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Abstract

To slow the spread of COVID-19, many countries are shutting down non-essential sectors of
the economy. Older individuals have the most to gain from slowing virus diffusion. Younger
workers in sectors that are shuttered have the most to lose. In this paper, we build a model
in which economic activity and disease progression are jointly determined. Individuals
differ by age (young and retired), by sector (basic and luxury), and by health status.
Disease transmission occurs in the workplace, in consumption activities, at home, and in
hospitals. We study the optimal economic mitigation policy of a utilitarian government that
can redistribute across individuals, but where such redistribution is costly. We show that
optimal redistribution and mitigation policies interact, and reflect a compromise between
the strongly diverging preferred policy paths of different subgroups of the population. We
find that the shutdown in place on April 12 is too extensive, but that a partial shutdown
should remain in place through the fall. Finally, people prefer deeper and longer shutdowns
if a vaccine is imminent, especially the elderly.
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1 Introduction

The central debate about the appropriate economic policy response to the global COVID-
19 pandemic is about how aggressively to restrict economic activity in order to slow down the
spread of the virus and how quickly to lift these restrictions as the pandemic shows signs of
subsiding. In this paper, we argue that one reason people disagree about the appropriate policy
is that “lock-down” policies have very large distributional implications. These distributional ef-
fects mean that different groups prefer very different policies. Standard epidemiological models
assume a representative agent structure, in which households face a common trade-off between
restrictions on social interaction that slow the virus transmission but which also depress eco-
nomic activity. In practice, however, the benefits of slower viral transmission are not shared
uniformly but accrue disproportionately to older households, which face a much higher risk of
serious illness or death from infection. At the same time, the costs of reduced economic activity
are disproportionately borne by younger households, which bear the brunt of lower employment.
A second very important dimension of heterogeneity is among younger workers employed in dif-
ferent sectors of the economy. Sensible lock-down policies designed to reduce viral spread will
naturally focus on reducing activity in sectors in which there is a social aspect to consumption
and sectors that produce goods or services perceived to be luxuries. For example, restaurants
and bars are likely to be close first. Because workers cannot easily reallocate across sectors,
this implies that lock-down policies will involve extensive redistribution among young house-
holds specialized in different sectors. Thus, different groups in the economy (old versus young,
workers in different sectors, healthy versus sick) will likely have very different views about the
optimal mitigation strategy. Furthermore, lock-down policies create a need for potentially large
redistributive public policies. To the extent that these are costly to implement, the optimal
mitigation policy will in turn depend on the scope for redistributive policies at the micro level.

In this paper, we build and then quantitatively implement a model that implements this
interaction between macro-mitigation and micro-redistribution policies. This requires a struc-
ture with (i) a household sector with heterogeneous individuals, (ii) an epidemiological block
where consumption, production, caring for the sick and purely social interactions determine
health transitions during the epidemic, and (iii) a government with tools for mitigation and
redistribution, as well as a desire for social insurance.

On the household side, we distinguish between three types of people: young workers in a
basic sector, young workers in a luxury sector, and old retired people. The output of workers in
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the two sectors is combined to produce a single final consumption good. Workers are immobile
across sectors. The output of the basic sector is assumed to be so essential that it will not
make sense to reduce employment and output in that sector in order to reduce the spread of
the disease. In contrast, the policy maker has a potential incentive to shut down part of the
economic activity in the luxury sector in order to reduce the rate at which infection spreads.

The epidemiological structure builds on a standard Susceptible-Infectious-Recovered (SIR)
diffusion framework. We label our variant a SAFER model, reflecting the progression of individ-
uals through a sequence of possible health states. Model individuals start out as susceptible, S
(i.e., healthy, but vulnerable to infection), and can then become infected but asymptomatic, A;
infected with flu-like symptoms, F ; infected and needing emergency hospital care, E , recovered,
R (healthy and immune), or dead. The transition rates between these states vary with age. In
particular, the old are much more likely to experience adverse health outcomes conditional on
being infected.

At the heart of the model are a range of two-way interactions between the distributions of
health and economic activity. We model virus transmission from co-workers in the workplace,
from co-consumers in the marketplace, from friends and family at home, and from the sick in
hospitals. Because they do not work, the old do not face direct exposure at work, but virus
transmission in the workplace indirectly increases infection rates in other settings. Our three
different infected subgroups spread the virus in different ways: the asymptomatic are unlikely to
realize they are contagious and will continue to work and to consume; those with flu symptoms
will stay at home and only infect family members, while those in hospital care may pass the
virus to health care workers.

