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Improving Economic Forecasting 
With Bayesian Vector Autoregression 

Richard M. Todd 
Economist 
Research Department 
Federal Reserve Bank of Minneapolis 

Economic forecasting is often referred to as an art, per-
haps because it involves not only data and groups of equa-
tions, or statistical models, but also the forecaster's 
personal beliefs about how the economy behaves and 
where it is heading at any moment. Artistry is an appro-
priate metaphor for what economic forecasters com-
monly do: blend data and personal beliefs according to 
a subjective, undocumented procedure that other fore-
casters cannot duplicate.1 This is not the only way to 
achieve that blend, however. The Bayesian approach to 
statistics, a general method for combining beliefs with 
data, suggests an objective procedure for blending beliefs 
and data in economic forecasting models. This procedure 
provides a framework that forecasters can use to docu-
ment and discuss their beliefs, which can help make 
economic forecasting more of a science and less of an art. 

Today's most widely used economic forecasting 
models are not usually discussed in terms of the Bayesian 
approach, but they can be. When viewed this way, most 
of them seem too rigid, allowing their human managers to 
express beliefs within the models only in forms that are 
often too vague or too precise to accurately represent the 
managers' true beliefs. This may partly explain why these 
models' forecasts often seem implausible to the models' 
managers and thus why managers often subjectively 
adjust those forecasts before presenting them to the 
models' users. 

One type of economic forecasting model, known as the 
Bayesian vector autoregression (BVAR) model, has 
been developed explicitly along Bayesian lines and seems 
to be an improvement over other types of forecasting 

models. BVAR procedures give modelers more flexibility 
in expressing the true nature of their beliefs as well as an 
objective way to combine those beliefs with the historical 
record. A specific version of the procedures, developed 
by Minnesota researchers, has been used to build models 
whose unadjusted forecasts seem to be as accurate as the 
subjectively adjusted forecasts of other common models. 
The fact that BVAR models forecast well without subjec-
tive adjustment also allows them to objectively estimate 
answers to questions about future events and probabilities 
that subjectively adjusted models cannot as plausibly 
address. 

A Bayesian View of Economic Forecasting 
All statistical forecasting models combine, in some way, 
information from historical data with information sup-
plied by the builders of the model. Because modelers must 
supply at least some information before they examine 
data and because modelers presumably supply informa-
tion they think will improve the model's forecasting 
ability, the information they supply is known as their/?r/or 
beliefs (or simply their priors) about the best way to 
forecast. Forecasting techniques differ in how they 
represent prior beliefs and how much weight they place on 
them. BVAR models have been developed to let modelers 
represent their beliefs more accurately and to combine 
those beliefs with the information in historical data ac-
cording to a standard, objective procedure. 

1 This practice is well known among economists, but is not often discussed in 
print. See Litterman and Supel 1983 and Litterman 1984 for some critical 
comments. 
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Beliefs and Forecasts 
At an elementary level, all forecasting procedures clearly 
rely on at least a minimal level of prior belief. For 
example, to forecast any given variable a modeler must at 
least suggest which currently known variables are related 
to it and might therefore be useful in forecasting it. The 
final forecasting model might not use all of the suggested 
variables, and data may be used to eliminate some 
variables from the model. But in picking the candidate 
variables for the model, the modeler must rely on beliefs 
derived from prior knowledge of the theory and practice of 
economics and statistics. The same is true for the types of 
algebraic formulas that express the relationships among 
the variables in the model (whether they are linear or 
quadratic, for example); data may be used to pick the final 
types of formulas, but only from among a set of candi-
dates previously picked by the modeler. The common 
transformations of economic data that are used in fore-
casting models—such as detrending, deseasonalizing, 
interpolating, and linearizing by means of ratios or 
logarithms—are also chosen in this way. 

Beyond this minimal level of prior belief, the modeler 
might also have views on the candidate variables or 
formulas most likely to produce good forecasts or even on 
the exact numerical relationships between the variables in 
the model and the variables to be forecasted. One major 
statistical theory, Bayesian decision theory, holds that 
modelers can be thought of as having prior beliefs in the 
form of probabilities about which of the possible models 
will forecast best. Bayesian decision theory explains the 
best way that data can then be used to revise these prior 
probabilities. Essentially all forecasting procedures, even 
supposedly non-Bayesian procedures in which the role of 
prior beliefs is not at first apparent, can be interpreted as 
at least approximating a Bayesian procedure in which 
data are used to revise certain implicit prior beliefs. 

Complete Ignorance 
A forecasting model incorporating only minimal prior 
beliefs can be constructed by selecting a group, or vector; 
of variables to forecast, allowing all the variables to 
interact linearly with their own and each other's current 
and past values, and using historical data to determine the 
quantitative impact that each variable has on its own 
fbture values and the future values of the other variables. 
Because such a model relates future values of a vector of 
variables to past values of that vector, it is known as a 
vector autoregression (VAR) model. Because it is only 

minimally restricted by the modeler's prior beliefs, it is 
more particularly known as an unrestricted vector auto-
regression (UVAR) model. Economists rarely have 
enough data to construct UVAR models, especially ones 
with more than a few variables, that forecast as well as 
models that supplement the data with more informative 
prior beliefs. 

