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This paper examines a model in which agents live for-
ever, and money is the only asset. It shows that if consumers are
sufficiently patient and inflation sufficiently low then there
will be an equilibrium in which money has value. It also shows
that when this sufficient condition is satisfied the nonmonetary
equilibrium is unstable in the sense that any small amount of
government backing will cause the price of money to jump up from
zero by a discrete amount.

This is a variant of a theorem due to Bewley (1980,
1983). Bewley showed that if endowments are "sufficiently" di-
verse, and the subjective discount rate is low enough, but greater
than the rate of return on money (zero in this paper), then there
is an equilibrium in which money has value. If we add two special
but reasonable assumptions: positive transition probabilities
between states, and a unique equilibrium in which money has no
value, then this result can be greatly strengthened. The (rather
complicated) assumption of "sufficient" diversity of endowments
can be replaced by the simple requirement that the nonmonetary
equilibrium is not Pareto efficient. This can be either because
tastes or endowments are (a little) diverse.

The relationship between the efficiency of barter equi-
librium and existence of a monetary equilibrium has been exten-
sively investigated in the overlapping generations model. Indeed,
Woodford (1986) has shown that in certain simple cases the condi-
tions for the existence of a monetary equilibrium are the same in
the overlapping generations model as in the infinitely-lived

agent, debt constrained model. In the general overlapping genera-



tions model, the best results are for the steady state case, where
Grandmont and Laroque (1973) show that inefficiency of nonmonetary
equilibrium implies existence of an efficient monetary steady
state. Grandmont and Younes (1972) prove a similar result in a
model with patient infinitely-lived agents and a cash-in-advance
constraint, although the monetary steady state is not efficient in
this model. The best results in the general (nonsteady state)
overlapping generations case are due to Burke (1985) who shows
that inefficiency of barter implies the existence of an almost
efficient monetary equilibrium or of an efficient almost monetary
equilibrium. Millan (1985) has proven stronger results, but in a
more limited model. Cass, Okuno, and Zilcha (1979) have some
counterexamples showing that there is a limit to the extent to
which these results can be strengthened,

One important difference between the overlapping genera-
tions model and the infinite-lived debt constrained model deserves
note: 1in the overlapping generations case the monetary equilibria
are typically efficient, while Bewley (1980) shows that in the
infinite-lived debt constrained model without inflation monetary
equilibria are typically not efficient. The cash-in-advance model
is similar to the debt constraint model in this regard. Grandmont
and Younes (1973) show that the monetary steady state in this
model is constrained inefficient. In the debt constraint model
with inflation, however, there may be efficient monetary equilib-
ria: this point is made in Levine (1987).

The second section of the paper sets up the model; the

third gives a statement and discussion of the main results. The



fourth and fifth sections are devoted to proving the substantive
theorems. Section six discusses the instability of nonmonetary

equilibria.

2. The Model

All information is publicly held and common knowledge.
Information at time t about current and future conditions is
indexed by the state ng € I. There are only finitely many states
in I. Information states ["t} naturally form a Markov chain; the
initial probability distribution is fixed by the transition proba-
bilities induced by the historically given initial state Nq- The

transition probability from n to n' is denoted w(n'|n). We always

assume
(A.1) m{n'|n) > O for all n', n e I.

A state history s = (n1,n2,...,nt) lists the states that
have occurred up to and including time t(s) =z t. Corresponding to
s is the state history s - 1 which truncates s one period early at
t(s) - 1. If t(s) =1, so s = {n1}, it is notationally convenient
to define s - 1 to be the null state history denoted 0. A state
history s occurs with probability L induced by n, and the Markov
transition probabilities w(n'|n). The state history s also deter-
mines its final state Ng = Ng(s)-

Agents are infinitely-lived, and goods are completely
perishable; there are finitely many agents and goods. A typical
agent is denoted a, and the finite set of all agents is A; a typi-

cal good is denoted w, and the finite set of all goods is C. Let

xi(s) be agent a's planned holding of good w when the state his-



tory is s, and let x2(s) denote the corresponding column vector.

Agent a's preferences are given by the utility function
7 s%(8) e u(x(s),n).
: S S

Note that & is a common subjective discount factor used by all
types. The period von Neuman-Morgenstern wutility function

ua[xa(s),ns] satisfies.

