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1. Introduction

Quarterly changes in inventory investment are on average about half
the size of quarterly changes in GNP, even though inventory investment is on
average only a tiny .6 percent of GNP. The observation that the magnitude of
fluctuations in inventory investment is so out of proportion to their small
average size has inspired much of the literature on inventory investment. It
has moved some writers to speculate that understanding the reason for inven-
tory fluctuations may provide the key to understanding the business cycle
itself. A&n example of this is Samuelson's multiplier accelerator model, in
which the structure of the inventory investment decision converts exogenous,
uncorrelated economic shocks into serially correlated movements in GNP that
resemble the business cycle. Another example along similar lines is provided
by Blinder and Fischer ( ). Blinder, who has done much recently to bring
the facts about inventory investment to the attention of economists, concludes
(1981, p. 500): ". . . to a great extent, business cycles are inventory
fluctuations."

To my knowledge, a quantitatively convincing explanation for the
large observed fluctuations in inventory investment has not been provided.
The purpose of this paper is to suggest one, and to provide an assessment of
its empirical importance. The proposed explanation is based on two casual
observations about the economy. First, decisions about fixed investment and
employment for a given quarter have to be made before there is full informa-
tion about the state of the economy in that quarter.lél/ Second, consumption
is a very smooth time series and appears to be relatively unresponsive to
disturbances.:2/ An implication of the first observation is that when some-
thing unexpected happens in a quarter, say a bad productivity shock, the

burden of equating the economy's reduced output with the demands placed on it



falls on consumption and inventory investment. The second observation sug-
gests that most of the burden in fact will fall on inventories, which in this
sense are a kind of residual. The results of this paper suggest that the
residual role of inventory investment may account for the bulk of the observed
volatility in investment.

I adopt a three stage strategy to assess the empirical significance
of the above explanation. First, I present a model in which the intuition
described above is formalized. The model is a simplified version of the
equilibrium growth model in Kydland and Prescott [1982]. A key feature of the
model is its assumption that employment and investment decisions by firms for
a given quarter are based on an imperfect observation of that gquarter's pro-
ductivity and taste shocks. Household consumption decisions and inventory
investment decisions, on the other hand, are made when full information about
a quarter's state is available. Underlying these assumptions is the view that
elements of precommitment are important in fixed investment and employment
decisions, but minor in consumption decisions. The economic model is strue-
tured in such a way that, in equilibrium, households smooth consumption. As a
result, one of the roles of inventory investment is to be a residual in the
sense described above. More familiar roles for inventory investment are also
present in the model. These include the reole of inventories in buffering
output from taste shocks and buffering consumption from technology shocks. In
addition, inventories are modelled as playing a small direct role in produe-
tion,

In the second stage, [ assess the empirical plausibility of the
model, and assign values to its parameters. The importance of this stage lies
in the fact that the credibility of the results of the third stage are en-

hanced if the model can be shown to be consistent with the general features of



aggregate post war U.S. data. In the third stage, I focus on the question
that is the title of the paper. There I present a precise definition of
"inventory investment volatility" and use the model to decompose the total
measured volatility into two parts: one that reflects the residual role of
inventories, and the other that reflects the other roles of inventories. The
way I achieve this decomposition is simply by setting the variance of firms'
observation errors to zero and calculating the resulting fall in the inventory
volatility statistie.

Following is an outline of the paper. Section 2 presents a formal
deseription of the model. Section 3 describes the method used to obtain an
approximation to the solution of the model of Section 3. Since the model
cannot be represented as the maximization of a quadratic function subject to a
linear constraint, I used a modified version of the Kydland-Prescott quadratic
approximation technique to obtain an approximate solution to the model. The
novelty in my framework, relative to that of Kydland and Prescott is that I
build growth explicitly into the model. As a consequence, the endogenous
variables of the model do not possess a steady state, as the Kydland-Prescott
technique requires. In order to apply the Kydland-Prescott technique anyway,
I first transform the model into one in which the variables do possess a
steady state. In executing this transformation, I make use of the model's
property that its variables converge to a constant growth rate, which is the
same across variables. Section 4 discusses the method I used to econometri-
cally estimate the free parameters of the model. Sections 5 and 6 discuss the
empirical results, which are not included in this draft. I will distribute

them in a handout during the talk.



2. The Model

2.a Technology

The economy-wide resource constraint is given by

(2.1) Cp + Ky = (1-8)Kp_q + Iy = Ip_q S £z, He Kp 10 le_q)

where
& time in quarters
Cy aggregate, quarter t consumption
K. aggregate, end-of-quarter stock of capital
Hy  aggregate hours worked in quarter t
I  aggregate, end-of-quarter stock of inventories
Z; shock to technology
8 quarterly depreciation rate on capital

f production funetion, linearly homogeneous in K, H, and I

I use the production function studied in Kydland and Prescott

namely,

(2.2} £lzg,Ke_1,T-1) = (28] [(1-0)K Y 01, ] 707

where 0 < 8 <1, 0 <o <1, and v > 0.
This production function is used for several reasons. First, it is
consistent with the observed small variation in labor's share of output in

postwar, U.S. data. 2.1/

Second, because the estimated value of o turns out
to be quite small, (2.2) is approximately a Cobb-Douglas production funection
in K¢_q and H¢_4. Consequently, the results in this paper can be compared
with the many other studies that use this functional form. Third, because of

the linear homogeneity of f, the aggregation theory underlying the production

function is simple (see, e.g., Sargent [1979, pp. 6-10]).



Later, I end up assigning a very small value to o, implying that
inventory stocks play a minor direct role in production. Nevertheless, some
motivation of why inventories play any direct role at all is warranted.2:2/ I
allow a nonzero value for o for two reasons. First, other things equal,
larger inventory stocks probably do augment society's ability to produce
goods. For example, large inventory stocks reduce the likelihood of unex-
pected stockouts, letting retailers bunch orders and thereby economize on
labor inputs. Another reason for giving inventory stocks a direct role in
production is that without this nonnegative constraints on it are binding,
invalidating the solution technique I use for obtaining equilibrium decision
rules for my model.

This paper works with per capita rather than aggregate quantities.
Accordingly, I converted the resource constraint to per capita terms by divid-

ing both sides of (2.1) by Ny, the total population. The result is

_ (1-8) WL (1-8) =8¢ (q__yp =V , _:=V 1=0/v
(2.3) e, + K = kt-T + i =i S [zthtl n [(1 U)kt-1+01t-1]

where lower case letters denote variables measured in per capita terms.
Because the resource constraint is dynamic, converting to per capita quanti-
ties requires making an assumption about Nt/Nt-1' I simply assume this is a
constant, equal to n. 2.3/

The discussion of society's production technology is completed by

describing the statistical model for z, . I assume
(2.4) zp = zg_q exp (%),

where X is a stationary stochastic process, whose distribution is to be

described below.



The reason for positing (2.4) is that it--in conjunction with the
assumptions placed on preferences below--has implications consistent with the
statistical properties of U.S. data on consumption, investment and output. As
will be shown below, in the solution to this model, the latter variables are
the product of Zy and a covariance stationary stochastic process. Conse-
quently, the model implies that logarithmic first differencing is required to
induce stationarity. United States data on consumption, investment and output

are consistent with this implication (see, e.g., Nelson and Plosser [1982]).

2.b Preferences
As of the start of date 0, the representative consumer in this
economy orders consumption and hours streams according to the following crite-

rion:
(2.5) By Lo {exp (u,) In (e )-vh,} vy >0,

where u, is a zero mean taste shock and E. is the expectation operator con-
ditioned on information available at the start of date t. This utility func-
tion was used by Gary Hansen [1985].

The particular form of the utility function in (2.5) plays an impor-
tant role in this paper, and so warrants some discussion. The reason the
logarithm of c, appears in (2.5), rather than for example exp (ut}(c2/¢),
¢ # 0, 1is partly computational. The solution strategy I use to solve the
model requires that the function relating consumption to instantaneous utility
have the property that it convert multiplication into addition, as the loga-
rithm does. A number of papers have attempted to estimate ¢ in settings where
the variance of u. is zero, and find that ¢ = 0 is not a bad approximation
(see, for example, Hansen and Singleton [1982,1983]). However, it is not
clear how relevant these studies are for the present context, in which the

variance of Uy is not zero.



G. Hansen [1985] showed that the linearity of h, in (2.5) is impor-
tant for explaining the large observed fluctuations in h, given the magnitude
of the technology shocks observed in the postwar United States, and assuming a

2.4/ There are at least two

framework very similar to the one in this paper.
ways to interpret the linearity of hy in (2.5). One is that it reflects the
assumption that individual household utility functions take the form given in
(2.5). This can be criticized on two grounds. First, it implies that indi-
vidual hours worked are varied continuously over time. Heckman [1984] argues
that this is at variance with the facts, since a large part of the variation
in aggregate hours reflects fluctuations in employment rather than in hours
per worker. For example, the standard deviation of average weekly hours in
the manufacturing sector is a mere 37 minutes in the post war period, i.e.,

2.5/ (See Economic Report of the

the time for one or two coffee breaks.
President [1986, p. 300].) A& second difficulty with this interpretation is
that it implies that leisure at different dates is infinitely substitutable.
This is inconsistent with empirical results found in panel data (see Altonji
[1986] and MaCurdy [1981]).

