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1 Introduction

Debt crises in emerging economies are often blamed on governments borrowing extensive
quantities of short-term debt in international capital markets. Short-term borrowing leaves
an economy with large amounts of debt to roll over, which becomes problematic when interest
rates rise and access to external credit is restricted. This idea has motivated several recent
empirical studies on debt and financial crises. For example, Rodrik and Velasco (2003) show,
using evidence from a broad set of countries, that a high level of short-term foreign debt
increases the likelihood of a crisis.! From this ez post point of view, it seems desirable to
implement policies that would lengthen the maturity structure of emerging market economies’
external liabilities. However, as documented by Broner, Lorenzoni, and Schmukler (2008),
emerging market governments actively shift to shorter-maturity debt in a crisis and issue
long-term debt in normal times. Although this pattern may leave countries more exposed
to roll-over crises in bad times, it suggests that there must be some benefits, ex ante, of
shortening the maturity structure of debt precisely in such times. By the same token, the
benefits of long-term debt must outweigh those of short-term debt in normal times.

This paper develops a model of sovereign debt in which the borrowing country endoge-
nously chooses a time-varying maturity structure of debt. Bond prices compensate lenders
for the expected loss from default, and interest rate spreads - i.e., yields on defaultable bonds
minus yields on riskless bonds of equal maturity - are jointly determined along with the ma-
turity structure of debt. The model accounts for the following observation in the data: when
interest rate spreads rise, the maturity of newly issued debt shortens and the short-term
spread rises more than the long-term spread. In the absence of commitment to repayment
and future debt choices, short-term debt is always more effective at providing incentives to re-
pay. During times of high spreads, the maturity shortens because incentives to repay become
more valuable, and long spreads rise by less because of mean reversion in the probability of
repayment.

We present data on prices and issuances of foreign-currency denominated bonds for four
emerging market countries: Argentina, Brazil, Mexico, and Russia. We estimate spread
curves — interest rate spreads over U.S. Treasury bonds across maturity — as well as the
duration of bonds issued — a measure of the average time to maturity of payments on coupon-

paying bonds. Across these four countries, within periods in which 1-year spreads are below

'Other detailed studies on individual cases include Calvo and Mendoza (1996) for Mexico; Radelet and
Sachs (1998) for the East Asian economies; and Bevilaqua and Garcia (2002) for Brazil. Cole and Kehoe
(1996) use a model of self-fulfilling crises to argue that the 1994 Mexican debt crisis could have been avoided
if the maturity of government debt had been longer.



their 50th percentile, the average duration of new debt is 7.3 years, and the average difference
between the 10-year spread and the 1-year spread - the slope of the spread curve — is 2
percentage points. When the 1-year spreads are above their 50th percentile, the average
duration shortens to 5.8 years, while the slope of the spread curve is 0.99 percentage points.
From this evidence, we conclude that in times of high spreads, the maturity of debt shortens
and short spreads rise more than long spreads.

In our model, the borrowing country faces persistent income shocks and can issue long
and short duration bonds. The country can default on debt at any point in time but faces
costs of doing so, in the form of lower income and exclusion from international financial
markets. In equilibrium, default tends to occur in low-income, high-debt times, when the
cost of debt payments outweighs the costs of default. Bond prices are functions of the levels
of each maturity of debt and income, which determine the borrower’s probability of repaying
in the future.

Our model generates the dynamics of spread curves observed in the data because the
endogenous probability of repayment is persistent, yet mean reverting, as a result of the
dynamics of debt and income. In times of low debt and high income, default is unlikely in
the near future, so spreads are low. Long-term spreads are higher than short-term spreads
because default may become likely in the far future if the borrower receives a sequence of
bad shocks and accumulates debt. Conversely, in times of low income and high debt, default
is likely in the near future, so spreads are high. Long-term spreads rise less than short-term
spreads because the borrower’s likelihood of repaying may rise over a longer time horizon if
a sequence of good shocks occurs and debt is reduced.

The characteristics of the bond price functions which generate these dynamics in spreads
also determine the optimal maturity of debt. The maturity structure reflects a trade-off
between the relative incentive benefit of short-term debt and the hedging benefit of long-term
debt reflected in these price functions. When the country issues more debt, incentives to
repay fall. The increase in default probability in the near future lowers the price of short-
and long-term debt. The price of long-term debt, however, falls more than the price of
short-term debt because in addition it depends heavily on future decisions to issue more
debt. When issuing long-term debt, the borrower cannot commit to a future sequence of
debt issuances, and the probability to default on long-term debt depends on these future
choices. Since future borrowing reduces the lender’s expected payoff, the price of long-term
debt effectively penalizes this lack of commitment. Short-term debt is therefore a better
instrument to provide the country with incentives to repay.

However, by the same reasoning, long-term debt provides a hedge. Since the price of



long-term debt is more sensitive to changes in default risk than the price of short-term debt,
the value of outstanding long-term debt falls in bad states, while the value of short-term debt
remains unchanged. Long-term debt is a good hedge because it lowers the total debt burden
in bad states relative to good states, essentially preventing the country from having to roll
over large amounts of short-term debt when interest rates rise.

The time-varying maturity structure in the model is a result of the time-varying valuation
of the incentive benefit of short-term debt relative to the hedging benefit of long-term debt.
Periods of low default probabilities and upward-sloping spread curves correspond to states
where incentives to repay debt in the future are high. These are good times to issue more long-
term debt to take advantage of its hedging properties. Periods of high default probabilities
and flatter or inverted spread curves correspond to states where incentives to repay debt in
the future are expected to be low. These are times when the incentive to repay provided by
short-term debt is most valuable, and thus the portfolio shifts toward shorter-term debt.

We calibrate the model to Brazil and find that it fits the pattern of the observed dynamics
of spreads and maturity. For example, when the spread on 1-year debt is below its 10th
percentile, the 10-year spread is on average 1.8 percentage points higher than the 1-year
spread, compared to a slope of 1.5 percentage points in Brazil. In periods when the 1-year
spread is above its 90th percentile, the slope of the spread curve in the model inverts to —2.5
percentage points, while in the Brazilian data the slope inverts to —0.7 percentage points.
The model also mirrors the data in that the average duration of new debt issuances is lower
when spreads are high. Specifically, we find that the average duration of debt is about 1.2
years shorter in periods when spreads are below the median than when spreads are above
the median. This difference in duration in the Brazilian data across these periods equals 2.4
years. We can therefore rationalize higher short-term debt positions in times of crises as an
optimal use of the incentives for repayment provided by short-term debt relative to long-term
debt.

We extend the benchmark model to allow for risk premia in the prices of sovereign bonds.
Risk premia change the equilibrium bond price functions and provide a tighter fit to the
data on spreads. Risk premia also change borrowing and default behavior, lowering the aver-
age probability of default and shortening the average duration. Nevertheless, the difference
in duration and spread curves across periods with high and low spreads is similar to the
benchmark. With risk premia, the bond price functions are influenced by the correlation
between the lenders’ pricing kernel and the country’s default probability, but the incentive
and hedging benefits determined by the shapes of these price functions continue to determine

the dynamics of the maturity composition.



The model in this paper builds on the work of Aguiar and Gopinath (2006) and Arellano
(2008), who model equilibrium default with incomplete markets, as in the seminal paper on
sovereign debt by Eaton and Gersovitz (1981). In recent work, Chatterjee and Eyigungor
(2009) and Hatchondo and Martinez (2009) show that exogenously lengthening the maturity
of debt in these models allows a better fit of emerging market data in terms of the volatility
and mean of the country spread and debt levels. Our paper generalizes this framework by
including two types of debt, short- and long-term, to analyze the optimal maturity structure.

Several papers study the maturity structure of debt in the presence of default, and we
discuss them in comparison to our model in detail in Section 4.4 below. Most closely related
to our work is Broner, Lorenzoni, and Schmukler (2008), who argue that emerging markets
shift to short-term debt in a crisis because shocks to lenders’ risk aversion raise the risk
premium on long-term bonds more than on short-term bonds. We consider the effects of
time-varying risk in the extended model, but we highlight a tradeoff that exists even with
risk-neutral lenders.

The outline of the rest of the paper is as follows. Section 2 presents data on the dynamics
of the spread curve and maturity composition for four emerging markets. Section 3 presents
the theoretical model. Section 4 illustrates the mechanisms that determine the optimal debt
portfolio by considering simplified versions of the model. Section 5 presents quantitative
results for our benchmark model. Section 6 contains the results for our extension with risk

premia, and Section 7 concludes the paper.

2 Emerging Markets Bond Data

We examine data on sovereign bonds issued in international financial markets by four emerging-
market countries: Argentina, Brazil, Mexico, and Russia. We look at the behavior of the
interest rate spreads over default-free bonds, across different maturities, and at the way the
maturity of new debt issued covaries with spreads. We find that when spreads are low, gov-
ernments issue longer term bonds and long-term spreads are higher than short-term spreads.
When spreads rise, the maturity of bond issuances shortens and short-term spreads rise more

than long-term spreads.

2.1 Spread Curves

We define the n-year spread for an emerging market country as the difference between the
yield on a defaultable, zero-coupon bond maturing in n years issued by the country and the

yield on a zero-coupon bond of the same maturity with negligible default risk (for example,



a U.S. Treasury note). The spread is the implicit interest rate premium required by investors
to be willing to purchase a defaultable bond of a given maturity. The spread curve refers to
the spread as a function of maturity.

We denote the continuously compounded yield at date ¢ on a zero-coupon bond issued
by country ¢, maturing in n years, as r¢;. The yield is related to the price p'; of an n-year

zero-coupon bond, with face value 1, through

p?,i = exp(—n X 7'?@) (1)

The n-year spread for country i at date ¢ is given by: s, = r{'; —r{' ;, where r{ ; is the
yield of an n-year default-free bond.?

Since governments do not issue zero-coupon bonds in a wide range of maturities, we
estimate a country’s spread curve by using secondary market data on the prices at which
coupon-bearing bonds trade. We describe this procedure further in the Appendix and illus-
trate that the resulting pricing errors are small.

We compute spreads starting in March 1996 at the earliest and ending in April 2011
at the latest, depending on the availability of data for each country. Figure 1 displays the
estimated spreads for 1-year and 10-year bonds for Argentina, Brazil, Mexico, and Russia.

Spreads are very volatile, and the difference between long-term and short-term spreads
varies substantially over time. When spreads are low, long-term spreads are generally higher
than short-term spreads. However, when the level of spreads rises, the gap between long
and short-term spreads tends to narrow and sometimes reverses: the spread curve flattens or
inverts. The time series in Figure 1 show sharp increases in interest rate spreads associated
with Russia’s default in 1998, Argentina’s default in 2001, and Brazil’s financial crisis in
2002.3 The expectation that the countries would default in these episodes is reflected in the

high spreads charged on defaultable bonds.