From a Bayesian point of view, UVAR models more 
or less let the data speak for themselves. To see this more 
clearly, consider a simple model built to forecast just the 
money supply and real output. The UVAR modeler 
might use economic and statistical knowledge to pick 
linear formulas for the current and two previous quarterly 
values of some measure of the money supply (MONY) 
and real (inflation-adjusted) gross national product 
(RGNP) as well as some constant terms (km and kr). 
Beyond these minimal and relatively uninformative priors, 
however, the UVAR modeler would essentially claim to 
be ignorant. Forecasts of each variable in the model 
would be based on current and past values of all variables 
in the model, or 

(1) MONYt+x =km + a0MONYt + a xMONYt_x 

+ a2MONYt_2 + b0RGNPt 

+ bxRGNPt_x + b2RGNPt2 + mt 

(2) RGNPt+l =kr + c0MONYt + cxMONYt_x 

+ c2MONYt_2 + d0RGNPt 

+ dxRGNPt_x + d2RGNPt_2 + r,+1 

(where mt+x and r/+1 represent the errors that will occur 
when MONYf+1 and RGNPt+v respectively, are pre-
dicted from a constant term and the three most recent 
values of both). Furthermore, from a Bayesian point of 
view, all possible values of the UVAR model's coeffi-
cients [the k!s, fl's, Vs, c's, and cTs in equations (1) and 
(2)], which determine the quantitative impact each vari-
able has on the model's forecasts, would be treated as 
equally likely. This frequently makes the prior beliefs 
used in this procedure vaguer than the modeler's true 
beliefs; most modelers probably don't really believe that 
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all possible values are equally likely even though the 
UVAR model is estimated as though they are. For 
example, a modeler might believe that positive values of 
b0, bl9 and b2 are more likely than negative values to lead 
to good forecasts. Nonetheless, the final values of these 
coefficients would be chosen without any restrictions to 
represent these prior beliefs. A simple statistical proce-
dure (ordinary least squares, or OLS, regression) would 
pick the coefficient values that best explain the histori-
cally observed patterns of interaction among the chosen 
variables. 

Small UVAR models such as the one described above 
sometimes forecast fairly well, but economists have long 
recognized that UVAR models with more than a few 
variables generally do not. Since forecasters are often 
called upon to forecast large groups of variables and the 
relationships between them, this is a serious limitation of 
UVAR models. 

The forecasting problems of large UVAR models stem 
from the fact that economists often have too little data to 
isolate in a model's coefficients only the stable and 
dependable relationships among its variables. The statis-
tical procedure used to estimate the coefficients (OLS 
regression) picks values which best explain the available 
data, data in which the stable relationships among 
variables have been obscured by numerous random 
effects. Furthermore, because current and past values of 
each variable appear in every equation of a UVAR 
model, the number of coefficients to be estimated is large 
compared to the number of observations on the variables. 
With so many coefficients available to explain so few 
observations, the estimated coefficients can explain the 
data very well—too well, in fact. The coefficients are 
subject to overfitting, a sort of red herring effect. The 
statistical procedure chooses the coefficients to explain, 
or fit, not only the most salient features of the historical 
data, which are often the stable, enduring relationships 
between variables that are most useful for forecasting. 
The coefficients are so numerous that the statistical 
procedure can choose them to also fit many of the less 
important features of the historical data, features which 
often reflect merely accidental or random relationships 
that will not recur and are of no use in forecasting. 
Overfitting refers to this incorporation of useless or 
misleading relationships in the coefficients of a model. It 
tends to make large UVAR model forecasts inaccurate 
and overly sensitive to changes in economic variables. 

Complete Certainty or Complete Ignorance 
The traditional solution to the overfitting problem of large 
UVAR models has been to use prior beliefs to reduce the 
number of coefficients to be estimated. In the structural 
econometric models that are widely used for economic 
forecasting, this is done by including in each equation of 
the model only a few variables (or lags of variables) that 
economic theory suggests are most directly related to the 
variable that the equation forecasts. (This is an attempt to 
use theory and statistics to recreate the basic structure of 
the economy; hence the models' name.) Economic theory 
is thus the main source of priors in structural models, and 
these priors are built into the model by excluding most 
variables from most equations. 

Note that excluding variables from an equation a-
mounts to certainty that their coefficients are zero. 
Certainty is an absolute belief, not subject to revision by 
any amount of historical evidence. So such exclusion 
restrictions also amount to assigning coefficients of zero 
to the variables regardless of historical evidence. Al-
though these restrictions can prevent overfitting in a 
structural model, they are often too rigid to accurately 
express the modeler's true beliefs and tend to cause useful 
information in the historical data to be ignored. 

A given economic theory may imply that some 
economic variables are related strongly and others are 
related weakly or hardly at all. To see how these the-
oretical implications can be used to overcome overfit-
ting, consider how a modeler using the structural econo-
metric approach might modify the simple UVAR model 
described above. For example, suppose economic theory 
and experience led the modeler to believe that next 
period's real gross national product is mainly affected by 
that variable's current value and last period's value of the 
money supply, while monetary policy generally insulates 
the money supply from changes in real gross national 
product. These beliefs would lead the structural modeler 
to modify the UVAR model [equations (1) and (2)] by 
excluding all values of RGNP from the MONY equation 
and excluding all past values of RGNP and all values 
except the previous period's value of MONY from the 
RGNP equation. This would be the resulting structural 
model: 

(3) MONYt+x =Km + A0MONYt + A xMONYt_x 

+ A2MONYt_ 2 + Mt+l 
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(4) RGNP[+l =Kr+ CxMONYt_x + D0RGNPt 

Even in so small a model as equations (1) and (2), 
where overfitting is not nearly as serious as in the large 
models often used by forecasters, exclusion restrictions 
cut in half the number of coefficients to be estimated. 
Because of their fewer number, the coefficients of struc-
tural econometric models are less likely than UVAR 
model coefficients to reflect the useless random relation-
ships among variables. This helps explain why structural 
econometric models have been the dominant form of large 
forecasting model for many years. 

Although the structural econometric approach does 
reduce the effects of overfitting and has been widely used 
for forecasting, many modelers are likely to find the 
exclusion restrictions it is based on too extreme and 
inflexible. Exclusion restrictions probably either over-
state or understate the modeler's prior beliefs about the 
best forecasting model. 