The government uses a utilitarian social welfare function and has at its disposal two policy
levers to maximize social welfare. First, at each date, the planner can choose what fraction
of activity in the luxury sector to shut down. We call this policy the extent of mitigation.
Mitigation slows the spread of the virus (by reducing the rate at which susceptible workers
become asymptomatically infected), but it reduces to zero the market income of some workers
in the luxury sector. Second, the planner chooses how much income to redistribute from those
working toward those that are not, because they are old, because they are unwell, or because
their workplaces have been closed owing to mitigation. Redistribution is desirable because of the
utilitarian social welfare function, but crucially, we also assume that this redistribution is costly,
so that perfect insurance is not optimal. Conditional on a given path for mitigation, the optimal
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redistribution problem is equivalent to a static social planner problem, with lower aggregate
consumption and more consumption inequality across workers as is redistribution becomes more
costly. This in turn feeds back adversely on the dynamic incentives for mitigation, implying that
a government facing more costly redistribution needs will dynamically choose less mitigation.

In the context of the model with these trade-offs, we then compute optimal paths for
mitigation, where the path for mitigation is restricted to a simple parametric function of time.
We find that a planner who prioritizes the old chooses extensive and prolonged mitigation, as the
old are highly vulnerable to contracting and dying from the disease. A planner who prioritizes
workers in the luxury sector subject to shut-downs chooses a much milder and shorter mitigation
path, as the economic costs of forgone income and thus consumption dominate for this group.

We also consider how the optimal policy for a utilitarian equal-weights planner varies with
the cost of redistribution across worker types. We find that the larger this cost is, the more
moderate is optimal mitigation, at the cost of higher mortality during the epidemic.

Under our baseline calibration, a comparison of the utilitarian optimal policy to the actual
policy in place as of April 12 indicates that the shutdown in place is around twice as extensive
as it should be. However, the optimal policy calls for leaving a partial shutdown in place well
into the fall. Ending the shutdown at Easter would have implied an additional 231,000 deaths.
Ending the shutdown at the end of June leads to a second wave of infections.

We also ask how preferred policies change if a vaccine is expected in October, 2020, which
is an extremely optimistic timeframe for one to be available. We find that people want more
extensive mitigation for a longer period than in our baseline economy. Without a vaccine,
economic mitigation effectively delays the total number of infections, but does not appreciably
reduce the probability of ever getting sick. Since the vaccine immediately stops the spread
of the virus, people are more willing to give up consumption in exchange for eliminating the
chance of becoming infected in the future. This is especially true for the old - their preferred
economic mitigation more than doubles in the economy with a vaccine.

There is an extraordinary set of papers currently being written about the pandemic. To cite
the ones that we are aware of: Atkeson (2020) was perhaps the first to introduce economists to
the epidemiological SIR class of models. He emphasizes the negative outcomes that arise if and
when the fraction of active infections in the population exceeds 1% (at which point the health
system is predicted to be severely challenged) and 10% (which may result in severe staffing
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shortages in key financial and economic infrastructure sectors) as well as the cumulative burden
of the disease over an 18-month horizon. Greenstone and Nigam (2020) use the state-of-the-
art Imperial College epidemiological model (Flaxman et al. 2020) to compare the paths under
moderate social distancing versus no policy action and use the statistical value-of-life approach
to assess the social cost of no action. They calculate 1.7 million lives saved between March 1
and October 1 from social distancing, 37% of them due to less overcrowding in hospitals.

Eichenbaum et al. (2020) extend the canonical SIR epidemiology model to study the in-
teraction between economic decisions and pandemics. They emphasize how equilibria without
interventions lead to sub-optimally severe pandemics, because infected people do not fully in-
ternalize the effects of their economic decisions on the spread of the virus. Krueger et al.
(2020) argue that the severity of the economic crisis in Eichenbaum et al. (2020) is much
smaller if individuals can endogenously adjust the sectors in which they consume. Toxvaerd
(2020) characterizes the simultaneous determination of infection and social distancing. Moll
et al. (2020) develop a version of a HANK model, in which agents differ by occupation and
occupations have two key characteristics: how social their consumption is, and how easily work
in the occupation can be done at home. They tie demand for social goods and willingness to
work in the workplace to fear of contracting the virus, with endogenous feedback to relative
earnings by occupation. Bayer and Kuhn (2020) explore how differences in living arrange-
ments of generations within families contribute to the cross-country differences in terms of
case-fatality rates. They document a strong positive correlation between this variable and the
share of working-age families living with their parents. Berger et al. (2020) extend the baseline
Susceptible-Exposed-Infectious-Recovered (SEIR) infectious-disease model to explore the role
of testing and to thereby get a better idea of how to implement selective social separation
policies. Using the Chinese experience, Fang et al. (2020) quantify the causal impact of hu-
man mobility restrictions and find that the lock-down was very effective, providing estimates
of diffusion under different scenarios. Hall et al. (2020) provide a simple calculation to assess
how much people would be willing to pay to have never had the virus (their answer is about a
quarter of one year’s worth of consumption).