G. Hansen [1985], drawing on work by work by Rogerson [1984], de-
scribes an alternative interpretation of the linearity of hy in (2.5) that
avoids both the criticisms described in the preceding paragraph. Unfortun-
ately, these benefits do not come without cost. Under Hansen's interpreta-
tion, the utility funetion in (2.5) is consistent with any degree of inter-
temporal substitutability of leisure at the individual Ilevel. Moreover,
Hansen's interpretation has the implication that average weekly hours are
constant, and that all fluctuations in aggregate hours result from fluctua-

tions in employment. This latter implication probably goes too far. For

example, Heckman [1984, p. 212] argues that, at the quarterly level, variation



in persons employed constitutes about half of tetal aggregate variation in
hours. A literal reading of Hansen's interpretation also has other unfor-
tunate implications; for exzample, that an individual's probability of being
unemployed is independent from quarter to quarter. These and other difficul-
ties with Hansen's framework are the subject of current research. Details on
this approach, some of its shortcomings, and possible fixes are described in

Hansen [1985], Rogerson [1984], and Prescott [1986].

2.c Stochastic Structure of Exogenous Shocks

I assume that the shocks to tastes and technology, w, = (ug,x¢) "

have the following time series representation:
(2.6) We = a + AW 4 + ey,

where e, is a white noise with variance V, and uncorrelated with wg o, s >
0. Also, a is a 2 by 1 vector with first element zero, and & is a diagonal
matrix, with eigenvalues less than one in absolute value. In this model,
taste and technology shocks may be correlated to the extent that their innova-
tions are correlated, but they do not Granger-cause each other. Under (2.6),

the technology shock, 2z, has the following representation:
(2.73} (1'ﬁ22L)(1_L) ]—n (zt) = 32 + Eet

so that

(2¢7h) (1"L) 1n (zt) = 32/(1“A22} + Szt + A22£2t_1

where the approximation is good for A, small. Here, L denotes the lag oper-

ator, and
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Writing the representation for Z in the form in (2.7) allows us to give A22
an interpretation. In particular, of a given cne percent surprise upward move
in z., 1+A5, percent is permanent, and -5, is temporary. Rough calculations
reported in Prescott [1986], which assume 8 = .36, suggest a value of A55 in
the neighborhood of -.2. Also, 100(1—B}a2/(1-A22) is the average gquarterly
percent growth in productivity, or "technical progress." Solow [1957] esti-
mated this to be .37 for the period 1909 to 1949, while Denison [1980] reports

an estimate of .4 for the period 1929 to 1969.

2.d Information Structure

I assume that at the beginning of the quarter, when hours and capi-
tal investment decisions have to be made, only a noisy observation on w; is
avallable, After the hours and investment decisions are made, then Wi is
observed exactly, at which time the consumption and inventory investment
decisions are made. This information structure is intended to capture the
idea that there is "momentum" in employment and capital investment deci-
sions. Momentum exists in the sense that in the middle of a quarter, when w,
is observed exactly, firm managers have to go through with the production and
capital investment decisions they made at the beginning of the quarter, even
if these now look suboptimal. By contrast, there is no such momentum in
consumption and inventory investment decisions.

I assume that the hours and capital investment decision is contin-

gent on observing ﬁt, where

(2.8} b-\l = W + VvV
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and Evtez_s = 0 for all s. Given this structure,
(2.9) W 2 EEwt!wt_s,s>0;wt] = a + Awtwi + D(vt+st),
where D = V[VV+U]'1. Equation (2.9) follows from standard Kalman filtering

arguments (see, e.g., Sargent [1979, p. 208]). Note from (2.9) that if there

is no observation noise, i.e., UV = 0, then wt = wt. By contrast, if the

-~

obhservation noise is very large, then D = 0 and W is just the best predictor

of w, based on last period's disturbance, We _qe

2.e Equilibrium Quantities

Below I describe the equilibrium quantities of the model as the
solution to a central planning problem. I do not take a stand on the decen-
tralization mechanism that supports this equilibrium, since there are several,
and they all have the same implication for aggregate, per capita quanti-
ties.géé/ t is the latter that are of interest in this paper.

The problem at date t is to maximize (2.5) over state contingent

plans for {ct+s’kt+s’it+s’ht+s}’ s > 0, subject to (2.3), the information

structure, and the initial conditions: ki 4, i _4, and wy_4. The solution to
this optimization problem is a set of funetions, ¢, = c(Qy), iy = i(nt)*
hy = h(8.), k, = k(@). Here, @a = {eg,We_qohp ke ke 1,1 ¢}, and a, =

5

{Et+vt’wt~1’kt~!'it~1j' Metheds for obtaining e, i, h, k exactly and for
doing this sufficiently rapidly to make econometric estimation feasible are
not available, as far as I know. Instead, approximations to ¢, i, h, and k

were calculated. This is described in the next section.

3. Approximate Solution to the Planning Problem

The sclution procedure used is related to the cne proposed in

Kydland and Prescott [1982]. Their procedure cannot be applied directly in
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the model of this paper, since it requires that the certainty version of the
model possess a steady state. (By "certainty version" of the model, I mean
the one with V =V, = 0.) This is not the case in my model because I speci-
fied the logarithm of the technology shock to be a random walk with drift.
Although the endogenous variables of the model do not converge to a steady
state, they do converge to a steady state growth path. It is possible, by
exploiting this fact, to transform the model economy into another one (the
"star economy") whose variables do possess a steady state. The first part of
this section does this. The second subsection obtains a version of the
Kydland/Prescott linear quadratic approximation to the decision rules for the
star economy. Finally, the third subsection "unwinds" the approximate deci-

sion rules obtained for the star economy to get approximate decision rules for

the problem of interest, namely, (2.10).

3.a The Star Economy

Define

(3.1) k¥ = log (k. /

e 'l * =
Wl ) 1 cf = log (ct/zt), log (1t/zt), h* = log (ht)

% -
B g = £
Note that (3.1) is well defined because of the nonnegativity constraints on
kt, Cys ht, and because the posited probability model for 24 guarantees that

this variable is always positive. Because of this, the resource constraint,

(2.3), is unaltered if both sides of that equation are divided by z.. Doing
so, and substituting from (3.1) and (2.4),
1 {1"‘6)
* . #y . Sain8) - %
(3.2) exp (c¥) + exp (-x.) exp (k¥) —~ exp | (xt+xt_1)] exp (k¥ _.)

1 exp (i* ) < exp (y:)

+ exp (ig) - exp (~xt) = E_1

where,
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(3.3) exp (yg) = a0 exp [(1—9)h§] exp (-ext)

x [(1-0) exp (vx,_,) exp (-vk¥  )+c exp ("Vit_j)]—afu-

Here, Yg = Zp exp (yt} is per capita output.

Note that (2.5) can be rewritten as follows:
= £ #* %
(3.4) EO 2t=08 {exp (ut]ct - vy exp (ht) + exp {ut) 1n (zb)}.

Since (3.2) and (3.4) are identical to (2.3) and (2.5), respectively, it is
immaterial to the planner whether (2.3), (2.5) is maximized directly for ¢,
he, iy, k¢, or instead (3.2), (3.4) is maximized first with respect to
cg, h;, ig, kg, and then converted to ey, i, k¢, h via (3.1). From my point
of view, it is more convenient to work with (3.3) and (3.4), because the cer-
tainty version of that system possesses a steady state.

Note that the third term in braces in (3.4) is beyond the control of
the planner and can be dropped from the analysis. Imposing the strict equal-
ity in (3.2) (reflecting non-satiation), use (3.2) to substitute out for cz in

(3.4) and denote the resulting function by r. In this way, the planning

problem becomes to maximize

= t #* % i ® PR ¥
EO zt:OB r{k kt,lt_1,L ,ht,wt_1,w

t_j! t),

subject to the information structure and the initial conditions. A way to
present this problem which reflects explicitly the informational constraints

is as the dynamic programming problem: solve

1 * i% - * * 1% i *®
@ W pigaVe gt T BB E[Tix LGN L SL PR
erfe g

% % m
* Svckt’lt’wt’€t+1+vt+‘l)[Tt”Tt"
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subject to (2.6). Here, T, = { h¥ k¥ kf_1,i*_1} and Tt = {e +v_,w

B Weo1r o Ko £ e Ve Mo

* i % i s ; oti TR * -
kt—1’1t-1}' The solution to this is a set of functions i¥ i (Tt)’ ht

h*(ft), k¥ = k*(ft). The preceding, informal argument implies that z, exp
{i*{Tt)] = 1(9), 2z¢_q exp [k*(Tt)] = k(ﬁt}and exp [h*(Tt)] = h(Qt}.

My objective is to approximate i, k, ¢ and h. My strategy for doing
this approximates i*¥, k¥, h* and then uses (3.1) to deduce the approximations
implied for i, k, h. The implied approximation for ¢ can then be obtained by

substituting the approximations for i, k, h into (2.3). The next subsection

presents my strategy for approximating i*, k*, h*.