On the one hand, by specifying ahead of time that 
coefficients on excluded variables will be zero no matter 
what the historical data suggest, the exclusion restrictions 
imply that the modeler is absolutely confident that the 
best coefficients for the variables excluded from the 
equation are zero. This may often exaggerate the 
modeler's true confidence. The structural modeler above, 
for example, might have to choose among competing 
theories about how real gross national product affects the 
money supply. Even the modeler's preferred theory is 
unlikely to suggest such sharp distinctions between the 
effects of current and past values of money and real output 
on real output as that model's exclusion restrictions 
imply. Nonetheless, to reduce overfitting the modeler 
pretends to know for sure that real output doesn't affect 
money and that current money and past real output don't 
affect next period's real output. The data are not allowed 
to revise these pretended beliefs. 

On the other hand, by letting the data completely 
dictate the coefficients of the included variables, reliance 
on just exclusion restrictions implies that for those 
coefficients the structural modeler is as ignorant as a 
UVAR modeler pretends to be. And here, too, this 
absolute ignorance about which coefficients lead to good 
forecasts, or the belief that all of their possible values are 
equally likely, may often understate the modeler's actual 

belief. A structural modeler might observe, for example, 
that in most countries real gross national product rarely 
changes more than a few percent per period, even when 
the money supply has changed a fair amount recently. In 
the structural model above, these observations might 
suggest that equation (4)'s coefficient on current RGNP 
(D0) should be close to one and its coefficient on past 
MONY (C{) should be close to zero. Instead, since the 
modeler's prior beliefs are only used to restrict the 
coefficients of the excluded variables (to be exactly zero 
no matter what), the statistical procedures used to 
estimate the coefficients of the included variables treat 
values such as 10 or 10 million to be just as likely as one or 
zero for these variables. 

These statistical procedures are generally similar to 
OLS regression and also basically pick coefficients, at 
least for the included variables, so as to best explain the 
historical data. As a result, serious overfitting of structural 
model coefficients can still sometimes occur. To avoid 
this possibility, modelers often estimate several versions 
of a model (for example, by experimenting with different 
transformations of the data or different sets of exclusion 
restrictions) and then pick the one whose combination of 
plausible coefficients and ability to fit historical data 
seems best. However, it is hard to document, let alone to 
evaluate, this highly subjective adaptation of the struc-
tural econometric approach. 

Besides often distorting the modeler's actual prior 
beliefs, exclusion restrictions also prevent the modeler 
from even seeing the historical evidence on the relation-
ship between a forecasted variable and a variable ex-
cluded from its equation. In the structural model above, 
for example, suppose that contrary to the structural 
modeler's prior belief the historical data would strongly 
suggest that real gross national product is very useful in 
forecasting the money supply. If the modeler's belief is 
expressed as a restriction that excludes RGNP from the 
equation for MONY, the modeler's chance to be sur-
prised by and learn from the data's unexpected informa-
tion is sharply limited. (This information will show up 
only indirectly, if at all, in systematic errors in the model's 
forecasts or in statistics suggesting that the model has not 
extracted all the useful information in the historical data.) 

A More Flexible Expression of Beliefs 
Many structural models forecast more accurately than 
large UVARs, but they still don't satisfy many econo-
mists. (See, for example, Sims 1980, Lucas and Sargent 
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1981.) This has led some to suspect that exclusion 
restrictions derived from imperfect economic theories 
may be a barrier to improved forecasting and that 
explicitly Bayesian models with the flexibility to more 
accurately represent prior statistical and economic beliefs 
might give better forecasts. Bayesian vector autoregres-
sion (BVAR) forecasting models have been developed to 
test this possibility. 

At first glance a simple BVAR model might seem to be 
no different than a simple UVAR model. In both types of 
models each variable is allowed to depend on the current 
and past values of all the variables that the modeler has 
included in the model. The equations of a BVAR model of 
the money supply and real output, for example, would 
have the same form as equations (1) and (2). 

Although a BVAR model resembles a UVAR model 
in the form of its equations, it also differs from a UVAR 
model—and resembles a structural econometric model— 
by making heavy use of prior beliefs to reduce overfitting. 
The sources of the prior beliefs and the ways they are used 
are generally different in a BVAR model than in a 
structural model, however. Whereas economic theory is 
the main source of prior beliefs in structural models, it is 
often secondary to statistical theory and observations in 
BVAR models. Furthermore, whereas in structural 
modeling (at least in its textbook form) each coefficient 
either is set to zero no matter what the data show or is 
determined solely by the data no matter what the modeler 
believes, BVAR modeling doesn't make these sharp 
distinctions. Instead the BVAR modeler uses prior 
statistical and economic knowledge to guess which values 
of all the coefficients will lead to the best forecasts and to 
specify an extensive system of confidences in each 
"guesstimated" coefficient. The modeler then uses a 
statistical procedure to revise these prior beliefs in light of 
the evidence in the data and thus to override each of the 
guesses. The extent to which the data are allowed to 
revise the modeler's guess about a particular coefficient 
depends on the modeler's initial confidence in the guess: 
the more confidence, the less weight given to the patterns 
in the data and vice versa. 

Thus, unlike structural modelers, BVAR modelers do 
not try to avoid overfitting by reducing the number of 
coefficients. Instead, they try to reach that goal by 
allowing lots of coefficients but reducing the data's 
influence on them. As long as the BVAR modeler 
expresses enough confidence in enough coefficient 
guesses to significantly limit the revisions that accident-

al patterns in the data can produce, overfitting will gener-
ally be limited as well. This is accomplished, however, 
without preventing important but unexpected historical 
relationships between variables from being discovered, as 
when the data strongly override a modeler's guess.2 

A Close Look at a BVAR Procedure: 
The Minnesota Prior 
Prior beliefs about the coefficients of a forecasting model 
can come from many sources and take many forms. I 
have already discussed the sources and forms that are 
implicitly used in the UVAR and structural modeling 
approaches. When an explicitly Bayesian approach is 
used, it becomes clear that the modeler is free to take prior 
beliefs from many sources and cast them into many 
forms. Therefore it is impossible to speak of a unique 
Bayesian or even BVAR approach to forecasting. 

