G S Gl

Estimation of Dynamic Labor Demand
Schedules Under Rational Expectations

Thomas J. Sargent
September 1977

Working Paper #: 93

University of Minnesota
and
Federal Reserve Bank
of Minneapolis

The views expressed herein are solely those of the author and do not
necessarily represent the views of the Federal Reserve Bank of Minneapolis
or the Federal Reserve System. The material contained is of a preliminary
nature, is circulated to stimulate discussion, and is not to be quoted
without permission of the author.

Robert Litterman most ably performed the rather involved calculations
reported in this paper.




Both Keynes and various classical writers asserted that real
wages would move countercyclically as employers moved along downward
sloping schedules relating the employment-capital ratio to the real
wage. Dunlop [1938] and Tarshis [1939] described evidence which they
interpreted as failing to confirm a countercyclical pattern of real wage
movements. That and subsequent evidence of a similar nature helped to
stimulate attempts to describe aggregate employment and real wages by

"disequilibrium models,'" the work of Barro and Grossman [1971] and Solow
and Stiglitz [1968] being two prominent examples. However, most of that
empirical evidence stemmed from fitting static regressions in attempts
to test static theories of the demand for employment. The recent paper
by Salih Neftci [1977], which computes long two-sided distributed lags
between employment and real wages, indicates that there are complicated
and statistically significant dynamic interactions between real wages
and employment, at least in the post-World War II U.S. data.

This paper estimates a dynamic aggregative demand schedule for
employment for post-war U.S. data. While the demand model makes employ-
ment depend inversely on the appropriate real wage, as does the static
theory, a potentially rich dynamic structure is introduced into that
dependence because firms are assumed to face costs of rapidly adjusting
their labor force and so find it optimal to take into account future
expected values of the real wage in determining their current employment.
The model imposes overidentifying restrictions on the bivariate real
wage-employment stochastic process and therefore can be tested given a
single sample of data.

The model is formed by blending the costly adjustment model of

Lucas [1967], Treadway [1969], and Gould [1969] with Lucas's static
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model of overtime work and capacity [1970]. The model is formulated so
that it delivers linear decision rules relating the demand for straight-
time employment and overtime employment each to the real wage process.
The model imposes the rational expectations hypothesis, since firms are
supposed to use the true moments of the real wage process in forming
forecasts. The rational expectations hypothesis is a main source of the
overidentifying restrictions imposed by the model.

In addition hopefully to providing some new evidence in the
Dunlop-Tarshis tradition, this paper illustrates a technology for maximum
likelihood estimation of decision rules under the hypothesis that expectations

1
are rational. That technology potentially has a variety of applications.*/



1. The Demand for Employment

The model is formed by taking Lucas's model of overtime work
and capacity [1970] and amending it to permit potentially different
adjustment costs to be associated with rapidly changing straight-time
and overtime labor.gf It is widely asserted that it is much cheaper to
adjust the overtime labor force quickly than it is to adjust the straight-
time labor force; consequently, it is alleged that overtime labor respondé
rapidly to the market signals that the firm receives, while the straight-
time labor force responds more sluggishly. The model is designed to
represent this phenomenon and to provide a framework for estimating its
dimensions and testing it.

I shall work with a representative firm, although as I shall
remark below, the model can handle certain kinds of diversity across
firms. Following Lucas, suppose that the representative firm faces the

instantaneous production function

y(t+t) = f(n(t+1),k(t+1)), fn, f fnk > 03 fnn, £, <0

k’ kk

=0, 1: 2,3 sss
te[0,1).

Here y(t+1) is the rate of output per unit time at instant t+T, n(t+T)
is the number of employees at instant t+T, and k(t+T) is the stock of
capital at t+T. The length of the "day" is 1, so that t indexes days
and 1 indexes moments within the day. The firm is assumed to have a

constant capital stock over the day so that

k(t+1) = k(t) = kt for te[0,1).




The firm is assumed to be able to hire workers for a straight-time shift

of fixed length h, < 1 at the real wage W, during day t. During the

1

overtime shift of length h2 =1- hl' the firm can hire all the labor it
wants during day t at the real wage aw, where a ~ 1.5 is an overtime
premium. Thus, for the first hl moments of day t the firm must pay
workers Wes while for the remaining h2 moments it must pay aw, - Con-
fronted with these market opportunities it is optimal for the firm to

choose to set n(t+1) = n. for Te[O,hl] and n(t+T1) = n, for Ta(hl,l).

t
That is, it is optimal for the firm to choose a single level of straight-
time employment n. during t and a single level of overtime employment

of n,. during the day t.

The firm's output over the "day" is then
Yy, = fl (t+1)dT
t 0’
= hlf(nlt’kt) + hzf(nzt,kt).