2Qur data include bonds denominated in U.S. dollars and European currencies, so we take U.S. and
Euro-area government bond yields as default-free.

3For Argentina and Russia, we do not report spreads after default on external debt, unless a restructuring
agreement was largely completed at a later date. We use dates taken from Sturzenegger and Zettelmeyer
(2005). For Russia, we report spreads until the second week of August 1998 and beginning again after August
2000 when 75% of external debt had been restructured. For Argentina, we report spreads until the last week
of December 2001, when the country defaulted. Although 76% of the debt was restructured by 2005, we do
not have data for enough of the restructured bonds to calculate spreads since then.
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Figure 1: Time Series of Short and Long Spreads

2.2 Spreads and the Maturity Composition of Debt

We now examine the maturity of new debt issued by the four emerging market economies
during the sample period, and relate the changes in the maturity of debt to changes in
spreads.*

In each week in the sample, we measure the maturity of debt as a quantity-weighted
average maturity of bonds issued that week. We measure the maturity of a bond using two

alternative statistics. The first is simply the number of years from the issue date until the

4In addition to external bond debt, emerging countries also have debt obligations with multilateral
institutions and foreign banks. However, marketable debt constitutes a large fraction of the external debt.
The average marketable debt from 1996 to 2004 is 56% of total external debt in Argentina, 59% in Brazil,
and 58% in Mexico (Cowan et al. 2006).



maturity date. The second is the bond’s duration, defined in Macaulay (1938) as a weighted
average of the number of years until each of the bond’s future payments. A bond issued at
date t by country 7, paying annual coupon ¢ at dates nq,ns,...,n; years into the future, and

face value of 1 has duration d;; (¢) defined by

J

1 n, n

dy;i (c) = - (Z exp(—nryj)n;c + eXP(—nJth)nJ) ; (2)
) j=1

where py; () is the coupon bond’s price, and 77; is the zero-coupon yield curve. In (2), the
time until each future payment is weighted by the discounted value of that payment relative
to the price of the bond. Therefore, a zero-coupon bond has duration equal to the number of
years until its maturity date, but a coupon-paying bond has duration shorter than its time
to maturity. We consider duration as a measure of maturity because it is more comparable
across bonds with different coupon rates.

We calculate the average maturity and average duration of new bonds issued in each
week by each country. Table 1 displays each country’s averages of these weekly maturity and
duration series, along with 1-year and 10-year spreads. The table contains overall averages,
as well as averages within periods of high (above median) and low (below median) 1-year

spreads.

Table 1: Average Spreads, Maturity and Duration, Conditional on Levels of 1-Year Spread

Argentina Brazil Mexico Russia

overall 9.25 11.32 1191 10.84
Maturity < median 10.36 16.12  12.03 8.18
> median 7.42 9.97 1294  11.14

overall 6.11 6.47 6.69 6.45
Duration < median 6.65 8.23 7.45 6.70
> median 4.86 5.82 6.79 5.64

overall 4.22 2.94 1.46 2.70

1-year spread < median 1.12 0.96 0.34 1.11
> median 7.32 4.91 2.58 4.28

overall 6.29 4.75 2.63 3.71

10-year spread < median 4.65 2.78 1.99 2.24
> median 7.93 6.72 3.26 5.17

First, the table shows that duration tends to be much shorter than maturity. Because the

yield on an emerging market bond is typically high, the principal payment at the maturity



date is severely discounted, and much of the bond’s value comes from coupon payments made
before maturity.

Second, the average duration of debt is shorter when spreads are high than when they
are low. Brazil, for example, issues debt that averages about 2 and a half years longer in
duration when the 1-year spread is below its median than when it is above its median. In
Mexico, the difference is about 8 months. For Argentina and Brazil, this pattern also holds
for the average time-to-maturity of bonds issued during periods of high spreads compared to
low spreads: Brazil issues bonds that mature about 5 years sooner when spreads are high,
regardless of the coupon rate.

In Table 2, we report the results of several univariate panel regressions of duration on
spread measures. We pool the data for the four countries and include country fixed effects.
Since debt is issued infrequently compared to the frequency of the spread data, we smooth
the data by running regressions with averages within 20 quantiles of the 1-year spread, so
that one observation is, for example, the average duration of debt Brazil issued during periods
when the 1-year spread is between the 5th and 10th percentiles of the series. (Using 10 or
50 quantiles yields similar results.) All coefficients are significant at the 1% level, and robust
standard errors are reported in parentheses. Column I reports the effect of the 1-year spread
on the duration of new issuances. The coefficient means that a 1 percentage point increase in
the 1-year spread is associated with a decrease in the duration of new debt issued by about
four months. Column II shows a similar effect for the 10-year spread. These figures indicate
that the covariation between the duration of new debt issuance and interest rate spreads is
both economically large and statistically significant. Moreover, Column III of Table 2 shows
that the duration of new debt is positively associated with how large the 10-year spread is
relative to the 1-year spread. When the ratio of the long spread to the short spread is reduced
by half, the duration of new debt falls by about 1.094 x log(2) = three quarters of a year.
For example, in Mexico, the average difference between the 10-year and the 1-year spread
below the 5th percentile of the 1-year spread is about 1.84 percentage points, and the average
duration of debt issued in these periods is 7.1 years. Moving above the 95th percentile of the
short spread, the slope of the spread curve falls to -1.24 percentage points, and the duration
of new debt falls to 6.2 years.

One concern with using duration as defined in equation (2) is that the current period’s
interest rates are used to discount future payments. In periods of high spreads, the spread
curve flattens (or inverts), which by itself can affect the duration of debt issued. In the
appendix we show the statistics in Tables 1 and 2 computed with an analogue of duration

using the default-free yield curve; the results are similar under this alternative measure of



Table 2: Regressions of Duration of New Issuances on Spreads

I 1I 111
Variable
—0.348
1-year spread (0.026)
—0.439
10-year spread (0.029)
AT Shre: 1.094
10 year spread
log 1 year spread (0048)
Constant 7.323 8.293 5.684
(0.060) (0.111) (0.052)
R? 0.256 0.296 0.281
No. of obs. 60 60 60

Notes: The dependent variable is the average duration of debt issued
within each of 20 quantiles of the 1-year spread. Independent
variables are analogues of the relevant spread measure. All

coefficients are siginificant at the 1% level.

duration.

2.3 Summary

The message of this section is that the spread curve and the maturity of bond issuances in
emerging markets are systematically time-varying. In particular, the level of spreads covaries
negatively with the duration of new debt, and with the slope of the spread curve: when
spreads are low, the slope of the spread curve is higher, and the duration of new debt is
longer, than when short-term spreads are high.

Our findings confirm the earlier results of Broner, Lorenzoni, and Schmukler (2008), who
show in a sample of eight emerging economies that debt maturity shortens when spreads
are very high. They show that a high spread level is a statistically significant determinant
for a shorter maturity of debt issuances even after controlling for selection effects since the
timing of debt issuances is very irregular. Their empirical work treats the choice of issuing
short-term or long-term debt as a discrete variable, whereas we use the continuous variable of
duration as a measurement of maturity. Moreover, they ultimately focus on the relationship
between the term structure of risk premia (compensation for risk aversion) and the average
maturity of debt, whereas we focus on the term structure of yield spreads and the average

duration of debt, because we use these statistics to quantitatively assess our model.
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3 The Model

We consider a dynamic model of defaultable debt that includes bonds of short and long
duration. A small open economy receives a stochastic stream of income, y, of a tradable
good. Income follows a Markov process with support Y and transition function f(y;, yii1)-
The economy trades two bonds of different duration with international lenders. Financial
contracts are unenforceable, so the economy can default on its debt at any time. If the
economy defaults, it temporarily loses access to international financial markets and also
incurs direct costs.

The representative agent in the small open economy (henceforth, the “borrower”) receives

utility from consumption ¢; and has preferences given by
EY_ Blulc), (3)
t=0

where 0 < § < 1 is the time discount factor and u(-) is increasing and concave.

The borrower issues short- and long-term debt. Short-term debt is a one period discount
bond. The short-term contract specifies a price ¢s; and a loan face value bg;,; such that the
borrower receives ¢s;bs:1 units of goods in period ¢ and promises to pay, conditional on not
defaulting, bg;,1 units of goods in period ¢ + 1. We model long-term debt as a perpetuity
contract with coupon payments that decay geometrically at rate ¢, as in Hatchondo and
Martinez (2009). The perpetuity contract specifies a price q;; and a value ¢, such that the
borrower receives qr:¢; units of goods in period t and promises to pay, conditional on not
defaulting, 6" '/, units of goods in every future period ¢ + n.

At every date t, the economy has outstanding the history of all past bond issuances.
Define by, the stock of long-term bonds at time ¢, as the total payments due in period ¢t on

all past issuances, conditional on not defaulting:

t
b= 6 My ="l +6ly+ 5z + ...+ 6%+ bro,

J=1

where by is given. The law of motion for the stock of long-term debt can be written recur-
sively as

bris1 = 0bre + 4. (4)

With this definition, we can compactly write the borrower’s budget constraint conditional

on not defaulting. Purchases of consumption are constrained by income less payments on
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outstanding debt, bs; + by, plus the issues of new short bonds bg;1 at price qg; and long

bonds /; at a price qr;:

¢t =Yt — bse — by + qsibsit1 + quily. (5)

The borrower chooses new issues short- and long-term debt from a menu of contracts where
prices ¢gs; and qr, for are quoted for each pair (bsyi1,bri11).

If the borrower defaults, we assume that all outstanding debt (bgy, br) is erased from
the budget constraint, and the economy cannot borrow or save, so that consumption equals

output. In addition, the country incurs output costs:

Y

ool — Yt if y; <(1—=N)y
' (1—=Ng ify,>1-Ng

where ¢ is the mean level of income. This specification, following Arellano (2008), assumes

that borrowers lose a fraction A\ of income if their income is above a certain threshold.

3.1 Recursive Problem

We focus on recursive Markov equilibria and represent the borrower’s infinite horizon decision

problem as a recursive dynamic programming problem. The model has two endogenous states

— the stocks of each type of debt, bs; and by, — and one exogenous state, the income of the

economy, ;. The state of the economy at date ¢ is then given by (bs,br,y) = (bst, bre, Yt)-
At any given state, the value of the option to default is given by

UO(bS>bL7y) = H;%X {Uc(b57bLay>7vd(y)} ) (6)

where v°(bg, by, y) is the value associated with not defaulting and staying in the contract and
ve(y) is the value associated with default.