In recent years, however, at least one BVAR approach 
has evolved as an alternative to structural econometric 
modeling for a variety of economic forecasting applica-
tions. This approach is more objective and reproducible 
than most procedures for combining beliefs and data in 
forecasting, and it has been described, documented, and 
evaluated by several researchers. (For example, see 
Litterman 1980; Kinal and Ratner 1983; Hoehn, 
Gruben, and Fomby 1984; Doan, Litterman, and Sims 
1984; and the technical appendix to the outlook paper by 
Litterman in this issue, available on request to the 
Research Department, Federal Reserve Bank of Minne-
apolis.) Although this approach was developed with the 
overfitting problems of large forecasting models in mind, 
its essential elements can be illustrated with a BVAR 
version of the simple money supply and real output model 
of the previous sections. As yet, this particular system of 
Bayesian priors has not acquired a particular name to 
simplify discussions of it. Since it has been developed and 
used mainly by economists associated with the Univer-
sity of Minnesota and the Federal Reserve Bank of 

2The distinctions between structural and BVAR models are sometimes 
blurred, but usually only slightly. Structural modelers, for example, sometimes 
also use nonexclusion restrictions and flexible degrees of confidence, though 
rarely as extensively as BVAR modelers. Exclusion restrictions are also some-
times used in BVAR models, though less extensively and for different reasons 
than in structural econometric models. Even with their exclusion restrictions, 
some BVAR models currently used for forecasting still have dozens or even 
hundreds of variables (including lagged variables) in each equation rather than 
just the few variables that structural model equations include. (See the outlook 
papers by Litterman and by Amirizadeh and Todd in this issue, for example.) In 
BVAR models exclusion restrictions are used mainly to reduce the costs of 
building and using the models, not to avoid overfitting. 
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Minneapolis, I will call it the Minnesota system of prior 
beliefs or, even more briefly, the Minnesota prior. 

Taking a Random Walk, With Confidence 
In general terms we have seen that a Bayesian modeler's 
prior beliefs take the form of probabilities about which of 
the possible forecasting models will forecast best. The 
first step in using the Minnesota prior is the common one 
of limiting the set of possible models by choosing a group 
of variables to include in the model and specifying that 
they will be linked by linear equations. As usual, the 
choice of variables is dictated in part by which variables 
the modeler wants to forecast and is also guided by 
economic reasoning and experience concerning which 
other variables are available that might be closely related 
to the variables to be forecasted. In the simple model 
discussed above [equations (1) and (2)], for example, 
MONY and RGNP are to be forecasted by using the 
current value and the two past values of each (and a 
constant term). Once the variables have been chosen, the 
prior beliefs concern the values of the coefficients of each 
of the variables in each of the linear equations of the 
model, and they can be expressed in the form of 
probabilities about which set of values will give the best 
forecasts. In the Minnesota prior, these probabilities can 
be described by assigning certain numbers—mainly a 
best guess and a measure of confidence—to each co-
efficient in the model. A Minnesota prior for the MONY-
RGNP model would include a best guess of the coeffi-
cients km, kr, a0, tfj, a2, b0, bb2, c0, cl9 c2, d0, dl9 and d2 
in equations (1) and (2) as well as a quantitative 
expression of the modeler's confidence in each of these 
guesses.3 

In the Minnesota prior, the best guesses of the 
coefficients are usually set either exactly or approxi-
mately according to the random walk hypothesis. This 
hypothesis capitalizes on a simple statistical observation 
that is often a forecaster's chief source of embarrassment: 
many economic (and other) variables seem to behave as 
though changes in their values are completely unpre-
dictable. For such a variable, the best forecast of its future 
values is just that they will equal its current value. Even 
for variables whose changes are thought to be partially 
predictable, these no-change forecasts can be surprisingly 
difficult to improve upon. 

To implement the random walk hypothesis, the best 
guesses of the Minnesota prior are that, with one ex-
ception, all the coefficients in the equation for any given 

variable are zero. The exception is the coefficient on the 
most recent value of the given variable, and that is guessed 
to be one. In the MONY-RGNP model, this would mean 
setting the best guesses of a0 and dQ at one and those of all 
the other coefficients at zero. If all these guesses were 
right, future values of the variables would differ from their 
current values only because of completely unpredictable 
random events [represented by mt+l and rt+x in equations 
( l )and (2)]. 

Since it is an explicitly Bayesian procedure, the 
Minnesota prior does not place unlimited confidence in 
the best guesses derived from the random walk hypoth-
esis. Instead the modeler must supply a quantitative 
measure of confidence in each best guess. Although 
these measures can be expressed in many equivalent 
ways, in the Minnesota prior they are usually docu-
mented and discussed in terms of what a Bayesian statis-
tician would call the prior variance of the coefficient. In 
less technical (and somewhat loose) language, this 
measures how likely it is that the coefficient is actually 
close to the best guess and, in particular, how far above 
and below the best guess the modeler would have to go 
before being willing to place 2-to-l odds on the coeffi-
cient actually lying between those values. (The distance 
away from the best guess in either direction equals the 
square root of the prior variance, which is known as the 
prior standard deviation.) A small prior variance, or 
equivalently a narrow 2-to-1 confidence band[ indicates 
that the modeler is very sure that the coefficient that gives 
the best forecasts is close to the best guess. A wide band 
indicates that the best coefficient could easily be very far 
away from the modeler's best guess. Narrowing the 
band, or decreasing the prior variance, is known as 
tightening the prior (around the best guess). Similarly, 
loosening the prior involves widening the band, or 
increasing the prior variance. A complete description of 
the modeler's degree of confidence in the best guesses 
would determine the prior variance of the coefficient of 
each variable in each equation. 