In Section 2, we start by describing how we model the joint evolution of the economy and the
population. In Section 3, we then turn to describe how we model mitigation and redistribution
policies and how we go about solving for optimal policies. The calibration strategy is described
in Section 4. The findings are in Section 5.
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2 The Model

We first describe the individual state space, describing the nature of heterogeneity by age
and health status. In Section 2.2, we then describe the multi-sector production technology,
describing how mitigation shapes the pattern of production. Section 2.3 describes the details
of our SAFER extension of the standard SIR epidemiological model and the channels of disease
transmission.

2.1 Household Heterogeneity

Agents can be young or old, which we denote y and o, respectively. We think of the young
as below the age of 65 and they will comprise µy = 85 percent of the population. For simplicity,
and given the short time horizon of interest, we abstract from population growth and ignore
aging.

Within each age group, agents are differentiated by health status, which can take six differ-
ent values: susceptible s, asymptomatic a, miserable with flu symptoms f , requiring emergency
care e, recovered r , or dead d . Individuals in the first group have no immunity and are suscep-
tible to infection. The a, f , and e groups all carry the virus – they are subsets of the infected
group in the standard SIR model – and can pass it onto others. However, they differ in their
symptoms. The asymptomatic have no symptoms or very mild ones and thus unknowingly
spread the virus. We model this state explicitly (in contrast to the prototypical SIR model) be-
cause a significant percentage of individuals infected with COVID-19 experience no symptoms.1

Those with flu-like symptoms are sufficiently sick to know they are likely contagious, and they
stay at home and avoid the workplace and market consumption. Those requiring emergency
care are hospitalized. The recovered are again healthy, no longer contagious, and immune from
future infection. A worst-case virus progression is from susceptible to asymptomatic to flu
to emergency care to dead.2 However, recovery is possible from the asymptomatic, flu, and
emergency-care states.

1deCODE, a subsidiary of Amgen, randomly tested 9,000 individuals in Iceland. Of the tests that came back
positive (1 percent), half reported experiencing no symptoms.

2Note that in the standard SEIR model, agents in the exposed state E have been exposed to the virus and
may fall ill, but until they enter the infected state I, they cannot pass the virus on. Our asymptomatic state is a
hybrid of the E and the I states in the SEIR model: asymptomatic agents have no symptoms (as in the SEIR E
state) but can pass the virus on (as in the SEIR I state). Berger et al. (2020) make a similar modeling choice.
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2.2 Activity: Technology and Mitigation

Young agents in the model are further differentiated by the sector in which they can work.
A fraction µb of the young work in the basic sector, denoted b, while the rest, 1 − µb, work
in a luxury sector, denoted ` . We assume that output of the basic sector is so vital that it is
never optimal to send home even a subset of b sector workers. In contrast, it may be optimal
to require some or all of the workers in the ` sector to stay at home in order to reduce the
transmission of the virus in the workplace. We will call such a policy a (macroeconomic)
mitigation policy, m. More precisely, mt will denote the fraction of luxury workers that are
instructed to not go to work at time t. We assume that workers cannot change sectors (at
least, not during the short time horizon studied in this paper); thus, the sector of work is a
fixed characteristic of a young individual.

Time starts at t = t0 and evolves continuously. All economic variables, represented by roman
letters, are understood to be functions of time, but we suppress that dependence whenever there
is no scope for confusion. Technology parameters are denoted with Greek letters. Generically,
we use the letter x to denote population measures, with superscripts specifying subsets of the
population. These super-indices index age, sector, and health status, in that order. For example,
xybs is the measure of young individuals working in the basic sector who are susceptible.

We assume a production technology that is linear in labor, and thus output in the basic
sector is given by the number of young workers employed there:

yb = xybs + xyba + xybr . (1)

Note that this specification assumes that those asymptomatic individuals carrying the virus
continue to work.3 In contrast, we assume those with flu stay at home. Output in the luxury
sector, in contrast, does depend on the mitigation policy and is given by

y ` = (1 −mt)
(
xy`s + xy`a + xy`r

)
. (2)

We assume that both sectors produce the same good and are perfect substitutes.4 Under this
3One could instead imagine a policy of tracing contacts of infected people, which would allow the planner to

keep some portion of exposed workers at home.
4We make this assumption primarily for the sake of tractability. If outputs of the two sectors were comple-

mentary, there would be changes in relative prices and wages when output of the luxury sector was suppressed.
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assumption, total output of the single consumption good is determined by

y = yb + y ` . (3)

We assume that a fixed amount of output ηΘ is spent on emergency hospital care, where Θ is
the capacity of hospital beds, and η is the cost of providing and maintaining one bed.