I take several steps to specialize this setup further. First,
to simplify things, I assume that capital is constant over time so that
kt can be dropped as an argument from f(*,*). (In the econometric work
below, steps are taken to detrend the data prior to estimation partly in
order to minimize the damage caused by this approximation.) Second, I
assume a quadratic production function so that we write instantaneous

output on the first and second shifts as

£, 2
£(n)0k) = (fgtay )ny, = 770,

£, 2
f(n,y, k) = (fgtay Iny, = 570y,
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where fo, f1 > 0, and where a. and a,, are exogenous stochastic processes

affecting productivity of straight-time and overtime employment. We

assume that Ealt = EaZt = 0. The stochastic processes aj. and a, will

be required to satisfy certain regularity conditions to be specified

below.
The firm is assumed to bear daily costs of adjusting its

straight-time labor force of 2(n 0y 1)2 and to bear daily costs of

2

adjusting its overtime labor force of E(nzt-n )7, It is widely

2t-1
believed that it is substantially more expensive to adjust the straight-

time labor force so that d >> e. The firm faces an exogenous stochastic
process for the real wage of {wt}. The firm's straight-time and overtime

wage bills are, respectively, w h1 1t and aw h2 2"

The firm chooses contingency plans for ny

3/

its expected real present value—

and n, to maximize

t t

£
L 2
Mt ees = 2 PP e

e T }
(1) Ve T EthOb [(f0+alt+j Vit

- % ) 2r (s g+ )h

lt+j "lt+j-1 Bt4+i e+ "2 2t 4

£, 2 2

= 7 PR (“2:+j Dot4y-1)

2 "2"2t+j T

f f

0’ d, e>0, a>1, 0<b <1

1!

where n1 and Ny 1 as well as the stochastic processes for w, ajp, and
a, are given to the firm. Here b is a real discount factor that lies
between zero and one. The operator Et is defined by Etx = ExIQt where

x is a random variable, E is mathematical expectation, and Qt is an
information set available to the firm at time t. I assume that Rt

inC].udES at 1east {nlt-l’HZt—l’alt'alt“l’”.’aZt a "w 1""}'

2t-1""
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The firm is assumed to maximize (1) by choosing stochastic processes for
ny and n, from the set of stochastic processes that are (nonanticipative)
fuﬁctions of the information set Qt. (Below, I will further restrict
the class of stochastic processes over which the optimization is carried
out.) I assume that the stochastic processes Wes @10 and a,, are of

exponential order less than (i), which means that for some >
1 d 1 h (t) hich h f K 0

1,3
IEtwt+j| < K(b)

1,3
|Eayeeyl < KGR

1,3
Eedgesyl < KG)

for all t and all j > O.
First-order necessary conditions for the maximization of (1)
consist of a set of "Euler equations" and a pair of transversality

conditionS.é/ The Euler equations for {nlt} and {nzt} are

h
. P 5 - -
BE b i™rergl T 01 e T Mlergo1 T T Mewi 2 le4 £y
j=0, 1, 2,
(2)
h,
PE yiP2e4+1 T 22e45 t P2e4y-1 T E_(a“t+j'azt+j"f0)
§=0, 1, 2, ...
where
f.h
1M1
= - (—— +
0y = =g+ @)

(3)

f,h
-2+ b)),

<
(o]
1]
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The transversality conditions are

(4) lim b Te = 1lim b En = Q.
Too t 1t+T Tseo t 2t+4+T

To solve the Euler equations for the optimum contingency plans, first

obtain the factorizations

¢ _
(5) (1+ T2 +320) = (1-8,2) (1-6,2)
6 1 L2 .
(6) (1 + E—z + bz ) = (l-ulz)(l-uzz).

Given the assumptions about the signs and magnitudes of the parameters

composing b, ¢l’ and ¢2. it follows that factorizations exist with

1
0 < 51 <1< E.< 62 and 0 < Ul <1< % < Hye It then follows that

solutions of the Euler equations that satisfy the transversality con-

ditions and the initial conditions are given by 3

: 6lhl X
(@ n,, =6n__ (—) E W, )
1t 1"1e-1 " d i=0 2 Retal 0
(7)
(B) mye = W1 ™ 6 JED( 2) Et(awt-!-i_aZtﬁ_fO)'

It can be verified directly that these solutions satisfy the Euler

equations and the transversality conditions. The polynomial equation (5)
f.h
implicitly defines 61 and 52 as functions of 3 l. By studying this

polynomial;él it is possible to show that 51 is a decreasing function of
f.h

d

: and that i . bS.. It follows that . and 2 both increase with

62 1 1 62
increases in the adjustment cost parameter d. Reference to equation (7a)
then shows that increases in the adjustment cost parameter d, by increasing

51 and 6 , decrease the speed with which the firm responds to the real

wage and productivity signals that it receives. Similarly, My and e

L)
y an " Ul-

2

are decreasing functions of




Equations (7) are decision rules for setting 0. and n, as

linear functions of Nyeoyr Mooy and the conditional expectations

E 5 Eta i and E i’ i=0, 1, 2, .... However, in general,

twt+i 1t+ taz t+

these conditional expectations are nonlinear functions of the infor-

mation in Qt. Given particular stochastic processes for w , and

t? 21t
aZc’ equations (7) can be solved for decision rules expressing 0. and

n as, in general, nonlinear functions of Qt.

2t
For the purposes of empirical work, it is convenient to restrict

ourselves to the class of decision rules that are linear functions of

2 - The optimal linear decision rules can be obtained by replacing the

conditional mathematical expectations in (7) with the corresponding

linear least squares projections on the information set Qt' According-

ly, henceforth, I will interpret E as the linear least squares projection

operator.