Some BVAR forecasting models have hundreds of 
coefficients, which means that the number of prior 
variances to choose is so large that deliberating about 
each individually is impractical for the modeler. The 

3 In technical terms, the modeler must specify a joint probability distribu-
tion for the coefficients of the model, and the Minnesota prior assumes that it is a 
multivariate normal distribution. Many of the means and covariances of this 
prior distribution are often set at zero, but the variances are generally positive, as 
indicated later. 
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Minnesota prior includes a system which makes such 
deliberation unnecessary. It approximates a full set of 
prior variances almost automatically once the modeler 
has chosen some of their key features. With one 
exception, this system proceeds in two stages. First the 
modeler selects a few restrictions that group the prior 
variances and mainly determine the relative sizes of the 
prior variances within each group. Then, for each of 
those groups, the modeler selects a range of possible 
values for a scale factor that completes the determination 
of the prior variances. 

The one exception to the two-stage procedure for 
determining prior variances concerns the prior variances 
of the constant terms in each equation. [These would be 
the prior variances of km and kr in the MONY-RGNP 
model of equations (1) and (2).] These variances are 
often simply set to very large numbers, which amounts to 
saying that at least over a very large range the modeler 
regards all possible values of the constant term as almost 
equally likely and is willing to let the constant term be 
determined by the data alone. The constant term repre-
sents the average increase per period, or the drift, in the 
variable.4 Because drift is determined by the data with 
almost no influence from the modeler's guess of zero for 
the constant term, the best guesses of the Minnesota 
prior are sometimes described not as just the random 
walk hypothesis but as the random walk plus drift 
hypothesis. 

Relative Degrees of Confidence 
Specification of the rest of the prior variances begins with 
the selection of restrictions on how the variances are 
related to each other. BVAR modelers use many different 
types of restrictions. (See Doan, Litterman, and Sims 
1984 for many examples.) Most modelers, however, use 
two basic and closely related types. Both of them are 
motivated by the notion that the highly lagged (less 
recent) values of a variable are less likely to be useful in 
forecasting than the less highly lagged (more recent) 
values. 

In the equation that forecasts any given variable, the 
first restriction takes the form of weights that shape the 
prior variances of the coefficients of current and past 
values of the given variable. These values are known as 
the own lags (of the variable that the equation forecasts). 
In the simple MONY-RGNP model they are MONYt, 
MONY]_l9 and MONYt_2 in the money supply equation 
and RGNPt, RGNPt_x, and RGNPt_2 in the real output 
equation. 

The Minnesota prior asserts that the less important a 
variable is believed to be for forecasting, the greater is the 
modeler's confidence in the best guess of its coefficient. 
Since the more recent values of a variable are considered 
more important for forecasting than the less recent ones, 
the prior variances on the own lags should get smaller, or 
tighter around the best guess, as the lags become longer 
(that is, as the variable becomes less recent). As lag length 
increases, this feature of the Minnesota prior combines 
with the random walk best guess to express increasing 
confidence that zero coefficients for own lag variables will 
lead to good forecasts. The restriction is imposed by 
weighting each own lag prior variance by 1 /{k+1), where 
k is the length of the lag (the number of periods before the 
current period). Making the own lag prior variances pro-
portional to 1 /{k+1) means that, in the MONY equation, 
for example, the prior variances of the coefficients of 
MONYand MONYt_2 are one-half and one-third, 
respectively, as large as the prior variance of the coeffi-
cient of MONYr 

In the equation that forecasts any given variable, the 
second restriction takes the form of weights that shape the 
prior variances of the coefficients of current and past 
values of all the variables besides the given variable. 
These values are known as the cross lags (of the variable 
that the equation forecasts). In the simple MONY-RGNP 
model they are RGNPt, RGNP; 1? and RGNPt_2 in the 
money supply equation and MONYt, MONYr_l9 and 
MONY)_2 in the real output equation. The prior variances 
of the coefficients of the cross lag variables have the same 
relative sizes as the coefficients of the own lag variables. 
In particular, they are weighted by l/(/:+l), so that their 
prior variances also get tighter (smaller) as the length of 
their lag increases (and hence as their probable impor-
tance for forecasting declines). They are also each 
weighted by an own-versus-cross variance factor, which 
gives the cross prior variances units comparable to those 
of the own prior variances.5 

4For the many variables in logarithmic form in most BVAR models, the 
constant term represents average percentage increase per period. 

5 The own-versus-cross variance weight is sQ/sc, where s0 and sc are the 
standard errors of estimate from regressions of the own and cross variable, respec-
tively, on several of their past values. It is independent of lag length but specific to 
a given cross variable. It becomes especially important in larger models, where 
each equation would have not just one cross variable (and its lags) but rather 
many. Then the prior variance of each lag of each cross variable is converted to 
units comparable to the own lag prior variances by the own-versus-cross variance 
factor (s 0 / s c ) specific to that cross variable. 
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The combined effect of the random walk best guesses 
and the first stage of the determination of the confidence 
levels is illustrated for the money supply equation of the 
MONY-RGNP model in the accompanying figure. The 
curves show the relative probabilities attached to the 
coefficients of the MONY and RGNP variables in that 
equation. The curve for the current value of MONY has 
its highest value—the highest probability among the 
possible values of its coefficient—at one, which is the best 
guess for that variable. Similarly, the curves for the other 
variables have their highest values at zero, the best guess 
for those variables. The curves for current values of 
variables are broad and low, which means that a wide 
range of possible values for the coefficient has prior 
probability not much lower than the best guess and that 
even values fairly far from the best guess are not 
considered to be extremely unlikely. The curves for the 
lagged values of variables become progressively more 
peaked and concentrated around the best guess, which 
puts low probability on values outside of that narrow 
range. This reflects the fact that as lag length increases the 
modeler becomes increasingly confident that a zero 
coefficient will be consistent with a model that forecasts 
well. 