In practice, different sectors of the economy are heterogeneous with respect to the extent
to which production and consumption generate risky social interaction. For example, some
types of work and market consumption can easily be done at home, while for others, avoiding
interaction is much harder. A sensible shutdown policy will first shutter those sub-sectors of
the luxury sector that generate the most interaction. Absent detailed micro data on social
interaction by sector, we model this in the following simple way.5 Assume workers are assigned
to a unit interval of sub-sectors i ∈ [0, 1] where sub-sectors are ranked from those generating
the least to those generating the most social interaction.

Assume the sector-specific infection-generating rates are β i
w = 2αw i and β i

c = 2αc i , where
(αw ,αc ) are parameters, to be calibrated below, governing the intensity by which meetings
among individuals generate infections. When the government asks fraction mt of luxury workers
to stay at home, assume it targets the sub-sectors generating the most interactions, that is,
i ∈ [1 −mt , 1] . The average interaction rates of the sectors that remain are then αw (1 −mt)
and αc (1−mt), respectively6 Because the government cannot shut down any basic sub-sectors
of the economy, the economy-wide work-related infection-generating probability is then given
by

βw (mt) =
yb

y (mt)
αw +

y l (mt)
y (mt)

αw (1 −mt),

with an analogous expression for βc (mt). The key property of this expression is that as mitigation
is increased, the average social interaction-generating rate will fall.

2.3 Health Transitions: The SAFER Model

We now describe the dynamics of individuals across health states. At t0 , the total mass of
individuals is one, xyb + xy` + xo = 1, where xyb =

∑
i ∈{s,a,f ,e,r } xybi , xy` =

∑
i ∈{s,a,f ,e,r } xy` i ,

5See Xu et al. (2020) for more detailed evidence on infection patterns in the workplace.
6E [αw i |i ≤ (1 −mt )] = 2αw

1−mt

∫ 1−mt
0

idi = 2αw
1−mt

(1−mt )2
2 = αw (1 −mt ).

8



and xo =
∑

i ∈{s,a,f ,e,r } xoi . In the interest of more compact notation, we will also let x i =

xybi + xy` i + xoi for i ∈ {s, a, f , e, r } denote the total number of individuals in health state i .
Finally, at any point in time, let x =

∑
i ∈{s,a,f ,e,r } x i = xyb + xy` + xo denote the entire living

population.

The crucial health transitions that can, in our model, be affected by mitigation policies are
from the susceptible to the asymptomatic state. These are characterized by equations (4)-(9)
below. Equations (4)-(6) capture the flow of basic sector workers, luxury sector workers, and
older individuals out of the susceptible state and into the asymptomatic state. The number of
such workers who catch the virus is their original mass (xybs for young basic sector workers,
for example) times the number of virus-transmitting interactions they have (the term in square
brackets). We model four sources of possible virus contagion: people can catch the virus from
colleagues at work, from market consumption activities, from family or friends outside work,
and from taking care of the sick in hospitals. The four terms in the bracket capture these
four sources of infection, which we index w , c, h, and e, respectively. For a given type of
individual, the flow of new infections from each of these activities is the product of the number
of contagious people they can expect to meet, which we denote µj (mt) for j ∈ {w , c, h, e} ,
and the likelihood that such meetings result in infection, which is the infection-generating rate
described above, βj (mt). For work and consumption activities, both the number of contagious
people in a given setting and the rate at which they transmit the virus potentially depend on
the level of economic mitigation mt .

xybs = − [βw (mt)µw (mt) + βc (mt)µc (mt) + βhµh + βeµe] xybs (4)
xy`s = − [βw (mt)µw (mt) (1 −mt) + βc (mt)µc (mt) + βhµh] xy`s (5)
xos = − [βc (mt)µc (mt) + βhµh] xos (6)

where the relevant population shares µ in the above expressions are given by

µw (mt) = xyba + (1 −mt)xy`a (7)
µc (mt) = xay (mt) (8)

µh = xa + x f (9)
µe = x e (10)
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Consider the first outflow rate in equation (4). The flow of young basic sector workers getting
infected at work, βw (mt)µw (mt), is the probability of a virus-spreading interaction per conta-
gious worker, βw (mt), times the number of contagious workers, which is defined in equation
(7). Note that we are assuming that people with symptoms always stay at home (a minimal
precaution) and that basic and luxury workers mingle together at work.