To derive from (7) explicit decision rules for ny and ny, as

t

functions of Qt, it is necessary further to restrict the stochastic

I assume that a and a are each first-

processes w 1t 2t

, a ¢ and a

t 1 2t"

order Markov processes for which

4 .
Bibeni ™ A8 10
(8)

1

Et32t+i - Q2"'12t -

t
where |pl| < %, {pzi <-%. I assume that w_1is an n N _order Markov process

(10) w, = Vgt VW tvge ottt v, T8,

where g3t is a least squares disturbance that satisfies Et-l£3t =

7/

th
EE}tIQt-l = 0.~ It is convenient to represent the m -order process




where

We can write

o (G o

Axt_l + Et

Ye £3t
¥l 0
V-2 € =0

w 0
t-n

e | 0

= =]
Vl V2 . Vn VO
1 0 0 0

0 1 0 0

0 0 STl i 0 0

0 0 . 0 0 1

= Axt + Ec+1

= Azx + € + Ag

t t+2 t+1

= il +
Alx, +es Y Ae
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Since Etet+k = 0 for k > 1, we have

_ ad
Etxt+j A xt.

Assume that the eigenvalues of A are distinct so that A can be written

as

A = pAPE

where the columns of P are the eigenvectors of A and A is the diagonal

matrix whose elements are the eigenvalues of A.Ef Then we have

_ ppd
E = PA th.

t¥t+j

Finally, let ¢ be the lx(n+l) row vector (1,0,0,...,0) so that w, = CcX..

We thus have that

- i e |
(11) Etwt+j = cPA'P X, -

Substituting from (8) and (11) into (7a) givesgj

S h o
1 1 i -1
n, = 6.,n = ——=———gP z AP x
1t 171t-1 d 10 62 t
. 51“1( £ - 61“1( Lo
d 1 d p 1t
Log, 1=t
2 52
A
Let A. be the iith element of §1. Since 0, = 4 we have that | ll =
i 2 31!:’ 3;
|Aiﬁlb1 < 1 by virtue of the assumption that w, is of exponential order
less than %, i.e., that |Ai‘b] < 1. Then the infinite sum above con-

verges and we can write




6.h
_ 1M =1
(12) T LT i Sl FPL Y
1 = o=
Sy
§ Glhl( fo 4 51“1( L,
d 1 1 d p," 1t
- = 1
52 l—-e—s-—
2
1 Ay th
where [____i_]ii is a diagonal matrix with (1 - 3—) as the i diagonal
1 - -1 2
Sy
element.
. Let us write (12) aslg/
(13) Ne = O1fpeg ¥ Y Y OV g teect oW i t
§.h f
3 i § 0
2 T Y e
i §
where
§.h
. i 1 -
(14) (al,az,...,an,uo) Wi LP[l-Aialb]iiP
o Glhl{ L
1t d l—plélb 1t

Proceeding in the same way, we can write the decision rule for n, as

(15) Do = H1Pe-1 ¥ By + BWe gt ¥ BV t By

u,h £

12 %o ,
* e (l-plb) * A
where
U h
By 1 =1

(16) (31,32,...,Bn,80) = ”P[l-Xiulb]P

L By 3

al = ( Ya, .
2t l-pzulb 2t
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Equations (14) and (16) succinctly summarize how the distributed lag
coefficients, the a's and B's, reflect the combination of forecasting
(through the parameters of P and A) and optimization (through the para-
meters d, 6, and W) elements. Clearly, the decision rules (13) and (15)
are not invariant with respect to the stochastic process for real wages
(8), a general characteristic of optimum decision rules whose far reaching
implications for econometric policy evaluation have been stressed by
Robert E. Lucas, Jr., [1976].

Since I will fit the model to data that are deviations from
means and trends, I shall henceforth drop the constants from (13), (15),

and (10). Substitute (10) for w_ and subtract plait_1 from both sides

E
of (13) to get

(17) ne = Gpedng g - o8y, + (agtagvymann v
+ (agtogvomagpdwy o Heeot (abogvy g=0 100V
+ v ev_, + [0 8y 4@y -0ya1, )]

. 1 = =
From our earlier assumptions, Et_l[a1£3t+(alt plalt-l)] 0, so that

(17) is the (vector) autoregression for 0y, In particular, we have

t

(18) By = Gp*edng g = py8yny g + (aybogvo—aso)w,

)w +...+ (a +0u, v )w

+ (agta,vo=ayp v, 1n-1"%-1P1"Yt-n+1

+ (len-anpl)wt—n
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Similarly, we have for n,.