Absolute Degrees of Confidence 
Restrictions such as the two described above determine 
many, but not all, features of the prior variances of the 
coefficients in the model. In particular, they define a few 
large groups of coefficients and, within each group, 
determine how the coefficients' prior variances are re-
lated to each other. In the MONY-RGNP model above, I 
have defined two groups—the own lag coefficients and 
the cross lag coefficients—and have picked weights that 
determine the relative sizes of the prior variances within 
each group.6 

Once this has been done, all the modeler would need to 
do to complete the specification of the prior variances is to 
pick one number, a scale factor called a hyperparameter, 
for each group of coefficients. That hyperparameter 
would simultaneously multiply all the weights assigned to 
coefficients in the group and convert these weights from 
relative to absolute prior variances. For example, if in the 
MONY-RGNP model the hyperparameters H0 and Hc 
were assigned to the own and cross variable groups of 
prior variances, respectively, then together with the own 
and cross lag weights already chosen they would give the 
prior variances shown in the accompanying table. (In the 

The Minnesota Prior's Relative Degrees 
of Confidence in Its Random Walk, 

Best-Guess Coefficients 

Hypothetical Probabilities on the Coefficients 
in the Money Supply Equation (1) 

Coefficients on Own Lags 
(MONY Variables) 

Current Period (t) 

One Period Earlier (f—1) 

Two Periods Earlier (t—2) 

Coefficients on Cross Lags 
(RGNP Variables) 

Current Period (t) 

One Period Earlier (£-1) 

Two Periods Earlier (t-2) 

table, fm=s Jsr and f=sr/sm, where sm is the standard 
error of estimate in a regression of MONY on several of 
its past values and sr is the corresponding figure for 

6In this example, the groups do not overlap, but in real BVAR models this is 
not necessary and often not true. See Doan, Litterman, and Sims 1984, for 
example. 

Coefficient Values 

/ k 

I 
0 1 

Coefficient Values 
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RGNP.) To be more specific, if H0 equaled Ys and Hc 

equaled 2, the own lag weights in the table would become 
Ys, Yi69 and 2̂4 while the cross lag weights would be-
come 2, 1, and Assigning hyperparameters to each 
group of coefficients is the second stage in specifying prior 
variances according to the Minnesota prior. 

The second stage would be very simple—and the 
entire procedure a standard Bayesian one—if the modeler 
had firm beliefs about the hyperparameters, or in other 
words was certain of the absolute size of at least one of the 
variances within each group of relative variances. In that 
case, as in the MONY-RGNP example, the appropriate 
hyperparameter would be assigned to each group, com-
pleting the specification of the prior probabilities (best 
guesses and variances) of the model's coefficients. Then 
the data would be examined with standard Bayesian 
statistical procedures in order to revise these prior 
coefficient probabilities and determine the final forecast. 

The Minnesota prior, however, generalizes the stan-
dard Bayesian approach by not requiring that the model-
er have firm beliefs about the hyperparameters. The 
modeler determines many key features of the prior 
coefficient probabilities with the best guesses and the 
restrictions among groups of prior variances. Once that is 
done, the modeler using the Minnesota prior can claim to 
be almost ignorant about the absolute levels of the various 
groups of prior variances. This adds another layer of prior 
probabilities—probabilities about the few hyperpara-
meters that determine those absolute levels—to the 
normal Bayesian procedure. In other words, instead of 
picking a single probability distribution for the model's 
coefficients, the modeler specifies a group of similar 
probability distributions, one for each setting of the 
hyperparameters, and treats all the distributions within 
the group as equally likely. Ideally, standard Bayesian 
statistical procedures would then be applied to the data to 
compute revised (posterior) coefficient probabilities for 
each possible setting of the hyperparameters. The final 
coefficient probabilities (and hence the final forecast) 
would be formed as a weighted average of these, with the 
weight attached to each proportional to the probability 
that the setting of the hyperparameters that generated it is 
consistent with the historical data. (See Doan, Litterman, 
and Sims 1984.) 

In principle, adding this ideal weighting process to 
standard Bayesian statistical procedures should not be 
difficult, but the great expense of actually computing the 
average has led most BVAR modelers to use a cheaper 

Moving From Relative 
to Absolute Degrees of Confidence 

in a Model's Coefficients 

Hypothetical Prior Variances 
for the Coefficients in the MONY-RGNP Model* 

Equations 

Variables 

(1) (2) 
Money Real 
Supply Output 

Money Supply Variables (MONY) 

Current Period (t) 

One Period Earlier (f—1) 

Two Periods Earlier (t—2) 

Real Output Variables (RGNP) 

Current Period (t) 

One Period Earlier (f—1) 

Two Periods Earlier (t—2) 

H0 

H0(V2) 

H0(V.3) 

Hcfm 

" c m f m 

»Jr 
Hcm 

Hcm 

"a 

H0(V2) 

H0(V.3) 

*This is the general formula for the prior variances: 

Absolute 
Confidence 
Scale Factor 

Relative 
Confidence 
Weight 

Own vs. Cross 
Variance 
Factor: 

