In that case, the resource constraint is simply mKt + n ≤
M−βL, and (22) again applies. Alternatively, if the supply of labor can respond to wages
but the technology for producing consumption is determined by the Leontief production

function F (K,L) = min{K,L}, then the resource constraint becomes (β +m)Kt + n ≤
M . The first-order and envelope conditions then imply −∂DKt/∂Kt = (δ − g(mt)) +

Dg(mt)(β+mt). The resulting speed is therefore Dg(m∞)(β+m∞) = (1+β/m∞)δSg in
the Zipf limit. A capital stock below the steady state releases managerial services that

are normally used to produce consumption, and this will speed up convergence. Clearly,

δSg and β/m∞ = (βL/M)/(1− βL/M) are critical parameters.14

How do these speeds change when F (K,L) is Cobb-Douglas, or a CES technology

with elasticity of substitution ε ∈ (0, 1)? And how do they compare to those of the

Cass-Koopmans economy? To investigate the general case, it will be useful to restate

the equilibrium conditions using the Hamiltonian for this economy.

5.2 The Hamiltonian

For positive K and q, define

H(K, q) = max
(L,M,X)∈T (K)

{ln(F (K,L))− V (L,M) + qX} ,

where T (K) describes the technological constraints on accumulating capital,

T (K) =
{

(L,M,X) ∈ R2
+ × R : X ≤ (g(m)− δ)K + f(n), mK + n+ βL ≤M

}
.

14If F (K,L) = min{K/A,L/B}, then the span of control parameter that matters is (β/m∞)B/A.
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It is not diffi cult to verify that the differential equation for (Kt, qt) implied by (4)-(8) is

the same as

DKt = D2H(Kt, qt), Dqt = ρqt −D1H(Kt, qt). (23)

This Hamiltonian formulation of the equilibrium conditions follows Cass and Shell [1976].

Observe that H(Kt, qt) is concave in Kt and convex in qt because ln(F (K,L)) is

concave and the graph of K 7→ T (K) is convex. So (23) implies that ∂DKt/∂qt and

∂Dqt/∂Kt are both positive. Assumptions 1-3 ensure thatH(Kt, qt) is suffi ciently smooth

to ensure that D12H(Kt, qt) = D21H(Kt, qt). It then follows from (23) that ∂DKt/∂Kt

and ∂Dqt/∂qt add up to ρ. Differentiating (g(mt)−δ)Kt+f(nt) with respect to Kt gives

∂DKt

∂Kt

= g(mt)− δ + Dg(mt)mt

(
Kt

mt

∂mt

∂Kt

+
nt

mtKt

Kt

nt

∂nt
∂Kt

)
,

which generalizes (22). The last term on the right-hand side is negative because of

Lemma 3 and the elasticities (9)-(10) implied by the static equilibrium conditions. So

∂DKt/∂Kt < 0 when δ > g(mt). The following lemma collects these results.

Lemma 5 Suppose Assumptions 1-3 hold and consider the function (Kt, qt) 7→ (DKt,Dqt)

defined by (23). Then ∂DKt/∂Kt+∂Dqt/∂qt = ρ and ∂DKt/∂qt > 0 and ∂Dqt/∂Kt > 0.

Furthermore, ∂DKt/∂Kt < 0 whenever δ > g(mt).

Let −D be the determinant of ∂[DKt,Dqt]/∂[Kt, qt]. Using the fact that ∂Dqt/∂qt =

ρ− ∂DKt/∂Kt gives

D =
∂DKt

∂qt

∂Dqt
∂Kt

− ∂DKt

∂Kt

(
ρ− ∂DKt

∂Kt

)
. (24)

The eigenvalues of ∂[DKt,Dqt]/∂[Kt, qt] are given by −(ρ/2)±
√

(ρ/2)2 +D. Since 0 =

DKt/Kt ≥ g(mt)−δ in the steady state, an immediate consequence of Lemma 5 is thatD
is positive when evaluated at the steady state. The eigenvalues of ∂[DKt,Dqt]/∂[Kt, qt]

are then real and of opposite signs. That is, the steady state is a saddle point. In a

neighborhood of the steady state, there will be a stable manifold with a slope implied

by the eigenvector associated with the negative eigenvalue of ∂[DKt,Dqt]/∂[Kt, qt]. This

slope is
∂qt
∂Kt

= −
∂Dqt
∂Kt

ρ
2
− ∂DKt

∂Kt
+
√(

ρ
2

)2
+D

, (25)
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which is negative by Lemma 5. The rate at which (Kt, qt) converges to the steady state

along the stable manifold is

speed = −ρ
2

+

√(ρ
2

)2

+D. (26)

This is strictly increasing in D and equals D to a first-order approximation when D is
small. We need to study how D depends on the underlying parameters of this economy.

5.3 The Speed of Convergence

An explicit computation of ∂[DKt,Dqt]/∂[Kt, qt] gives[
∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

]
=

[
−(δ − g(m)) 0

ρ+ δ − g(m) ρ+ δ − g(m)

]

+ Sgg(m)

[
K
m
∂m
∂K

+ n
mK

K
n
∂n
∂K

q
m
∂m
∂q

+ n
mK

q
n
∂n
∂q

1− Cg × K
m
∂m
∂K

1− Cg × q
m
∂m
∂q

]
(27)

+ (ρ+ Sgδ + (1− Sg)(δ − g(m)))× A(k)EA
1− A(k)

[
0 0

K
k
∂k
∂K

q
k
∂k
∂q

]

The elasticities on the right-hand side of (27) are the elasticities calculated in (9)-(11).

Note well that δ − g(m) is positive in the steady state. Combining (27) with the ex-

pression (24) for the approximate speed leads to some basic observations of the speed of

convergence of this economy.

Observation 1 The off-diagonal ∂Dqt/∂Kt > 0 is increasing in the elasticity EA ≥
0. Holding fixed the static elasticities of (m,n, k) with respect to (K, q), the closer

the production function in the consumption sector is to Cobb-Douglas, the slower the

economy converges to its steady state.

Observation 2 Both −∂DKt/∂Kt and the off-diagonal elements of (27) are increasing

in δ − g(m) and Sg. Other things equal, lowering δ − g(m) > 0 and the factor share

Sg ∈ (0, 1) reduces the speed of convergence.

The simple intuition for the first of these observations is that EA > 0 and ∂kt/∂Kt > 0

means that profits per unit of capital are high when Kt is low, thus increasing the

incentives to accumulate organization capital and raising the convergence rate of the
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economy. The second observation is anticipated by (22). It implies that the slow con-

vergence property described in the Introduction and Section 3 survives if Sg and EA are
small. But for any given Sg > 0 and EA > 0, the speed of convergence does not literally

go to zero as g(m) ↑ δ.

5.3.1 The Zipf Limit

The terms δ − g(m) disappear from (27) in the g(m) ↑ δ limit, and mK becomes large

relative to n. So the coeffi cient n/(mK) in (27) that multiplies the elasticities of n with

respect to K and q goes to zero. The matrix of elasticities of (m,n) with respect to

(K, q) implied by (9)-(10) converges to[
K
m
∂m
∂K

q
m
∂m
∂q

K
n
∂n
∂K

q
n
∂n
∂q

]
=

[
1/Cg
1/Cf

] [
ES,K − 1 ES,v

]
ES,v + 1/Cg

. (28)

As long as Cf ∈ (0,∞), the managerial services allocated to entry respond to changes

in the state (K, q), even in the g(m) ↑ δ limit. Since the stable manifold is downward
sloping, this manifests itself in more entry when K is below its steady state. But the

entry elasticities disappear from (27) because the contribution of new capital created

from scratch becomes negligible.15 The only elasticities that matter for the speed of

convergence are those of m with respect to (K, q). As long as ES,v > 0, both these

elasticities will be small when the curvature of g(·) is high. Holding fixed q, a low K

may then raisem a bit, but the resulting steep reduction in the marginal product Dg(m)

implied by a high Cg mostly reduces the supply of managerial services.
Using g(m) ↑ δ together with (28) to simplify (27) yields[

∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

]
=

[
0 0

ρ ρ

]
+

Sgδ
1 + CgES,v

[
−(1− ES,K) ES,v

1 + Cg(ES,v + 1− ES,K) 1

]

+ (ρ+ Sgδ)×
A(k)EA

1− A(k)

[
0 0

K
k
∂k
∂K

q
k
∂k
∂q

]
. (29)

15With entry out of the picture, the economy starts to look like the two-sector economy of Uzawa

[1961]. The difference is that here, capital can be used to produce consumption and new capital at the

same time.
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The implied approximate speed of convergence (24) is then equal to

D =
(ρ+ δSg) δSg

1
1+ES,v +

ES,v
1+ES,v × Cg

×F , (30)

where

F =
ES,v

1 + ES,v

(
1 +

A(k)EA
1− A(k)