(A.2) For fixed n e I, u®(x®,n) is continuously differentiable,
weakly concave, strictly monotone and bounded; the partial
derivatives with respeect to xi, denoted Dmua(xa,n) are

bounded (even on the boundary of the consumption set).

The differentiability assumption can be weakened with only nota-
tional complication from the use of subgradients; dropping the
assumption that the utility function has finite slope at the
boundary leads to substantial complications. The assumption that

ua

is bounded insures that preferences are "continuous at infin-
ity" in the sense of Fudenberg and Levine (1983), and makes it
possible to draw inferences about infinite horizon equilibrium
from the finite horizon case.

Agent a's endowment of good w for each history s depends

only on the state, and is denoted zz(ns). We assume that endow-

ments of goods are strictly interior
(A.3) zi(n) > 0 for all w e C, a € A,

Consumption in each period must be nonnegative, so
x3(s) 2 0. The consumption good is completely perishable, so an

allocation of goods is socially feasible if



(E.1) Z x3(s) < Z Za(ns)
aeh ach

z(ng).

If there is no intertemporal trade, the perishability of
goods, and additive separability of preferences implies that the
economy breaks up into countably many different finite pure ex-

change economies indexed by ng- Specifically we define the iso-

lated economy at n to be the finite pure exchange economy with

commodities w € C, endowments 2z2(n) and utility functions
ua(xa,n). Because it leads to substantially simpler and stronger

results, we assume

(A.4) For each n the isolated economy has a unique competitive

equilibrium,

&n important case in which this assumption holds is when there is
only one consumption claim, in which case the unique equilibrium
is autarkic. Note that the "one" good may actually represent
different commodities in different states.

In this economy the only asset is money: durable but
intrinsically worthless certificates issued by the government.
Let M?(s) be agent a's planned holding of money contingent on s.
Since money cannot be forged, individual holdings must be nonnega-
tive: M?(s) = 0. The initial aggregate money stock is M(0), and
it grows at the fixed rate f 2z 0. An allocation of money is

socially feasible if for every state history

(E.2) J Mi(s) < M(s) = M(0)(1+£) (),

aeh



The impact of money growth on budget constraints depends
on how the money is injected into the economy. If each agent
receives new money in proportion to existing holdings, then the
only effect is to change the units in which money is measured. We
assume that money is injected into the economy in a lump sum
manner so that each agent a receives f®M(s-1) dollars, where
zaeﬁfa = f, and ” > 0. Letting the prices of goods and money be
denoted pm(s) and pM{s} respectively, it follows that if initial
money holdings of agent a are M2(0) the corresponding budget
constraint is

(E.3) pM(s)[Ma(s)-l"ia(s-%%f’aw(s-”] « ) pw(s)[xi(s)-zz(ns}} <0

weC

x3(s) > 0, M(s) 2 0.

An equilibrium is a price vector, an allocation which is
optimal at those prices for every type of agent subject to the
constraint (E.3), and which satisfies the social feasibility

conditions (E.1) and (E.2.).

3. Barter and Monetary Equilibria

There is always an equilibrium of this economy in which
pM(s) = 0 and money has no value. We refer to this as a barter
equilibrium, to emphasize the fact that in such an equilibrium
goods may be traded for other types of goods but money may not be
used to carry out intertemporal transactions. If py(s) > O for
some state s, so that money at least sometimes has value, we say

that the equilibrium is a monetary equilibrium. The main result

of this paper is to show that if the barter equilibrium is ineffi-



cient, agents are sufficiently patient, and the growth rate of
money is low enough, a monetary equilibrium exists.

Define

(3.1) A = 8/(1+F)

to be the inflation adjusted discount factor. Our main theorem is

Proposition 3.1: Under (A.1) to (A.4) if the (unique) barter

equilibrium is not Pareto efficient, then there exists 0 < A < 1
and a Py > 0 such that for 1 > 4 2 A there is an equilibrium with
the real value of the money stock relative to the real value of

goods bounded below by Py’
Py(SIM(s)/] P (5)z (n)) > py.