3.b Computing Approximate Decision Rules for the Star Economy

The Kydland/Prescott approximation technique involves taking a
second order Taylor series expansion of r about the steady state values of

kg, ig, h*, w Denote the steady state value of a variable by replacing its

#
1A

time subseript by an s. Trivially, wg = (1-2)"'a. The three variables
kg, ig and hg are the unique solution to the following three first order
conditions, which must obtain at an interior steady state: ro + Bry = 0,
ry + 8rg = 0, rg = 0. Here, ry denotes the derivative of r with respect to
i i - L ¥ - k¥ i® - (¥ (¥ - % Q¥ -
its j-th argument, evaluated at kt-t ks, kt ks’ i 4 130 1f 1% ht

h;, We_q = Wgy Wp = Wg. The solution in Appendix D is shown to be

i#

1

%
log (x) + ks

k; log (w) + h;
exp (h¥) ﬁﬁﬁ;iﬁl (1-6) (2, /0,)

where



s Tlias

1
§ % o[1-8(1-8) exp (-x)/n] }[T:;J
(1-0) exp [(v+1)x][1-8 exp (-x)/n]
f+v =1
b = {naexpi{a—v—I)x][1—8(1—a)exp(-x)/n][(1—c)exp(vx)+ck““] & }1"8
86(1-a)

ay = n~® exp (—ex)ba[(1—c) exp (ux)+ol”“]_e/v
a, = °?'{” exp (-x)[1=(1-8) exp (-x)/n]+xp[1- exp (-x)/n]}

(u,x) = w;.

Denote the second order Taylor series expansion of r about steady
state by R. The approximations to i*, k¥, h* are then obtained by replacing r
by R in (3.5) and solving the resulting quadratiec dynamic programming problem
subject to the linear constraints, (2.6). The details of this are described

in Appendix B. The solution derived there is

k#* k*
: % - -* * t-.l ;% .* .* t
(3.7) i i¥ 4 + i¥%y + i% o+ i
t=1 "
<t %=1
(3.8) o = dO + d1 o + dwwt—? + dED(et*Vt).
£ £E-1

£ i (¥ = | % i o= ({% % ) % =
& property of (3.7) is that lw,1 = A1116,1, where 1% = (1w,1lw,2) and i¥ =

(i: 11: 2)'. Using this, (3.7) can be written,
1 ?
Kt <t
! i - % i # - i® s i # i # i
(3.7) o B i% " lw,25t-1 N le,2€2t * g [ % N l£,1ut’
£-1 t

where u. = Ajqug 4 + £, has been used (see [2.6]), and recall that wg =
(utxt)‘. The mapping from the sixteen structural parameters, 8, 8, n, §, vy,
o, v, a, A, V, V, to the reduced form parameters in (3.7) and (3.8) is given

in Appendix 8.341/
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3.¢ The Approximate Solution to the FPlanning Problem

To get the approximation to i, k, ¢, h, substitute (3.1) into (
and (3.8) and rearrange, to get
log kt-1 - log 2 5
(3.9) log i, = log z_ + i* + i¥ + 1%y + i%e
t £ 0" e w . ma wie-1" e
& g1 & 2y
. log kt - log Ze 1
+ 13
log ht
log k& log 2z log k - log z
(3.10) v B t-1 - d0 + ci,| t-1 £-2 + d
log ht 0 log Iy 4 - log 2¢ 4
+ dED(et+vt)
the equation generating output is
_ (1-8) -9 -V .=y 1=8/v
(3.11)  y, = [z.n] n [(1-0)kg " +oir” 1777,
which can be computed recursively after (3.9) and (3.10). Consumptiocn

then be derived from the national income identity, (2.3). This completes

discussion of approximating the solution to the planning problem.

4, Parameter Estimation

The underlying disturbances of the model are the et‘s and vt's.

joint Gaussian density of these is proportional to
-1

c1 o
expl- 3 etV e~ 3 VIV vt}.

P —

£e,,v,) = [|v[vv|]-

Let x. = (log kt’ log ht’ log Vi log it)'. The objective is to express
density of the data sample, {x1,...,xT}, in terms of f(e ,v.), t = 1,

and initial conditions.

3.7}

The
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Equations (3.9) - (3.10) can be written
g(gt’vt;xt—1'xt~2‘“"X1’ZO’Z—1’RO'10’WO) t =2, 3, 4,

g(e1,v1;zo,z_1,k0,ie,wo) £ o= 1.

Define W = agfe(aé,vé}. After some algebra, we find

where

d D dD
€ E
W = ,
A B
A1 81
A = . B =
A? B2

Here, A; and By are 1 x 2 vectors, i = 1, 2, and

& 3 ;% - i%
A, = i+ 1d{d€D), 82 = ld(deD)

4

(1—8)[(1,0)dED+(0,1)], B, = (1-8)(1,0)d_D.

It is a standard result (see, eg., Dhrymes [1974, p. 10]) that the

conditional density of x can be expressed as follows:

h(xtlxt_1,xt_2,...,x3,zo,z_1,ko,lo,wo)

-1
= f(ﬁt'vt)[wl .

Thus, conditional on the initial observations, 2z4, 2z_4, Kj, io, Wy the den-

sity of {xT,...,xT}, is

h{xT,...,x1|20,2w1,k0,10,w0)

= h(xT{xT“1,.‘.,x1,zo,z_1,k0,10,wo)

h{x W)

1|20°2-17¥02 107%0
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3

-T it |
= |W| [|u||vv|] exp {- 5 elV e~ 5 VIV v ]

Finally, the Gaussian log likelihood is

T T 1. ig=1 1 -1
(4.1) L = -T log |W| - 5 log |[v| - 5 log |uv| =5 eV e, =3

Data on k, hy, y., i, for the 115 quarters 1955.3-1984,1 were used
for estimation, For any admissible value of the parameter vector T =
(a,e,n,a,y,a,u,a,n,v,vv}, these data can be used to compute a set of 111

fitted disturbances €pr Vi for the period 1956.3-1984.1 in seven steps:

1. Compute the reduced form parameters ia, i?, i:, i:, i%, dy, dy, d,d., D
in (3.7) and (3.8) using the formulas in Appendix B.

2. Compute a set of 114 2 _'s for the period 1955.4-1984.1 using the produc-

t

tion function, (3.11).

3. Given the z_'s, compute a set of ¢

£ 's for the period 1956.2-1984.1 using

2t
(2.7a).

4, Given the z_'s, compute a set of 113 technology shocks, K =W for the

t
period 1956.1-1984.1 using (2.4).

2t’

5. Use the zt's and (3.1) to compute a set k¥, i* for the period 1956.1-

£ t
1984.1.
6. Solve equation (3.7)' for &t for 1956.2-1984.1 using i¥*, kg for 1956.1-
1984.1 and €5¢ for 1956.2-1984.1. Use the Gt's to compute a set of ;1t's

for the period 1956.3-1984.1 using (2.6) and (2.7c).

-~

7. Using the w_'s and e¢_'s, compute a set of v

£ . 's from (3.8).

t

The ;t's and ;t's computed above were substituted into (4.1) to get
L{r), the likelihood function of the data, conditioned on the initial obser-
vations. The data on which the likelihood is conditioned are the 1955.3-
1956.2 observations on k, and i, and the 1955.4-1956.2 observations on h, and

V- It took roughly 2 cpu seconds to evaluate L once on an IBM 3033 computer.
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My parameter estimator is defined by E = argmax L(r), where the
maximization was carried out over admissible parameter values. Because of the
dependence of d.D on V and V,, it was not possible to concentrate V and v, out
of the likelihood function. I did not search over 8, n, 8§, which were set to
.99, 1.00324 and .018, respectively, and so deleted these from r. The values
for n and § were chosen based on calculations reported in Appendix A. The
variance-covariance of the parameter estimator was estimated by minus the

inverse of the second derivative of L, evaluated at [ = I,

5. Fitting the Model to Data

I used two strategies to assign numerical values to the parameters
of the model. I call the first strategy "calibration," because it resembles
in some respects the one proposed in Kydland and Prescott [1982]. A differ-
ence between my approach and that of Kydland and Prescott is that I do not
utilize parameter estimates taken from other studies. My approach resembles
theirs in that it places heavy emphasis on mateching the first moment implica-
tions of the model with sample first moments. The second strategy attempts to
match first and second moment implications of the model with the corresponding
sample objects. This strategy corresponds to standard econometric estimation,
in that the metric used is the conditional Gaussian likelihood function de-
scribed in Section 4. Before presenting the results, I briefly describe the

data. For a more detailed discussion, see Appendixz A.

5.a The Data

My consumption measure is consumption of nondurables and services,
plus the imputed rental value of the stock of consumer durables, plus govern-
ment consumption. Investment was defined as fixed investment plus consumption

of durable goods, plus government investment. A capital stock series which
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closely matches my investment concept was used. It includes the sum of fixed
nonresidential ecapital (private and government), plus the stock of durable
goods held by consumers, plus the stock of government and privately held
residential capital. My measure of inventories is the sum of farm and nonfarm
inventories. Inventory investment is the first difference of the stoeck of
inventories. Gross output was defined as consumption plus investment plus
inventory investment. The difference between my measure of GNP and the one
published by the Survey of Current Business is that mine includes the imputed
rental value of the stock of consumer durables, but does not include net
exports.

Hours were measured in "efficienecy units" by weighting hours worked
by different age-sex categories by their average wage in the 1970's. The data
were constructed by Gary Hansen. All data were converted to per capita terms
by dividing by the total population between the ages of 15 and 65. These data
were converted to efficiency units in the same way as the hours data. Reasons
for working with population and hours data that are quality adjusted in this

way are described in Denison [1979, chapter 3] and Darby [1984].