Since we assume that default costs are incurred whenever the borrower fails to repay its
obligations in full, the model will only generate complete default on all outstanding debt, both
short and long term. When the borrower defaults, income falls to 4%/, and the economy is
temporarily in financial autarky; 6 is the probability that it will regain access to international

credit markets each period. The value of default is then given by the following:

v (y) = u(y™) + / [0v°(0,0,9") + (1 — ) ()] fy./ )dy'. (7)

We are taking a simple route to model both costs of default that seem empirically relevant:

12



exclusion from financial markets and direct costs in income. Moreover, we assume that the
default value does not depend on the maturity composition of debt prior to default. This
captures the idea that the maturity composition of defaulted debt is not relevant for the
restructuring procedures that allow the economy to reenter the credit market.’

When the borrower chooses to remain in the contract, the value is the following:

osibig) = e ()9 [ 00 ) ) )

{b.b1, e

subject to the budget constraint:
¢ =y —bs —br+qs (U5, b, y) bs + qr (s, by, y) ¢ (9)
and to the law of motion for the stock of long bonds:
i =dby + 1.

The borrower decides on optimal debt levels by and b} to maximize utility. The borrower
takes as given that each contract {b, b} } comes with specific prices {¢s, q;. } that are contin-
gent on today’s state y. The decision of whether to remain in the credit contract or default
is a period-by-period decision, so that the expected value from next period forward in (8)
incorporates the option to default in the future.

The default policy can be characterized by default sets and repayment sets. Let the
repayment set, R(bg,br), be the set of income levels for which repayment is optimal when

short- and long-term debt are (bg,by):

R(bs,b) = {y €Y : v°(bs, br,y) > v*(y)}, (10)

and let the complement, the default set D(bg, br.), be the set of income levels for which default
is optimal for debt positions (bg, by):

D(bs,br) = {y €Y : v(bs, br,y) < v(y)}. (11)

When the borrower does not default, optimal new debt takes the form of two decision

This is consistent with empirical evidence regarding actual restructuring processes, where the maturity
composition of the new debt obligations is part of the restructuring agreement (Sturzenegger and Zettelmeyer
2005).
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rules mapping today’s state into tomorrow’s debt levels:

by = bs(bs,br,y) (12)

by, = br(bs,br,y)

Given this characterization of debt and default decisions, we can now define equilibrium

bond prices.

3.2 Bond Prices and Equilibrium

Lenders are perfectly competitive and, for the bulk of the analysis, we assume they are risk
neutral and discount the future at the rate r*. We relax this assumption in the quantitative
results and consider the case of risk-averse lenders.

Each new issue of short-term debt bg;,; is a promise by the borrower to pay the face
value the next period conditional on not defaulting. A new issue of long-term debt ¢; > 0 is
a promise to pay a coupon payment every period in the future, conditional on not defaulting
up to that period. If ¢, < 0 the borrower is repurchasing some of its long-term debt. If the
borrower defaults in period ¢, we assume that lenders receive zero.

The price of a new debt issue is the discounted sum of the value of the promised future
payments, adjusted by the cumulative probability of repayment. We can decompose the
price of a long-term debt issue in period t into the expected payoff in period ¢ + 1 plus the
discounted sum of the value of coupon payments from period ¢ + 1 on. Given the recursive
structure of debt, this discounted sum from period ¢+ 1 on is equal to the price of new debt
at period t + 1. Hence, we can write the long-term bond price recursively by assuming that
the lender forecasts future debt levels using the borrower’s decision rules, defined in (12).

Prices for short- and long-term debt then satisfy the functional equations:

1
qs (s, by, y) = / fy,y)dy (13
5, b7 =l ) )
1 N -
ar, (Vs b1, y) = 5 — /R(bl " [1 + dqr, (bs (0, 01, y') , br (b, /L,y’),y’)} f,y)dy'. (14)
SYL

where R (bg,by) ,bg, by, are the repayment set and policy functiosn defined in (10) and (12).

In our recursive Markov equilibria all decision rules are functions only of the state variables
bs,br, and y. A recursive equilibrium for this economy is (i) a set of policy functions for

consumption ¢&(bg, by, y), new issuances for short-term debt Bs(bs, br,y) and long-term debt
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Z(bg, br,y), perpetuity stocks for long-term debt by, (bs, br,y), repayment sets R(bg, by ), and
default sets D(bg,br), and (ii) price functions for short debt ¢g (b, b} ,y) and long debt
qr (b, b}, y), such that

1. Taking as given the bond price functions gg (b, b}, y) and qr, (b, b}, vy) , the policy func-
tions bs(bs, br.y), br(bs,br.y), {(bs,br,y) and &(bs, by, y), repayment sets R(bg, by),

and default sets D(bg, by ) satisfy the borrower’s optimization problem.

2. The bond price functions gs (b, b}, y) and qr, (b, b}, y) satisfy equations (13) and (14).

3.3 Optimal Maturity Structure®

We analyze the optimal maturity structure that results from solving the borrower’s problem
in (8). For illustration, we assume that the distribution function f is continuous and that
the bond price functions gg, g, and the value of repaying v¢ are differentiable. We can then

write the first-order necessary conditions for an interior solution to the borrower’s problem

as
0 0 ,
o (6)fas + G+ S0~ 00)| =5 [ (@) £ /)y (15)
s s R
/ aQS / aQL / _ PN / /
u'(c) |qr + . bs + o, (b =dbr)| =B [ (L+0qp)u'(c)f (y,y) dy". (16)
L L R

where R’ is shorthand for the repayment set in the next period. The right-hand sides of
these first-order conditions reflect how debt affects consumption in the next period in repay-
ment states. In equilibrium, these expressions do not depend on how by and b affect the
default decision because changes in the repayment and default sets have zero net effect on

the borrower’s future value, as v¢ and v? are equal at the boundary between these sets.”

6This section draws heavily on the insightful comments of an anonymous referee.

"To see this, suppose that the default and repayment sets took the form of a single threshold: R (bg,br) =
[9 (bs,br),ym) and D (bs,br) = [yr,§ (bs,br)), where y;, < yp are the lower and upper bounds on the shock.
Then, the borrower’s expected future value of choosing (b, b7 ) is

v c (1 / ! ! / g(b/SJ/L) d(,/ / /

/ v° (b, b, y') f (y, 1) dy +/ v () f(y,y) dy'
g(bls,b7,) yL

Since v (b, by, § (b, b})) = v (§ (bs, b})), the derivative of the above expression with respect to by is

[
g

! !
o) Obs f(,y)dy

and gT”; =o' (') by the Envelope theorem. The argument extends to the case in which default and repayment
sets are composed of an arbitrary set of nonoverlapping intervals.
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The first-order condition for each maturity of debt equates the marginal gain in utility
today from borrowing to the marginal reduction in utility from repaying tomorrow. The
terms in square brackets capture how the price of debt - and hence the marginal benefit of
borrowing - depends on the quantity of debt. Given that incentives to repay decline with
the quantity of debt, bond prices are decreasing in debt levels, %‘]TT < 0 for m,n = {S, L}.
Long and short-term debt differ in the sensitivities of the bond pricen functions and also in the
marginal value of repaying: one unit of short-term debt is worth one unit tomorrow, but one
unit of long-term debt is worth 1 + d¢} tomorrow. If we divide each first-order condition by
the corresponding price gs or g, and use the definitions of the price functions from (13)-(14),

then

u, (C) |:1 4 aqu_S 8qL (bL — (SbL)

g Gl ) Bl ) IR (17)

E(L+ g ) ()| R

(1 +0q) [RTE[u (¢) | ]
(18)

where the notation F [-|R'] denotes the conditional expectation across the repayment states

9qs by au (b, — 3bu)

u'(c) |1+
(c) { oy qr, oy qr,

|=sarmew@ir;

in the next period.

These first-order conditions illustrate how the hedging benefit of long-term debt and the
incentive benefit of short-term debt determine the maturity structure. The right-hand side of
(18) captures the hedging benefit of long-term debt. If the price of long-term debt tomorrow
¢, tends to go down in bad states when ¢’ is low, then long-term bonds are a good hedge,
since their value falls in bad times. This effect is absent in (17), since the value of short-term
debt in the future does not vary with the state. In other words, the returns to long-term
debt, 11991 and short-term debt, qi do not span each other.

qL s’

The terms in brackets on the left-hand sides of equations (17) and (18) capture the

effects of issuing short- and long-term debt on the incentive to repay, as reflected in the
sensitivities of the bond price functions (13) and (14). The price of short-term debt depends
on the borrower’s incentive to repay in the next period, whereas the price of long-term debt
depends on the incentives to repay as well as the decision to borrow again in the future. If
there were only short-term debt, issuing an additional unit of debt decreases its price, because
the incentive to repay falls (the repayment set R’ shrinks). With long-term debt, the same
effect is present, but there is an additional effect on the price of long term debt g; through
the policy functions for debt next period, bg (b, b, 4') and by, (b, b, 4') as seen in (14). The
borrower cannot commit to a particular level of debt for the next period but instead takes the

future debt policy functions as given. If these policy functions are increasing in debt levels,
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then ¢ is more sensitive to changes in debt levels than gg . We also find in our numerical
results that both price schedules are more sensitive to changes in 0, than bY.
Taking the ratio of these two first-order conditions, the optimal maturity structure in our

model equates the hedging benefit of long-term debt, defined as

E(1+ 0g)u'(¢)| ]
(1 +0q;) | E[u' (¢) | R

Hedging benefit = 7 (19)

to the relative incentive benefit of short-term debt:

dge b ) b —6&b
+ 90 % Dop (0u=oh)

8bL qrL 8bL qrL (20)
14 Qasls y 9qp (¥,=0b1) "

by qs by qs

Relative incentive benefit =

Both of these forces are driven by the shapes of the bond prices as functions of long- and
short-term debt as well as income.

In illustrating these mechanisms, we have argued that short-term debt has an incentive
benefit if bond prices are less sensitive to short-term than long-term debt and that long-term
debt is a good hedge if ¢;, falls in bad times. The following examples illustrate in detail how
these features arise and how they vary across good and bad times in an environment with

endogenous default.

4 Highlighting the Link between Default and Maturity

The optimal maturity structure in our model is the outcome of a trade-off between the
incentive benefit of short-term debt and the hedging provided by long-term debt. In this
section, we use simple three-period versions of our model to illustrate these forces and how
they can generate cyclical variation in the optimal maturity structure. We label the periods
t =0,1,2, and assume throughout that the borrower can issue one-period bonds in periods

0 and 1 (b} and bj, respectively) and a two-period zero-coupon bond in period 0 (b2).