(19) Noe = CQuptppdnge 1 = PoupPoe_ g + (ByBVy B,
+ (BytB Vo ByP )W, o T ot (B FBIVL 7B 1P2)¥ 1
== L. 1
B VBLe VL T (B8 F(ag mppan, )]

We can now write the complete three-variate vector autoregression

for n n, , w_ as

1t” "2’ 't
(a) fiy g, = (5l+pl)nlt_l = P890y o T (et Vomaspdw, o
+ (agtogVyma,pdw, g +e.ot (an+alvn_1_an—1pl)wt—n+l
+ (v o e v ug
(20) (6) mpp = (Up*Py)mae g = PolyRpep * (BptByvyBoPp)ve g

+ (By#Biv,-Byp, )W, +o. ot (B 4BV, -B

10-1"Pa-1P2Y 1

¥ (Blvn-BnDZ)wt—n * u2t

(e) L + VoW o +.. .4+ VW o -+ ug,
where

wu ] _a £, +(a! -p,a! )_ dn -E n ]

1t 1°3t 1 o e b P le "t-1"1t

= = L 1 = -

U 2 Uy | F | Bibg (g, Pya5¢-1) Do e Pae

U3¢ &3¢ VB Ve
- - - — - -

Here u is the vector of innovations, i.e., errors in predicting (nlt,nzt,wt)

from past information. There are (3nt+4) regressors in (20), i.e.,
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w Ven? each of which appear three times, and n

t-1? *°°2 Wy 1t-1° M1e-2°

Ny 12 and Moy 9 each of which appears once. The free parameters of
the model are fl, d, e, ﬂl, pz, Vis wees Vi, SO that there are (n+5)
parameters to be estimated. As it turns out, the model is overidentified

for n>1.

Collecting the equations that summarize the restrictions that

the model imposes on the vector autoregression (20), we have

/
£y
6, = ~(1E + (14p))

f.h
¢, = -c—%—z + (1+b))

0
a+ Elz + %22) = (1-6,2) (1-6,2)

¢
B S LAt A

b b = (l-ulZ)(l-UZZ)

171 1 -1
cP | 1, .P
d l—kiélb ii

(al,az,...,an,ao)

(B)sBys--sBBy) = = =5 ‘P[l-Aiulb]iiP

A = php L.

Estimates of the free parameters ¢ = (fl,d,e,pl,pz,vl,---,vn) are obtained

by using the method of maximum likelihood to estimate the vector autore-

gression (20), subject to (21).——! Let u, = (ult’UZt’u3c) be the sample

residual vector associated with the parameter values 6. Under the

assumption that u, is a trivariate normal vector with Eutu; =V, the

likelihood function of a sample of observations on the residuals extending

over t=1, ..., T is

1 1
2T 2 i

(22) L(6) = (20) [v| “exp(- 3
t

~ =1~
'
ulV ut).

1

i~
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As shown by Wilson [1973] and Bard [1974], maximum likelihood estimates
of 0 with V unknown can be obtained by minimizing |G| with respect to 6,

~
where V is the sample covariance matrix of Ups

~ h'
uu .
t
1 t

vV =

==
Il ~—13

t

The matrix G is the maximum likelihood estimator of V (see Wilson [1973]
or Bard [1974]).

Now consider the unconstrained version of the vector autoregression
(20) in which each of the (3nt+4) regressors has its own free parameter.
Let Lu be the value of the likelihood function at its unrestricted
maximum, i.e., the maximum obtained by permitting each of the (3nt+4)
regressors to have its own free parameter. Let Lr be the value of the
likelihood under the restrictions (21). Then -2 loge(Lr/Lu) is asymp-
totically distributed as xz(q) where q = (3n+4) - (n+5) is the number of
restrictions imposed by the theory. High values of the likelihood ratio
lead to rejection of the restrictions that the theory imposes on the
vector autoregression. Using the calculations of Wilson [1973, p. 80]

or Bard [1974], it can be shown that the likelihood ratio is equal to

T{loge|ﬁr|—1ogeiﬁul}

~ ~

where Vr and Vu are the restricted and unrestricted estimates of V,

respectively.
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2. Alternative Estimation Strategies

It should be stressed that the vector autoregression (20)
which builds in the cross-equation restrictions implied by the model has
been obtained under the assumption (8) that the productivity shocks aj .
and a, are first-order Markov processes. The forms of the vector
autoregressions (20) would be altered had we assumed other forms for the
a, and a,  Processes, as the reader can verify by calculations parallel-
ing those above.

An alternative estimation strategy is available that avoids
the necessity to make specific assumptions about the forms of the sto-
chastic processes for the disturbances a. and agps only requiring that
these processes be covariance stationary. The alternative estimator
requires instead that the w, process be strictly econometrically exog-

enous with respect to n . and n, in particular requiring that Ew

a =
t’ t 1ls

Ew = 0 for all t and s. Under that assumption, the model (7a) and

t32s
(7b) can readily be shown to place restrictions on the projections of

and n respectively, on the entire {ws} process. The structure of

e 2t

those restrictions parallels those worked out by Sargent [1977a] for a
consumption function example. An asymptotically efficient estimator

' which allows for complicated

such as "Hannan's efficient estimator,'
serial correlation patterns in the disturbances, could then be applied
to estimating the projections with and without the restrictions imposed
by the model.