5.b Calibration Results

The first column in Table 5.1 reports the relevant averages for the
data used in this project. The second column presents steady state values
implied by the model at its "calibrated" parameter values. These are reported
in column 1 in Table 5.2. A brief discussion of the way [ chose these fol-
lows.

The parameter n was equated to the average growth in the quality
ad justed, working age population for the period 1952-1984. Given this value
of n, 8§ = .018 is required if the gross investment series implied by kt -

15 k., , is to resemble the gross investment series supplied by the Depart-

n t-
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ment of Commerce. (See Apperdix A for a further discussion.) The value of
the parameter 8 was simply taken from Kydland and Prescott [1982]. The re-
maining parameters that determine steady state values are v, 8, o, 32/(1—
Q22). I chose these as follows. Given numerical values for v, 8, o, a Z¢
series can be computed from (2.3) using the historical data on hg, ki, and
iy. Values for a, and A5, were then obtained as the constant and slope terms,
respectively, in the least squares regression of log(zt/zt_1) on
log(zy_4/2y_p). 1 searched over alternative values of v, 8 and ¢ to make the
model's steady state implications close to the corresponding averages listed
in the first six'rows of column 1 in Table 5.2. The values I chose for o and
v coincide with the values used by Kydland and Prescott [1982], whose produc-
tion function is identical to mine. This procedure implied a value of .0032
for aef(i-ﬁez). This is the steady state growth rate of 2z, and therefore of
all the variables of the model, except ht, which does not grow in steady
state.

Before studying the version of the model with observation noise, we
need more parameter values. In particular, we need V and V,, which enter the
decision rules for k. and hi via D in (3.10). (D is defined after [2.9].) We
also need a value for Ajq. T obtained these by maximizing the likelihood
function, (4.1), with respect to V, V, and Ay, and holding the remaining
parameters fixed at their values reported in Table 5.2.

Tables 5.3 and 5.4 provide an analysis of the residuals of the
calibrated model. The estimated innovations to productivity, €0y correspond
well with the hypothesis of white noise. This reflects in part the fact that
they are the residuals from a least squares regression, and in part that the

growth rate of productivity, 2y, seems only to have significant autocorrela-

tion of order one. (This is consistent with results in Prescott [1986].) The
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other residuals do not conform so well with the hypothesis of white noise.
For example, the innovation to taste shocks has significant negative first
order autocorrelation. In addition, there is very substantial positive auto-
correlation in the estimated observation errors, Vi. The results in Table 5.3
represent strong evidence against the calibrated model.

Further evidence against the model shows up in a comparison of
Tables 5.4 and 5.2. There we see that there is a major discrepancy between
the estimated V and second moment properties of the fitted e's. For example,
according to the estimates reported in Table 5.2, the standard deviation of
the innovation to log(zt) is an astounding 14.5 percent. By contrast, the
standard deviation of the estimated innovations to log(zt) is a more reason-
able 1.9 percent. If the calibrated model were a good representation of the
data, these results would be similar. The numerically large correlation
between the fitted v, and Vo, and fitted e, constitutes further evidence
against the model.

Because the estimates of the innovation variances in Table 5.2
seemed so unreasonable, for simulation purposes I replaced them by the values
reported in Table 5.4. The likelihood function complained bitterly at this

change, and dropped to -24112.100 from 971.503.

5¢. Estimation Results

I estimated 13 parameters of the model by maximizing the conditional
log likelihood function, (4.1). The free parameters where v, o, 8, v, V, Vi
and the three parameters in a and A. The results are reported in the second
column in Table 5.2, The parameter values of the estimated model differ from
those of the calibrated model in several important respects. First, note the
substantial reduction in the values of v and o -elative to their values in

column 1. The consequence of this = that inventories have been driven out of
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the production function, To see this, recall the well-known result that as v

L=V 1=1/v (1-¢).0
1791 4 goes to k eo1 Leoqe

zero, the latter term converges to ki . In addition to driving inventories

goes to =zero, [(T-o)k;f Then, as ¢ goes to
out of the production function, the estimated model reduces substantially the
share of income going to capital. The model's estimate of .19 for this quan-
tity is considerably less than what seems plausible for the U.S. economy (see
footnote 2.1).

Another striking difference between the calibrated and estimated
parameter values is that a, has a negative sign in the latter, implying nega-
tive average growth. The estimated value of a2/(1—A22} is exactly what is
required for the steady state first order condition on inventories (eg., ry
+ Br3 = 0) to hold with equality. As noted in section 3b, this condition is
assumed in the steady state calculations.

The steady state implications of the estimated parameters are re-
ported in column 3 of Table 5.1, Note that the capital-cutput ratioc is about
what it is in the calibrated model. This is because the effects on the capi-
tal-output ratic of a reduction in the value of 8 and a2/(1—ﬁ22) are offset-
ting. The dramatic difference between the second and third columns lies in
the absence of inventories and the negative growth rate in the latter. Both
these implications are very much at variance with the U.S. data.

Tables 5.3 and 5.4 provide an analysis of the fitted disturbances in
the estimated model. Table 5.3 shows that there is less serial correlation in
the fitted disturbances than for the calibrated model. Nevertheless, there is
still enough serial correlation in the fitted observation errors to make the
null hypothesis that they correspond to an underlying white noise implausi-

-

ble. In addition, Table 5.4 shows that the correlations between € and Vt are

numerically large, and probably nct consistent with the model's assumption

that Ey and v, are uncorrelated.
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To summarize, there appears to be substantial evidence against the
model. The estimated model yields implausible parameter estimates and its
fitted disturbances depart from the model's assumptions. In addition, the
fact that the parameters of the calibrated and estimated models differ so mcuh
is a count against both of them. If the model were a good approximation to
the U.S. data, then it should not make such a difference whether the parame-
ters are chosen based on first moment considerations alone (as in the cali-
brated model) or based on first and second moments (as in the estimated
model ). Hopefully, the differences between the calibrated and estimated
models supplies clues to help produce a diagnosis about what is wrong with the
model. Providing such a diagnosis here is beyond the scope of this paper.

The dynamic response of two versions of the calibrated model to an
innovation in technology is graphed in Figures 1-5. The version labeled "no
noise" is the one in which V, = 0. The version labeled "estimated noise" is
the one in which V, 1s assigned the values in Table 5.4. In both versions of
the model, V is assigned the values in Table 5.4. The figures show how the
calibrated model captures the intuition in the introduction.

The figures show the first 15 quarters' responses of 2y, hy, dky,
Y¢o dig, and cp to €y = .019 for t = 3 and O otherwise. The curves in the
figures are the log deviation of these variables from a baseline scenario in
which the variables are on a steady state growth path and eor = 0 for all t.
Note the "spike" in z,.. This reflects the fact the Asp = -.076, so that only
92 percent of the innovation in technology is permanent (see [2.7b]). The
effect of the shock is to eventually put 2y on a growth path .18 percent
higher than if the shock had not occurred. Because of the balanced growth
property of the model, c., dk, dii, and y, also eventually end up .18 percent

higher. There is no long run effect of the shock on hy .
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Note that in the "estimated noise" version of the model, there is
little response in ht--and hence y,--and dkb in the first quarter to the
shock. This reflects the fact that the shock is only imperfectly observed at

the time these decisions are made.



Footnotes

1.The time-to-build technology described in Kydland and Prescott
(1982) provides one reason why additions to plant and equipment may respond
weakly to contemporaneous innovations in tastes and technology. In their
model current additions to capital depend on decisions taken several periods
earlier.

1.2/porp example, Deaton ( ) shows that the standard deviation of
an innovation to consumption is a fraction of the standard deviation of an
innovation to income.

2:/ynder the assumpticn that employed workers are paid the value of
their marginal product, (2.3) indicates that labor's share, (1-8), is the
ratio of the wage bill to total gross output. Although measurement problems
make it difficult to measure labor's share exactly using aggregate data, there
is some evidence that--regardless of how it is measured--labor's share is
roughly constant. One way to measure labor's share under the assumption that
employed people are paid the value of their marginal product is to take the
ratio of employee compensation plus proprietor's income to total gross out-
put. I measured total gross output as GNP plus the imputed rental value of
the stock of consumer durables. (A time series on the latter was taken from
the data base documented in Brayton and Manskopf [1985].) All other calcula-
tions in this footnote are based on data in the Economic Report of the Presi-
dent [1986].) The average value of annual observations on this ratio for the
period 1948-1985 is 66 percent, with a standard deviation of only 1 percent.
There is a slight downward trend in this series. In the 1950's it is around
67 percent, and by the late 1970's and 1980's it is about 64 percent. Never-
theless, as an approximation it seems fair to conclude that this series is

roughly constant. On the other hand, there are at least two potential sources
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of measurement error in this estimate of labor's share. First, including the
whole of proprietor's income in the numerator overstates labor's share, since
some of this represents return on capital. On the other hand, the wage bill
is understated by assigning the whole of the discrepancy between national
income and net national product (NNP-NI) to capital's share. Alternately
deleting proprietor's income, and then adding NNP-NI to my base measure of
labor's share, 1 get measures of average labor's share of 57 (2) and 75 (1)
percent, respectively. (Numbers in parenthesis are standard deviations.)
Thus, although these--admitedly crude--calculations place labor's share scme-
where in the rather large range of 57 to 75 percent, whatever method I use
results in a roughly constant share time series. Solow [1957, Table 1] re-
ports share data for the period 1909-1948. That series is also close to
constant, and close to my guess of 66 percent.