4.1 The Incentive Benefit of Short-Term Debt

This example shows that short debt allows larger borrowing because of an incentive benefit
relative to long-term debt. Consider a borrower who has linear utility over consumption in
the three periods: U (co, ¢1,¢2) = ¢o + [ey + %cy. Suppose that the risk-free interest rate is
r* = 0 and that the borrower’s discount factor 5 < 1. Income is deterministic and equal to

yo = 0, y1, and y». If the borrower defaults in any period, consumption is equal to 3%/ = 0
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from then on. In this deterministic setting, the price of a bond is equal to 1 if the borrower
will repay and 0 otherwise. Since (1 + r*) < 1, the borrower would like to consume its
lifetime income in period 0. Hence, the optimal allocation in this environment is co = y; + y2
and ¢; = ¢ = 0.

This allocation can be implemented with short- and long-term debt in period 0 and short-
term debt in period 1. In particular, short-term debt transfers income from period 1 and
long-term debt transfers income from period 2: b} = y1, b3 = ¥y, and b} = 0. There is no
default and the prices of both bond issues are equal to 1. Alternatively, the same allocation
can be implemented without long-term debt in period 0, and with short-term debt in periods
0 and 1: b} = y1 + ¥y, b2 = 0, and b} = ys.

Can the same allocation be implemented without short-term debt in period 07 No. Short-
term debt provides an incentive for the borrower to repay in period 1 that long-term debt
does not. If the borrower chooses any b2 > s, this debt could be repaid only by saving in
period 1 — choosing b} < 0. Once period 1 arrives, however, the borrower has no incentive to
save: the optimal decision is to set bl = 0 and then default in period 2. Taking into account
this policy for b1, lenders effectively constrain b2 by setting a price of zero for any long-term
bond bigger than y,. In this sense, prices are more sensitive to long debt than to short debt,
as argued in the general model with equations (17) and (18).®

The two key assumptions behind the incentive benefit of short-term debt are the lack
of commitment in debt policies inherent in the Markov equilibria we consider, and that the
punishment arises only in the event of an explicit default. If lenders could instead impose
a punishment for deviating from a given debt policy or could enrich debt contracts with
future debt limits then the incentive benefit of short-term debt would be diminished. The
extent to which the benefits of short-term debt change would depend on the details of these

punishments or the enforceability of future debt limits.”

81t is easy to extend this example to an infinite horizon environment with deterministic and time varying
output. A one-period bond economy can deliver higher initial consumption than a longer-term bond —two-
period or perpetuity — economy. The main idea is again that the threat of punishment can be used more
effectively with one-period bonds because longer-term contracts might require savings in the future which
are impossible to induce with default punishments.

9Empirically, bond contracts rarely specify contingencies based on future borrowing. Bizer and DeMarzo
(1992) argue that in corporate debt markets it is very unusual that lending contracts limit future borrowing
behavior. Hatchondo et al. (2011) argue that the same is true for sovereign debt markets, because countries
borrow from several lenders, and debt seniority clauses are uncommon.
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4.2 The Hedging Benefit of Long-Term Debt

To highlight the hedging benefit of long-term debt, we now assume the borrower has concave
utility, and we introduce uncertainty, such that default risk varies across states. Here the
borrower attempts to spread lifetime wealth evenly across states, and doing so requires a
combination of short-term and long-term debt. Essentially, when default risk varies across
states, short- and long-term debt span different states, and hence a risk-averse borrower
uses both. However, we show that when wealth is sufficiently low, long-term borrowing
becomes constrained as in the deterministic example above, and short-term debt is used
more intensively.

Consider a borrower whose utility is
U (co,c1,¢) = Ep [log co + Blog ¢y + 5% log 62] ) (21)

The risk-free rate is r* = 0, and the borrower’s discount factor 5 < 1. Income in period 0 is
Yo. In period 1, there are two states, indexed by p and g. Income in period 1 is equal to y; in
either state, but the borrower receives a signal about income in period 2 that differs across
states. In state p, the borrower learns that y, = y& with probability p, while yo = y& < y&
otherwise. In state g, the probability of getting y4’ is g. The probability of state p occurring
is &. Consumption in the event of a default is now equal to y%/ > 0.

First, suppose that the endowments and the default punishment satisfy

2 2
W (o) — (A — k) < < W ) (22)
where W (yo, y1,y5") = vo+ 1 + (ap+ (1 —a)g)ys’ andR =1+ [+ B (ap + (1 —a)g).
W can be interpreted as the market value of the borrower’s income in all states except when
Yo = Y-

Under these conditions, the equilibrium is as follows. The borrower defaults if income in
period 2 is y£ and repays in all other states. The default patterns imply that bond prices
are ¢t =1, ¢2 = ap+ (1 — a) g, and importantly that bond prices are different across states
in period 1 with ¢ (7) = 7 for T = p, g.

The optimal consumption allocations decline over time at rate 3 but are constant across
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states in periods 1 and 2:

Co = EW (23)
@) = elg)= W
A0 = )= T5w

This is an equilibrium because the allocation maximizes expected utility subject to the bor-
rower’s budget constraints: ¢y = yo + by + (ap+ (1 — ) g) 3 , ¢1 () = y1 — b} + 7b} (),
m :p7gvand Céq <7T) = yf - b% - b% (ﬂ-)v T=pg.

To see this, write the first-order conditions for b, b3, and b} of maximizing (21) subject

to the budget constraints as

~ = (om0 ) (1)

o c1 (p) ¢ (9)
1 9 1 W 1
Clnt-a)g) = 5 (o (1= @) (25)
1 1
7T01 (m) = Wﬂm, T=Dg- (26)

From (26) it is immediate that ¢ (1) = B¢ (r) for 7 = p,g. Then combining (24) and
(25) yields ¢; (p) = ¢1 (q¢) = ¢1 = Beg. The only way to equate consumption across states in
period 1 and have ¢; = B¢y is to borrow nothing in period 1, i.e., to set b} (p) = b1 (g) = 0.1°

The budget constraints then yield the consumption allocation (23) and the debt allocation

in period 0:
b(l) = Uy — %W (27)
a B
b = - W 28
0 Yo R ( )

The default and repayment decisions are optimal at each date given the allocations and
assumption (22).

The borrower uses debt to spread its lifetime income so as to equalize marginal utility
within each period across non defaulting states and achieve a smoothly declining path of

consumption over time. Note that using both long- and short-term debt in period 0 is

10The fact that b} (p) and b1 (g) are zero is a result of the assumption that y; does not differ across states.
More generally, b} (p) = bi (g), but it may differ from zero if y; (p) # y1 (9). Consumption in period 1 would
still be equalized across states.
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essential to keep consumption constant across states in period 1.
To relate this result to the hedging benefit we derived in the general model above in (18),
note that the first-order conditions (24) and (25) and the fact that ¢2 = E [¢; (7)] imply that

Bl |l = |dm |
This equation says that short- and long-term debt are used such that the marginal utility is
uncorrelated with the price of debt in period 1. The two assets attain perfect hedging in this
example, which contains two possible values for default risk in period 1. Moreover, for the
range of income levels satisfying (22), default probabilities do not change with the amount of
debt issued, so the incentive benefit of short-term debt is not apparent from the first-order

conditions, while the hedging benefit of long-term debt determines the maturity structure.

4.3 Cyclical Maturity Structure

We now consider how changing the borrower’s income changes the maturity structure.

First, the ratio of short- to long-term debt, b} /b2, is increasing in y; and decreasing in y2':
when v, is high relative to yi!, the borrower uses short-term debt more intensively to achieve
the optimal consumption allocation, and vice versa. This comparative static illustrates how
the hedging benefit of the maturity structure works: short-term and long-term debt are used
to borrow from period-1 and period-2 income, respectively, so as to keep consumption in
period 1 constant.

We now consider how the maturity structure of debt in period 0 changes with income in
period 0, yo. As long as yy is sufficiently high, debt holdings are still given by (27)-(28), and
bl (p) = b} (g) = 0.'' Here, both short-term debt and long-term debt rise as y, falls.

Once 1 falls sufficiently low, however, the allocation derived above is no longer an equilib-
rium because the borrower would prefer to default in period 2 even when income is yiI. The
key point is that default is more attractive in period 2 than in period 1 because consumption
optimally declines with time, which implies that ¢y — y%/ < ¢; — y?/. Nevertheless, default
in period 2 when income is yi! is costly because defaulting would prevent the borrower from
transferring this income to period 0.

Hence, when yq falls enough, the equilibrium continues to be to borrow nothing in period
1, but now long-term debt in period 0 is constrained to what the borrower is willing to repay
in period 2 state yi!; that is,

bo =y —y™!

'The threshold is yo > %ydef (1+8+ B (ap+ (1 —a) 9) =y — (ap+ (1—a)g)ys.
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Figure 2: Short-term debt (b)) and long-term debt (b3) in a numerical example
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and b} is determined from a first-order condition similar to (24) and the budget constraints,
giving

by = y1 — (W —(ap+ (1 —a)g)y™).

1+8
This is the equilibrium because it is still optimal to borrow or save nothing in period 1.

The forces that determine why b3 is constrained are similar to those in the deterministic
example in subsection 4.1 above, and rely crucially on the inability of the borrower to commit
to save. Once the borrower enters period 1, it is not optimal to save in order to avoid default
in period 2. If the borrower would save just enough to be indifferent between defaulting and
repaying in period 2, it would reduce consumption in period 1 without changing consumption
in period 2 as ¢, = y®/. Hence, this policy is not optimal in period 1.

Under this constrained allocation, the usefulness of the incentive benefit of short-term
debt increases as y falls further, because b3 cannot be increased any more. As vy, falls, short-
term debt rises and long-term debt is flat, so the maturity structure shifts to short-term debt.
The debt portfolio is plotted for a numerical example in Figure 2.'? As income in period 0
falls, moving from the right-hand side of the figure, borrowing needs in period 0 rise, and
more of both types of debt are issued. When income reaches a certain level, long-term debt
becomes constrained, and the borrower shifts to issuing short-term debt more heavily. This
comparative static illustrates the mechanism at work in generating cyclical variation in the

maturity structure in our full model.

12The parameter values for the figure are 3 = 0.9, a = 0.2, g = 0.9, p = 0.7,y = 1, yif =1, y¥ = 0.5,
and y?f =0.7.
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4.4 Discussion

In our model, short-term debt has an incentive benefit relative to long-term debt that arises
solely from the borrower’s lack of commitment (to repayment and to future debt decisions),
and how it affects price functions for short-term and long-term debt. We discuss here how
this role of short-term debt relates to others that have been considered in the literature.