Hyperparameter X 1/(/c+1) X tort 
(Hcor Hc) (k = lag length) (on cross lags only, 

to make units 
comparable) 

approximation. Instead of averaging all the standard 
models that come from all the possible settings of the 
hyperparameters, they simply try to find the one set of 
hyperparameters that leads to the best mock forecasts of 
the historical data. Under certain assumptions the fore-
casting model and revised probabilities associated with 
the best mock forecasts will be close to those formed by 
the ideal weighted average (Doan, Litterman, and Sims 
1984). One of those assumptions is that the modeler's 
beliefs can be thought of (at least approximately) as 
defining a particular range of hyperparameter values: all 
values within the range are believed to be equally likely 
and all values outside it highly unlikely. Another assump-
tion is that within that range the quality of the mock 
forecasts does not vary too much. TTiis second assump-
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tion frequently seems to be satisfied over ranges broad 
enough to include most plausible hyperparameter values. 
(See Doan, Litterman, and Sims 1984 for one example.) 
That has made it relatively easy for several BVAR 
modelers to accept the first assumption as well.7 

Finding the Final Model 
In practice, then, the second stage of specifying prior 
variances according to the Minnesota prior merges into 
the selection of a final forecasting model; these are 
simultaneously determined when the modeler finds the 
hyperparameters that lead to the model that seems to give 
the best forecasts. To judge the forecasts associated with a 
given setting of the hyperparameters, the modeler re-
peatedly replicates how a model based on those hyper-
parameters would have forecasted in the past.8 To find the 
setting that seems to lead to the best forecasts, the 
modeler simply uses trial and error, testing many settings 
and picking the one that leads to a model whose replicated 
forecasting errors are smallest (according to whichever of 
several standards of accuracy the modeler prefers). The 
final forecasting model, computed as part of the trial and 
error process, uses all available historical data to revise 
the prior probabilities associated with the best setting of 
the hyperparameters. 

The key step in finding the best setting of the hy-
perparameters is replicating how a model based on any 
given set of hyperparameters would have forecasted. 
Because BVAR models are linear and can easily be 
reestimated when new data become available, BVAR 
modelers can address this question by simply recreating 
hundreds of past forecasts. 

Suppose that a BVAR modeler had quarterly data 
from the first quarter of 1955 to the fourth quarter of 
1984, or a total of 120 observations, on the variables in 
the MONY-RGNP model. For any given set of hyper-
parameters, the modeler could use the first 20 observa-
tions (the first quarter of 1955 through the fourth quarter 
of 1959) to estimate a BVAR model, use that model to 
forecast the 21st observation (the first quarter of 1960), 
and then compute the difference between the forecasted 
and actual values of the 21st observation. This difference 
is known as the one-step-ahead forecast error for the 
21st observation, because it is the error in a forecast that 
extends one quarter beyond the period of historical data 
used to estimate the forecasting model. It replicates the 
forecast that a BVAR modeler could actually have made 
in early 1960, as soon as data for the fourth quarter of 

1959 became available. Next the BVAR modeler would 
use the first 21 observations to compute a one-step-ahead 
error for the 22nd observation, the first 22 observations to 
compute a one-step-ahead error for the 23rd observation, 
and so on until all the observations had been used to 
compute, in this case, 100 one-step-ahead forecast errors 
for the given setting of the hyperparameters. The same 
number of one-step-ahead forecast errors would then be 
computed for each of a number of other possible settings 
of the hyperparameters. The setting with the smallest 
average one-step-ahead forecast errors (by any of several 
measures) could then be selected as the best, or the 
modeler might also examine similarly computed two-, 
four-, or eight-step-ahead forecast errors before selecting 
the best setting of the hyperparameters. This would 
complete the selection of the hyperparameters as well as 
of the final forecasting model. 

Once the hyperparameters that lead to the best 
forecasting model have been chosen, they are usually 
reevaluated only every few years or, more likely, when a 
change is made in the model, such as the addition or 
deletion of a variable. More frequent updating of the 
hyperparameters is expensive, and experience in search-
ing for the best settings of the hyperparameters suggests 
that it would probably make little difference in the average 
accuracy of the forecasts. 

Although the hyperparameters are infrequently re-
vised, the coefficients associated with the chosen hyper-
parameters are routinely updated every period, as new 
data become available. The linear relationships between 
variables in a BVAR model make this simple and in-
expensive. 

The Minnesota system of prior beliefs is not simple to 
use, but it does give forecasters a flexible way to express 
prior beliefs and an objective procedure for combining 
those beliefs with historical data to produce forecasts. In 

7 An alternative, non-Bay esian interpretation of picking the hyperparameters 
that lead to the best mock forecasts is that BVAR modelers' restrictions on tlje 
relative sizes of prior variances already express a set of prior beliefs strong and 
clear enough to avoid overfitting. Having done this, the BVAR modeler can just 
pick the model that seems to forecast most accurately (according to tests on the 
historical data) without being too concerned that the model's coefficients have 
been contaminated by accidental patterns in the historical data. 

8Note that, in the Minnesota prior, hyperparameters are picked according to 
how well the coefficients they lead to forecast data that were not used to estimate 
the coefficients. This is known as out-of-sample forecasting. A more common 
procedure for choosing among models is in-sample forecasting, where models are 
judged by how well they explain the same data used to estimate their coefficients. 
That is not as effective as out-of-sample forecasting at weeding out models whose 
coefficients have been overfit to the data. 
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that sense it represents a move away from traditional 
forecasting procedures toward Bayesian procedures that 
seemed, by the late 1970s, more promising to at least 
some economists. 

Improved Method, Improved Results 
The accuracy of a forecasting model is generally assessed 
by some measure of the average distance between its 
guesses of what the future is most likely to be and what the 
future actually turns out to be. Although the evidence is 
limited, BVAR models' guesses about the most likely 
future appear to be at least as accurate as those of 
competing forecasting procedures. 