2:2/1¢ should be emphasized that the role of inventories in this
model is not limited to the direct one via the production function. As will
be evident later, inventories also play a role in smoothing the impact on
production of taste shocks and in smoothing the impact of technology shocks on
consumption. In addition to these roles, which are similar to the ones played
by fixzed capital, inventories play the role of a residual. This paper argues
that the latter function of inventories is key to understanding the large
fluctuations in inventory investment.

géﬁfThe assumption that employment growth is constant is not a good
one for the post war United States. A detailed discussion of this appears in
Appendix A.

g;ﬂ/These shocks are measured using the Solow [1957]'s method of
decomposing output growth into parts due to growth in factor inputs and a
residual. The residual is interpreted as a technology shock. For a recent

discussion of this, see Prescott [1986].
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2:9/The average of average weekly hours in manufacturing over this
period was 40.2 hours per week and appears to be trendless. Of the variance
in average weekly hours, a little over 70 percent is accounted for by variance
in average overtime hours, which averages only three hours a week, and which
is close to uncorrelated with straight time hours. (The standard deviation of
overtime hours is about 31 minutes per week.) Average weekly hours of all
nonagricultural workers has declined significantly since the 1940's, from 40
hours per week to about 35 in the 1980's. On the other hand, the standard
deviation of this series's deviation from a trend line is also tiny. (The
data underlying the discussion in this footnote were taken from economic
Report of the President [1986, p. 300].)

gééxﬁore basically, I would first have to take a stand on which of
the two interpretations of (2.5) described in the text to choose. If at this
stage, G. Hansen's interpretation were chosen, then I would have to decide
between at least two possible market structures. In Hansen's model, workers
choose to insure themselves against the event of being laid off, Under one
market structure, firms supply the insurance, while under the alternative, an
insurance company does so. When firms supply unemployment insurance, the wage
paid to employed persons is the value of their marginal product, minus the
cost for insurance. When a separate insurance company supplies unemployment
insurance, employed people are paid the value of their marginal product.
Hansen shows that these two market structures have the same implications for
equilibrium quantities.

3.1 fact, Appendix B only covers the case in which Vv =0, i.e.,
there is no observation error. In this case, ng(5t+Vt) = deet' The presence
of the D(e +v, ) term arises in the V, *# 0 case because this is the best esti-

mate of €¢y glven W, and We 1+
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Table 5.1

Model and Sample ﬁveragesl’

Sample Average Calibrﬁfpd Estimagsd
56.3-84.1 Model<’ Model2
c./y T2 .729 .91
R (.01M¥
(ke -.9788ky 1)/, .27 .264 .09
(.013)
(i,-i, ,/1.00324)/y .006 .006 0.
e v (1007)
ke /ye 10.58 10.85 10.57
(.44)
i/y .90 97 0.
S (.047)
he 320.4 321.6 465.0
(7.70)
(cp-c, _4)/c, _ .0039 .0032 -.013
E™CE-177CE (- 0056)
(Ye=Ye_1)/Ye_1 L0041 .0032 -.013
Ee (.0115)
(ke=k. 1)/K,_ .0046 .0032 -.013
e (.0021)
(ig-ig_1)/ig_q .0042 .0032 -.013
‘ : (10082)
(hy-hy _4)/h _ .00042 0.0 0.0
e (.0150)

1/Rows 1-3 do not add to 1 due to rounding.

2/parameter values underlying these results are reported in column
1, Table 5.2.

3/parameter values underlying these results are reported in column
2, Table 5.2.

E/Numbers in parentheses; -~e sample standard deviations.
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Table 5.2

Parameter and Likelihood Values

Calibrated Modell/ Estimated Model3/

Parameter (standard

Value error) Parameter Value

8 .99 .99

n 1.00324 1.00324

; .018 .018

v g .00338

: .39 .19

o .28 « 1072 .92 x 10717
Y .0026 .0019
Aop -.076 -.216

as .0035 -.016
By .986  (.0025) 957

Vy (.111)2  (.0015) (.030)2
Vs -.01%  (.0019) -.00026
Vyp (.145)2  (.0028) (.033)°
Vy 11 (.063)%  (.00050) (.0070)2
¥, i -.0044  (.00060) L0012

¥, (.082)%  (.00090) (.0173)2
L/ 971.503 1785.94

Vne first 9 parameter values obtained as described in
Section 5.b. The next 7 parameter values maximize (4.1). The

corresponding standard errors appear in parentheses.
2/yalue of (4.1) at parameter values reported above.

§/The first 3 parameter values obtained as described in
Section 5.6. The next 13 obtained by maximizing (4.1). Standard
errors are not reported, since the estimate of ¢ lies on a bound-

ary.
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Table 5.3

Autocorrelations of Fitted Residualsl/

Variable 1 2 3 4 5 6 7 8 s.e. .3/

Calibrated Model2”

€9 -.25 -.00 .01 .01 -.21 15 -.11 -.01 .09
e -.02 .07 03 -.01 -.13 -.01 -.09 -.01 .09
vy .89 .76 .63 .49 .35 25 .20 .17 .09
v, .96 .89 .81 .13 .66 .59 .53 .48 .09

Estimated Model%/

e =22 =21 .10 -.00  -.01 .03 .03 -.05 .09
e -.02 -.05 .04 .03 -.08 -.04 -.06 .04 .09
vy .61 .60 .55 .51 L0 .31 .25 .26 .09
v, 67 .65 .60 .56 .46 .38 .32 .32 .09

1/Residuals are the values of e, and v, for t = 1956.3-1984.1 im-
plied by parameter values reported in Table 5.2 and by U.S. data on k., i,
Y¢» and h. (see Section 4 for details).

g’Underlying parameter values reported in column 1, Table 5.2.

3/Standard error under the null hypothesis of white noise.

E/Underlying parameter values reported in column 2, Table 5.2.
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Table 5.4

Covariance/Correlation Matrix

of Fitted Residualsl’

€1 €2 V4 V2

Calibrated Model2’

£ .015 -.60 13 -.081
€ -.00018 .019 - 469 213
v .00009 ~.0004 046 - .66
Vs -.00009 .0003 -.0023 .076

Estimated Model3’

e 011 -.459 .364 .337
€5 -.00008 .016 -.635 -.596
vy .00004 -.00009 .009 .995
v, .00008 -.0002 .0002 .023

1/Numbers below the diagonal are covariances. Numbers
above the diagonal are correlations. Numbers on the diagonal are
standard deviations.

g/Underlying parameter values reported in column 1,
Table 5.2.

3’,Under'lying parameter values reported in column 2,

Table 5.2.
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Table 5.5

Reduced Form Parameters

1/

Calibrated Modelgf

Estimated Model3’

= 7.261

= .65

= 5.773

= -.691

= (10.289, .923)

= (-.358, -10.236)
= (-.363, -.694)

= (-10.498, .572)

= (.790, 9.975)
.862 .0753
) -.378  -.0754
.039  -.867
) 1.173 .338
.030 .050
) .881  .381

-18.500

9.051

6.142

-21695598.018

(68375777.93, .000073)
(-4by2264.18, -68795363.97)
(-464197.80, 1941875.76)
(-69589497.02, 5171975.92)

(.624, 12.35)
930 .9 x 10°'°
_.686 -.2 x 10~ "
018 -.955
1.079  .425
-.0025 .089
852 .816

1/The reduced form of the model is defined by (3.9) and (3.10).

g’Corresponds to parameter values in Table 5.2, column 1.

§/Corresp0nds to parameter values in Table 5.2, column 2.
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Table 6.1

Standard Deviation of One Quarter Growth Rates (a) and
Correlations of One Quarter Growth Rates With Output (b)
for U.S. and Model

U.S. Data Calibrated Modell/
(a) (b) (a) (b)
Qutput .012 .015
(.001)
Consumption .007 .54 .007 .50
{.0004) (.085)
Investment .023 .69 L0070 -, 10
(.007) (.088)
Hours .015 4o .015 .61
(.001) (.058)

l/'I‘he underlying model parameter values are those in

column 1, Table 5.2, except V, V which were taken from Table

v!

5.4,
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Table 6.2

Average Absolute Quarterly Change
Relative to Output

U.S. Data  ===---eeeun Calibrated Model-----=----
(1 (2) (3)
Estimated digh Low
Noisel/ Noise Noise
Qutput .0098 .012 .012 012
(.0009)2/ (.0009) (.0008)
Consumption .00kL6 .0046 .0046 .00L6
(.0004) (.0004) (.0005)
Investment .00L6 .015 .018 .0095
{.0012) (.0013) (.0008)
Inventory Investment .0050 .019 .019 002
(.0017) (.0019) (.00018)
Likelihood Value N& -24112.10 -3057735211.3 -
/see note 3, Table 6.3.
2/standard deviation across 100 model simulations.
3/Value of L in (4.1) at the indicated parameter values. Model (3)
has L = = since there is a stochastic singularity in this case.
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Table 6.3
Volatilityl/
BE Duty  shesskies Calibrated Model2/-——coc--
&1 (2) (3)
Estimated High No
Noise3’ Noise Noise
outputt/ .0098 012, 012 .012
(.0009)3/ (.0009) (.0008)
Consumption .65 .523 .516 .538
(.050) (.0U9) (.056)
Investment 1.74 4.57 4,62 3.09
(.49) (.473) (.24)
Inventory Investment 81.39 265.70 273.03 29.71
(74.09) (76.75) (7.23)
Likelihood Value2’ NA -24112.10  -3057735211.3 i

Veow 1: Average absolute quarterly change in output relative to
output. Rows 2-4: Let x denote one of the variables in rows 2-4 of the left
column (i.e., ¥ = consumption, investment, or inventory investment), and let y
denote output. On a given model simulation, the volatility of x, V, (say),
was computed as the ratio of two statistics, denoted v, and v,. Here,

X ¥
T T il
v, = ) [|xt~xt_1[Kyt]/ Y (x,./y,) and Y = Z 9% 1 119
t=1 t=1 t=1
Then V, = vx/vy.
2"zljnder‘l).fing model parameter values are those given in Table 5.2;
and V was taken from Table 5.4. In case (1), V, was taken from Table 5.4, 1In

case (2), V, = 500I,, where I, is the two dimensional identity matrix. In

case (3), V, = O.