The flow of young basic sector workers getting infected from market consumption, βc (mt)µc (mt),
is similarly constructed. We assume that the number of consumption-related infections is pro-
portional to the number of asymptomatic individuals in the population and to the level of
economic activity, which is identical to the number of workers (see equation 8).7 Note that we
are assuming that people with symptoms stay at home and do not go shopping.

The rate at which a young basic worker contracts the virus at home, βhµh, depends on the
number of contagious workers in the household, µh defined in equation (9). Note that both
asymptomatic and flu-suffering workers reside at home. Finally, we assume that caring for those
requiring emergency care is a task that falls entirely on basic workers. The risk of contracting
the virus from this activity is proportional to the number of hospitalized people, µe = x e , with
infection-generating rate βe , which reflects the strength of precautions taken in hospitals.

Parallel to equation (4), equation (5) describes infections for the susceptible population
working in the luxury sector. For this group, the risks of infection from market consumption
and at home are identical to those for basic sector workers. However, individuals in this sector
work reduced hours when mt > 0 and thus have fewer work interactions in which they could get
infected. Furthermore, workers in the luxury sector do not take care of sick patients in hospitals,
and thus the last term in equation (4) is absent in equation (5). Similar to equation (4) and
equation (5), equation (6) displays infections among the old. They get infected only from
market consumption and from interactions at home.

The remainder of the epidemiological block is fairly mechanical and simply describes the
transition of individuals though the health states (asymptomatic, flu-suffering, hospitalized, and
recovered) once they have been infected. The parameters of these dynamic laws in equation (11)
to equation (22) are allowed to vary by age. Equations (11) to (13) describe the change in the

7Note that we have assumed that the number of shopping-related infections for a given type is proportional
to economy-wide output, rather than to the type-specific level of consumption. One interpretation of this
assumption is that each consumer visits each store in the economy and faces a similar infection risk irrespective
of how much they spend. The common infection risk is proportional to the equilibrium number of stores, which
in turn is proportional to the aggregate employment level.
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measure of asymptomatic individuals. There is entry into that state from the newly infected
flowing in from the susceptible state (as described above). Exit from this state to developing
flu-like symptoms occurs at rate σyaf (σoaf ) for the young (old), and exit to the recovered
state occurs at rate σyar (σoar ) for the young (old). Note that someone who recovers at this
stage will never know that she contracted the virus.

For individuals suffering from the flu, equations (14) to (16) show that for the young there
is entry from the asymptomatic state and exit to the hospitalized state at rate σyfe , and to the
recovered state at rate σyfr , with analogous expressions for the old. Equations (17) to (19)
describe the movements of those in emergency care, showing entry from those with flu-like
symptoms and exits to death and recovery. The death rate is σyed +ϕ, while the recovery rate
is σyer − ϕ, where ϕ, described below, is a term related to hospital overuse. Equations (20)
to (22) display the evolution of the measure of the recovered population, which features only
entry and is an absorbing state. So is death, with the evolution of the deceased population
being determined by xybd = (σyed +ϕ)xybe , xy`d = (σyed +ϕ)xy`e , and xod = (σoed +ϕ)xoe .
We record them separately from the recovered (who work), since they play no further role in
the model.

Finally, equation (23) describes the extent of overuse of the hospital system that has capacity
Θ, which we treat as fixed in the time horizon analyzed in this paper.8The probability of death
conditional on being sick depends on the extent of hospital overuse. In particular, the parameter
λo controls how much the death rate of the hospitalized rises (and the recovery rate falls) once
hospital capacity Θ is exceeded.

xyba = − xybs −
(
σyaf + σyar

)
xyba (11)

xy`a = − xy`s −
(
σyaf + σyar

)
xy`a (12)

xoa = − xos −
(
σoaf + σoar

)
xoa (13)

xybf =σyaf xyba −
(
σyfe + σyfr

)
xybf (14)

8When solving for the non-parametric optimal mitigation policy in Section 5.3, we use the smooth approxi-
mation

max{xe −Θ, 0} ≈
log

(
1 + eN (xe−Θ) )

N .