If the barter equilibrium is efficient there is no reason to trade
between states, no need for money, and no reason to expect a
monetary equilibrium to exist. On the other hand, it is easy to
show that if & is sufficiently close to zero, no agent will be
willing to forego consumption to hold money, and no monetary
equilibrium will exist. Notice that for the hypothesis "A near
one" to be satisfied, two conditions must be met: the subjective
discount factor § must be near one, and the inflation rate f must
be near zero.

A problem with this result is that the monetary equilib-
rium is not the unique equilibrium: the barter equilibrium is
also an equilibrium. It is natural to ask what forces tend to-
wards the monetary equilibrium. Section 6 provides a partial

answer to this question: under the assumptions of Proposition



3.1, if there is a small probability that the government redeems
money for goods, then pM(s)M(s)/zmecpw(s)zm(ns) > Py where Py > 0
is independent of the amount of redemption. In this sense, when
barter is inefficient, agents patient and inflation low, barter is
unstable: any small amount of redemption of money by the govern-
ment causes the real value of the money stock to shoot up from
zero to at least EM'

Related to this result is another, more paradoxical
conelusion. Suppose there is a finite horizen, that the govern-
ment redeems money at the end, and that the cost of holding money
is low. Then the government can hold the current value of money
fixed, while lowering the par value at the redemption date, pro-
vided that it moves the date of redemption further in the fu-
ture. Consequently, two policies that might superficially appear
to lower the current value of money--lowering the terminal value,
and postponing the redemption date--in fact leave the current
value of money unchanged.

Returning to Proposition 3.1, observe that the unique-
ness of the barter equilibrium is an immediate consequence of
(A.4): a barter equilibrium is equivalent to an equilibrium of
the isolated economy after each finite history, and these are
assumed to be unique. Specifically, if x2(n), {pm(n)|mec} are the
unique allocation and price vector of the isolated economy at n
(normalized so that zwecpw(n}=1), then the unique barter equilib-
rium satisfies x2(s) = xa{qs) and pm(s) = pw(ns}. The next two
sections are devoted to a proof of the remainder of Proposition
3.1. Before turning to these technical details, we first study

the basic premise: that the barter equilibrium is not efficient.



To characterize efficiency, we associate with the unique
equilibrium of the isolated economy at n marginal utilities of
expenditure 13(n); these are the Lagrange multiplier associated
with individual optimization problems. Since by (A.3) endowments
are strictly positive, in the barter equilibrium an agent of type
a consumes a positive amount of some good, say w. Moreover, by
(A.2), the partial derivative of a's utility with respect to x:,
is strietly positive. Consequently the price pw(n) is strictly

positive and it follows that for good w
(3.2)  w¥n) = D u?(x%(n),n)/p (n),

which uniquely defines v¥(n). Notice, incidentally, that since
D u*(x*(n),n) > 0, u%(n) > 0.

Let ua be the vector of a's marginal utilities of expen-
diture across states. Inefficiency of the barter equilibrium

. a .
arises because the u 's are not proportional:

Lemma 3.2: Under (A.2) to (A.4) if the barter equilibrium is
inefficient then there are two agents a and b such that ua and ub

are not proportional.

Proof: We show that proportionality of 1@ and ub for all agents a
and b implies efficiency. Maximization of ZangaUa(x) subject to
a a

x*(s) =2 0 and Zaeﬂx (s) < E

Ya is well-known to imply efficiency. In state s, the sufficient

a . .
sap® (ns) for some nonnegative weights

first order condition is that there exist multipliers qw{s) such

that

YaDwua(xa(s),ns] <q(s)wecC



w T =
with complementary slackness. Observe that in a barter equilib-
rium
ar.a a
D u (x (S),ns) < wngdp, (n).

also with complementary slackness. Fix n, and set y> = 1/u3(n).

If we define qz(s) pw(ns)ua(ns)/ua(n), proportionality of yd

and ub implies qi(s) qZ(s) = qm(s}, so that the sufficient

condition for efficiency follows. ¢

There are two reasons why barter equilibria may be
inefficient: there can be diversity in tastes between states, or
diversity in endowments between states. For simplicity, imagine
there are two agents, two states and each agent is endowed with a
single unit of the single consumption good. Suppose n has two

1 2

components, n' for agent 1 and n“ for agent 2, and for 2 5 2,

ua(

xa,n) = naxi where w is the single consumption good. In state
1 a2t =7, n2 = n, while in state 2 n1, =, ¢ = 7. In this
example, 13(n) = na, and as long as n > n, Lemma 3.2 implies that
the nonmonetary equilibrium is inefficient. This is an example of
diversity in tastes: agent 1 prefers to consume when he has the
high marginal utility of consumption at (E,B) and agent 2 prefers
(n,n).