As noted earlier, structural econometric models are 
frequently not accurate enough to satisfy the modelers 
who manage them, and many of these managers routinely 
use their own subjective views about where the economy 
is heading to adjust their models' forecasts. Because of 
this subjectivity, good evidence on the relative accuracy 
of forecasts by BVAR models and forecasts by structural 
modelers is hard to come by. Good evidence would 
consist of, for example, a history of thousands of com-
parable forecasts from both of these sources. At first 
thought it might seem that such evidence could be 
synthesized by doing with structural models what BVAR 
modelers do—repeatedly using data up to some previous 
date to estimate the coefficients of the model, pretending 
to forecast the ensuing periods, and comparing these 
pretended forecasts to the actual historical data. How-
ever, this would not accurately reproduce structural 
modelers' forecasts. It omits the subjective adjustment 
they would have made to the model's forecasts. That 
adjustment cannot be realistically recreated with hind-
sight. 

Instead of using synthetic forecasting records to 
compare the forecasts made by BVAR models and 
structural econometric modelers, generally we must look 
to the history of their actual forecasts. This history is far 
too short to give decisive evidence, and the fact that the 
subjective component in the structural forecasts takes on 
new properties at least every time a new person begins to 
manage the model means that in some sense it will always 
be too short. Nonetheless, the historical record gives no 
reason to regard BVAR forecasts as less accurate. The 
longest record of reasonably comparable forecasts in-
cludes national economic forecasts from several well-
known structural econometric forecasting firms as well as 
from the first BVAR prototype, a six-variable model 
constructed at the Federal Reserve Bank of Minneapolis 

in the late 1970s. This model pioneered the Minnesota 
prior in an attempt to investigate the usefulness of the 
BVAR technique. Forecasts from that BVAR prototype, 
regularly computed over a four-year period with no 
subjective adjustment or respecification of the model, 
compare favorably with those from the structural fore-
casters. Out of a total of over 1,100 forecasts, the BVAR 
model was most accurate for 39 percent; the next-best 
model was most accurate for only 23 percent. (See 
Litterman 1984.) 

The explicit documentation of BVAR statistical 
procedures means that the forecast performance of 
BVAR models is more likely to improve than that of 
structural econometric forecasters. Unlike the highly 
personal procedures for adjusting structural forecasts, the 
objective BVAR procedures can be improved by eco-
nomic research and accumulated forecasting experience, 
and this is already happening. Recent BVAR models of 
the national economy are much more sophisticated and 
likely to be accurate than the BVAR prototype that 
outperformed the commercial forecasting models. (See 
Doan, Litterman, and Sims 1984.) 

If accuracy of guesses about the most likely future 
were the only criterion, some might consider the advan-
tages of BVAR models modest. However, because 
BVAR models can forecast a large group of variables 
relatively accurately without subjective adjustment, they 
are also likely to be more informative than other fore-
casting procedures. They probably can produce more 
accurate answers to a wider variety of questions about 
complicated or unobservable features of the future econ-
omy. 

Examples of such questions are, How would an 
unexpected change in the money supply affect real 
output? And, What are the odds of a recession occurring 
next year?9 The accuracy of any answers to such 
questions is obviously very hard to measure. But a BVAR 
model's answers are probably more accurate than a struc-
tural model's. A BVAR model produces these types of 
forecasts using only current data and the same explicitly 
documented statistical procedure whose measured ac-
curacy compares well with that of other procedures. By 
contrast, as we have seen, a structural model's fore-
casts—or at least the forecasts that the model's managers 
actually give to its users—often include adjustments that 

9For examples of the use of BVAR models to answer such questions, see the 
other papers in this issue. 
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the managers make according to an undocumented and 
highly personal procedure. Even if the managers appear 
to be accurate forecasters of simple observable future 
values, therefore, there is no guarantee that the subjective 
adjustments they would make to forecast complicated 
economic interactions or unobservable probabilities 
would be determined by procedures consistent with those 
they use to generate their standard forecasts, whose 
accuracy can be measured. The procedures they use to 
forecast anything more complicated than a most likely 
value are not only generally undocumented but also 
probably untested and almost untestable. 

These abstract arguments for the greater informa-
tiveness of BVAR models are mild compared to argu-
ments based on the practical ways BVAR and structural 
models are actually used. With BVAR models, the same 
model and explicit statistical procedures that produce its 
accurate forecasts of the most likely values of variables 
are routinely used to generate answers to a wide variety of 
more complicated questions, about future probabilities 
and hypothetical relationships among variables. Struc-
tural econometric modelers often avoid forecasting these 
important but complicated events or forecast them in 
ways that defy a rigorous statistical interpretation. (See 
Litterman and Supel 1983.) 
Summary 
Research on BVAR models and the Minnesota prior was 
stimulated in the 1970s by dissatisfaction with the 
methods and results of structural econometric forecasting 
and by hopes that explicitly Bayesian forecasting pro-
cedures could improve both. Experience with BVAR 
models is still limited, but they seem to be realizing the 
initial hopes to some degree. Forecasts straight from 
BVAR models seem to be at least as accurate as sub-
jectively adjusted forecasts based on structural econo-
metric models. The ability of BVAR models to forecast 
accurately without adjustment means they can generate 
objective answers to complicated questions that struc-
tural econometric forecasts usually avoid or evade. The 
methods used to construct BVAR models combine 
flexible—and therefore probably more accurate—forms 
for expressing and documenting personal beliefs about 
the economy with objective, reproducible statistical pro-
cedures for combining those beliefs with historical data. 
This has made these forecasting procedures relatively 
open to scientific examination and discussion, a powerful 
process which has led to some useful refinements already 
and may well lead to many more. 
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