§/High noise: V, = 500I,, V taken from Table 5.4, Estimated
noise: V,, V both taken from Table 5.4. No noise: V, = 0, V taken from
Table 5.4,

YW standard deviation across 100 model simulations.

2/yalue of L in (4.1) at the indicated parameter values. Model (3)
has L = -» since there is a stochastic singularity in this case.



Appendix A: Data

Following is a discussion of the data used in this project.

Quality Adjusted, Working Age Population

Data on the total male and female working age population were cb-
tained from the Chase Econometrics U.S. Macroeconomic data base. The working

aged population was defined as males and females aged 15 to 6U4. The Chase

mnemonics for these data are ANPTMT1519, ANPTMT2024, ..., ANPTMT6064, and
ANPTFT1519, ANPTFT2024, ..., ANPTFT6064, respectively, and they were most
recently revised on April 28, 1986. The data are available on an annual

basis, and represent estimates of the population on July 1.

The model of this paper abstracts from the effects of changes in
human capital on labor productivity. However, the human capital of the aver-
age worker in the post-war period has not been constant. In an attempt to
adjust for this, I obtained a quality adjusted working age population by
weighting each age-sex group by its average wage in the 1970's. The weights,
which were standardized on males aged 35 to 44, were taken from Hansen (1984),

and are as follows:

Table A1
Ages Males Females
15-19 L4y A
20-24 .61 50
25-34 .86 .64
35-44 1.0 .63
L5-54 1.01 .62

55-64

The gross growth rate in the quality adjusted (GWEIT) and unadjusted (GUNWT)

working aged populations are graphed in Figure 14. The results there show
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that adjusting the data along age-sex lines does not have a substantial effect
on the numbers. Darby (1984) argues that the data ought to be adjusted for
education levels and immigration flows. This further adjustment may be worth
exploring, however, I have not done so.

Quarterly observations on the quality adjusted working age popula-
tion were obtained by log-linearly interpolating the annual data. The cal-
culations were carried out treating the annual observations as third quarter
observations.

Several features of the data stand out. First, as is plain from
Figure 14, they do not satisfy the constant growth assumption in the text.

This is confirmed by the numbers in Table 2A.

Table 2A: Percent Annual Growth Rate, Working Age Population

Quality Adjusted Not Adjusted
1952-1961 .85 (.07) .9 (.19)
1970-1984 1.6 (.19) 1.5 (.35)
1949-198Y4 1.3 (.36) 1.3 (.43)

Numbers in parenthesis 1in Table 24 are standard deviations, in percent
terms. The growth rate of the guality adjusted working age population ap-
proximately doubled in the 1970's and 1980's over what it was in the 1950's.
Interestingly, the results are basically the same for the unadjusted working
aged population.

4 second important feature of the working age population is that
they behave very differently from data on the population as a whole. Data on
the total population, including armed forces overseas, were obtained from the
Chase Econometrics database (mnemonic NPT). From the period 1952 to 1961,

this data display an average annual growth rate of 1.7 percent, with standard
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error .07 percent. For the period 1970 to 1984, the average growth rate was 1
percent with standard error .1 percent. Thus, the pattern of growth in the
working age population is opposite to that of the population as a whole. This
probably reflects the large number of births shortly after the war, which
showed up in the total population immediately, but only with a lag in the
working age population. Because of this, the time series behavior of economic
variables in per capita terms are sensitive to the choice of population data
used.

4 third feature of this population data is that the growth in total
population exhibits substantial seasonality, with growth being especially high
in the first few months of the year. Obviously my interpolated quality ad-
justed working age population data do not exhibit such seasonality, although
the actual working age population probably does. The absence of seasonality
in my working age population data is consistent with the fact that all other

data used in this project nave been seasonally adjusted.

Capital Stock and Investment

Investment for the purpose of this project is defined as real con-
sumer purchases of durable goods (ECD) plus real gross private fixed domestic
investment (IFIXED), plus real government (federal, state and local) invest-
ment, including investment in the military (IGINVEST). ECD and IFIXED are as

reported in Table 1.2 of the Survey of Current Business (SCB). Annual obser-

vations on IGINVEST were provided to me by John Musgrave of the Bureau of
Economic Analysis. The IGINVEST data are a revised and updated version of the
government investment data discussed in Musgrave [1980]. Quarterly observa-
tions in IGINVEST were obtained using the interpolation by related series
method of Chow and Lin (1972). The related series used for this purpose were
ECD, IGD82, a constant and a linear trend. (IGDB2 is gross private domestic

investment, as reported in Table 1.2 of SCB.)
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The aggregate investment data were converted to per capita terms by
dividing by the quality adjusted working age population.

Annual, end of year capital stock data were obtained from the Janu-
ary, 1986 SCB, Tables 4, 8, 12, 16, 20, found on pages 59-75. These data were
used to obtain a time series on the 1982 dollar value of the net stock of
capital. The data are the sum of fixed nonresidential capital (private,
federal, state and local), plus the stock of durable goods held by consumers,
plus the stock of government and privately held residential capital. For
further details about this data, the reader is referred to the data source.

Some details about the composition of the capital stock are of
interest. First, the average value of the capital to quarterly GNP ratio in
the period 1955 QIII to 1984 QI is 12.8, with a standard deviation of .5.
(Here, GNP is defined as GNP according to National Income account standards,
plus the services of consumer durables, minus net exports.) At the end of
1984, the aggregate net stock of capital was $9,799 billion, in 1982 dol-
lars. Of this, 35 percent was private equipment and structures, consumer
durables were 13 percent, public and private residential capital was 32 per-
cent and government equipment and structures was 20 percent.

Since the capital data in the SCB are annual, they had to be con-
verted to quarterly observations. Quarterly observations on consumer durables
and private equipment and structures were obtained from the MPS model data
base. (This is documented in Brayton and Manskopf [1985].) Data on the
private stock of residential capital were also obtained from the MPS data
base. These data, together with a constant and linear trend were used to
interpolate the annual public and private stock of residential capital data in
the SCB. (The method of interpolation by related series due to Fernandez

[1981] was used for this.) A quarterly series on government equipment and
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structures was obtained by log-linearly interpolating the annual data taken
from the SCB.

Finally, a quarterly per capita data series on the aggregate stock
of capital was obtained by adding the individual components and dividing the
result by the quality adjusted, working age population.

The depreciation rate on capital, 6, plays an important role in this
paper for two reasons. First, it is a parameter of the model so that the
value it is assigned has implications for the average capital to output ratio
and other endogenous quantities. Second, in order to deduce my medel's impli-
cations for capital investment, I have to quasi first difference the capital
stock series that it generates, using some value for §,

Based on my examination of the capital stock data, I decided to set
§ = ,018, which is 7.4 percent annually. This is lower than the numbers used
by other researchers. (For example, Kydland and Prescott [1982] assume 10
percent annual depreciation.) The reason I did this was that key time series
properties of the actual investment data coincide with investment data derived
from my capital stock series using § = .018. This is not the case when a 10
percent annual depreciation rate is assumed.

The regression of per capita capital (kt) minus per capita gross
fixed investment (dk. ) on k._, produced a coefficient of .9787. The sample
period was 1955 QIV to 1984 QI. In terms of the model in the text, this
regression coefficient is to be interpreted as a measure of (1-8)/n, where n
is the quarterly gross growth rate of the working age population and § is the
quarterly depreciation rate. With n = (1.0!3)'25, this implies § = .018, an
annual depreciation rate of about 7.4 percent.

Unfortunately, k. - .9787k,_, and dk, differ by a substantial

amount. The average value of 100|k, - .9787k,_, - dk.|/|dk.| is five percent
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for the period 1955,4 - 1984,1. (Here, || denotes the absolute value opera-
tor.) Moreover, the discrepancy, k. - .9787k,_q - dk, is highly serially
correlated throughout the sample, being strictly positive before 1970,
strictly negative thereafter, and cleose to zero on average.