The trade-off we consider is related to Hart and Moore (1989, 1994), who consider a
contracting problem between an investor and an entrepreneur in which the only friction is
lack of enforcement. In their model, short-term debt provides creditors with the ability to
liquidate a project early in bad states, so they are willing to lend larger amounts short-
term than long-term. The effect resembles the incentive benefit in our model. The use of
short-term debt to provide incentives is also a feature of the model in Jeanne (2009): short-
term debt gives incentives for sovereign governments to implement creditor-friendly policies,
because creditors can discipline the government by rolling over the debt only after desired
policies are implemented. This approach is related to that of Diamond and Rajan (2001),
who show that short-term liabilities are the optimal way for banks to finance investments,
because they provide incentives for extracting returns from the investments in order to pay
creditors.

The incentive benefit of short-term debt in our model is related to the idea of long-term
debt “dilution”, i.e. that issuing debt reduces the value of the outstanding stock of debt,
discussed in Bizer and DeMarzo (1992). Chatterjee and Eyigungor (2009) emphasize this
effect in explaining why a borrower would prefer short-term debt. Bi (2007) focuses on the
effect of dilution in the renegotiation process on the maturity structure. In our model, the
decision to issue new debt affects the value of outstanding long-term debt in the future, even
in the absence of renegotiation.

Alternative mechanisms give short-term debt a role in the models in Broner, Lorenzoni,
and Schmukler (2008) and Niepelt (2008). In Broner, Lorenzoni, and Schmukler (2008),
creditors prefer to lend short-term because they are risk averse and face more uncertainty
when lending long-term. Niepelt (2008) shows that in a model in which the default decision
is independent across maturities, issuing multiple maturities smooths the costs of issuing
debt. In our model with endogenous default, short-term debt has an incentive benefit even if
lenders are risk-neutral, and even if borrowers do not selectively default on certain maturities.

The hedging benefit of long-term debt that we consider is an implication of the results in
Kreps (1982) and Duffie and Huang (1985), regarding the role of long-term debt in completing
markets. Angeletos (2002), Buera and Nicolini (2004), and Lustig, Sleet, and Yeltekin (2008)

emphasize this mechanism in models of the optimal maturity structure of government debt
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with incomplete markets. In these models, short- and long-term interest rate dynamics reflect
the variation in the representative agent’s marginal rate of substitution, which changes with
the state of the economy. The difference in our model is that bond prices vary across states
— and hence there is a role for hedging — due to default risk, even in the absence of variation

in the lender’s marginal rate of substitution.

5 Quantitative Analysis

5.1 Parameterization

We solve the model numerically to evaluate its quantitative predictions regarding the dynamic
behavior of the optimal maturity composition of debt and the spread curve in emerging
markets. We calibrate the model to the Brazilian economy. We first calibrate the model with
risk-neutral lenders and then generalize it in Section 6 below.

Table 3 summarizes the parameter values. The utility function of the borrower is u(c) =

l1—0o

Cc

T The borrower’s risk aversion coefficient o is set to 2, which is a common value used in
real business cycle studies. The length of a period is one year. We set the risk free interest
rate r to 3.2%, which is the average 1-year yield of U.S. bonds from 1996 to 2011. The
stochastic process for income is a log-normal AR(1) process, log(y,+1) = plog(y:) + €7, with
E|[(€¥)?] = n?. We discretize the shocks into a six-state Markov chain using a quadrature-
based procedure (Tauchen and Hussey, 1991). We use annual series of GDP growth for
1960-2010 taken from the World Development Indicators (WDI) to calibrate the volatility
of income. Due to the short sample, rather than estimating the autocorrelation coefficient
we choose an autocorrelation coefficient for the income process of 0.9, which is in line with
standard estimates for developed countries. The decay parameter ¢ is chosen so that the
default-free duration of the long-term bond equals 10 years. We choose the probability of
reentering financial markets, 6, so that the average length of time in exclusion is 6 years,
consistent with data presented in Benjamin and Wright (2009) on the median length of
sovereign debt renegotiations.

We calibrate the model by choosing the parameters that control the income cost after
default A and time preference (3, to match the average 1-year spread and the volatility of the
trade balance relative to income in the Brazilian data.

We define the yield on each bond in the model as we do in the data. Yields are the
implicit constant interest rates at which the discounted value of the bond’s coupons equal its

price and the spread as the difference between the yield on the defaultable bond relative to
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Table 3: Parameter Values

Value Target
Lenders’ discount rate r*=3.2% U.S. interest rate
Borrower’s risk aversion o=2 Standard value
Perpetuity decay factor = 0.936 Default-free duration of 10 years
Stochastic structure p=0.9 n7n=0.017 Brazil GDP
Probability of reentry 0=0.17 Benjamin and Wright (2009)
Calibrated parameters
Output after default A =0.045 Brazil average 1-year spread
Borrower’s discount factor 3 = 0.935 } Volatility of trade balance

the risk-free rate. Thus, the short-term yield and spread are rg = log <é> and sg =19 —1".
The long-term yield and spread are r;, = log <qiL + 5) and s;, =rp — 1",

Table 4 presents the calibrated moments as well as other statistics from the model and
data. The data series for consumption, trade balance, and debt are annual for 1960-2010
taken from the WDI. For consumption we use log consumption growth rates, and for the
trade balance we detrend the ratio of the trade balance to GDP. The series for debt are for
total stocks of external debt and short-term external debt, defined in the WDI data as debt
with maturity of one year or less. The data for spreads and duration of new debt issuances
are quarterly averages constructed from the data in Section 2.

The model matches the calibrated moments. It also predicts an average long spread of
2.5%, which is below the empirical counterpart of 4.8%. Since pricing is actuarially fair, the
model predicts a similar average spread on long and short bonds, which closely mirrors the
default probability in the economy of 2.4%. The average debt to GDP ratio in the model
is 16%, which is about half of that observed in the data. Nevertheless, the model matches
the data in the majority of the stock of debt is long-term: about 85% of the total debt is
long-term in the model, whereas in the data it is 87%.

As in the data, consumption in the model is more variable than output, which is a
well documented fact in emerging economies. The model also predicts that consumption is
negatively correlated with short and long spreads, with correlations equal to -0.65 and -0.81,

respectively.
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Table 4: Model Statistics

Model Data
mean sg (percent) 2.5 2.9
mean sy, (percent) 2.5 4.8
std(trade balance)/std(y) 0.36 0.36
std(c)/std(y) 1.03 1.10
all debt: (gsibst + qribre)/y) 0.16 0.30
short: (gsibsi)/(gsibse + qribre)  0.15 0.13

long: (qribre)/(qsibs: + qrebry)  0.85 0.87

5.2 Bond Prices and Policy Functions for Debt

In this section we illustrate the trade-off between the incentive benefit of short-term debt
and the hedging benefit of long-term debt with the bond price functions and decision rules
from the calibrated model.

Figure 3 plots the bond price functions for short- and long-term debt as a function of the
choice of debt. The values in the z-axis are reported relative to the mean output for the
economy. The steps in the functions reflect the discrete number of income states.

The left panel plots the bond price function for short-term debt as a function of the choice
of short-term debt, when we fix 0, = 0 for a low and high income (which are 1.8 standard
deviations above and below the mean): qg( 5,0, {y? ,yL}). When loans are small, bond
prices are risk-free, gs = 1/(1 + r*), because default probabilities are zero. Prices decline
for larger loans because default probabilities rise with debt. The price declines faster as a
function of debt when income is low than when income is high, because income is persistent,
and default is more likely when future income is low. The right panel plots the bond price
function for long-term debt as a function of the choice of the long-term debt, when we fix

s =0: qp (0, v, {y? ,yL}). Unlike in the case of short-term debt, the price of long-term
debt is never at the risk-free level (which in our economy equals 10.1 = 1/(1 4+ r* — §)),
even for small loans. As equation (14) shows, the long-term price incorporates an additional
premium contained in the price tomorrow ¢}, which depends on the choice of debt tomorrow.
The price of long-term debt also declines with the loan size and declines faster in low income
states.

Given that bond price functions fall with debt, loan contracts contain borrowing limits,

defined as the level of debt that provides the maximum amount of resources today.!*> One way

13 Arellano (2008) shows that a one-period-bond version of our model generates an endogenous Laffer
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Figure 3: Bond Price Functions

to compare how lenient these bond price functions are across types of debt is by computing
borrowing limits, max(¢;b;) when b’ , = 0 for 7 = {S, L} and b;, = 0. By this metric, bond price
functions for short debt are more lenient because they provide more resources for consump-
tion. For short-term debt the max(gsbly) = {0.05,0.40} for y = {y*, y} corresponding in the
figure to by = {0.05,0.49}. Long-term debt is more restricted: the max(q.b}) = {0.05,0.33}
for y = {y*, y} corresponding in the figure to b, = {0.007,0.045}. As discussed above,
short-term debt has more lenient borrowing limits because the incentive to repay is less
sensitive to the level of short-term debt than long-term debt.

The top panels in Figure 4 plot the debt decision rules for b and b} as a function of
short-term debt for the same high and low income states when b; = 0: 55(65, 0, {yL, y"})
and by, (bs, 0, {y*,y™}). The bottom panels in Figure 4 plot the incentive effects of both types
of debt as a function of the potential choices for debt 0y and b, when by, = 0 and y = {y*, y}.
These incentive effects are defined as the denominator and numerator of equation (20).*

First consider the case y = y”. Borrowing is restricted for both short- and long-term debt

Curve for borrowing, which generates a debt limit.
4 Due to our discrete grid, we approximate the incentive effect of short-term debt 1+ 995 b—i + 29z (b =01br)

i by q obly qr
by the difference

qs(b/sw b/Lv y)b{S' + qL(b{SV b/L7 y)blL - [qS(O’ blL7 y) x 0+ CIL(0> blL7 y)blL]
q%(0, b7, y)bls

evaluated at b, = 0 for y = {yr,ym }. The incentive effect of long-term debt is defined analogously.
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Figure 4: Debt Policy Rules and Repayment Incentives

because the incentive to repay falls to zero quickly with larger loans. Nevertheless, short-term
debt is used more heavily because the incentive to repay falls faster as a function of long-term
loans than as a function of short-term loans. In the top left panel of Figure 4, the choice
for short-term debt b plateaus at 0.05, which is the borrowing limit described above. Now
consider the case y = yy. Borrowing possibilities are ample for both types of debt because
the incentive effects fall slowly to zero. In this case, borrowing is primarily long-term and
is increasing in the level of the state bg. Borrowing is larger when wealth is lower (i.e., bg is
larger), as in standard precautionary savings models. However, when long-term borrowing
b, reaches 0.02 at bg = 0.19, the long-term incentive benefits fall. At this point, the borrower
substitutes some b for some by, leading to a fall in long-term debt and a rise in short-term
debt. This shift towards short-term issuance when the level of debt is high is reminiscent
of the example depicted in Figure 2, where short-term debt was used more heavily for low
levels of wealth. The shapes of the bond price functions are at the heart of the maturity

composition of debt as reflected in the incentive effects in Figure 4.
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5.3 Simulation Results

We now compare our model results to the data for Brazil. We simulate the model and
report statistics on the dynamic behavior of spreads and the maturity composition of debt
from the limiting distribution of debt holdings. We first show that the model matches the
data in generating time-varying differences in the pricing of short- and long-term debt, due
to movements in the probability of default. We then show that the model rationalizes the

dynamics in the maturity composition observed in the data.