This alternative estimation strategy gets along with much

weaker assumptions about the serial correlation properties of the dis-

turbance processes {alt} and {aZt} at the cost of making somewhat more
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stringent assumptions about the exogeneity of w_, i.e., about the

L

correlation between W, and the ajs s. The original estimator proposed

that operates on (20) does assume that {wt} is a process that is not
caused in Granger's [1969] sense by ny,. Or n,., i.e., that E[wt|wt_1,wt_2,
""nlt-l,nlt—z""’n2t—l’n2t—2""] = E[wtlwt_l,wt_z,...]. Now Sims'
[1972] theorems assure us that if w, is not Granger-caused by n, or
Ny then there exists a statistical representation in whiéh L is
strictly econometrically exogenous with respect to n;. Or n, . However,
this statistical representation need not correspond with the appropriate

economic behavioral relationship. It is possible for n, or n, to

1t t

fail to cause Wes and yet for "instantaneous causality" to flow from n.

or n,, to w, SO that W is not strictly exogenous in the appropriate
model. See Sargent [1977b] for an example of this phenomenon within the
context of Cagan's model of hyperinflation. The "autoregressive estimator"
based on (20) permits arbitrary correlation between the innovations to

r and w,_ and makes no assumption about which pattern of instan-

e OF Mo t

taneous causality explains that correlation. On the other hand, the
alternative "projection estimator" attributes all of that correlation to
the workings of the demand schedules for N, and Ny (7a) and (7b).

For the present application, I prefer the estimator that makes the
weaker assumption about the correlation between innovations to employ-
ment and the real wage.

The reader by now will have understood that optimizing, rational
expectations models do not entirely eliminate the need for side assump-
tions not grounded in economic theory. Some arbitrary assumptions about
the nature of the serial correlation structure of the disturbances

and/or about strict econometric exogeneity are necessary in order to

proceed with estimation.
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Perhaps I should conclude this section by pointing to another
source of arbitrariness, namely the latitude at our disposal in specify-

ing the firm's optimization problem. For example, adding terms like
d

_--i-g(nlt_l—nlt_z)2 to the firm's daily profits would lead to Euler

equations that are fourth-order stochastic difference equations and
would lead to decision rules that depend on two lagged values of employ-
ment. Such specifications would seem plausible and would lead to mate-
rially different restrictions than those above on vector autoregressions
(or projections of n on w, as the case may be). There are clearly
limits set by the requirements of econometric identification on our
ability to estimate such complicated adjustment cost parameterizations.
Identification problems in such models have as yet received little
attention at a general level.

The general theme of this section has been to issue a warning
that rational expectations, optimizing models will not be able to save
us entirely from the ad hoc assumptions and interpretations made in
applied work. However, this is not to deny that the rational expecta-
tions hypothesis seems promising as a device for organizing restrictions

on parameterizations of econometric models.
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3. Parameter Estimates

The model was estimated using quarterly data on total civilian
employment and a straight-tiﬁe real wage index, with the period of
observation for the dependent variables extending from 19471 through

19721IV. The variable n, . was in the first instance measured by the

seasonally adjusted BLS series "Employees on Nonagricultural Payrolls,

Private and Government." To get a measure of n the following procedure

2t’

was used. I defined the variable‘it to be average weekly hours, a
series measured by the seasonally adjusted BLS series ''Average Weekly

Hours in Manufacturing." I then estimated total manhours by E;“lt'

Finally, I measured n,, by
. htnlt-h
2t h

1M1¢
2

where h, and h2 were set a priori at 37 and 17, respectively.lg/ The

1

real wage w, was measured by deflating the seasonally unadjusted BLS

t
series "Average Hourly Earnings: Straight-time Manufacturing Production
Workers' by the seasonally unadjusted Consumer Price Index (1967=100).

I also created seasonally unadjusted measures of n . and n,.

by taking as a measure of ny the seasonally unadjusted BLS series

t
"Employees on Private Nonagricultural Payrolls" and then using the
preceding procedure to create estimates of Ny, by using the seasonally
unadjusted average weekly hours series. The data are quarterly averages
of monthly data. Notice that h, and h2 are constants that are indepen-
dent of time.

I begin by describing the estimates obtained using the seasonally

adjusted employment series together with the seasonally unadjusted real
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wage series. (Later I will describe the results obtained with the
seasonally unadjusted series for all variables.) Before estimating the
model, the data on N, and n, were each detrended by regressing them on

a constrant, linear trend, and trend squared, and then using the residuals
from those regressions as the data for estimating the model. The data

on w_ were formed as the residuals from a regression on a constant,

linear trend, trend squared, and three seasonal dummies. Two reasons

can be given for detrending in this way prior to fitting the model.

First, the model ignores the effects of capital on employment, except to
the extent that these can be captured by the productivity processes ar,
and ay.- Second, the theory predicts that any deterministic components

of the employment and real wage processes will not be related by the

same distributed lag model as are their indeterministric parts. Detrend-
ing prior to estimation is a device designed to isolate the indeterministic
components. The real wage is measured in 1967 dollars, while employment
is measured in millions of men.

Table 1 reports estimates of the vector autoregressions for
(nlt,nzt,wt) both unconstrained and constrained by the model. Each set
of estimates was obtained by the method of maximum likelihood. We have
set n equal to four, a fourth-order autoregression being used to model
the real wage process. This means that the likelihood ratio statistic
is asymptotically distributed as chi-square with q = (3nt+4) - (n+5) =7
degrees of freedom. The likelihood ratio is 7.3172, which has a marginal
confidence level of .6034. The model thus passes the likelihood ratio
test of its overidentifying restrictions at the usual significance
levels.