The approximation error is always less than 0.04% of peak hospitalizations with N = 1000000.
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xy`f =σyaf xy`a −
(
σyfe + σyfr

)
xy`f (15)

xof =σoaf xoa −
(
σofe + σofr

)
xof (16)

xybe =σyfe xybf −
(
σyed + σyer

)
xybe (17)

xy`e =σyfe xy`f −
(
σyed + σyer

)
xy`e (18)

xoe =σofe xof −
(
σoed + σoer

)
xoe (19)

xybr =σyar xyba + σyfr xybf + (σyer −ϕ)xybe (20)
xy`r =σyar xy`a + σyfr xy`f + (σyer −ϕ)xy`e (21)
xor =σoar xoa + σofr xof + (σoer −ϕ)xoe (22)
ϕ =λo max{x e −Θ, 0}. (23)

2.4 Preferences

Preferences incorporate utility from both being alive and being in a specific health state.
Lifetime utility for the old is given by

E
{∫

e−ρot
[
u(co

t ) + ū + ûj
t

]
dt

}
, (24)

where expectations are taken with respect to the random timing of death, and where ū measures
the flow utility from being alive (the utility of being dead is implicitly zero). Similarly, ûj

t is
the intrinsic utility of being in state health j . We will assume that ûs

t = ûa
t = ûr

t = 0, while
ûe

t < ûf
t < 0. Thus, having flu-like symptoms is bad, and having to be treated in the hospital

is very bad. The old value their consumption co
t according to the period utility function u(co

t )
and discount the future at rate ρo.

Symmetrically, the young also care about their consumption cy
t , as well as about their health

and about being alive, according to the lifetime utility function:

E
{∫

e−ρy t
[
u

(
cy

t
)
+ ū + ûj

t

]
dt

}
. (25)

In our calibration, we will impose ρo > ρy as a simple way to capture higher life expectancy

12



for the young. As a result, while young and old enjoy the same flow value from being alive, the
present value of this value will be lower for the old.

Note that workers who experience flu-like symptoms or are in the hospital do not work.
Neither does a fraction m of luxury sector workers whose workplaces have been shut down by
mitigation policy. Therefore, in equilibrium, young workers will experience different consumption
depending on whether they work. Thus, the expected utility of a worker will depend for two
reasons on the sector in which she works. First, sectors differ in the share of economic activity
being shut down (and thus, for the individual worker, in the probability of being able to work
when healthy). Second, a worker’s sector will affect her distribution of health outcomes.9

3 The Public Sector

In Section 3.1 we describe the government policy toolsin, and then in Section 3.2, we
analyze how public transfers are determined statically to yield a utilitarian period social welfare
function. We conclude by posing the dynamic Ramsey optimal policy problem, which maximizes
the time integral of discounted instantaneous social welfare by choice of the optimal time path
of mitigation mt .

3.1 Transfers

The public sector is responsible for two choices: mitigation (shutdowns) mt and redistri-
bution from workers to individuals who do not or cannot work: those unemployed because of
shutdowns, those with flu or hospitalized, and those who have retired. All workers share a
common consumption level cw and all individuals not working share a common consumption
level cn.10 The redistribution policy choice is how much to transfer, in each instant t, from the
working to the non-working population. Crucially, we assume that these transfers are costly,
denoting by T (cn) the per capita cost of transferring consumption cn to those out of work and
without current income. We assume that T (.) is increasing and differentiable.

To simplify notation, denote by (µn (m, x ), µw (m, x )) the mass of non-working and working
9Note that we have not modeled mortality from natural causes. Over the expected length of the COVID-19

pandemic, mortality from natural causes will be small for both age groups.
10This is the allocation chosen by a government that equally values all individuals (equal Pareto weights). It is

also the only allocation that is feasible if the government can observe an individual’s income but not her sector,
age, or health status.
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people, respectively, as a function of the health population distribution x and current mitigation
m = mt .11 These are defined as

µn (m, x ) = xy`f + xy`e + xybf + xybe + m
(
xy`s + xy`a + xy`r

)
+ xo (26)

µw (m, x ) = xybs + xyba + xybr + [1 −m]
(
xy`s + xy`a + xy`r

)
(27)

νw (m, x ) =
µw (m, x )

µw (m, x ) + µn (m, x ) , (28)

where νw (m, x ) is the share of working individuals in the population. The aggregate resource
constraint can then be written as

µw cw + µncn + µnT (cn) = y − ηΘ = µw − ηΘ (29)

where y = µw since each working individual produces one unit of output.

Notice that there are no dynamic consequences of the transfer choice cn. In particular,
this choice has no impact on any health transitions. At each date t, we can therefore solve a
static optimal transfer problem (given the current level of mitigation m = mt) that delivers a
maximum level of instantaneous social welfare which we denote W (m, x ). We turn to derive
this expression now.