An alternative model is to assume that tastes are iden-

tical and state independent, while states are indexed by endow-

ments of the consumption good. Specifically, suppose that n has
1 2

two components, z', agent one's endowment, and 2%, agent two's
endowment. In state 1z' =z, 2° = z, while in state 2 z! = Zy
2

z“ = z. Consequently



% Y e

u¥(n) = D u(z%(n))

where u is the common state independent utility funection. Pro-
vided u is strietly concave and z > z, Lemma 3.2 again implies
that the nonmonetary equilibrium is inefficient.

The two-agent, two-state, one-good model with diverse
endowments is closely related to the paper of Scheinkman and Weiss
[1985]. Their model differs from that here in several respects.
They assume that utility is logarithmic, thus violating (A.2).
They also use a continuous time model in which states change
according to a Poisson process. Their model may be viewed as a
limiting case of ours in which the probability of changing states
approaches zero, while the discount factor § approaches one and
the lower bound on utility approaches -w.

A more general condition guaranteeing diversity of
endowments is given by Bewley (1980,1983). He assumes that every
individual has a state in which he is "poor" in the sense of
having a very small endowment of all consumption goods [Bewley
(1983), Assumption 3.8]. He then gives a sufficient condition on
preferences to guarantee that any '"rich" individual, with income
at least equal to that of the average agent, has marginal utility
of expenditure strictly lower than that of any poor agent [Bewley
(1983), Assumption 3.9 and (1980), Lemma 6]. Fix a state n, and
consider an agent, a, who has the least marginal utility of expen-
diture in that state: this person must be rich. Moreover, there
must be another state n' in which he is poor. However, at n',
some other agent, b, is rich and consequently has a strictly lower

marginal utility of expenditure. Evidently y® and ub are not
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proportional, and Lemma 3.2 implies the nonmonetary equilibrium is
inefficient.

Bewley's result on the existence of a monetary equilib-
rium is more general than Proposition 3.1 in several respects. He
does not require a positive probability of all states (A.1) nor
uniqueness (A.4). Moreover, he allows the possibility that there
is a nominal rate of return on money financed by lump sum taxes.
This is equivalent to a negative value of the inflation rate f.
(Bewley does not explore positive rates of inflation.) Bewley's
(1983) Theorem 3.10 shows that if the nominal return on money is
not too large, and his endowment/taste assumptions hold, then a
monetary equilibrium exists for & sufficiently close to one.

In our context, Bewley's conditions are much too
strong. It would be easy to show that for generic tastes and
endowments, the barter equilibrium is inefficient: Lemma 3.2 says
only that there must be some diversity in tastes and/or endowments

across states.

4. Further Implications of Inefficiency

Our first step in proving Proposition 3.1 is to develop
as a corollary to Lemma 3.2 the fact that inefficiency implies the
existence of stationary prices such that some agent would value
money in every state. We also show that a similar property is
true if the price of money is close to, rather than exactly equal
to, zero. The actual proof of Proposition 3.1 is in the next

section.
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First we show

Lemma 4.1: Under (A.1) to (A.4) if the barter equilibrium is
inefficient, then there are numbers 0 < y < 1, and 0 < A < 1 and
for each n ¢ I a scalar py(n) > O and agent a(n) such that
@ @) < v § ot ey (M.

n'el
Proof: By Lemma 3.2 we may assume that for agents a, b, and

states na and nb there are positive constants aa, o such that
1 (n?) > ubub(na); a®13(nP) < ouP(n®).

Set pm(n) = [min{uaua{n),abub(n}}]'T, and let a(n) be an agent who

a(n)(n) - 1/aa(n)

assumes the minimum, Then pm(n}u , while

a(n)(n.) > 1/ma(n) na(n).