Spread Curves

We now compare spread dynamics in the model to the data. For this comparison, we organize
the data into quantiles based on the level of the short spread. Table 5 presents average
spreads for short and long debt across periods when short spreads are below their 10th and
50th percentiles and above their 50th and 90th percentiles.

Table 5: Spread Curves

Model Data
sg percentile  sg Sy, Sg SI
< 10 .002 1.78 0.30 1.78
< 50 .004 1.53 0.96 2.78
> 50 5.08 3.54 491 6.72
> 90 6.72 4.22 12.42  11.72

Mean 254 2.54 294 4.75

The first two columns of Table 5 present the short and long spreads in the model, and
the last two columns present the data. In the model, when default is unlikely, both spreads
are low, and the spread curve is upward-sloping: when the short spread is below its 10th
percentile, for example, the average short spread is nearly zero, and the average long spread
is 1.78%. In contrast, when the probability of default is higher, both spreads rise, and the
spread curve becomes downward-sloping: when the short spread is above the 90th percentile,
the average short spread is 6.72%, and the average long spread is 4.22%. Compared to the
data for Brazil, the model captures the dynamics of spread curves and in particular the
difference in the slope of the spread curve in periods of high and low short spreads. The
model misses, however, on the average slope of the spread curve as well as the periods with

high short spreads.
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The important feature of our model for generating the observed dynamics of the spread
curve is that the probability of default is mean-reverting and persistent: a period with a high
probability of default is followed by a period with a lower probability of default, and vice
versa. The effects of mean-reverting and persistent default probabilities on the spread curve
are the same as those highlighted by Merton (1974) in the case of credit spreads for corporate
debt. In contrast to Merton’s model, which directly assumes a stochastic process for the
default probability, the probability of default in our model is endogenously mean-reverting
and persistent as a result of the dynamics of the income process and debt accumulation.

Our model, nevertheless, generates too much persistence spreads, especially short spreads.
The autocorrelation of long and short spreads in the model equal 0.72 and 0.67, whereas in

the data they equal 0.67 and 0.33 respectively.

Maturity Composition

We now present the quantitative predictions for the maturity composition of debt. To com-
pare new issuances of long- and short-term debt between the model and data, we compute
conditional averages of the duration of new debt issuances, based on the level of the short
spread. We define the duration of each bond issued at each date as the weighted average
of the time until each coupon payment, with the weights determined by the fraction of the
bond’s value on each payment date. Hence, in the model the duration for short and long

bonds equal
1

—_— 2
1—de "t (29)

1 o0
ds =1, and dj, = — Zne‘"”y‘_l =

qr :—
Average duration in the model is the sum of the duration of each bond issuance in (29)
weighted by their share in total new debt issued, gsb’s/ (qsbs + qrf) and qr¢/ (qsbs + qif) ,
respectively. Moreover, given that in the data we compute only the duration of debt issuances

and not repurchases, we do the same in the model.

Table 6: Average Duration of New Debt Issuances

Model Data
sg pctile
< 50 4.9 8.2
> 50 3.7 5.8
Mean 4.3 6.5
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Table 6 reports the average duration of new debt issuances when spreads are above their
median relative to when spreads are below their median in the model and in the Brazilian
data. In our examples in Section 4, we discussed the relationship between wealth and the
maturity structure. In our simulations, the probability of default tends to be high, and hence
spreads are high, when wealth is low. We report results conditioned on spreads because
we observe them in the data. The dynamics in the duration of new debt issuances in the
model mirrors that in Brazil. In the model, average duration when spreads are low equals 4.9
years and shortens to 3.7 years when spreads are high. In Brazil, the average duration when
spreads are low equals 8.2 years and shortens to 5.8 years when spreads are high. Although
the model matches the comovement of duration and spreads, it underpredicts the average
and volatility of duration of debt.

Table 7 quantifies the incentive and hedging benefits that determine the maturity com-
position. The first row of Table 7 shows the model’s portfolio — the fraction #ﬁﬂ of the
value of new debt issuances that is short-term — conditional on different levels of the short
spread. When spreads are low, the borrower issues on average 54% in short-term bonds (and
46% of debt in long-term bonds). When spreads are high, the maturity composition shifts
to 60% in short-term bonds (and 40% in long-term bonds).

The optimal portfolio depends on the valuations of the hedging benefits of long-term
debt relative to the incentive benefit of short-term debt. Table 7 reports several metrics to
evaluate these benefits. The second and third rows of the table report the relative incentive
benefit and hedging benefit defined in equations (20) and (19).'® The relative incentive term
computes the effect of increasing long-term debt on the incentive to repay in the future
relative to the effect of increasing short-term debt. In our model, short-term debt always has
an incentive benefit because this ratio is always less than 1. The smaller is this number, the
more long-term debt reduces the incentive to repay relative to short-term debt. The hedging
benefit as defined in equation (19) is related to the conditional covariance between future
marginal utility «’ (¢’) and the future price of long-term debt, ¢} . The subsequent rows of the
table also show the correlation between these two variables and between ¢} and income, and
the volatility of ¢} . Long-term debt potentially provides a hedge because, as the table shows,
the value of outstanding long-term debt is volatile and negatively correlated with marginal
utility. The greater the hedging achieved, the closer this correlation is to zero.

The second row of the table shows that when spreads are high, the incentive benefit of

15We approximate the incentive effects from our policy rules as described in the construction of Figure
. E[(148q7)u’ (¢)|R']
4. The hedging term
ging E[(1+4, ) |[RE[w ()R]
next period’s repayment states. These two terms do not have to be equal to one another because of the
approximations using a discrete grid.

at each period is computed using conditional expectations over
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short-term debt is larger than when spreads are low: the ratio of incentive terms equals
0.60 in the first case and 0.85 in the second, on average. On the other hand, as shown in
the fourth row, when spreads are high, the hedging benefit provided by long-term debt is
less than when spreads are low, as the correlation between marginal utility and the price
of long-term debt is —0.90 compared to —0.71. Therefore, time-variation in the maturity
structure reflects variation in the importance of the incentive benefit of short-term debt and

the hedging benefit of long-term debt.

Table 7: Model Maturity Composition

Level of short spread

< median > median overall
mean(qsibs: / (qsibst + qrils)) 0.54 0.60 0.57
Relative incentives 0.85 0.60 0.80
Hedging benefits 0.997 0.998 0.998
corr((1 + dqrt) , v’ (¢4)) —0.71 —0.90 —0.83
corr((1 + dqrt) , yt) 0.91 0.94 0.88
std(qrt) 0.69 1.01 1.00
spread curve s; — Sg 1.52 —1.54 —0.01

The last row of the table reports the average spread curve, defined as the difference be-
tween the long and short spreads. These statistics show that in our model the maturity
shortens precisely in periods the short spread rises more than the long spread. This posi-
tive correlation between debt duration and the difference between the long to short spread
matches the data as reported in Table 2. In our model, the maturity of debt is determined
by the shapes of the bond price functions, both in terms of how fast they decline with short
or long term and its correlation with marginal utility. The equilibrium levels of these prices,
summarized in the level of spreads, contain some of the information but are not a compre-
hensive measure for the cost of debt. In fact, times of higher short spreads relative to long
spreads correspond to periods when the incentive benefit of short debt is higher.

In summary, through the lens of our model, the maturity structure of defaultable debt
in emerging markets and its covariation with spreads can be rationalized by two factors: a
hedging advantage of long-term debt for insuring against fluctuations in future default risk,
and the benefit of short-term debt in providing incentives to repay during times of high
default risk.
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6 Risk Premia in Sovereign Bonds

In our benchmark calibration, we considered actuarially fair pricing for bonds to illustrate the
main mechanisms driving the maturity structure. However, Longstaff et al. (2011) and Borri
and Verdelhan (2009), among others, argue that risk premia are important for understanding
sovereign bond prices. If emerging market governments tend to default in states when foreign
investors have high marginal utility, then bond prices reflect compensation for this risk. In
this section, we evaluate how risk premia change the determination of bond price functions,
equilibrium spreads and the maturity structure.

We model risk premia through a pricing kernel M (y;,v;41) that is a function of the
borrower’s income. In this modified model, the pricing formulas (13) and (14) are replaced

by
qs (s, b, ) =/ M (y.y) f (y,y") dy' (30)
R(bg,b,)

o Wsstio) = [ [0 dan (B 06, 60/) B 06 50) o) | M 00 F 09
R(bly,b,)
(31)
The rest of the model is the same as in the case with actuarially fair pricing.
Following the specification for pricing kernels in affine term-structure models, described
for example in Cochrane and Piazzesi (2008), we assume that the pricing kernel takes the

following form:

) 1
M (yi,Yi41) = exp (—7“ — Yy — 57?772) : (32)

where v, = ag + oy log y,, r* is the risk-free rate, €/, = log y,11 — plogy, is the shock to the
borrower’s income, and 7? is its variance. The term -, is the market price of risk in state
y;. We allow v, to depend on logy, to allow for time variation in the market price of risk.
The risk premium in our model comes from the interaction of the lenders’ pricing kernel with
default outcomes and future bond prices. To see this, we can rewrite equation (31) (and
analogously, (30)) as a typical asset-pricing equation ¢, = E [M’x) |, where 2/, = 1+ d¢; in
states in which the borrower repays and 2, = 0 in states in which the borrower defaults.
Written this way, the price of a bond is composed of the lender’s discounted expected payoff

plus a risk premium term:
4 = E[M) Elt}] + cov (M, ). (33)

Equation (33) shows that to the extent that payoffs are negatively correlated with the pricing

kernel, investors are compensated for this risk by paying a lower price ¢, for debt. If ag > 0,
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then v, > 0 on average, making M and z; negatively correlated. A negative shock €7, to
future income lowers both the repayment probability and future prices while it increases M.
This correlation implies that prices have to be lower, and spreads higher, to compensate for
this risk. In addition, if a; < 1, then the risk premium is higher in states when the borrower
has low income.