These results are not consistent with my model formulation, although
there may be reason to believe that the consequences of this misspecification
are not serious. This is because k¢ - .9?87kt_1 shares several key time
series properties of dk. . First, both are on average 27 percent of gross
output. Also, the mean of 100|(ky-.9787k._;) - (k¢_1-.9787k¢_5)|/y(t) and
100|dk,-dk,_4|/y(t) are roughly the same. The former is .46 with standard
deviation .40, while the latter is .47 with standard deviation .39. If & =
.025 is used, then the derived investment series is shifted up by a large 496
dollars per person on average. This is just the product of (.025-.018)/n and
the average value of the stock of capital, which is large relative to invest-
ment. As a result of this, the average share of gross ocutput of this invest-

ment series is 34 percent, substantially higher than the actual, 27 percent

figure. Because of this, I set & = .018 in this study and did not use the
more conventional & = .025.
Inventories

Inventory investment was defined as the change in farm and nonfarm
inventories in 1982 dollars as reported in Table 5.9 of SCB. The stock of

farm and nonfarm inventories is as reported in Table 5.11 of SCB.

Quality Adjusted Hours Worked

Time series for hours worked for the period 1955 Q3 to 1984 Q1 were
provided to me by CGary Hansen. The underlying data were obtained from the

Current Population Survey, whiech is a survey of households. The data were
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then aggregated by age-sex groups using the weights reported in Table 1A. For
further details about this data and the manner in which they were constructed,
see Hansen (1984).

As I noted earlier, Darby [1984] argues that data ought to be fur-
ther adjusted to reflect changes in education levels and immigration flows.
Darby provides an annual hours series adjusted in this way for the period
1900-1979 (his mnemonic is QATHWP). The gross rate of change in this data (I
call it GDARBY) and in Hansen's quality adjusted hours series (GHANSEN) appear
in Figure 2A. The difference between these two series is not great, sug-
gesting that my analysis is probably not sensitive to adjustments for immigra-
tion and education.

I obtained a per capita hours series by dividing quality adjusted
hours worked by the quality adjusted working age population. These data are
graphed in Figure 34. My model implies a per capital hours series that fluc-
tuates about a constant mean. The data, in fact, show very slight evidence of
an increase in hours worked per capita in the post war period. Average growth
in the per capita hours series is .16 percent annually. On the other hand,

the standard deviation is an enormous 6 percent.

Consumption

The measure of consumption I used is consumpticon of nondurables plus
consumption of services plus the imputed rental value of the stoeck of consumer
durables, plus government consumption. All these components except the last
two were taken from SCB. A measure of the imputed rental value of consumer
durables was obtained from the data base documented in Brayton and Mauskopf
[1985]. Government consumption is government purchases of goods and services

minus IGINVEST.
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Per capita consumption was obtained by dividing by the quality

ad justed, working aged population.
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Appendix B:
Solving the LQ Approximate Problem Under Complete

State Information
This Appendix describes the algorithm used to find decision rules
for ig, kg and hg that solve the linear quadratic approximation to the model
in the text. 1In this Appendix, I assume there is full state information, in
the sense that vy = 0. The solution strategy is to first transform the prob-

lem into the form of the linear regulator problem in the engineering litera-

ture. (See, e.g., Kwakernaak and Sivan [1972]).

Define
0O 0 0 0
k:_1 , dt — it s ¢|1 = 2x2 2x2 2x2 , d;o = 2x1
0 4 0 a
= i * * » >
s, = 1¥_, k¥ 2x2 2x2 2x2 2x1
0o I 0 0
* » o o
W ht 2x2 2x2 2x2 2x1
W
gt 0 0 0 o0
(B.1) o 1 0 , e, = 2«1 , Eetez = W= 2x2 2%2 2x2
% 0 VvV o0
B= §{ 0O 0 2x1 2x2 2x2
0 0] 0 0 0 0 0
4.1 41 41 2x1 2x2 2x2 2x2
The return function may be written
T T T T T
(B.2) H(st’dt) = Cc + c1dt + CoS, + stRst - dtht + ZStht.

Here, ¢ is a scalar, ¢q ~ 3 x 1, ¢p ~ 6 x 1, R ~6 x 6, Q3 ~3 x3, F~06 x

3. Also,



e B0

(B.3) j o= % ST ERET ST % “yy Ty Tys

31 "33 "37 36 Tau T2 T25

11 713 T17 "16 54 52 55

"61 "63 "67 "66

F= 4 r r r
2 1M 12 15

34 732 T35

"4 12 T15

64 62 "5
Here, £ 5 denotes the cross derivative of r with respect to its ith and jth
arguments, evaluated at kg_q = k; = k;, ig-l = ig = i;, hg = h;, Wy = Wge
Note that r.. are secalars for all i, j =1, ..., 5. However, rkj and ry, are

1]
2 x 1 and 1 x 2, respectively, k = 6, 7, and r, is 2 x 2, k = 6,7.

Finally, consider the constant terms, c¢, and c;. Let 2z, =

T _ T _T\T y . .
(ru,rg,r5) y Zp = (r1,r3,r?,r6) . Here, r denotes the derivative of r with

i - o ¥ - LR p* - p¥ - -

respect to its jth argument, evaluated at kt,1 =2 kt 2 ks, ht = hs, We_q = W =
w. Note that vy and rg are 2 x 1 vectors, while rj, j=1 ..., 5 are scal-
ars.

Then,

c, =z, - 2F's - 20d

1 1

5 22 - 2Fd - ZRs,

Q
1]
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where s and d are the steady state values of s; and dt’ respectively. In

particular,

k¥ i*

s
s = i% . d = k¥
s s
W h*
s

W

Analytiec formulas for the rj's and rij's are provided in Appendix C.
In these terms, the LQ approximate problem is to choose a contin-

gency plan for dt to maximize

v otr. T, T_ T T g
(B.4) E, t§0 3 [c+c?dt+823t+stRst+dtht+2Sthtf
subject to
(B.5) S =%t 05, + Bdt *e

The solution to this problem is obtained by iterating on the following funec-

tional equation in v:

{ ] -~ -
(B.6) v (st) = max {R(st,dt)+BEtv(st+1)}
d
t
sub ject to (B.5) and s given and observable. Here,

B T T
(B.T) v(st) £V, * Vsst + Sthst'

I now describe one step in this iteration. Substituting (B.7) into (B.6), get

¥ _ = 2 5 T 2 i
(B.8) v (St) - mgx {c+c1dt+c23t+stﬂst+dtht+2s

t

-
tht},

where
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g T T
(B.9a) c=c+ BV, + BVS¢O + 8¢OVQ¢O + Btr(vQH)
(B.9b) 5 = cT + BVTB + 28¢TV B

: 17 s 0°Q
(B.%c) ;T g cT - BVT¢ + 2S¢Tv b

i 2 - 2 s 0 Q"1
(B.9d) R =R + 86.v.0

: 1 Q1

= T
(B.9e) Q=Q+ 8B VQB
(B.9f) F=F+ 5¢Tv B
. 178

The solutiocn

(B.10) dt
where

(B.11a) KO
(B.11b) K1
Substituting

to the maximization in (B.8) is

KD + K1St’

1 212
-5 Qe

- s

(B.10) into (B.8) get

T T
L i 1 1 1
v (st) By # (v s) s, + 3.V!'s

where

{B.12) vé
(B.13) v
(B.14) v

The solution

t tQt’

c + (;,TK - KgéKO

170
= . . ... - [ ol
= [e]K,+e+2K QK +2K F |7 = Kie, + )

11

- T= - = - - _z ;)
R + K1QK1 B EFK1 = R - FK1 - 2FK1 = R+ FK1

to (B.4)-(B.5) is obtained by iterating on (B.6) to convergence.
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The calculations just described can be simplified further by first
iterating to convergence on vQ and K, using (B.9d)-(B.9f), (B.11b), (B.14).

Equations (B.9b), (B.9c), (B.11a), (B.13) can then be solved for v, and K.

The vector v_ is obtained by setting vé £ ¥, in (B.13) and solving for v

S S‘

This yields

T.T Ti1-1 T T T
18 +¢1)} {k {CT+EBB VQ¢0!+02+28¢1VQ¢0}.

v, = [1-8(K ’

The constant terms, ¢ and v,, are not needed and so can be ignored. The
solution to (B.6) when v' = v solves (B.4)-(B.5).
An interesting feature of this problem is that the matrix Q is of

rank 2. The results in the Appendix C show that

-Q = Q'ET = ppT!
where
1
1 2 0
tefpow (0F 5 aes :
1 =12
2 [Lo(1-eyez2ta) ;)

A practical consequence of this is that the iterations on ) cannct be started
at vq = 0, since in this case (B.11a) has no solution. Instead, I started Vg
at the product of the identity matriz and a small number,

The feedback rule in (B.10) expresses the decision variable as a
function of the current state. It is convenient to express the rule for i¥ as

£

follows:

] .*_.-‘
(B.14a) ig = 1(dt’st)'

where dt = (k:,ht)T. The second two decision rules in (B.10) are written

(B.14b)  hg = h(s,)
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(B.14e) k? = klsg,).
To get (B.14a), carry out the maximization in (B.8) with respect
to ig, taking ét and s, as given. Doing so, I get
; g T “
% - =
(B.15) ¥ =gy +ad +ays = lidt,st).
where
- T _ T _ &7
(B.16) ay = -011/{2q11), ay = (q]g/q11), a, = «F1/q11,
Felh Bphey=z o +9= 9y 95
6x1 6x2 1% 1 1x1  1x2
; T
21 912 %2
2x1 2x1  2x2
Thus, the solution to (B.4)-(B.5) under complete state information

is given by (B.14)-(B.15).