K

k

∂k

∂K

)
+

1− ES,K
1 + ES,v

(
1 +

δSg
ρ+ δSg

−ES,K
1 + CgES,v

)
. (31)

The residual managerial supply elasticities ES,K ≤ 0 and ES,v > 0 were defined in Lemma

3, and the partial elasticity (K/k)∂k/∂K implied by the static equilibrium conditions

was reported in (11). Note that an approximate speed (ρ+ δSg) δSg combined with
(26) results in the exact speed δSg obtained in Section 5.1 (the Zipf version of (22)).
Recall that Assumption 2 ensures that −ES,K ≥ 0 and EA ≥ 0, and both elasticities

are zero if the technology for producing consumption is Cobb-Douglas. So the first

factor on the right-hand side of (30) determines the Cobb-Douglas speed, and F is an
adjustment factor for deviations from a Cobb-Douglas technology. Also, (11) implies

that (K/k)∂k/∂K is positive. So the assumption that the consumption-sector labor

share A(k) is non-decreasing implies F ≥ 1. The economy converges more quickly than

the Cobb-Douglas economy if A(·) is strictly increasing.16

In the Zipf limit, the first-order condition for m can be written as vmK = qKδSg,
and the steady state condition for q reduces to qK = (1 − A(k))/(ρ + δSg). Using
A(k) = (βv + w)L(v, w) and M(v, w) = βL(v, w) +mK, it follows that

δSg
ρ+ δSg

βL
M

1− βL
M

=
βv

βv + w

A(k)

1− A(k)
. (32)

This equation can be used to express the deviation D/ (ρ+ δSg) δSg from the Zipf ver-

sion of (22) entirely in terms of steady state factor shares and elasticities, independently

of the discount rate ρ. The high-level elasticity (q/k)(∂k/∂q) does not appear explicitly

in (30)-(31) because of a judicious use of ∂Dqt/∂qt = ρ− ∂DKt/∂Kt. But the elasticity

(K/k)∂k/∂K remains, and it is a rather unwieldy function of more primitive elastic-

ities. The Cobb-Douglas case and the case of separable factor supplies offer further

simplification.

16More precisely, this comparison applies holding fixed the elasticity ES,v, which itself depends on EA
and other parameters, by Lemma 2 and (5).
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5.3.2 More on the Cobb-Douglas Case

As noted, the first factor on the right-hand side of (30) determines the approximate speed

for an economy in which the technology for the consumption sector is Cobb-Douglas. A

replication technology with more curvature implies a slower speed. In the special case

of Cg = 1, the Cobb-Douglas approximate speed implies the same exact speed δSg as
in the simple economy discussed in Section 5.1 (the Zipf version of (22)), independently

of the residual supply elasticity ES,v. The economy converges more quickly than δSg
when Cg ∈ (0, 1), as is the case, for example, if g(m) is also Cobb-Douglas (so that

Cg = 1 − Sg.) The right-hand side of (30) is then an increasing function of ES,v. The
speed of convergence declines toward δSg as ES,v ↓ 0. The convergence rate then goes to

zero as the managerial factor share Sg becomes small.
A different slow convergence scenario arises when Cg is large. The maintained as-

sumption that ES,v > 0 ensures that the supply of managerial services will respond to a

low factor price vt. More generally, the speed of convergence is a decreasing function of

ES,v > 0 whenever Cg > 1. In that case, as ES,v becomes large, the speed of convergence
approaches a positive limit that is strictly less than δSg, and much less than δSg if Cg is
large. The combination of Cg > 1 and a large managerial supply elasticity ES,v leads
to slow convergence rates. This is quite intuitive. When Kt is low, a recovery could be

helped along by a substantial increase in mt. But Cg > 1 implies that this would have

a strong negative effect on the marginal product Dg(mt), and, when ES,v,t is large, a
particularly strong negative effect on the supply of managerial services. When managers

have other options, the extent to which mt can rise when Kt falls below the steady state

is limited.

5.3.3 Separable Factor Supplies

To extract some further implications from the speed formula (30)-(31), supposeM(v, w) =

M(v) and L(v, w) = L(w). That is, the factor supplies are separable. One can imagine

that there are two types of household members: worker types who value leisure and have

an ability to supply labor, and manager types who also value leisure but have an ability

to supply managerial services. This simplifies the expressions for the elasticities ES,K ,
ES,v, and (K/k)∂k/∂K that appear in (30)-(31). A somewhat elaborate calculation gives
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an approximate speed determined by

D =
(ρ+ δSg)δSg

1
1+ES,v +

ES,v
1+ES,v × Cg

×

1 + EA ×
A(k)

1−A(k)

(
1 + w

βv+w
1
EL

)
EM + βL

M
+ A(k)

1−A(k)
βv

βv+w(
1 + EA + w

βv+w
1
EL

) (
1− βL

M
+ EM

)
+ βL

M
βv

βv+w

 (33)

with a residual supply elasticity of managerial services equal to

ES,v =
1

1− βL
M

(
EM +

βL
M

βv
βv+w

1 + EA + w
βv+w

1
EL

)
. (34)

This allows one to compute the speed of this economy solely on the basis of the share pa-

rameters A(k), βv/(βv+w), and βL/M , the curvature Cg of the replication technology,
and the primitive elasticities EL, EM , and EA. The limits EL → ∞ and EM ↓ 0 simplify

(33)-(34) and leave EA as the only elasticity to be estimated for a back-of-the-envelope
calculation. The first factor on the right-hand side of (33) is the Cobb-Douglas approxi-

mate speed for a given ES,v. It is now the only component of (33) that depends on Cg. As
expected, EA > 0 implies speeds that are slower than those in a Cobb-Douglas economy

with the same ES,v. Clearly, EL ↓ 0 and EM ↓ 0 imply D → (ρ+ δSg)δSg, resulting in the
exact speed δSg described in Section 5.1. Taking EA →∞ gives ES,v → EM/(1−βL/M)

in (34) and then (33) yields

D → (ρ+ δSg)δSg
1− βL

M
+ CgEM

(
1 + EM

1− A(k)
+

A(k)

1− A(k)

w

βv + w

EM − EL
EL

)
. (35)

The factor share A(k) for this Leontief limit is determined by (32). The Leontief speed

(35) is decreasing in the labor supply elasticity EL. Intuitively, a destruction of capital
in the Leontief economy forces a reduction in labor supply, and this requires only a small

change in marginal utility weighted wages when EL is substantial. This limits the extent
to which marginal utility weighted Leontief profits can rise to help speed up a recovery.

One can verify that EM = 0 produces the exact speed (1+β/m∞)δSg obtained in Section
5.1. How the speed of convergence varies with EM > 0 depends on Cg. For small values
of this curvature parameter, a more elastic supply of managerial services increases the

speed. But high curvature produces a negative dependence on ES,v ∝ EM , as it does in
the Cobb-Douglas case.

35



5.4 Relation to Cass-Koopmans

It is interesting to see how these results relate to a Cass-Koopmans economy with

logarithmic utility and an aggregate labor supply M(w,w) + L(w,w). In such an

economy, F (K,L) = Kg(L/K) and the capital stock evolves according to DKt =

(g(mt) − δ)Kt − Ct. The economy produces one type of output that can be thought

of as new capital, and households can consume out of the “inventory” of productive

capital. Because some capital is consumed, a steady state now requires that g(m) > δ,

rather than g(m) < δ. In units of consumption, the price of capital is identically equal

to 1, and so qt = 1/Ct is the marginal utility weighted price. Since there is no separate

sector in which consumption is produced, profits from replicating capital are the only

source of profits. This eliminates the term [1 − A(kt)]/Kt from (7), and so the asset

pricing equation for qt is simply Dqt = (ρ+ δ − (g(mt)−Dg(mt)mt)) qt. This implies

ρ+ δ = (1− Sg)g(m) in a steady state.

5.4.1 Not g(m)/δ < 1 but g(m)/δ > 1

Suppose this economy has a steady state, and let E be the steady state labor supply
elasticity. Appendix C shows that the speed of convergence in this economy can be

written as

speed = −ρ
2

+

√(ρ
2

)2

+
Cg

1− Sg
g(m)

δ

(ρ+ Sgδ)Sgδ
1
E+1

+ E
E+1
× Cg

, (36)

where g(m) = (ρ + δ)/(1 − Sg) > δ. Gross output is g(m)K, and investment equals

δK. So δ/g(m) is the savings rate. The interest rate will be ρ, and the share parameter

Sg is the aggregate labor share. For example, ρ = 0.04, δ = 0.10, and Sg = 0.7 imply

a savings rate equal to slightly more than 20%, and hence g(m)/δ ≈ 5. The factor

Cg/(1− Sg) is the reciprocal of the elasticity of substitution between capital and labor.
It disappears from (36) if the technology is Cobb-Douglas. If E =∞, as in Rogerson
[1988], then the Cobb-Douglas version of (36) reduces to simply (ρ + δ)Sg/(1 − Sg) ≈
0.33, which implies a half-life of approximately 2.2 years. If E happens to equal ES,v and
the same Cobb-Douglas technology is used in both (30) and (36), then the last factor

that appears in the discriminant of (36) corresponds to D with F = 1, given in (30). But

at g(m)/δ ≈ 5 instead of slightly below 1, (36) implies a significantly faster convergence

rate in the Cass-Koopmans economy. For example, E = ES,v = 2 and Sg = 1− Cg = 0.7
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in both economies yields a convergence rate of 0.10 in the economy with organization

capital, and a bit more than 0.24 in the Cass-Koopmans economy. The implied half-lives

are 6.8 years and 2.9 years, respectively.