P, (n')u with strict inequality for n' =

Since m(n'|n) > 0 we conclude that
pm(n)ua(n)(n) <) n(n‘[n)pm(n')ua(n)(n').
n'el
Since I is finite, this implies the right-hand side is larger than
the left when multiplied by a constant yA sufficiently close to

1. ¢

Next we wish to show that Lemma 4.1 continues to hold,
provided money does not have too much value. Following Bewley

(1980) we can define for 0 < a < 1 an a-transfer payment equilib-

rium of the isolated economy at n. This is an efficient alloca~

tion x which, when corresponding efficiency prices q are normal-

ized to add up to 1 - a, satisfies

) qw[xz-zi(n}l < a.
weC
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If o« = 0 this is simply the unique Walrasian equilibrium of the
isolated economy, discussed above. If we normalize prices so
that prm(s) - pM(s)M(s) = 1, since no agent can trade more than
the entire money stock, any equilibrium alloecation at s with
pM(s)M(s) = a is an a-transfer payment equilibrium of the isolated
economy .

Associated with each a-transfer payment equilibrium x
are the marginal utilities of expenditure for agents, ua(x); these
are the inverses of the efficiency weights which give rise to the
transfer payment equilibrium. Let ﬁa(u,n) be the supremum of
13(x) for any a'-transfer payments equilibrium x with «' < a, and
let ga(u,n) be the infimal value. Note that we take the sup and
inf over a' < a, because prices are normalized differently for
each a'. The key property of these bounds is that for small

values of a u and p are approximately equal and positive:

Corollary 4.2: Under (&.1) to (A.4)

lim y*(a,n) = lim #%(a,n) = u2(0,n) = #%(0,n) > 0.

a0 a=0

Proof: If ui(n) are a convergent sequence of marginal utilities
of expenditure for o -transfer payments equilibrium with a * 0 a
straightforward continuity argument shows that there limit are
marginal utilities of expenditure for a O-transfer payments equi-
libria. It follows that

Ea(O,n] < lim inf Ea(a,n) < lim sup n2(a,n) € 53(0,n).
a0 a-+0
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On the other hand, we remarked above in (3.2) that when a = 0, the
marginal utilities of expenditure are uniquely determined and
positive. Consequently Ea(D,n) = Ea(o,n) > 0, and this implies

the desired conclusion. ¢

An immediate consequence of Lemma 4.2 is that Lemma 4.1
continues to hold for a > O. This is similar in spirit to

Bewley's (1980) Lemma 7.

Corollary 4.3: Under (A4.1) to (A.4), suppose

(4.2)  p (ME(a,n) < va § w(n'[n)p?(a,n’)
n'el
holds for a = 0. Then there is an a > 0 for which it also holds.

Proof: Follows directly from Lemma 4.2. ¢

5. Proof of the Main Theorem

It is convenient and there is no loss of generality in
measuring money in units that represent a share of the total money

stock; we define
(5.1) m2(s) = M3(s)/M(s).

In these units the total money stock is one, and the social feasi-

bility condition (E.2) becomes
i a
(E.2') I m(s) <1,

while the budget constraint is
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" a ma(s—1)+f‘a a a
(E.3')  p (s)[m(s)- T] ) pm(s)lxw(s)-zw(ns)] <0

weC

x2(s) 2 0, m¥(s) 2 0.
The price normalization Emecpw(s) + pM(s)H(s) = 1, corresponds to
wécpm(s) + py(s) =1
with pm(s) = py(s)M(s), that is, p (s) now measures the real value
of the money stock. Notice that if p_ (s) is stationary, then
pM(s) shrinks at the rate 1 + f; in other words, the inflation
rate is 1 + f,

To prove Proposition 3.1, we introduce truncated equi-
libria. The truncated utility function for agent a is

(5.2) 03(x?) - s¥ (), u?(x2(s),n.) + §'x_62m(s).
L t(g)ST 8 5 t(g)zT &%

The terminal multipliers ¢: are any numbers satisfying
(5.3) 0 < ¢ <0,

that is, they are uniformly bounded. The rationale behind the
terminal multipliers is that they make it possible to construct
equilibria in which money has positive value from limits of trun-
cated equilibria.