The parameter estimates for the model are reported in Table 2.

The free parameters were fl’ d, e, Pys Pos Vp» Vys Vas and v, with b
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being fixed at .95, h1 at 37, and h, at 17. The decision rules associated

2

with the maximum likelihood estimates are:

n, = .5782n = l.3781wt + .0580wt_1 =+ .1098wt_

1t le-1 2

L}
+ .2929Wt_3 + ar.

n = .1979n2t_

e 4.2723w_ - 0065w __

- .0217wt_

1 1 2

L]
+ .1725wt_3 + a2t'

Notice how both the shape of the distributed lag and the magnitude of
the response to the real wage differs between straight-time and overtime
employment. Overtime employment is more responsive to the real wage.
Further, the straight-time adjustment cost parameter d is estimated to
be much larger than the overtime adjustment parameter e. That is why

ny . depends more strongly on Y than does n, onmn, ;-

Table 2 also reports the estimated covariance matrix of the

innovations V = Eutu;. Recall that

p”lt— 1 o0 alﬂ _F’lt-
weel T |R b By Eae | = P&
hESt“ IHO 0 B¢ | L£3t_
where glt = ait - Dlait—l’ gzt = aét - DZaét—l’ and where
1 ¢ alﬂ _lt i
Be= 18 L Byt o 5¢ 7 |2t

- J L3t |
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Then, since Et = B-lu

_1°
lVB L » an estimate of which is also reported in Table 2.

e the covariance matrix of £t can be estimated

from Egtg; =B
The correlation between the innovations to ait and to aét, i.e., Elt and
52t’ is estimated to be .759. The correlation between the innovations
to 3, and Wes i.e., Elt and £3t is only .0215, while that between EZt
and E3t is .0127. I had expected Elt and th to be even more highly
correlated than they are.

As it happens, the estimates reported in Tables 1 and 2 correspond
to the higher of two local maxima of the likelihood function which I
foﬁnd. The parameter estimates associated with the lower of these two
local maxima are reported in Table 3. In view of the form the vector
autoregression (20), it is not at all surprising that the likelihood
function should exhibit multiple maxima. In particular, notice that the

coefficients in (20) on nlt-l’ W93 Npu_1» Mgy o are, respectively,

(61+p1), -Glpl, (ul+p2), and ~U1Py- If it were not for the constraints
across iy and the R's and across 61 and the a's and the appearance of Py
and Py elsewhere on the right side of (20), the parameters 61, Pys Hp»

and P, would not be identified, since it would be impossible to distinguish
the effects of 61 from Py and the effects of Hy from Py The presence

of lagged w's on the right side of (20) and the aforementioned constraints
resolve this identification problem but leave a vestige of it in the

form of probable multiple peaks in the likelihood function with small
samples. Comparing the parameter estimates in Tables 2 and 3 shows that
Table 2 is a high (pl,pz) - low (Gl,ul) solution, while Table 3 reports

the high (6 ) - low (pl,pz) solution. Notice that for the Table 3

kg
estimates, Py + 61 = 1.534 and 0161 = ,538, while for the Table 2 estimates,

pp * él = 1.516 while p;§; = .542.
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The presence of multiple maxima of the likelihood function
means that caution is called for in Interpreting the test statistics
reported, since the asymptotic distribution on which the test is computed
does not predict multiple maxima for the likelihood function and so does
not provide a very good approximation for the sample size that we are
studying. The presence of multiple maxima of the likelihood function
also argues for starting the nonlinear estimation from several different
initial parameter estimates. I followed this practice in each case
reported below and, in each case, found another lower local maximum of
the likelihood function in addition to the one reported below. In each
case there was a high (Sl,ul) - low (pl,pz) solution and a high (pl,pz)
low (61,1_11) solution. |

Table 4 reports the estimates associated with the higher
likelihood of two maxima found for the seasonally unadjusted dataﬁf
with n=4. In this case, the high (Bl,ul) - low (pl,pz) solution had the
higher likelihood. The estimates indicate d >> e and are qualitatively
similar to those described above. The marginal confidence level is
.6206, which indicates that the sample does not contain strong evidence
against the null hypothesis.

Table 5 reports estimates with the seasonally unadjusted data
with n=8. 1In this case, the likelihood function calls for high values
of Gl and M- The likelihood ratio statistic is now distributed asymp-
totically as chi-square with fifteen degrees of freedom under the null
hypothesis that the model is correct. Once again the likelihood ratio
statistic does not call for rejecting the model.

Table 6 shows the estimates obtained for the seasonally adjusted

data for n=8. It is interesting that with n=8 the high 61, My estimates




- B =

are the ones that maximize the likelihood function. The likelihood
ratio test again fails to reject the model.

I also estimated a single-shift version of the model in which
all of the terms in n, are dropped from the objective function (1).
The result is a model restricting only N and L and consisting of
equations (20a) and (20c). The right side of (20a) and (20c) contain
2n + 2 regressors, while the model possesses the (n+3) free parameters

d, f Vs So the model places q = (2n+2) - (n+3) over-

g B Wb BRes
identifying restrictions on the bivariate vector autoregression (20a),
(20c).