5.4.2 One versus Two Types of Curvature

A striking difference between (30) and (36) is the role of the curvature parameter Cg.
The Cass-Koopmans economy has only one curvature parameter, and the speed (36)

is low when Cg, the curvature parameter of F (1, l) = g(l), is low. For example, consider

a production function with a constant elasticity of substitution equal to ε, so that Cg =

(1−Sg)/ε. Such a one-sector economy has a steady state as long as ρ+δ is high enough.

Furthermore, it is possible to adjust other parameters of the production function in such

a way that changing ε does not change the steady state labor share. Taking ε → ∞
then makes the technology almost linear and drives the convergence rate down to zero.

This slow convergence property is, of course, familiar from Jones and Manuelli [1990],

where low curvature generates long-run growth17– that is, no convergence at all– if ρ+δ

is low enough, though with implications for the labor share that appear, so far, to be

completely counterfactual.

The economy with organization capital has two curvature parameters that matter for

the speed of convergence. In the consumption sector, the curvature parameter of F (1, l)

can be written as 1−A(1/l) +EA, and so high curvature corresponds to a high elasticity
EA, holding fixed the factor share of labor. This implies relatively fast convergence–
the factor F in (30)-(31) is large. So curvature in the consumption sector mimics the

role of curvature in the Cass-Koopmans economy. But in the sector producing capital,

the curvature parameter of the replication technology G(1,m) = g(m) is Cg, and so
(30) says that high curvature implies slow convergence. Organization capital can be

destroyed quickly, but a high Cg limits how quickly it can be replaced.
17Note that F (k, 1) and F (1, l) have share and curvature parameters related by SkCk = SlCl and
Sk + Sl = 1. So given share parameters, high curvature of F (k, 1) is the same as high curvature of

F (1, l).
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6. Quantitative Results for a Two-Type Economy

Given the evidence on persistent heterogeneity in firm growth rates, it is important to

investigate how such heterogeneity affects the speed calculations obtained so far. And

it is important to learn whether the equilibrium trajectories of some version of this

economy resemble what happens in recessions followed by slow recoveries. The two-type

economy sketched in Section 3.1 can be used for this purpose.

Consider again an economy with two types of capital, indexed by j ∈ {1, 2}, that
vary in quality. The technology for producing consumption is that of a vintage capital

economy: the consumption produced by Kj,t units of type-j capital and Lj,t units of

team services is zjF (Kj,t, Lj,t), where z2 > z1 > 0. The flow of new type-j capital

produced from scratch is φjf(nt), where φj is a probability in (0, 1). Entrants cannot

guarantee up front what the quality of the new capital they produce will be. As before,

capital can be replicated at the rate g(mj,t). But now assume that the marginal product

of g(·) is finite at zero. This introduces the possibility that low-quality capital is not
replicated at all, while at the same time, high-quality capital is replicated at rates near

a finite speed limit g(∞). Firms exit randomly, and all their capital is destroyed, at the

rate δf . Capital also depreciates physically at the rate δk = δ − δf . In addition, firms
with only type-2 capital become firms with only type-1 capital randomly at the rate θ.

The stationary distribution of firm size was given in Section 3.1. But an explicit char-

acterization of the speed of convergence is not as easy as in the one-type economy. The

Zipf limit again offers a significant simplification, and a complete characterization of the

dynamic properties of this economy is possible when F is Leontief. The dynamic prop-

erties of economies with CES consumption technologies with low but positive elasticities

of substitution can then be understood by continuity. In particular, the Leontief bench-

mark turns out to give a reasonable estimate of the convergence speed of an economy in

which the elasticity of substitution of F is greater than zero but not too large.

6.1 The Zipf Steady State

Consider the Zipf limiting economy obtained by letting factor supplies become large.

Suppose the equilibrium path is such that vt = q2,tDg(m2,t) > q1,tDg(0), so that only

type-1 capital is replicated. The capital stocks then evolve according to DK1,t = −δK1,t+

θK2,t and DK2,t = −(δ + θ)K2,t + g(m2,t)K2,t. A steady state then requires that δK1 =
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θK2 and m2 = m∞, with m∞ now defined to be the solution to δ + θ = g(m∞). Given

capital stocks K1 and K2, and factor supplies L and M > βL, the aggregate supply of

consumption goods is given by

C(K1, K2, L) = max
L1,L2

{z1F (K1, L1) + z2F (K2, L2) : L1 + L2 ≤ L} . (37)

This production function summarizes all the information about z1, z2, and F needed

for determining an equilibrium.18 Assume F is suffi ciently smooth. The first-order

and envelope conditions imply that the price of a team of managers and workers will

have to be (βv + w)C(K1, K2, L) = D3C(K1, K2, L). It is not diffi cult to verify that

D3C(K1, K2, L) is increasing in both K1 and K2. Profits per unit of type-j capital

are equal to DjC(K1, K2, L) units of consumption, and these are both decreasing in

(K1, K2) and increasing in L. Given that only type-2 capital is replicated, and taking

into account that θK2 = δK1, steady state capital prices are determined by the present

value conditions

q1K1 =
1

ρ+ δ

D1C(K1, K2, L)K1

C(K1, K2, L)
,

q2K2 =
1

ρ+ (δ + θ)Sg

(
δ

ρ+ δ

D1C(K1, K2, L)K1

C(K1, K2, L)
+

D2C(K1, K2, L)K2

C(K1, K2, L)

)
,

where Sg = Dg(m∞)m∞/g(m∞). Because type-1 capital is not being replicated, the

effective discount rate applied to the factor share of type-1 capital is simply ρ+ δ. The

first term on the right-hand side of the equation for q2K2 accounts for the fact that type-

2 capital depreciates into type-1 capital at the rate θ, as well as the fact that θK2 = δK1

in any steady state. Because of replication, the effective discount rate for type-2 profits

is really ρ + δ + θ − (g(m∞) − Dg(m∞)m∞), but the Zipf limit implies that the term

δ + θ − g(m∞) drops out.

Using the equation for q2K2 to eliminate q2 from the usual optimality condition for

replication, v = q2Dg(m∞), gives

βvL =
(δ + θ)Sg

ρ+ (δ + θ)Sg

(
δ

ρ+ δ

D1C(K1, K2, L)K1

C(K1, K2, L)
+

D2C(K1, K2, L)K2

C(K1, K2, L)

)
βL

m∞K2

. (38)

18If F is Cobb-Douglas, this will be a Cobb-Douglas function of labor and a quality-weighted aggregate

of the two capital stocks. But this aggregation result is very special. In particular, it fails for all other

CES production functions.
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This is the factor share of managerial services in producing consumption. Note that

the right-hand side of (38) is a function only of L/K2, given the steady state condition

δK1 = θK2. A proportional increase in both K1 and K2 (as required by δK1 = θK2)

lowers both marginal products D1C(K1, K2, L) and D2C(K1, K2, L). The right-hand

side of (38) is therefore increasing in L/K2, taking into account δK1 = θK2. In other

words, more labor unambiguously raises the managerial factor share in the consumption

sector.19

The overall team cost share in consumption is (βv + w)L, and the first-order and

envelope conditions for (37) imply

(βv + w)L =
D3C(K1, K2, L)L

C(K1, K2, L)
. (39)

This is also a function only of L/K2, taking into account δK1 = θK2. In contrast to

the factor share (38), the factor share (39) may rise or fall with L/K2, even if the factor

shares of F happen to be monotone in the capital-labor ratio. The remaining equilibrium

conditions are the resource constraints

L = L(v, w), M(v, w) = βL+m∞K2, δK1 = θK2. (40)

The conditions (38)-(40) determine the steady state for this economy, provided that

v ≥ q1Dg(0), so that m1 = 0 is optimal. Using (38) and (39) to eliminate v and w from

(40) gives two equilibrium conditions that can be used to determine L and K2. Observe

that one can verify whether (K1, K2, L) combined with (v,M) and (w,L) is a steady

state knowing only factor shares, and without knowledge of elasticities of substitution

or factor supply elasticities.