3.2 The Instantaneous Social Welfare Function

We now derive the instantaneous social welfare function W (x , m), a necessary ingredient
for the optimal mitigation problem of the government. Assuming that all individuals have
log-utility and receive the same social welfare weights, the function W (x , m), is given by

W (x , m) = max
cn,cw

[µw log(cw ) + µn log(cn)] + (µw + µn)ū +
∑
i ,j

x ij ûj , (30)

where the maximization is subject to the aggregate resource constraint (29). Combining the
first order conditions with respect to (cn, cw ) yields

cw

cn = 1 + T ′(cn). (31)

11We will suppress the dependence on (x , m) when there is no room for confusion.
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We can use this relation in the resource constraint to obtain

µw (1 + T ′(cn)) cn + µncn + µnT (cn) = µw − ηΘ. (32)

Defining net per-capita income ỹ and average transfer costs t (cn) as

ỹ = ν − ηΘ

µw + µn (33)

t (cn) =
T (cn)

cn , (34)

we can rewrite the resource constraint in per-capita terms by dividing by µw + µn

cn [1 + νT ′(cn) + (1 − ν)t (cn)] = ỹ . (35)

Thus, the optimal solution to the government transfer problem is given by the solution to the
following system:

cn [1 + νT ′(cn) + (1 − ν)t (cn)] = ỹ (36)
cw = cn (1 + T ′(cn))) (37)

for an arbitrary differentiable per capita transfer cost function T (.). We can also express period
welfare in per capita terms, using

W (x , m) = [µw + µw ] w (x , m) (38)

w (x , m) = log(cn) + ν log(1 + T ′(cn)) + ū +
∑
i ,j

x ij

µw + µw ûj , (39)

where the only endogenous input in the period welfare function cn solves equation (36). In
particular, note that µw + µw is independent of mitigation, and thus we can discuss the impact
of mitigation on current welfare in terms of the per capita welfare function w (x , m).

The per capita welfare function illustrates the basic costs from mitigation m. First, mitiga-
tion lowers per capita income and, through it, the level of consumption. This is the log(cn) term
in w (x , ) which is strictly increasing in net income ỹ . In the absence of the cost of transfers,
this is the only direct effect of current mitigation. Second, the transfer cost to non-working
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households distorts risk sharing; this is the second term ν log(1 + T ′(cn)), which is zero if
the marginal transfer cost is zero. Note that an increase in mitigation reduces ν, and thus
the greater the severity of the negative impact of mitigation on current welfare, the larger the
marginal cost of transfers is. This, ceteris paribus, will reduce the incentives of the government
to engage in economically costly mitigation.

To see most clearly the intuition for our results, assume that the transfer cost is linear such
that T (cn) = τcn. In this case the optimal allocation is given by

cw = ỹ

cn =
ỹ

1 + τ

w (x , m) = log(ỹ ) − (1 − ν) log(1 + τ) + ū +
∑
i ,j

x ij

µw + µw ûj .

Thus, the negative economic impact of mitigation is given, in this case, by

∂w (x , m)
∂m =

∂ ỹ
∂m + (1 + τ) ∂ν

∂m < 0, (40)

since both ∂ ỹ
∂m and ∂ν

∂m are negative. In addition, we observe that the larger the marginal
cost of transfers τ, the more negative (1 + τ) ∂ν∂m is. This is how mitigation and redistribution
costs interact: the larger the marginal cost of redistribution is, the larger the economic cost of
mitigation ∂w (x ,m)

∂m is.

In our quantitative exercises, we will assume that the transfer cost function per non-worker
is given by the quadratic form T (cn) = τ

2
µn

µw (cn)2 = τ
2

(
1−ν
ν

)
(cn)2 so that total transfer costs

are given by µnT (cn) = µw τ
2

(
µncn

µw

)2
. This functional form is motivated by the idea that each

working household has to transfer
(
µncn

µw

)
units of consumption to non-working households.

Assuming a quadratic cost of extracting resources from workers, the per-worker cost is thus
given by τ

2

(
µncn

µw

)2
. Multiplying this by the total number of workers µw gives the total transfer

cost.12 For this specification, we obtain as optimal allocations to be inserted in the period
12The quadratic form is chosen for analytical convenience but is not central for our qualitative arguments.
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welfare function above

cn =

√
1 + 2τ 1−ν2

ν ỹ − 1

τ 1−ν2
ν

(41)

cw = cn (1 + T ′(cn))) = cn
(
1 + τ

1 − ν
ν

cn
)

. (42)

Note that
(
1 + τ 1−ν

ν cn
)

is the effective price the planner has to pay on the margin to take
one more unit of output from workers to give to non-workers. As transfers and thus non-
worker consumption cn rise, this price effectively rises, reflecting a higher marginal cost to
additional redistribution. In addition, since higher mitigation m reduces the share of workers
ν and increases the share of non-workers 1 − ν, the effective price of transfers at the margin
increases with mitigation, and the price rises the higher τ is.