We define the pricing kernel as a function of only the borrower’s income because it is
a parsimonious way to model risk premia that vary with the probability of default.!® An
alternative way to model the pricing kernel would be to explicitly use measures of foreign
(e.g., U.S.) investors’ consumption as the state variable of the pricing kernel. In this setting,
the risk premium U.S. investors demand on Brazilian bonds would depend on the correlation
between the Brazilian default probability and U.S. consumption. For our purposes, the
method we use has the benefit that we do not need to introduce an additional exogenous
state variable into the model. In addition, we document in the appendix that spreads on
Brazilian debt are correlated with and predict excess returns on U.S. Treasury debt, an
indicator of the risk premium demanded by US investors. Therefore, times when spreads on
Brazilian debt are high are times of high risk aversion for U.S. investors. A similar point
is demonstrated for a cross section of emerging market economies by Borri and Verdelhan
(2009).

To choose values for the parameters ag and a;, we draw on evidence in Longstaff et
al. (2011), who estimate the market prices of risk for several emerging market countries
(including Brazil) as functions of the risk-neutral probabilities of default. The appendix
describes in detail how we map their estimated parameters to our pricing kernel parameters
in (32). The resulting values for the parameters are oy = 11, a; = —141. To make results
comparable to the benchmark results, we recalibrate the other parameters to match the same
targets as in the risk-neutral case. Namely, we calibrate the output cost after default A\ and
time preference 5 to match the average short spread and the volatility of the trade balance.
The values are 5 = 0.905 and A = 0.015. In the appendix we also conduct a sensitivity

analysis on the risk parameters.

6.1 Results

Table 8 presents the main results for the economy with risk premia and compares them to the

benchmark model with actuarially fair prices and to the data. The model with risk premia

16Note that in the absence of default risk, this pricing kernel generates a flat term structure with zero
risk premium. Hence, risk premia reflect compensation for the risk associated with default losses and the
changes in default probabilities reflected in changes in y, not simply the risk associated with fluctuations in
the borrower’s income.
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improves the fit of spreads over the benchmark model. First, the model with risk premia
delivers a positive average spread curve slope of 0.6%, getting closer to the data counterpart of
1.8%. Second, the volatility of the short spread is reduced, making the dynamics of the short
spread closer to the data. Third, risk premia break the tight connection between average
spreads and default probabilities thereby addressing the so-called credit spread puzzle (see,
e.g. Chen, Collin-Dufresne, and Goldstein (2009) for a discussion of the credit spread puzzle
for corporate bonds).

Introducing risk premia in our model tightens price schedules for all levels of debt, which
reduces the average stock of debt of the economy from 16% of income to 5% of income.
Moreover, risk premia disproportionately affect the price schedule for long-term debt by
magnifying the effect of issuing long-term debt on the incentive to repay. This effect lowers
the average duration from 4.3 to 1.8 years. Nevertheless, as in the benchmark, the model

with risk premia predicts that short-term debt is used more aggressively when spreads are
high.

Table 8: Risk Premia, Spreads, and the Maturity Composition
Risk Premia Benchmark Data
ag =11, a; = —141 Actuarially fair

sg pctile: < 50 > 50 mean <50 >50 mean <50 > 50 mean

Sg, percent 0.3 4.5 2.4 0.004 5.1 2.5 1.0 4.9 2.9
S, percent 1.9 4.1 3.0 1.5 3.6 2.5 2.8 6.7 4.8
rps, percent 0.2 1.6 0.9 0.0 0.0 0.0 - - -
rpr, percent 0.4 1.2 0.8 0.0 0.0 0.0 - - -
duration 2.9 1.1 1.8 4.9 3.7 4.3 8.2 5.8 6.5
std(tb) /std(y) 0.34 0.36 0.36
mean(qsibs: + qribre)/vy)) 0.05 0.16 0.30
default probability 1.4 2.5 -

We can decompose the interest rate spreads into two parts: the actuarially fair compen-
sation for expected losses from default, and the risk premium. The actuarially fair prices
g5t ¢t are defined by computing risk-neutral versions (no M) of the bond pricing equa-
tions (30)-(31) using the debt and default decisions from the model with risk premia. Then,
the actuarially fair yields are given by r4f = log (1 /a8t ), rdf = log (1 JqrF + 5), and the
spread risk premium for each maturity m is defined as rp,, = r,, — rAF'. Rows 3-4 of Table 8
show that risk premia are positive: the borrower tends to default in states with low income,
and the lender’s pricing kernel M is negatively correlated with the borrower’s income. Risk

premia are sizable and constitute about 40% (0.9/2.4) of the short spread and 30% (0.8/3.0)
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of the long spread on average.

Overall, we find that having risk premia provides a better fit to data on spreads. However,
we find that risk premia change the equilibrium quantities of debt in a way that worsen the
fit to data on quantities. In particular, risk premia lower debt levels and shorten average
maturity. Nevertheless, the dynamics in the maturity structure continue to be determined by
the incentive and hedging benefits illustrated in the benchmark model. These forces depend
on the shape of the bond price functions, which in the model with risk premia also depend

on the correlation between default probabilities and the lender’s pricing kernel.

7 Conclusion

In this paper, we have developed a dynamic model to study the maturity composition of
defaultable sovereign bonds. In data for emerging markets, changes in the maturity com-
position of debt comove with changes in the term structure of spreads: when spreads on
short-term debt are low, long-term spreads are higher than short-term spreads, and the ma-
turity of debt issued is long. When short-term spreads rise, long-term spreads rise less, and
the maturity of debt shortens. Our model simultaneously reproduces the patterns observed
in the term structure of spreads and the maturity composition of debt. Changes in the spread
curve, which reflects the average default probability at different time horizons, result from
the income dynamics and the endogenous dynamics of debt. Issuing long-term debt hedges
future fluctuations in consumption that come from changes in default risk. Short-term debt
is beneficial because the incentives to repay it are less sensitive to the level of debt than for
long-term debt. With these two forces, the model generates the pattern of issuances observed
in the data.

Our main innovation has been to highlight this trade-off between the benefits of short-
term and long-term debt in a quantitative, dynamic model with endogenous default and
multiple, long-term assets. We view the resulting framework as useful for addressing a variety
of other questions for which it is important to analyze a trade-off in maturity choice with
defaultable debt. Natural applications are the maturity structure of consumer and corporate
debt. The literature on consumer bankruptcy thus far has focused on modeling very short-
term unsecured credit (Chatterjee et al. (2007) and Livshits, MacGee, and Tertilt (2007)).
However, it would be interesting to analyze both long-term and short-term defaultable loans,
such as mortgages and credit card debts. In addition, the mechanisms in our model are
likely to be relevant in corporate debt given the similarity between our facts on emerging

market spread curves and the cross section of corporate debt spread curves (e.g. Sarig and
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Warga, 1989). Default risk has been shown to have important implications for firm dynamics
(Cooley and Quadrini (2001) and Arellano, Bai, and Zhang (2011)). The model of this paper
can be used to further understand how the maturity choice can influence the entry, exit, and
growth of firms. Overall, our paper provides a tractable quantitative framework to study
defaultable debt of multiple maturities appropriate for these questions, and has highlighted
the relevant economic trade-offs important for understanding debt maturity choice in the

presence of default.
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Appendix

Data Description

All the sovereign bond data are from Bloomberg. For the four countries we examine, we use
all US dollar and european currency bonds with prices quoted at some point between March
1996 and April 2011, with the following exceptions. We exclude all bonds with floating-rate
coupon payments, and at every date, we exclude bonds that are less than three months to
maturity, following Gurkaynak, Sack, and Wright (2007). For each country, we estimate
spreads starting from the first week for which at least four bond prices are available every
week through the end of the sample. We use data from 110 bonds for Argentina, 71 for
Brazil, 63 for Mexico, and 25 for Russia. To estimate default-free yield curves, we use data
on U.S. and European government bond yields. The U.S. data are from the Federal Reserve
Board, and the European data are from the European Central Bank.!” For constructing the
quarterly maturity and duration statistics, we also include bonds issued during the sample
period that did not have prices quoted, and use the estimated spread curve to construct their

prices according to equation (34).

Spread Curve Estimation

We use a method proposed by Svensson (1994) and used by Gurkaynak, Sack, and Wright
(2007) for the United States, and Broner, Lorenzoni, and Schmukler (2008) for a sample of
emerging markets, to fit a spread curve to this data using a simple functional form suggested
by Nelson and Siegel (1987).

A coupon bond is priced as a collection of zero-coupon bonds, each with maturity given
by a coupon payment date, and face value given by the cash flow on that payment date.

The price at date t of a bond issued by country ¢, paying an annual coupon rate ¢ at dates

ny,Na,...ny years into the future, is
J
pi(e; {n}) =Y exp(—nyri(ny))e + exp(—nyri(n,)) (34)
j=1

with the face value of the bond paid on the last coupon date.

Spreads are defined as si(n) = ri(n) — rj(n), where r} (n) is a default-free yield curve.

"The U.S. data are the Treasury constant  maturities  yields, available  at
http://www.federalreserve.gov/releases/h15/data.htm.

The European data are Euro area benchmark government bond yields, which is an average of European
national government bond yields available at http://sdw.ecb.europa.eu.
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We define spreads as a parametric function of maturity following Nelson and Siegel (1987)

i i i i [(1—e™ p(l—eM
sp(n; By) = B, + By T + B3, T e (35)
for each country i, where 5. = (3, B4, B4) and A are parameters. For default-free bonds,
we define \ \
I—e™" 1—e™" n
ri(n: B) = B+ By (T) + B3 (T —e ) (36)
and . \ . \
—e —e " “an
re(n; B,) = BY, + B (T) + 55, (T —e ) (37)

for US ($) and Euro area (€) bonds.

As described by Nelson and Siegel (1987) and Diebold and Li (2006), the three components
of this curve correspond to a “long-term,” or “level” factor (the constant), a “short-term,”
or “slope” factor (the term multiplying f,) and a “medium-term,” or “curvature” factor (the
term multiplying ;). Linear combinations of these factors can capture a broad range of
shapes for the spread curve.