Given prices p the set of x? that satisfy the con-
straints (E.3') and the initial condition is the budget set
B3(p). There are also truncated budget sets Bg(p) in which the
constraints (E.3') are imposed only for states s with t(s) < T. A

truncated equilibrium is socially feasible and individually ra-

tional for the truncated utility functions with respect to the

truncated budget constraints.
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Proposition 5.1: Under (A.2) to (A.3) every sequence of truncated

economies has a convergent subsequence; every such subsequence

converges to an equilibrium.
Proof: See Levine [1986] and Bewley [1980]. ¢

Note that the hypothesis f > 0 for all agents is impor-
tant here. Bewley (1983) shows that if some of the f2 are too
negative (so that there are lump sum taxes rather than subsidies),
it may be that agents cannot pay their taxes, and the truncated
economies may have no equilibrium.

We now review the necessary and sufficient first order
conditions for a truncated equilibrium. Associated with each
budget constraint is the nonnegative marginal utility of expendi-

ture ua(s}: the first order condition for optimal consumption is
(5.4) Dmua[xa(s),ns] < ua(s)pm(s) for all w € C and t(s) < T

with equality unless x:(s) - 0. Recall that A = &/(1+f) is the

inflation adjusted discount factor. The first order condition for

optimal money holding is

(5.5) P (S)u(s) 2 8 § w(n'|n)p (s,n")u(s,n'), t(s) < T
n'el

with equality unless money holding is zero. Finally, the terminal

condition is
(5.6) pm(s)ua(S) 2 62, t(s) = T.

An alternative to truncated equilibria that exploits stationarity
to compute infinite horizon equilibria is considered in Kehoe and

Levine (1986).
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In light of Lemma 4.1, in order to prove Proposition

3.1, it suffices to show

Proposition 5.2: Under (A.2) to (A.4) suppose that there is a

0<y<1and 0 <A<, and for each state n € I there are sca-
lars pm(n) > 0 and an agent a(n) such that
6.0 p M) <y ] wnnip (102N ().

n'el

Then there is a P >0 and for 1 > A4 2 A an equilibrium in which

Pm(s) > p_-
Note that if pp(s) > Pp? then

P (8)/], P ()2, (n) > p /max Z,(0) = By

giving the conclusion of Proposition 3.1.

Notice that (5.5) says that the current marginal value
of expenditure must not be less than the future value, for other-
wise agent a would choose to hold more money. Condition (5.7)
says that there are stationary prices pm(n) depending only on the
state, so that if money was introduced at those prices into a
world without money, then agent a(n) would strictly prefer to hold
money. The conclusion of Proposition 5.2 is that in this case
there is a monetary equilibrium, although it will generally in-
volve prices different than pm(n) and different marginal utilities

of income.
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Proof of Proposition 5.2: We construct a sequence of truncated

T-period equilibria with bounded terminal weights in which
Pp(s) 2 P, ° 0.

The theorem then follows from Proposition 5.1.

We begin by considering an arbitrary truncated T-period
equilibrium: we let u2(s) be the corresponding Lagrange multipli-
ers from (5.4) and (5.5), and let p(s) denote the prices. We also
let Dmua(s) 5 Dwua[xa(s),ns] be the equilibrium marginal utilities
of consumption.

First observe that there is a y > 0 such that p3(s) 2

u. This is because (5.4) says Dmua(s) < ua(s)pm(s), while pw(s)

2 js strictly monotone

<1, implies wd(s) 2 Dwua(s). Since u
and 0 < xz(s) < zm(ns), Dmua(s) is bounded uniformly away from
zero, implying

u3(s) 2 u > 0.

Next choose a so that (4.2) holds in each state n for
a(n). This is possible by Corollary 4.3. Also choose a so that
ga(n,n) > 0. This is possible by Lemma 4.2. Finally, choose
Pp(n) to satisfy (5.7) and such that
(5.8)  p(n) < o/ max u*(n,a)

a,n
which is possible, since (5.7) is homogeneous.

Now let ¥ be any nonnegative scalar, and choose the
terminal weights ¢a(s) = mpm(ns)ga(ns,a). Since these depend only
on Mg they clearly satisfy the transversality condition (5.3).
t(s)-T].

Define Vg1 = min 1,y

. Our goal is to show that in any
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truncated T-period equilibrium with the terminal weights defined

above
(5.9) pm(s)ua(s) > ys_1pm(ns)ga{ns,a) for all a.