6.1.1 Separable Factor Supplies

Suppose now that the factor supplies are of the form M(v) and L(w). This assumption

makes it particularly easy to infer factor prices from factor supplies. Combining (38)-(39)

19None of this makes any assumptions about F other than that it is concave and exhibits constant

returns to scale.
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and (39)-(40) then gives

(δ + θ)Sg
ρ+ (δ + θ)Sg

(
θ

ρ+ δ

D1C(K1, K2, L)

D3C(K1, K2, L)
+

D2C(K1, K2, L)

D3C(K1, K2, L)

)
β

m∞

+
L−1(L)C(K1, K2, L)

D3C(K1, K2, L)
= 1 (41)

M

(
1

β

(
D3C(K1, K2, L)

C(K1, K2, L)
− L−1(L)

))
− βL = m∞K2. (42)

So (41) equates the price of a team with its marginal product, taking into account the

wages implied by the labor supply curve, and taking into account how the factor price

of managerial services is determined by the present value of future profits. The two

terms on the left-hand side of (41) represent βv/(βv+w) and w/(βv+w), respectively.

Clearly, this is a curve that can be shifted by changes in the discount rate ρ, but not

by changes in the supply curve of managerial services. Equation (42) uses the presumed

equality of team price and marginal product to back out the factor price of managerial

services and then imposes the market clearing condition for managerial services. This

curve does not depend on ρ but will shift when factor supply curves change.

The left-hand side of (41) is strictly increasing in L, and that of (42) is strictly

decreasing. If L(0) = 0 and L(∞) ∈ (0,∞), then both (41) and (42) will have unique

solutions as long as the marginal products of C(K1, K2, L) are in (0,∞). With θK2 =

δK1 understood, this then defines two functionsK2 7→ L. Examples are shown in Figures

3 and 6.

6.1.2 The Leontief Benchmark

To simplify further, consider the Leontief technology F (K,L) = min{K,L}. Given
z2 > z1 and M > βL, aggregate consumption will be

C(K1, K2, L) = z1 min {K1 +K2, L}+ (z2 − z1) min{K2, L}. (43)

The high-quality type-2 capital is used first. Low-quality type-1 capital is used only if

the supply of labor exceeds K2. So C(K1, K2, L) is piecewise linear in L, with kinks at

L = K2 and L = K1 + K2. The effi ciency conditions (38)-(39) have to be restated in

terms of tangency conditions. The factor price of a team of managers and workers now
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has to satisfy

(βv + w)C = z2 if L ∈ (0, K2),

(βv + w)C ∈ [z1, z2] if L = K2, (44)

(βv + w)C = z1 if L ∈ (K2, K2 +K1),

(βv + w)C ∈ [0, z1] if L = K1 +K2,

where C = C(K1, K2, L). The resulting profits per unit of type-j capital are max{0, zj−
(βv + w)C} units of consumption, and capital prices are then determined by

q1C =
max {0, z1 − (βv + w)C}

ρ+ δ
, q2C =

max {0, z2 − (βv + w)C}+ θq1C

ρ+ (δ + θ)Sg
, (45)

again, with C = C(K1, K2, L). The remaining equilibrium conditions are the first-order

condition v = q2Dg(m∞) and the resource constraints (40). This describes a candidate

steady state, and it will be an actual steady state if v ≥ q1Dg(0).

Suppose now that managerial services are supplied inelastically at some level M and

that the supply of labor is L = L(w). Suppose 1 = wL(w) implies M < (β +m∞)L(w).

This ensures that managerial services are scarce, ruling out a steady state in which

abundant managerial services can be used to ensure L(w) < K2 at any feasible wage.

The steady state can then be characterized as follows.

Proposition 5 Consider the Zipf limit of a two-type Leontief economy in which low-

quality capital is not replicated and managerial services are scarce. Define m∞ to be the

solution to g(m∞) = δ + θ and assume that

β

m∞

z2 − z1

z1

< 1. (46)

Then the steady state of this economy is determined by a tangency condition,

B + L−1(L)

(
L+

(
z2 − z1

z1

)
K2

)
∈


[1,∞), L = K2,

{1}, L ∈ (K2, K2 +K1),

[0, 1], L = K2 +K1,

(47)

where δK1 = θK2, and a resource constraint,

M = βL+m∞K2. (48)
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The parameter

B =
(δ + θ)Sg

ρ+ (δ + θ)Sg
β

m∞

z2 − z1

z1

(49)

is the cost share βv/(βv+w) of managerial supervision in the scenario L ∈ (K2, K2+K1).

In this scenario, a reduction in ρ that is not too large increases the capital stocks K1

and K2 but lowers L, w = L−1(L), and C. Steady state flow utility ln(C)− V (L,M) is

maximized at the steady state associated with ρ = 0.

The tangency condition (47) is a version of (41), and the resource constraint (48) is

the inelastic version of (42). Note that in the scenario L ∈ (K2, K2 + K1), C = z1L +

(z2 − z1)K and M = βL + m∞K imply C = z1L + (z2 − z1)(M − βL)/m∞, which

is increasing in L if and only if (46) holds. Condition (46) says that the steady state

production possibility frontier for (L(∞) − L,C) has a segment where K1 is actually

used to produce consumption. If β > 0, this can only happen if the quality difference

between the two types of capital is not too large. Condition (46) implies that the resource

constraint M = βL + m∞K2 has a steeper slope ∂L/∂K2 than the tangency condition

(48) evaluated at any L ∈ (K2, K2 + K1). The comparative statics for ρ follow easily

from this observation.

Figure 3 shows the L = K1 + K2 scenario for this Leontief economy. The curve

contained in the cone L/K2 ∈ [1, 1+θ/δ] and labeled “present value”and “ε = 0”is (47).

The downward-sloping line is (48). An expansion of the supply of managerial services

would put the economy in the L ∈ (K2, K2 + K1) scenario, where (47) is downward

sloping, and an even greater expansion would result in L = K2.

6.1.3 CES Steady States

The solid dot on the L = K1 + K2 line in Figure 3 is the equilibrium for a Leontief

economy in which the supply of managerial services is elastic and of the form M(v),

with M(∞) the same as it is in the inelastic economy.20 The equilibrium managerial

participation rate in this example is 97.5%, which puts the supply of managerial services

close to its maximum. Figure 3 also shows the steady states for economies obtained by

replacing F (K,L) = min{K,L} with CES technologies that have elasticities of substitu-
20This steady state is determined by v = q2Dg(m∞), M(v) = βL + m∞K2, and the present-value

conditions (45), evaluated at C = z1K1 + z2K2, with δK1 = θK2.
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tion equal to ε = 0.3 and ε = 1. The productivity ratio z2/z1 and the other parameters

of these CES technologies are chosen to produce the exact same consumption-sector

factor shares as in the Leontief steady state, at the input vector (K1, K2, L) implied by

that Leontief steady state (see Proposition A1 for the construction). Because the steady

state conditions (38)-(40) (and more specifically, (41)-(42)) depend on the technology

C(K1, K2, L) only via its factor shares, this construction implies that the steady state

equilibrium does not change as one varies the elasticity of substitution ε of F . The curves

labeled “present value”are versions of (41) and the curves labeled “market clearing”are

versions of (42).
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Figure 3 Zipf Steady States

For ε = 0.3, the present-value condition (41) is similar in shape to the Leontief curve

(47): both are non-monotone and have a kink that arises because type-1 capital becomes

obsolete when type-2 capital is abundant relative to the supplies of labor and managerial

services. Obsolescence is not possible in the Cobb-Douglas case of ε = 1, and it is easy

to show that (41) is then monotone increasing.

The market clearing condition (42) depends on the supply curve of managerial ser-

vices. It constrains the set of feasible (K2, L) to a strict subset of βL+m∞K2 ≤M(∞)

when the supply of managerial services is elastic. It is easy to show that (42) is still
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downward sloping when ε = 1. But it becomes hump-shaped when ε = 0.3. The down-

ward sloping section of this hump shape is inherited from βL+m∞K2 ≤M(∞), noting

that a large K2 can be accommodated only when M(v) is close to M(∞), where the

supply of managerial services is essentially inelastic. The upward-sloping section arises

because the labor supply curve says that marginal utility weighted wages are high when

L is high, and the technology implies that D3C(K1, K2, L)/C(K1, K2, L) is low. This

squeezes the amount of team compensation that can go to managers when L is high,

which lowers v and thereforeM(v) as well. This effect is strong when marginal products

are very sensitive to inputs, as they are when ε = 0.3, but not when ε = 1. As ε ↓ 0,

the curve (42) becomes more and more like a tent with an apex at the Leontief steady

state.

6.2 The Eigenvalue Structure

Consider Leontief steady state depicted in Figure 3 and replace the elastic supply of

managerial services by an inelastic supply at M > M(∞). For suffi ciently high M ,

the economy will have a steady state in which the supply of type-2 capital is so large

that C(K1, K2, L) = z2K2. Type-1 capital produces no profits and its price is zero.