Tables 7 and 8 report the parameter estimates for the seasonally
adjusted and unadjusted data. The seasonally adjusted data indicate
that the overidentifying restrictions are marginally to be rejected at
the .95 confidence level, while they are marginally rejected at the .90
confidence level for the seasonally unadjusted data. The parameter

point estimates continue to indicate that adjustment costs exert an

important influence on the demand for employment.
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Conclusions

The simple contemporaneous correlations that formed the evidence
in the original Dunlop-Tarshis-Keynes exchange, and also in much of the
follow-up empirical work done to date, are not sufficient to rule on the
question of whether the time series are compatible with a model in which
firms are always on their demand schedules for employment. This is true
according to virtually any dynamic and stochastic theory of the demand
for employment. In this paper, I have tried to indicate one way in
which the time series evidence can be brought to bear on the question in
the context of a simple dynamic, stochastic model. The empirical results
are moderately comforting to the view that the employment-real wage
observations lie along a demand schedule for employment. It is important
to emphasize that this view has content (i.e., imposes overidentifying
restrictions) because I have a priori imposed restrictions on the orders
of the adjustment cost processes and on the Markov processes governing
disturbances. At a general level without such restrictions, it is

doubtful whether the equilibrium view has content.
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Table 1

Vector Autoregressions, Seasonally Adjusted Data (n=4)

20a Unconstrained Constrained by (20)
.y 1.5128 1.5159
T -.5372 -.5422
v, -2.0287 .0225
¥on -1.9667 .0512
Wi o 2.9944 ' .0969
v, -1.0538 ~.0343
(20b)

M2t-1 -9667 .9730
Ny o -.1596 -.1534
e -5.6155 -.8117
W o . 5847 -.0297
W 13 1.9400 -.0988
v, _, ~4.8444 L6114
(20c)

Ve 3y .9307 .9635
v, _, -.0290 .0031
Vi3 L1146 L0674
Ve, -.1907 -.1744
|v| .5113199E-05 .55014E-05

T{log|V_|-log|V |} = 7.3172
Marginal confidence level = .6034

Let X be a random variable distributed chi-square seven degrees of
freedom, and let x be the value of the computed test statistic. Then
the marginal confidence level is defined as Prob {x<x} under the null
hypothesis.
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Table 2

Parameter Estimates
Seasonally Adjusted Data (n=4)

.2794

£ = py = 9377

d = 31.4283 p, = .7751

e = 1.4429 My = 1979

8, = .5782

o, = -1.3781 B, = -4.2723

a, = .0580 B, = -.0065

oy = .1098 By = -.02174

&, = .2929 B, = -1725
.9291E-01 . 2011E+00 .1294E-02

V= . 7746E+00 . 2089E-02

.1939E-03

.0968E+00 .21061E+00  .1561E-02

T

B VBT = . 7960E+00 .5382E-03

-1939E-03
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Table 3

Seasonally Adjusted Data--Second Solution
Likelihood Equations

£, = .03402 v, = .9461
d = 2367.94 v, = .0162
e = 10.4558 vy = -.1148
py = 5426 v, = .0139
p, = .1552
8, = .9910 Wy = -8077
@, = =3.4140 B, = -6.6658
a, = -.3800 B, = .1880
ay = -.3483 By = .3530
@, = -.7619 B, = --3053
.9491E-01 . 2053E+00 .1242E-02
V= . 7701E400 .1982E-02
.1999E-03
.10572E+00  .2249E+00 .19241E-02
-1,.-1'
B VB~ = . 8054E+00 .3315E-02
.1999E-03
|v | = .56353E-05, |V | = .511320E-05

T{loglvrl-loglvu|} = 9.7221

Marginal confidence level = .7951
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Table 4
Seasonally Unadjusted Data (n=4)

fl = .4358 Vi = .8498
d = 3266.29 v, = .1215
e = 75.6748 vy = -.0219
Py = . 3849 A -.1198
Py = .0909
51 = ,9512 My = L7475
a, = -.0110 Bl = -.5620
a, = .0091 BZ = .0409
ay = .0114 83 = .1259
Qa, = .0124 84 = .1650
«1414E+00 . 2688E+00 .1234E-02
V = . 8189E+00 .1631E-02
. 2340E-03
. 1414E+00 . 2695E+00 .1237E-02
-1, .-1'
B VB = .8208E+00 .1762E-02
. 2340E-03

lv | = .96438, v, | = -89475E-05
T{log|vr|—1og|vu\} = 7.4934

Marginal confidence level = .6206
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Table 5
Seasonally Unadjusted Data (n=8)

£, = 3721 v, = .8388 ve = .2718
d = 3266.29 vy = 31512 ve = =-1369
e = 75.6750 vy = .0204 v, = -.0306
p, = +39930 v, = =-2786 vg = =.0340
Py = .0522
8, = -9560 My = .7651
@ = -.0282 B, = -.7194
ay = .0092 By = .0653
a, = .0108 B, = -1045
ag = 0040 Bg = -.0567
G = «0121 Bg = -1176
a, = .0094 B, = .0633
ag = .0095 Bg = -0650