Our final step will use the boundedness of the ua(s)'s to derive a
bound on p_(s).

We show that (5.9) holds by backwards induction from the
terminal period. In the final period (5.9) holds by the terminal
first order condition (5.6) and the definition of the weights. We
carry out the inductive step by making use of (4.2). By inductive
hypothesis, we see from (5.5) that
(5.10) Dm(s)ua(s) > vsﬁnzeln(q‘|n)pm(n')ga(n',u) for all a € A

holds for all agents. Suppose for some agent a
a a
(5.11)  p (s)u"(s) < v _4p (n)u"(ng,a).
Since u?(s) 2 y this implies by (5.8)
Pp(s) < Ys_1pm(ns)ya(ns,a)/y < a.

In other words, we chose pm(n) so small that, since ua(s) 2 u, the
bound can be violated only because pm(s) < a. Consequently,
x3(s), pw(s) are an a-transfer payment equilibrium of the isolated
economy, and since ua(s) are clearly the associated marginal

utilities of expenditure, for all a € A,

2(ng,a) 2 1¥3(s) 2 y¥(n ,a).
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We coneclude from (5.11) that

Pm(s) < vg_4P,(ng).
It follows that,

-a(n)(ns,ﬂ)-

pm(S)ua(n)(S) < vg_1Pp(ngdu

Since (5.10) holds for a(n) we conclude

'a(ﬂ)(n
S

Yg_1Pp{ng)H aln)(q)

va) > p(s)u
2 y b Z n(n'|n)pm(n')ga(n')(n‘,u).
n'el

Since TS/YS-T >y, and 4 2 4, this contradicts the fact that (4.2)
was assumed to hold for a(n).

Having demonstrated (5.9), we conclude by deriving a

bound on prices. For each good w, and history s, in a truncated

equilibrium there is an agent a(w,s) who consume a positive amount

of a good w. For such an agent we have
(5.12) nmua(“’s’(s) = ua(w’s)(s)pw(s)-

By assumption (A.2) Dwua is bounded above, say by d. Adding

(5.12) across goods, we have

a(w,s) —
(5.13) |ajd 2 § D u % (s) 2 (1-p (s))|A] min w3(s),
ash
where |&| is the number of agents, and we have used normalization
zmecpu(s} + py(s) = 1. From (5.9), we have, for a(ns) chosen to

minimize ga(ns,a)



S

(1-p,(s)) a(n_)

(5.14) d2 5 (5] Ys-1Pmingl¥ S (ngya),
m

s=1

from which it follows that

a(ns)
Yo 1Pp{nglu (ng,a)
_ a(ng)
d+'¥3_1pm(ns)l_1 (nsfa')

(5.15) pm(s) >

If we choose ¢ 2 1, since vy < 1, Vot = 1 for all s. Moreover, we
chose a so that Ea(n,u) > 0, while pm(n) > 0 by assumption.

Consequently the proposition follows from (5.15). ¢

6. Instability of Barter Equilibria

In the course of proving Proposition 5.7 we can, by
making judicious use of the y's, prove a stronger proposition
about truncated equilibria. Suppose that the horizon is finite
and the government redeems money at the end. Then there is a

number ¢, determined by the redemption value of money, so that
a a
¢°(s) 2 wp (n Ju(ng,a).

The less the government redeems the money for, the smaller is ¥.
Set K = log ¥/log y, so that y'Kw = 1. Then if t(s) < T - K,
Pp(s) > P In particular, the longer the horizon, the smaller
the redemption value need be to insure a minimal value of money
early on.

This line of argument also applies to the case where
there is an infinite horizon, and a fixed probability of a fixed
redemption each period. In this case

I watImp ()M ()
n'el



= 2% =

should be interpreted as the sum over next period states n' in
which redemption does not occur. Consequently En‘eI"("'ln) < 1.
However, if (5.7) held without redemption and the redemption
probability is small enough, it will continue to hold with redemp-
tion. The argument in the proof of Proposition 5.2 is then un-
changed, except that we may now assume that the terminal value of
money is bounded away from zero by value of redemption. Conse-

quently every equilibrium must satisfy p,(s) > P
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