The condition v ≥ q1Dg(0) is met simply because q1 = 0. Near this steady state, this

economy behaves exactly like a one-type economy with a Leontief technology and a

(particularly high) depreciation rate δ+ θ. As argued at the beginning of Section 5, the

type-2 capital stock then returns to the steady state at the speed (1 + β/m∞) (δ+ θ)Sg.
Similarly, a suffi ciently large M will make type-1 capital obsolete in the CES economy

with ε = 0.3, and then the speed formula (33)-(34) for a one-type economy applies. But

the economy now has two state variables. In the background, type-1 capital evolves

according to DK1,t = −δK1,t + θK2,t, and this adds the eigenvalue −δ.
ReducingM relative to this Leontief steady state will at some point put the economy

into a steady state in which type-1 capital is also used to produce consumption but earns

no profits– this corresponds to the downward-sloping part of (47). The price of type-1

capital is still zero, and small enough fluctuations in this type of capital will have no effect

on equilibrium trajectories: the economy has enough “shovel ready” but low-quality

capital. As a result, one can again apply convergence results for an equivalent one-type

economy with a depreciation rate δ + θ, but now for one in which consumption equals
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z1L+ (z2 − z1)K2. That is, the effective one-type technology is locally linear in capital

and labor. Although this violates Assumption 2, the speed formula (33)-(34) applies,

with a negative factor share elasticity equal to EA = −(z2 − z1)K2/(z1L+ (z2 − z2)K2).

Again, the dynamics of K1,t implies an additional speed equal to δ.

6.2.1 Complex Eigenvalues

Further reducing M puts the economy in a regime in which the stock of type-2 capital

that can be maintained is small, and so both high- and low-quality capital are fully

employed to produce consumption. This is no longer an economy to which results for a

one-type economy can be applied. But the Leontief technologies together with the Zipf

limit imply that ∂DKt/∂qt = 0. In other words, the Jacobian for this economy is block

diagonal. To see this, note that the Leontief technology forces βLt = β(K1,t+K2,t), and

then the Zipf limit implies a managerial resource constraintM = β(K1,t+K2,t)+m2,tK2,t.

This mechanically determines m2,t as a function only of Kt, independently of qt.21 The

resulting block diagonality means that the speed of convergence is determined by the

eigenvalues of ∂DKt/∂Kt alone, as in the one-type scenario discussed at the beginning

of Section 5. It is not diffi cult to verify that ∂DKt/∂Kt is given by[
∂DK1,t

∂K1,t

∂DK1,t

∂K2,t

∂DK2,t

∂K1,t

∂DK2,t

∂K2,t

]
=

 −δ θ

− β
m∞
× (δ + θ)Sg −

(
1 + β

m∞

)
(δ + θ)Sg

 .
The first row of this matrix is immediate from the Zipf dynamics DK1,t = −δK1,t+θK2,t.

The non-zero slope ∂DK2,t/∂K1,t = −(β/m∞)(δ + θ)Sg arises from the fact that the

low-quality capital stock K1,t is fully employed by teams of managers and workers, and

so fluctuations in this type of capital will cause fluctuations in the residual supply of

managerial services available for replicating type-2 capital. The slope ∂DK2,t/∂K2,t

includes the additional term −(δ + θ)Sg because type-2 capital is being replicated, and
so fluctuations in type-2 capital also cause fluctuations in the m2,tK2,t component of the

demand for managerial services.

21Outside the Zipf limit, entry produces both types of capital, and replication can be directed. So

the relative price q1,t/q2,t will matter for DKt.

46



The eigenvalues of the matrix ∂DKt/∂Kt are

λ± = −
δ +

(
1 + β

m∞

)
(δ + θ)Sg

2

±

√√√√√δ +
(

1 + β
m∞

)
(δ + θ)Sg

2

2

−
(

δ

δ + θ
+

β

m∞

)
(δ + θ)2Sg. (50)

Note that the argument of the square root in this expression is a quadratic function

of the factor share Sg. It is easy to verify that the λ± are real and negative for all
Sg ∈ (0, 1) close enough to the endpoints of (0, 1). Everywhere else (a non-empty subset

of (0, 1)), these eigenvalues are complex with a negative real part. The convergence to the

steady state is then a damped oscillation– something that is not possible in a one-type

economy. The resulting speed of convergence is−Re(λ±) = (δ+(1 + β/m∞) (δ+θ)Sg)/2.
This is simply the average of the depreciation rate of type-1 capital and the speed

(1 + β/m∞) (δ + θ)Sg that governs this economy in the L = K2 scenario. If the λ± are

real, then both eigenvalues are negative and the economy will have one speed that is

slow relative to (δ + (1 + β/m∞) (δ + θ)Sg)/2 and another that is fast.

6.2.2 CES F (K,L) and Separable Factor Supplies

Figure 4 shows the half-lives for economies in which F is a CES production function

with elasticities ε ∈ [0, 1], and in which the supplies of labor and managerial services

are separable and elastic. To interpret and compare with the analytical results for the

one-type economy and the two-type Leontief economy, it is necessary to specify the

quantitative properties of these economies in some detail.22

Start with the ε = 0.3 benchmark economy. The subjective discount rate is ρ = 0.04

per annum, and organization capital is assumed to depreciate at a rate δ = 0.05, with

δk = 0.03 and a firm exit rate at δf = 0.02. This firm exit rate is much lower than

the roughly 10% exit rate of employer firms in the US economy. But adding more

randomness to post-entry growth can plausibly account for that (as in Luttmer [2007,

2011]). High-quality capital depreciates into low-quality capital at the rate θ = 0.25.

Because g(0)− δk = −0.03, surviving low-quality firms shrink at the rate 0.03. Formula

22Only the key parameters and key steady state implications will be discussed here. A complete

specification of functional forms and parameter values is given in Appendix D.
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(13) for the tail index ζ then says that the right tail of the firm size distribution is

determined by fast-growing firms with high-quality capital. The rest of the economy is

specified so that ζ = 1.05, close to what is found in US data (Luttmer [2007]). This

entails g(m2) = 0.2871, and so high-quality firms grow at an annual rate of almost 26%.

Steady state capital stocks and prices are such that the implied aggregate economic

depreciation rate is approximately 15%.

The technology for replication is CES with an elasticity of substitution equal to

0.6 and a steady state managerial factor share equal to Sg(m2) = 0.6. This generates

a curvature Cg(m2) = 2/3, less than 1, but larger than the Cobb-Douglas value of

1− Sg(m2). The entry technology is also CES, with the same steady state factor share

but a much higher curvature, equal to Cf (n) = 2. Recall from (9) that this combination

of curvatures will temper fluctuations in entry rates relative to incumbent replication

rates. New firms start with one unit of capital, and labor is measured in units that imply

L = K1 +K2 in the steady state, consistent with F (K,L) = min{K,L} in the Leontief
case. Given these units, the span of control parameter is β/m2 = 0.25. In other words,

it takes a four-unit reduction in labor to release enough managerial services to replicate

one unit of high-quality capital at the equilibrium rate g(m2).

The fraction of households with an ability to supply only labor is 90%, and two-

thirds of them are employed. The remaining 10% of households have the ability to

supply managerial services, and 97.5% choose to do so in the steady state. This high

participation rate is driven by average managerial earnings that are roughly 10 times

those of workers. The distribution of managerial earnings is also more skewed than it

is for workers. The resulting factor supply elasticities for labor and managerial services

are EL = 3 and EM = 0.1, respectively.

But managers can and will switch between the supervision task and the entry and

replication tasks. The residual supply elasticity ES,v of managerial services available for
entry and replication (that is, of M(v)− βL(w)) is determined by

ES,v =
1

1− βL
M

(
EM −

βL

M
× Ew,vEL

)
,

where Ew,v is the elasticity of w with respect to v implied by (39) evaluated at L = L(w).
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Extending Lemma 2 slightly,

−Ew,v =

βv
βv+w

w
βv+w

+

(
D3C(K1,K2,L)L
C(K1,K2,L)

+
(
L1
L

1
C1 + L2

L
1
C2

)−1
)
EL
,

where Cj = (1− Sj)/ε and Sj = D2F (Kj, Lj)Lj/F (Kj, Lj) are the labor curvature and

share parameters of F at (Kj, Lj) (compare to (34) and note that 1 + EA = Sj + Cj in
the one-type economy). The steady state delivers βL/M ≈ 0.6 and βv/(βv+w) ≈ 0.44.

About 60% of managerial time is spent supervising workers, and managers account for

as much as 44% of the cost of a team of managers and workers. The team factor

share of C(K1, K2, L) is 0.70 and the curvature of C(K1, K2, ·) is approximately 0.67.

The resulting elasticity Ew,v is only −0.10, implying much greater out-of-steady state

variation in managerial wages than in worker wages. The net result is ES,v ≈ 0.68, a

relatively modest residual supply elasticity, but substantially greater than EM = 0.1.