We first estimate the parameters Bf and Bf by OLS, using U.S. and Euro area bond
yields. Throughout, we set the parameter A = 0.089, so that the term multiplying 55 in all
countries’ spread curves is maximized when n = 20 years.

Then, given a set of parameters 3}, we use equation (34) to price each of country i’s bonds

at date t using the risk-free yield given by (36) or (37) and the spread given by (35):

J

pile{ns}; B1) =Y exp(—n; (si(ns; B) + 75 (ny)))e + exp(—ny (si(ns; B) + 75 (n))),

j=1

where 77 refers to rf if the bond is denominated in U.S. dollars, or v} = r¥€ if the bond is
denominated in a European currency.

We estimate the parameters ﬁi by nonlinear least squares to minimize the sum of squared
deviations of the predicted yields to maturity from their actual values. That is, our estimated

parameters solve

min Y (vi(c. ns s 39) — vile. ()

where y!(-) is the yield to maturity of a bond with price p(-), and the summation is taken
over all bonds issued by country ¢ with prices available at date .

The following features present in the data require modification of the basic bond pricing
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equation (34):

1. Between coupon periods, the quoted price of a bond does not include accrued interest,
so we subtract from the bond price the portion of the next coupon’s value that is

attributed to accrued interest.

2. For bonds with principal payments guaranteed by U.S. Treasury securities, we discount

the payment of principal by the risk-free yield only, without the country spread.

3. For bonds with coupon payments that increase or decrease over time with certainty
(“step-up” and “step-down” bonds, respectively), we modify the sequence of payments

in equation (34) accordingly.

Table 9 below displays mean absolute errors in matching bond yields. Yield errors are
moderate, averaging under 1 percentage point across the four countries. During periods when
spreads are high, errors tend to be larger; for example, the mean absolute error in matching
yields of Argentinean bonds is 2.65 percentage points in periods when the 1-year spread is

above its 90th percentile.

Table 9: Bond Pricing Errors

Mean absolute percentile of 1-year spread
yield error, % < 10th < 25th < 50th > 50th > 75th > 90th

Argentina 0.93 0.61 0.70 0.63 1.22 1.68 2.65
Brazil 0.66 0.56 0.47 0.49 0.83 0.98 1.20
Mexico 0.39 0.45 0.33 0.32 0.46 0.53 0.56
Russia 0.60 0.41 0.39 0.39 0.82 1.08 1.47
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Further Statistics on Duration and Spread Curves

Table 10 reports the analogues of the duration statistics and regression coefficients from
Tables 1 and 2 for a measure of duration that uses the default-free yield curve to discount
future coupon payments. The results are largely similar to those in the main tables in the

text, and all the regression coefficients are significant at the 1% level.

Table 10: Statistics for Default-Free Measure of Duration

Average duration ‘ Argentina Brazil Mexico Russia
overall 6.43 7.11 7.34 7.11
< median 7.07 9.09 8.26 6.78
> median 5.38 6.52 7.53 6.77
Regression I II I1I
Variable
1-year spread (_000?%?))
10-year spread (_0001%
) 1.528
10 year spread
log 1 year spread (0085)
Constant 8.037 8.733 6.098
(0.083) (0.168) (0.072)
R? 0.189 0.181 0.292
No. of obs. 60 60 60

Table 11 reports further spread curves and spread volatilities for all countries.

7.1 Risk Premia Parameters

Longstaff et al. (2011) estimate a pricing kernel of the form M, ;11 = exp (—7“ — 7t5t)‘+1 — %?f) ,
where 7, = 09 + 011log A\, and ); is the risk-neutral probability of default, which follows an
AR(1) process in logs with innovations o, and €y, ~ N (0,1). We use their estimates
for 09,01, and o, for Brazil to construct parameters for our pricing kernel as follows: we first
project the quarterly one-year spread in our data (as a proxy of the one-year risk-neutral
default probability) on a constant and log deviations of Brazilian GDP from a linear trend,
logA; = A+ Blogy,. Then, plugging the fitted levels of and innovations to log \; into
the Longstaff et al. (2011) pricing kernel, we arrive at (32) with oy = % (09 + Ady) and
o = f—jél. Our estimates of A and B are A = —3.98 and B = —7.22, and both are signifi-
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Table 11: Average Spreads and Volatility

Maturity | Overall | Std. Dev | When 2-year spread is above/below nth percentile
(years) (%) < 10th < 25th < 50th > 50th > 75th > 90th
Argentina 1 4.22 8.28 0.46 0.70 1.12 7.32 11.85 22.85
2 4.56 6.53 1.12 1.52 1.89 7.22 10.99 19.90
5 5.39 3.69 2.60 3.29 3.54 7.24 9.55 14.49
10 6.29 3.45 3.87 4.62 4.65 7.93 9.79 13.56
Brazil 1 2.93 3.86 0.30 0.63 0.97 4.89 7.44 12.42
2 3.47 3.88 0.65 0.86 1.38 5.55 8.07 13.02
5 4.47 3.95 1.37 1.37 2.25 6.70 9.07 13.59
10 4.75 3.37 1.78 1.80 2.78 6.72 8.65 11.72
Mexico 1 1.16 1.43 -0.43 -0.13 0.19 2.12 3.05 4.27
2 1.33 1.21 0.16 0.31 0.54 2.13 2.91 3.95
5 1.87 1.08 1.43 1.30 1.35 2.39 2.94 3.63
10 2.73 1.48 2.32 2.12 2.13 3.32 3.98 4.56
Russia 1 2.85 5.02 0.44 0.68 1.11 4.59 6.26 9.15
2 3.14 3.84 0.87 1.09 1.49 4.77 6.38 9.13
5 3.65 2.53 1.65 1.83 2.18 5.12 6.66 9.17
10 3.73 2.84 1.75 1.92 2.25 5.20 6.85 9.43

cant at the 10% level. The resulting estimates for ay and «1, using their esimates of dg, d1,
and oy, are ag = 11, a; = —141.

They estimate pricing kernel parameters for a cross section of countries and find that the
market price of risk for Brazil is one of the largest from their sample. Table 12 presents the
main results from our model using the average risk parameters across the countries in their
sample. These parameters correspond to ay = 6, ;3 = —70. To highlight the role of these
parameters, we present two sets of results. The middle of the table shows the main results
when we change the risk parmeters to ag = 6, a; = —70 while keeping the other parameters
as in the calibration with risk premia in the main text. The right section shows the results
when we recalibrate the discount factor 5 and the default costs A to target an equal value of
the short spread and trade balance volatility as in the model with risk premia.

Consider first the comparative static results. Unlike models with exogenous default risk,
where a higher market price of risk raises spreads by increasing risk premia, in our model
changing the market price of risk changes default behaviour. When the parameters controlling
the market price of risk, [, o], are reduced from [11,-141] to [6,-70] the bond price functions
become more lenient. With less expensive borrowing, default probabilities increase and hence

both short and long spreads increase by about 3 and a half percentage points. The spread
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Table 12: Risk Premia: Sensitivity
Baseline Risk Premia Comparative Static Recalibration
ag =11, ap = —141 ag =6, a; = =70
sg pctile: <50 >50 mean <50 >50 mean < 50 > 50 mean

sg, percent 0.3 4.5 2.4 0.7 11.2 59 0.3 5.2 2.7
s1,, percent 1.9 4.1 3.0 4.4 9.0 6.7 2.4 4.8 3.6
rps, percent 0.2 1.6 0.9 0.5 3.2 1.8 0.3 1.9 1.1
rpr, percent 0.4 1.2 0.8 1.4 3.0 2.2 1.1 2.1 1.6
duration 2.9 1.1 1.8 3.5 1.2 2.3 4.9 2.5 3.7

std(trade balance)/std(y)  0.34 0.37 0.34
mean(qs:bs: + qribre)/v)) 0.05 0.08 0.12
default probability, percent 1.4 4.0 1.6

curves are more volatile; in periods of low spreads, s; — sg = 4.3, and in periods of high
spreads s;, —sg = —2.2, compared to 1.6 and -0.4 in the baseline risk premia calibration. The
average contribution of risk premia to spreads is similar although the contribution increases
slightly for the long spread and decreases slightly for the short spread.

More lenient bond prices also increase the average level of debt and the average duration
of new issuances. The dynamics of debt duration are amplified, with a difference in duration
of 2.3 years. This amplification happens because more volatile and lenient price functions
accentuate the hedging benefits long spreads in low spreads times.

Consider now the result of the recalibrated model. The average spreads and the dynam-
ics of spread curves are very similar to the results in the baseline risk premia calibration
although the average spread curve, s; — sg, increases from 0.6 to 0.9 . One statistic that
differs somewhat is the contribution of risk premia to the long spread, which is 0.44 in the
recalibration as oppossed to 0.27 in the baseline risk premia calibration. In terms of quantity
measures, the average debt and duration are higher in the recalibration. Relative to the risk
premia baseline, bond prices in the recalibration are more lenient leading more usage of all
debt and stronger dynamics of duration of debt.

From these results, we conclude our results with risk premia are robust to using the
parameters from Longstaff et al (2011) estimated for Brazil versus those estimated for the

average country.

7.2 Foreign Investor Risk and Brazilian Spreads

Our use of Brazilian GDP in the pricing kernel (32) proxies for time-varying risk aversion of

foreign investors. The aim is to capture the extent to which bad times in Brazil correspond
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to times of high risk aversion for foreign investors. To provide some evidence of this link, we
regress a quarterly average of the Brazilian spreads on excess returns on U.S. treasury bonds.
The excess return on n-year U.S. bonds at date ¢, raf (n) is defined from prices p (n) and
the 1-year yield rf (1) by
rxf (n) = M — (1).
i (n)

Table 13 reports the results of several univariate regressions of US excess returns for
various maturities on different maturities of Brazilian spreads. The coefficients in the table
show that the Brazilian spreads we estimate are significant predictors of excess returns on
US treasuries, with R?’s of up to 13%.

Table 13: US Excess Returns and Brazilian Spreads
Dependent variable: n-year US excess return
n=1 mn=2 n=5 n=10
Regression on 1-year Brazilian spread
constant  0.005** 0.010** 0.021** 0.032**
spread 0.136™  0.249* 0.471** (0.589**
R? 0.118  0.124  0.123  0.075
Regression on 2-year Brazilian spread
constant 0.005** 0.010** 0.019* 0.029**
spread 0.133**  0.243** 0.458 (0.575**
R? 0.124  0.130  0.128  0.079
Regression on 5-year Brazilian spread
constant 0.004  0.008  0.017  0.026
spread 0.115*  0.209* 0.395** 0.498
R? 0.109  0.114  0.112  0.069

Note: ** denotes significance at the 5% level
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