.1370E+00 . 2756E+00 .9515E-03
vV = . 8473E+00 .1321E-02

.2157E-03
.1370E+00 . 2764E+00 .9576E-03
1
g lvgl = . 8494E+00 .1476E-02
.2157E-03
|v_| = .83442E-05, |V | = .79754E-05
b = u

T{log|Vr|—log|Vu|} = 4.3394

Marginal confidence level = .0036
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Table 6
Seasonally Adjusted Data (n=8)

£, = .2274 vy = .9117 vy = .0484
d = 2367.87 v, = .0727 ve = .0665
e = 67.3950 vy = .1036 v, = -.1518
p; = -5632 v, = =.2535 vg = 0337
p, = 1532
8, = -9608 W= 8044
0q ==:5162 B, = -1.0803
a, = -.0784 B, = -.0305
oy = -.0484 By = .0385
o, = .0004 B, = .1624
a, = -.1304 B, = -.0614
a = -.1178 Bs = -.0280
o, = -.0948 B, = .0351
Qg = -.1822 By = -.1180

.9443E-01 . 2156E+00 .1152E-02
v = .8021E+00 . 2463E-02

.1789E-03

.9567E-01 . 2183E+00 .1244E-02

plvpl - .8076E+00 . 2656E~02
.1789E-03

Ivrl = .48162E-05, Ivul = .440883E-05

T{loglvrl—loglvul} = 8.484

Marginal confidence level = .0971
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Table 7
Seasonally Adjusted, One-Shift Model

fl = .0059 vy = -9342

d = 3.4108 v, = -.0063
Py = . 7834 vy = -.0539
Al = .7934 v, = -.0029

o, = -26.3880

1
a, = 1.0662
ay = 1.2488
a, = .2356

.8359E-01 .1204E-02
V =

.1986E-03

v, | = .15154E-04, v, | = .13983E-04

T{log|Vr|-log[Vu|} = 8.0402

Marginal confidence level = .9548



.

Table 8
Seasonally Unadjusted, One-Shift Model

fl = L0144 vy = .8476
d = 5.1839 v, = .0634
Py = .7002 vy = -.0388
Al = .7417 v, = —-0147
a, = -13.3288
ay = .6930
a, = .4663

. 126 7E+00 .1224E-02
vV =

.2369E-03

lv | = .28511E-04, |v | = .26757E-04

T{loglvr|-loglvu[} = 6.3492

Marginal confidence level = .9042




Footnotes

1/

— Applications of related methods are contained in Sargent
[1977a, 1977b].

E/Restrictions on the production function required to permit
Lucas's static model to account for the cyclical behavior of labor pro-
ductivity and real average hourly earnings were discussed by Sargent and
Wallace [1974]. Adding differential costs for adjusting straight-time
and overtime labor would widen the class of production functions that
could lead to procyclical movements of average hourly earnings and labor
productivity.

EJOptimization problems of this form are discussed by Holt,
Modigliani, Muth, and Simon [1960], Graves and Telser [1971], and
Kwakernaak and Sivan [1972]. The treatment here closely follows that of
Sargent [1977c]. It would be straightforward to carry along n firms,
each facing the same wage process and operating under the same functional
form for its objective function (1), yet each having different values
for the parameters fO’ fl’ d, and e. It would then be straightforward

to aggregate the Euler equations and their solutions (7). Thus, assuming
a representative firm is only a convenience, as the model admits a tidy
theory of aggregation.

4
—;See Sargent [1977c], Chapters IX and XIV.

éfSee Sargent [1977c].

EJ'See Sargent [1977c]. The solution (7) clearly exhibits the

certainty-equivalence or separation property. That is, the same solution
for n, and n, would emerge if we maximized the criterion formed by

1t
replacing (ay,,,08p,049Weyy) DY (Bay 0B a3y 4
the operator Et from outside the sum in (1).

2/ The condition that E€q, 19, _;

condition that W, is not caused, in Granger's [1969] sense, by n, or
n,.
1

t
’Etwt+j) and dropping

= 0 is equivalent with the

8/

~'The assumption that w,_ is of exponential order less than

t

t
(%) implies that the max |A1| < (%) where Ai is the i W element of A.

L= <]
i i 1
glﬂere we are using that ( ) (l—)lpi)al =—7 2
" t 1t
i=0 "2 1-—p
]-lzl

A 1 1 :
since |p1| < 3 and |p2| >3 So that the infinite sum converges.

l9-,lilng:i.m&'ers directly obtain solutions of the form (13) by

solving matrix Ricatti equations, e.g., see Kwakernaak and Sivan [1972].




Footnotes, continued

In their jargon, our system is not ''controllable' but is '"stabilizable"
and "detectable" so that convergence of iterations on the Ricatti equation
is assured. The stabilizability of our system depends on {alt}’ {a2t}’

and {wt} being of exponential order less than Q§).
11/

— The parameters fO and v, are dropped because the data are

0

in the form of deviations from means and trend terms. The parameters b,

hys and h, will be fixed a priori.
12/

— That these values for h, and h2 do not add to unity, as in

1
the theoretical presentation of the model, amounts only to a harmless
renormalization.

AQ/With the seasonally unadjusted employment data, I first
regressed each of Ny Moo and Wy against a constant, trend, trend

squared, and three seasonal dummies and used the residuals from those
regressions as the data.
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