The ε = 0.3 and EL = 3 benchmark is indicated with a solid dot in both panels of

Figure 4. The low- and high-quality capital shares of C(K1, K2, L) are 0.10 and 0.20,

respectively, and this implies z1/z2 ≈ 0.47 at ε = 0.3. The productivity ratio z1/z2 and

the other parameters of F are adjusted to keep the factor shares of C(K1, K2, L) constant

at the ε = 0.3 steady state allocation (K1, K2, L). As in Figure 3, this ensures that the

steady state does not change with ε. Similarly, the parameters of the labor supply curve

are adjusted so that the EL = 3 benchmark steady state equilibrium value of (w,L)

remains on the labor supply curve as EL varies, without changing the participation rate
of households who can supply labor. The Zipf economies in Figure 3 are just the large-

population limits (Proposition 3) of the economies with elasticities ε ∈ {0, 0.3, 1} used
to generate the top panel of Figure 4. In the Zipf limit, m2 increases toward a slightly

higher m∞ = 1.0765, and this results in a limiting factor share Sg = 0.5881 and limiting

ratio β/m∞ = 0.2377. The resulting eigenvalues for the two-type Leontief economy are

complex, with an implied half-life of 5.17 years.23 At Sg = 0.6 and β/m∞ = 0.25, the

two-type Leontief formula would predict 5.04 years, and the ζ = 1.05 Leontief economy in

Figure 4 has a half-life of 5.06 years. As expected, the Zipf approximation is innocuous.

As Figure 4 shows, increasing the CES elasticity ε above the Leontief value of ε = 0

causes the half-life of this economy to lengthen. This finding is in line with the role of
23The complex part of the eigenvalues is relatively small, resulting in a period of about 108 years.

Practically, the economy will be at the steady state by the time a cycle is completed.
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the curvature of F in the one-type economy (Section 5.3.2). At the benchmark value

ε = 0.3 used to describe the Zipf steady state in Figure 3, the ζ = 1.05 half-life is 6.16

years. For substitution elasticities slightly above ε = 0.35, the eigenvalues become real,

with fast and slow speeds that diverge significantly as ε increases further. The fast and

slow speeds of the Cobb-Douglas economy are 4 and almost 12 years, respectively.
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Figure 4 Eigenvalues and Elasticities

The bottom panel of Figure 4 shows how the half-lives of economies with a CES

elasticity ε = 0.3 and a tail index ζ = 1.05 vary with the labor supply elasticity EL. The
figure shows that the half-life of this economy does not vary much with EL for EL above
roughly 1.4. Below this threshold, the eigenvalues become real again. As the supply of

labor becomes increasingly inelastic, the slow and fast speeds diverge, to values similar

to those of the Cobb-Douglas economy with EL = 3.

For all economies displayed in Figure 4, low-quality capital accounts for 61% of

consumption produced, and for 73% of team employment. Both the fast and slow

eigenvalues will play a role in determining the rate at which aggregate consumption and

employment converge to the steady state.
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6.2.3 Speed Estimates from Misspecified Economies

Table 1 compares the speed implications for the two-type benchmark economy (with

ε = 0.3 and EL = 3) with those inferred from speed formulas for simpler and therefore

misspecified economies.

Data generated by the ε = 0.3 and EL = 3 economy produce a savings rate of

25.3%, a labor share (counting both managers and workers) of 67.4%, and an economic

depreciation rate of 15.2%. Using these statistics together with a discount rate ρ = 0.04

and a labor supply elasticity EL = 3 to compute the speed of convergence of a Cass-

Koopmans economy with a Cobb-Douglas technology gives 2.17 years– an application

of the speed formula (36). This is the Cass-Koopmans number reported in Table 1.

Table 1

formula half-life

Cass-Koopmans 2.17

one-type Leontief 3.17

one-type, ES,v = 0.67 5.26

one-type Cobb-Douglas 6.97

(1 + β/m∞)δSg, δ = 0.15 6.16

two-type Leontief 5.17

exact at ε = 0.3 6.16

Clearly, this number severely underestimates the actual half-life of this economy. An

alternative estimate that is easy to compute is the half-life of the one-type Leontief

economy, based on (35) with the depreciated rate inferred from the equilibrium condition

(32). The resulting depreciation rate is 14.5%, and then (35) implies a half-life of 3.17

years. This goes in the right direction but not by much. A more significant improvement

results from adopting a CES specification and using ES,v to infer EA from (34). The one-
type approximate speed (33) then implies a half-life of 5.26 years. This is still too low.

But going all the way to a unit elasticity of substitution slows the economy down too

much. Using EA = 0 and only the first factor in (33) results in a Cobb-Douglas half-life

of 6.97 years.

A surprisingly accurate estimate comes from assuming a Leontief technology together

with a completely inelastic supply of managerial services. As was argued in Section 5.1,

the Zipf version of this economy implies the speed (1+β/m∞)δSg. Simply using β/m2 =
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0.25 and taking δ = 0.15, very close to the economy depreciation rate of the benchmark

two-type economy, matches the speed of that economy. This (almost) perfect estimate

is also very different from the 3.17 years implied by the one-type Leontief economy with

EM = 0.1, based on (35) with (32). The reason for these different estimates is not really

EM = 0.1 versus EM = 0. This changes the estimated half-life by less than 3 months. The

main reason is that (35) implicitly relies on 1 + β/m∞ = 1/(1− βL/M). The aggregate

data from the two-type economy yield βL/M ≈ 0.6 and thus 1/(1−βL/M) ≈ 2.5. From

the perspective of a one-type economy, this implies β/m∞ ≈ 1.5. Used in the formula

(1 + β/m∞)δSg together with δ = 0.15, this yields an estimated half-life of 3.08 years,

not 6.16 years. The ζ > 1 equilibrium of the two-type economy has β/m2 = 0.25, and so

β/m∞ ≈ 1.5 grossly overestimates this parameter and thereby the speed of convergence

of this economy. Not all capital in the two-type economy is being replicated, and ignoring

this heterogeneity leads to misleading estimates of the speed of convergence. One cannot

use M = βL + m∞K and L = K with aggregate data to infer the key span of control

parameter β/m∞.

The last estimate reported in Table 1 is the two-type Leontief speed based on the real

part of (50) with the actual depreciation rates δ and θ from the two-type economy. This

estimate is very easy to calculate. But, as the top panel of Figure 4 shows, the speed of

convergence is decreasing in the elasticity of substitution ε of F , and so this estimate is

by construction an underestimate of the true speed for an economy with ε = 0.3.

6.3 Two Types of Shocks

The baseline two-type economy with ε = 0.3 and EL = 3 produces equilibrium trajecto-

ries that are not unlike what happens in a typical recession that is followed by a slow

recovery. This will be illustrated here using two types of shocks. One is a one-time

destruction of low-quality capital. In a richer model, some type of panic or temporary

interruption of credit can cause low-quality firms to shut down; high-quality firms will

find a way to survive. The second shock is a permanent decline in the rate at which

consumers discount. Such a shock can mimic a news shock in which consumers learn

that they are not as wealthy as they thought they were (see Luttmer [2013]). This shock

puts the economy in a situation in which both low- and high-quality capital are below

their respective steady states.
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A Destruction of Low-Quality Capital Suppose the economy is in the steady

state, and there is a one-time destruction of type-1 capital. Both types of capital are

used to produce consumption, but type-1 capital is not replicated in the steady state.

This continues to be the case after a destruction of type-1 capital that is not too large.

Figure 5 shows the equilibrium trajectories of the quantities K1,t, K2,t, Lt, Ct, the factor

prices measured in units of consumption vtCt and wtCt, and for the replication rate

g(m2,t) and the entry rate f(nt). For comparison with the ε = 0.3 benchmark, the

trajectories for economies with ε ∈ {0, 1} are also shown. The trajectories for the Zipf
limit economies (not shown) are very close.
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Figure 5 A 10% Destruction of Type-1 Capital

In the steady state, about 84% of the capital stock (measured so that new firms start

with one unit of either high- or low-quality capital) is low-quality capital. In the Leontief

economy, this means that a 10% reduction in K1 results in a reduction in L that is

almost as large. The decline in consumption is smaller because high-quality capital

accounts for a disproportionate share of the aggregate output of consumption. Raising

the elasticity of substitution to only 0.3 reduces the initial declines in L and C to about

3.2%. Because type-1 capital is not replicated, the stock of type-1 capital only recovers
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eventually because the (initially unaffected) type-2 capital stock rises temporarily above

its steady state. On impact, managers released from overseeing workers in the production

of consumption cause the rate at which the type-2 capital stock is replicated to rise from

its steady state of 28.7% to about 31%.24 Since the type-2 capital stock accounts for

only about 16% of the steady state capital stock (27% of worker employment), it takes

a long time for a significant recovery of worker employment to materialize. Because

Cf = 2, the response of entry is even more modest. But an entry technology with less

curvature would not do much to speed things up because the economy is so close to

the Zipf asymptote. The minimal impact of a 10% reduction in type-1 capital in the

Cobb-Douglas economy is remarkable. As shown in Figure 4, the slow half-life for that

economy is almost 12 years. If workers did not need supervision, then β/m2 = 0 and the

effi ciency condition for worker employment would simply be wL(w) = α. There would

be no effect on worker employment at all. And Figure 5 shows that the β/m2 = 0.25

economy remains quite close to that scenario.