It
% i %
Ke_ 10 3g_1
i %
(B.17) if
where
i3
i%
E
Here, a; has
T
%2

1x6

is convenient to express i%, and d_ in (B.14) in terms of e,

Doing so, we get

%
KE-1 .
T i # i % :
il Rl (A M B N
Ye-y

T ‘ T T
= (agrayya), 1 = a5, 1 = (ay5+ay54)
. T
= a5, 1% = ag.

been partitioned as follows:

. BRI
= 82y 1 %22 ; %23)
1x2

1x2 1x2
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Also,

*

: KE-1

(B.18) dt = dO + CI.| 5 + dwwt-1 + dEst.

t-1
To describe the construction of dg» d1, dgy ds’ I first need some notation.
Let Eb denote the vector formed by deleting the first element of Ko and let
gq denote K, minus its first row. Then at = EO + ?,st. Partition K1 as
follows:

2x6  2x2 2x2 2%2
Then,

7 Zi2) . Bt . 5k3), =(2)
d, = K, + K;%a, d, = K37, d = (K374 77R)
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Appendix C:

Analytic Formulas For Derivatives

The derivatives in (B.3) and those implied by ¢4 and ¢, can be
computed numerically and analytically. For checking purposes, it is conve-

nient to do both. Accordingly, the analytic formulas provided below.

Denote
y = yl(1=0) exp (w)k ™ + 01717
Then,
0, = - exp (W .0 (-x)
¢
Py = ~r'2/8
_exp (u)
r‘u = -
l"3 = —-FL}/B
r‘5 = 0
1"6 = 0
ry = - gﬁﬁf&&l {8(1-0) exp (vx)&"“;+ ! ; s exp (—23)&}
c

rg = exp (u) 1In e.

ro = SXRU) ( ou exp (-x)K([1- - = exp (-x)1- exp (-x) o)
.l

The expressions for ry, rs, and rg exploit the steady state first order neces-

sary conditions.
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Also,
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Next, turn to the second derivatives.

s={v+2)

Pyy = -r? exp (-u) - {8(1-8) exp (vr)k exp (u)/é}
x{(u+1)§-(9+v)(1—0) XD (\Jx)“:’l;“u}.
y = yl[(1-0) exp (ve)k V+oi V)",
L,5 = =T I, exp (-u)
£yg = g exp (-u) + ZRL o001 0) exp (ur) (v oy(ici) (V1)
e
.y = -T4Fy €Xp (-u)
P15 = -FqY exp (-u) + EEE:LHl 8(1-0) exp (ux)(i-B)ﬁﬁ_(“+1)
c
16 = O
Pyq = =40o €XP (-u) + EEE:LEl {ve(1-0) exp (ux)&i_(“+1)
e -
- (8+v)8(1-0)2 exp (va}é_(2“+1)§ - lﬁé exp (-2x)}
f18 = M
Fig = “Fyrg exp (-u) - 82p (B) {62(1-0) exp (vx)k~(V*1)g
c
s 1§§ exp (-2x)}

2
Py, = =I5 €Xp (-u), r23 = -r2r3 exp (-u)

oy = -rory, exp (-u), Pog = ~I'pY exp (-u)
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“Tory XD (=u)

-rorg exp (-u) + 2xp. {u) exp (-x)
¢

~

-r

2 -~ A
3 8% (-u) + o0 WD {_(yyq)pi=(ve2), (g, )qp7-20ve1))
C

-rary, exp (-u)

-r3y exp (-u) + EEQ:LEl eoi'(“+1)(1-e)§/h
c

0

b

-rar, exp (-u) - QEE:LEA 8o (ﬂ+u)(1~a)£'(“+1) exp {vx)ﬁ'uy
c

3

-ryrg exp (-u) + exp (u) {-9205'(“+1)-exp (-x)/n}
c

-rﬁ exp (-u)

-y Y exp (-u)

0

-rur7 exp (-u)

y

~rur9 exp (-u)

-v° exp (-u) - o(1-p) SER_(W) ~ 2
18]
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= 0

X {yo(1-0) exp (vx)k '+
c

1 -8

exp {—2x)é}

_exp (W) (4 4)70(1-0) exp (v&)k~/h
c

= =yr

9 exp (-u) - EEETLEl (I-B)B;/h
c

- _’["69_

z =r r, exp (-u) + QEQTLEl {8(1-0) exp (ux}&'“&(
c

1 -8

exp foxik™ » exp (-2x)§}

1
-

= -r,r. exp (-u) + £xp L) {92(1—03 exp (ux)&“vi
c

1+ 8§
n

- exp (—2x)§}

= -rg exp (-u) + 259:191 {ezi— exp (—x)&+ 1 ; g
c

+ exp (-x)i/n}.

g+v)(1=-0)

exp (—2x)£
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Appendix D
Derivation of the Steady State Formulas in Section 3.b

In section 3.b [ display formulas for the logarithm of the steady
state of k./z._4, i /2y, and hy. These are derived in this appendix. It is
convenient to first derive the formulas for the levels, and to convert to logs

at the last step. Define

(D.1) Ve = Ye/Z¢s C, = ctht, kt = kt/zt-T’ ib = itfzt,

and let y, ¢, k, 1, h denote the steady state values of 5t' it, Et’ and hy,
respectively. In addition, let w denote the steady state value of w., so
that, trivially, w = (I-ﬁ)-1a = (u,x)T. The 1link between (D.1) and the

starred variables in the text is given by

(D.2) c

i
1]

¢ T €Xp (ct), It exp (i%),

el
it

"

¢ = exp (k¥), §t exp (y}), hy = exp (h}).

t

In terms of these variables, the planning problem is to maximize

e tuwiw po o >
(.3 Eotzog e R R L LR P

subject to the information structure and the initial conditions. Here,

(D.4) ;{Et-T’kt’it—1’it’ht’wt—1’wt)

r(log <§t-1)’ log (kt), log (I,_,), log (it), log (h), Wy qoW, )

and r is defined before (3.5).

The first order necessary conditions satisfied by k, i, h are,

respectively,
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ro(k,k,I,1,h,w,0) + g, (k,k,1,1,h,w,uw) =0
PH(E,Q,E,I,h,w,w) - BFS(E,k,I,I,h,w,w) i 0
r.(k,k,i,i,h,w,w) = 0,

5

where Ej denotes the derivative of r with respect to its j-th argument. The
first relation states that the utility cost of increasing the current (de-
trended) stock of capital must equal the discounted utility benefit from the
resulting increase in (detrended) consumption in the next period. The second
and third relations have analogous interpretations for the stock of invento-
ries and hours, respectively. For my particular parametric example, the above

formulas are:

(D.5a) exp (-x) = 8{8(1-0) exp (ux)ﬁ'(“+1)

¥[(1-0) exp (ux)ﬁ““+cf”“]_1+ =3 exp (-2x)}

(D.5b) 1 = a{eci'(“+1)§[(1-c) exp (ux)ﬁ'“+cf"“|'1+ exp (-x) %}

(0.50) 2R (1.9) ¥ .y,
c

Here,

n—Bh{1-a)

(D.6a) ¥ = S L

exp (-8x)[(1-0) exp (vx)k “+o

Also, the steady state resource constraint yields

(D.6b) ¢ =y - exp (-x)k + =

exp (-2x)k - 1 + exp (-x) % i.

Equations (D.5a) - (D.6b) represent five equations in the five unknowns, y, h,

I, kK, ¢. We proceed now to obtain their unique solution.



- A22 -

First, note from (D.5b) that

T c-v_ x=vi=1 _ 1 -8 exp (-x)/n
¥[(1-0) exp (vx)k™V-oI7V]|7" = roai- (1)

Substituting this into (D.5a), get

exp (-x) = 86(1-0) exp (ux)i_(“+1}[1-8 exp (-x}/n]/[seoi'(“+1)]
+ 8 1+ 8 exp (-2x)
- [lﬁg] exp (vx)[1-8 exp (-x)/n] [%]'(°+1)
v
+ 8 ; § exp (-2x).
Conclude,
» (=)
i o[ 1-8(1-6) exp (-x)/n] R
k (1-0) exp [(v+1)x][1-8 exp (-x)/n]
or
(D.7a) =2k
where,
(5%)
(D.7b) - o[ 1-8(1-6) exp (-x)/n] T+’
(1-0) exp [(v+1)x][1-s exp (-x)/n]
Substitute (D.7a) and (D.6a) into (D.5a) to get
(D.8a) k = yh
where
(D.8b)
-1
; it
T {n exp [(8-v-1)x][1-8(1-8) exp (-x)/nl[(1-0) exp (vk)+ar"] ]

88(1-0)
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Next, I use (D.6a), (D.6b), (D.7a), (D.8a) to transform (D.5¢) into one equa-

tion in h. Begin by substituting (D.7a) and (D.8a) into (D.6a) and (D.€b):

(D.9) 7 = hn™° exp (—BX)¢B[(1-U) exp (vx}+ol'U]'(B/“) = ha,
(D.10) & =3 -h {vexp (-x)[1-(1-8) exp (-x)/n]+rp[1- exp (-x) %]} = ha,.
Here,

O exp («8x}¢s{(1—c) exp (vx)wiw}-em

ay = ay = {v exp (-x)[1-(1-8) exp (-x)/n]+ru[1- exp (-x)/n}}.
Substituting these into (D.5¢), get
(D.11) h = %R;_(_Ql (1-8)(ay/ay).

Equations (D.7a), (D.8a), and (D.11) are the steady state eguations

sought.
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