A Discount Rate Shock
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Figure 6 The Effect of ρ on the Zipf Steady State (ε = 0.3)

24Figure 1 in Luttmer [2012] presents some preliminary but suggestive evidence that the growth rates

of fast-growing firms barely react to the state of the business cycle.
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Suppose the economy is in the ρ = 0.10 steady state and there is an unforeseen once-

and-for-all decline in ρ, to the benchmark value of ρ = 0.04. Figure 6 shows how the

before and after Zipf steady states compare. As in Figure 3, the (mostly) upward-sloping

dotted curve represents the effi ciency condition (41), and the hump-shaped solid curve

is (42)– effectively the resource constraint M = βL+m∞K2, taking into account factor

supply curves and the fact that v and w are inversely related via the equilibrium require-

ment that the cost (βv+w)C of a team of managers and workers has to equal its marginal

product. The first term in (41) is the cost share βv/(βv + w) of managerial services in

a team of managers and workers. Holding fixed capital-labor ratios, this cost share

increases with a reduction in ρ because it raises present values and because of the first-

order condition v = q2Dg(m∞) that governs managerial incentives to replicate capital.

In equilibrium, the cost share w/(βv + w) equals L−1(L)C(K1, K2, L)/D3C(K1, K2, L),

and the only way this cost share can decline for a given (K1, K2) is through a reduction

in L. Such a reduction also reduces profits per unit of capital, which helps to dampen

the rise in present values. This explains the downward shift of (41) shown in Figure 6.

Because this occurs in the region where (42) is downward sloping– a consequence of the

fact that the managerial labor force participation rate is high– the permanent reduction

in ρ causes steady state capital stocks to rise and worker employment to fall. In the

benchmark economy with ζ > 1, the decline in employment is actually a bit larger than

in the Zipf limit shown in Figure 6.

The ε = 0.3 trajectories in Figure 7 show that worker employment overshoots in this

economy: it declines by 4.7% on impact and by only 2% in the long run. Consumption

declines by 3% on impact and rises by just under 2% in the long run.25 Managerial and

worker wages move in opposite directions as the economy shifts away from producing

consumption and toward accumulating more organizational capital– following the same

logic as the Stolper-Samuelson theorem of international trade. The alternative trajecto-

ries for ε ∈ {0, 1} displayed in Figure 7 show that the choice of ε matters for the labor
and consumption trajectories that follow a sudden decline in ρ. As long as both types

of capital are fully employed in the Leontief economy, labor and consumption cannot

decline on impact, and both will actually rise in the long run as the economy moves to

25From December 2007 to December 2009, the civilian employment-population ratio in the US fell by

4.4 percentage points, and real consumption per capita by about 3%.
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the new steady state with higher stocks of both types of capital.26 Worker employment

does jump down in the Cobb-Douglas economy, but unlike in the ε = 0.3 economy, it

barely recovers in the long run.
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Figure 7 A One-Time Reduction in ρ

7. Concluding Remarks

Sims [1998] argued that many of the microeconomic stories underlying adjustment cost

models are implausible. In the models he describes, capital accumulation amounts to

opening a can of generic output, consuming some of it, and then adding the rest to

the capital stock. Adjustment costs arise because the amount of output it takes to

augment the capital stock is increasing and strictly convex in the rate at which capital

is being accumulated. It is hard indeed to tell plausible microeconomic stories for such

adjustment costs. As Prescott and Visscher [1980] suggested long ago, the evidence on

how firms grow is hard to interpret without thinking about the time-consuming process

of accumulating some form of organization capital.
26This all changes for Leontief steady states of the form L ∈ (K2,K2 + K1), which corresponds to

the downward-sloping part of (47) in Figure 3.
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The model presented here should be viewed as a proof of concept. It pushes the limits

of what is analytically tractable in an attempt to more fully understand the features of

preferences and technology that can give rise to slow convergence in a manner that is

consistent with some basic features of the business cycle. The results show that it is

easy to construct model economies with half-lives that are similar to what has been

observed following recent recessions. The fact that the firm size distribution is close to

Zipf’s law is a strong indication that most organization capital accumulation comes from

incumbent firms expanding, and not from entry. Even if entry rates respond elastically

to the state of the economy, the fact that entrants are small means that entry can do

very little to speed up a recovery.

The results also show that it is hard to predict the true convergence speed of an econ-

omy on the basis of aggregate statistics alone. The underlying persistent heterogeneity

in firm growth rates severely distorts the relation between aggregate share parameters

and parameters that matter for the convergence rate of the economy.

A The Two-Type Firm Size Distribution

Consider the steady state and define µj = g(mj) − δk. Write z = ln(k) for the “size”

of a firm with k units of capital. For simplicity, normalize units so that new firms start

with k = 1. Let τ ≥ 0 be the age of a firm at which it switches from high quality to low

quality. The assumption is that τ = 0 with probability φ1 and τ > 0 with probability

φ2. Given τ > 0, the density of τ is θe−θτ . The random exit and quality transition

events are assumed to be independent. Conditional on survival, the size of a firm is

z = Z(a, τ), where

Z(a, τ) = µ1a+ (µ2 − µ1) min{a, τ}.

In the following, begin by considering the case µL > 0 so that Z(a, τ) ≥ 0 for all firms.

The one-type calculation reported in the text immediately implies that P [z|τ = 0] =

1−e−(δf/µ1)z. Thus, δf/µ1 is a possible tail index. Not surprisingly, the tail of P [z|τ > 0]

may well decline more slowly toward zero. Consider a cohort of firms at age a > 0. The

size of this cohort will be e−δfa. The independence of random exit and transition times

implies that the density of transition times is still θe−θτ among continuing firms. The

57



distribution of size in the population of survivors at age a is therefore

Pr [Z(a, τ) ≤ z|a] =

∫ ∞
0

ι [Z(a, τ) ≤ z] θe−θτdτ . (51)

Observe that this implies Pr [Z(a, τ) = µ2a|a] = e−θa. Given τ < a, the condition

Z(a, τ) ≤ z corresponds to µ1a+ (µ2−µ1)τ ≤ z and thus τ ≤ (z−µ1a)/(µ2−µ1). This

is an empty event if z < Z(a, 0) = µ1a. Combining these observations with (51) gives

Pr [Z(a, τ) ≤ z|a] =


0, z ∈ [0, µ1a) ,

1− e−θ
(
z−µ1a
µ2−µ1

)
, z ∈ [µ1a, µ2a) ,

1, z ∈ [µ2a,∞) .

Aggregating this distribution over all age cohorts gives

P [z|τ > 0] =

∫ ∞
0

Pr [Z(a, τ) ≤ z|a] δfe
−δfada

= 1− 1
δf
µ1
− δf+λ

µ2

((
δf
µ1

− δf
µ2

)
e
−
(
δf+θ

µ2

)
z −

(
θ

µ2

)
e
−
(
δf
µ1

)
z

)
.

The implied distribution of k = ez has the tail index reported in (13). Since the tail

index of P [z|τ = 0] is δf/µL, the overall tail index is the ζ reported in (13) for µ1 =

g(m1)−δk > 0. If µ1 < 0, then slow-growing firms actually shrink, and they will certainly

not appear in the right tail. It is not diffi cult to verify that then ζ = (δf + λ)/µ2.

B A Cobb-Douglas Lemma

As noted in the text, (16)-(17) imply that Σ : α 7→ S(v) is a decreasing function. The

proof of Lemma 4 relies on the observation that L(v, w) is increasing α. This turns out

to follow from the fact that the factor prices (v, w) must solve

α = (βv + w)L(v, w), Σ(α) = M(v, w)− βL(v, w).

Differentiating this system with respect to α gives

[
EL,v EL,w

] [ α
v
∂v
∂α

α
w
∂w
∂α

]
=
[
EL,v EL,w

] βv
βv+w

+ EL,v w
βv+w

+ EL,w
EM,v−βLM ×EL,v

1−βL
M

EM,w−βLM ×EL,w
1−βL

M

−1 [
1

DΣ(α)α
Σ(α)

]
.

Using the fact that own price elasticities dominate cross price elasticities, one can verify

that both the numerator and the denominator (the determinant of the matrix that must

be inverted) are negative.
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C The Cass-Koopmans Economy

Consider the same preferences as in the text, but now suppose that labor and managerial

services are perfect substitutes in production. With slight abuse of notation, write

S(w) = L(w,w) + M(w,w). The labor market clearing condition is mtKt = S(wt),

and output is given by Ktg(mt). This can be used as consumption or to add to the

capital stock. Capital can also be consumed. The price of capital is therefore equal to

1, and so the marginal utility weighted price of capital is simply qt = 1/Ct. This is also

the marginal utility weighted price of output. The usual effi ciency condition for labor

is qtDg(mt) = wt. As in the text, the Euler condition is rt = ρ + DCt/Ct, and hence

Dqt/qt = ρ− rt. The asset pricing equation for capital is rt = g(mt)−Dg(mt)mt − δ.
The equilibrium conditions can therefore be summarized as

DKt = (g(mt)− δ)Kt −
1

qt
(52)

Dqt = (ρ+ δ − [g(mt)−Dg(mt)mt]) qt (53)

together with the static equilibrium condition

mtKt = S(qtDg(mt)). (54)

Taking derivatives in (52)-(53) with respect to (Kt, qt) and evaluating the result at the

steady state gives[
∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

]
=

[
−(δ − g(m)) −(δ − g(m))

ρ+ δ − g(m) ρ+ δ − g(m)

]

+Sgg(m)

[
K
m
∂m
∂K

q
m
∂m
∂q

1− Cg × K
m
∂m
∂K

1− Cg × q
m
∂m
∂q

]
.

The second equation makes use of the steady state condition 1/(qK) = g(m) − δ, and
the fourth equation relies on the steady state condition ρ + δ = (1 − S)g(m). The

static equilibrium condition (54) is just like (8) but without entry. It follows almost

immediately from (9) that[
K
m
∂m
∂K

q
m
∂m
∂q

]
=

1

1 + CgE

[
−1 E

]
.

Combining these results gives[
∂DKt
∂Kt

qt
Kt

∂DKt
∂qt

Kt
qt

∂Dqt
∂Kt

∂Dqt
∂qt

]
=

[
0 0

ρ ρ

]
+
g(m)Sg
1 + CgE

[
−1 E

(1 + (1 + E)Cg 1

]
+(g(m)−δ)

[
1 1

−1 −1

]
.
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This can be compared with (27).

D Calibration of the Two-Type Economy

The following describes the functional forms and parameter values used in the two-type

economy of Section 6.

The number of employer firms in the US economy is about 6 million. For a potential

workforce of about 200 million, this implies 3 firms per 100 households. Take δf = 0.02,

δk = 0.03, and so δ = 0.05. The resulting steady state flow of new firms is f(n) = 6×10−4

per household. Low-quality capital is not replicated, and so m1 = 0 and g(m1) = 0. The

tail index (13) then becomes ζ = (δf +θ)/(g(m2)−δk). This is taken to be ζ = 1.05, and

θ = 0.25. This implies g(m2) ≈ 0.28714. Among entrants, the fraction of fast-growing

firms is φ2 = 1 − φ1 = 0.4. So quite a few new firms start by growing rapidly, but the

mean duration of rapid growth is only 1/θ = 4 years. These parameters imply

K2 =
φ2f(n)

δ + θ − g(m2)
≈ 0.0187, K1 =

φ1f(n) + θK2

δ
≈ 0.1005.

The technology for producing new organization capital is determined by

f(n) =

(
(1− ωf )

(
1

Af

)1−1/εf

+ ωf

(
n

Bf

)1−1/εf
)1/(1−1/εf )

,

g(m) =

(
(1− ωg)

(
1

Ag

)1−1/εg

+ ωg

(
m

Bg

)1−1/εg
)1/(1−1/εg)

.

This parameterization requires one normalization each for f and g. Normalize Ag = Bg

and choose the units of managerial services so that m2 = 1 in the steady state. Then

Ag = Bg = 1/g(m), and the steady state factor share of managerial services will be

Sg(m2) = ωg. Also take Af = 1/f(n). This implies that Afn/Bf = 1 and that the

factor share of managerial services in the creation of new entrants is Sf (n) = ωf . The

steady state marginal products of f and g are nowDf(n) = ωf/Bf andDg(m2) = ωg/Bg.

The first-order condition (φ1q1 + φ2q2)Df(n) = q2Dg(m) therefore implies

Bf

Bg

=

(
φ1 ×

q1

q2

+ φ2

)
ωf
ωg
.

The equations for qjKj reported in the text pin down q1/q2, and then Bf/Bg follows.

The parameters used are ωf = ωg = 0.6, εf = 0.20, and εg = 0.60.
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The production function C(K1, K2, L) is defined by productivities z1 and z2 > z1,

and

F (K,L) =

(
(1− ω)

(
K

A

)1−1/ε

+ ω

(
L

B

)1−1/ε
)1/(1−1/ε)

.

This over-parameterization allows for a convenient normalization. The steady state

conditions only depend on the factor shares of C(K1, K2, L). The following proposition

describes what these factor shares can tell us about F and the relative productivities of

the two types of capital.

Proposition A1 Suppose C(K1, K2, L) has positive factor shares γ1, γ2, 1− γ1 − γ2

at some (K1, K2, L) ∈ R3
+. Conjecture some ε ∈ [0, 1). Then the productivity ratio

associated with the two types of capital must be

z2

z1

=

(
1− γ1 + γ1

(
γ2/K2

γ1/K1

)1−ε
)1/(1−ε)

(
1− γ2 + γ2

(
γ1/K1

γ2/K2

)1−ε
)1/(1−ε) . (55)

The parameter ω
1−ω

(
A
B

)1−1/ε
can also be identified from these factor shares. It is conve-

nient to take 1− ω = γ1 + γ2, and then it must be that

A

B
= (γ1 + γ2)

(
γ1

γ1 + γ2

(
K1

γ1L

)1−ε

+
γ2

γ1 + γ2

(
K2

γ2L

)1−ε
) 1

1−ε

.

The implicit allocation of labor is Lj ∝ K1−ε
j γεj, and the distribution of consumption

produced is Cj ∝ (zjKj)
1−εγεj. For ε = 1, the ratios z2/z1 and A/B follow by taking the

ε→ 1 limit in these expressions.

This follows from inverting standard first-order conditions. A corollary is that ε can

be identified from the average capital productivities Cj/Kj and the type-j labor shares

Sj = D2F (Kj, Lj)Lj/F (Kj, Lj), via

C2/K2

C1/K1

=

(
S2

S1

) 1/ε
1−1/ε

(
1− S2

1 + S1

)− 1
1−1/ε

.

Such data would also deliver z2/z1 = (S2/S1)(1/ε)/(1−1/ε). The focus in this paper is on

ε ∈ (0, 1). In these scenarios, high quality implies high average capital productivities
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and low labor shares.27 The units of labor are chosen so that L = K1 +K2 in the steady

state. In the case of ε = 1, this implies A/B = 1, and so F (K,L) ∝ min{K,L}. The
factor shares of the two capital stocks are taken to be γ1 = 0.1 and γ2 = 0.2, resulting

in a labor share at the conventional value of 0.7. At the benchmark value of ε = 0.3,

this implies z1/z2 = 0.467, C1/(C1 + C2) = 0.5891, and L1/(L1 + L2) = 0.6988.

The distribution Ψ that defines the factor supplies (1)-(2) is taken to be a mixture of

bivariate Fréchet distributions. A population of size HA has hv = 0 and (hu, hw) drawn

from two independent Fréchet distributions with right tails that behave like h−σA . A

population of size HB = 1 −HA has hw = 0 and (hu, hv) drawn from two independent

Fréchet distributions with right tails that behave like h−σB . This gives rise to separable

factor supplies of the form L(w) and M(v). They are the familiar logit supply curves

L(w) = HAΓ

(
1− 1

σA

)
[PA(w)]1−1/σA , PA(w) =

(Aww/Au)
σA

1 + (Aww/Au)σA
,

M(v) = HBΓ

(
1− 1

σB

)
[PB(v)]1−1/σB , PB(v) =

(Bvv/Bu)
σB

1 + (Bvv/Bu)σB
,

where Γ(·) is the gamma function. The population sizes areHA = 0.9 andHB = 0.1. The

elasticity parameters are taken to be σA = 10 and σB = 5. The parameters (Aw, Au) are

set by matching the required steady state value for (w,L) and imposing an equilibrium

worker participation rate PA(w) = 2/3. Similarly, (Bu, Bv) is set to match the steady

state value of (v,M) and PB(v) = 0.975. The resulting factor supply elasticities are

EL = (1− PA(w))(σA − 1) = 3 and EM = (1− PB(v))(σB − 1) = 0.1. Note that a high

participation rate for type-B households tends to imply a small elasticity EM , unless σB
is large. But if managers dominate the right tail of the earnings distribution, then σB
cannot be large.
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