For future reference, we can also construct expected flow utility for each type

W ` (x , m) =
(xy`n + xy`e + xy`r )

x `
[(1 −m)u(cw ) + mu(cn) + ū]

+
(xy`f + xy`e)

x `
[u(cn) + ū − û]

W b (x , m) = (x
ybn + xybe + xybr )

xb [u(cw ) + ū] + (x
ybf + xybe)

xb [u(cn) + ū − û]

W o (x , m) = u(cn) + ū − (x
yof + xyoe)

xo û.

3.3 Optimal Policy

We now assume there is a government/planner (we use these names synonymously, as there
is no time consistency problem) that chooses optimal policy over time by choosing the path of
mitigation m(t); the optimal choice of redistribution T (t) is already embodied in the period
social welfare function W (x ). The policy problem the planner solves is then given by

max
m(t)

∫ ∞

0
e−ρtW (x ) dt, (43)

subject to the laws of motion of the population equation (4) to equation (23).
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In a first step, we will approximate the optimal time path of mitigation by functions that
are part of the following parametric class of generalized logistic functions of time:

m(t) = γ0
1 + exp(−γ1(t − γ2))

. (44)

Here, the parameter γ0 controls the level of mitigation at t = 0. The parameter γ2 governs when
mitigation is reduced, and the parameter γ1 commands the swiftness with which mitigation is
reduced. Note that as t →∞, m(t) → 0.

More generally, the complete characterization of the optimal policy path is the solution to
an optimal control problem. We formally state that problem in Appendix A. It shows that the
key trade-off with mitigation efforts m is that a marginal increase in m entails static economic
costs of Wm (x , m) stemming from the loss of output and thus consumption of all individuals
in the economy, as encoded in y = y (m). The dynamic benefit is a favorable change in the
population health distribution: an increase in m reduces the outflow of individuals from the
susceptible to the asymptomatic state.

4 Calibration

Our calibration procedure has two parts. The first involves selecting a large set of parameter
values in a standard way based on a mix of external evidence and choices about empirical
counterparts to model objects. The second part is more delicate, and has to do with quantifying
the aggregate evolution of the pandemic in its early stages. In this second step we need to
estimate changes in behavior and policies as the United States moved from business-as-usual
to a partial lock-down coupled with a set of behavioral changes designed to reduce the spread
of infection. We begin with the first, and more straightforward, part of the calibration.

We set the population share of the young, µy , to be 85%, which is the current fraction of
the US population below the age of 65.

Preferences We assume logarithmic utility from consumption:

u(c) = log c.

We set the pure time discount rate in annual terms to 3%. To accommodate differential
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mortality by age in the simplest way we assume that 500 days after the start of the pandemic
(sufficient for it to have run its course), the discount rate becomes 4% for the young and 10%
for the old. These values are chosen to reflect, respectively, a residual expected duration of
life of 47.5 years for a 32.5 year old, and of 14 years for a 72.5 year old, numbers which are
consistent with recent pre-COVID-19 life tables.

To set the value of life ū, we follow the value of a statistical life (VSL) approach. The
Environmental Protection Agency and the Department of Transportation assume a VSL of
$11.5 million (see Greenstone and Nigam 2020). This is a high value, relative to values used
in other contexts. Assuming an average of 37 residual life years discounted at a 3% rate,
this translates into an annual flow value of $515, 000, which is 11.4 times yearly per capita
consumption in the United States.

To translate this into a value for ū we use the standard value of a statistical life calculation,

VSL =
dc
dr |E [u]=k =

ln(c̄) + ū
1−r
c̄

,

where c̄ is average per capita model consumption, and r is the risk of death. Setting VSL =

11.4c̄ and r = 0 gives ū = 11.4 − ln c̄. Note that this implies an easily interpretable trade-
off between mortality risk and consumption. For example, we can ask what reduction in
consumption leads to an individual becoming indifferent to facing a 1% risk of death. The
answer is the solution m to

ln(c̄ (1 −m)) + 11.4 − ln c̄ = 0.99 (ln(c̄) + 11.4 − ln c̄) ,

which is m = 1 − exp(−0.01 × 11.4) = 10.8%.

As another way to get a feeling for what our choice for the value of a statistical life implies,
suppose we were to contemplate a shut-down that would reduce consumption for six months by
25 percent. By how much would this shut-down have to reduce mortality risk for an agent with
10 expected years of life for the agent to prefer the shutdown to no shutdown? The answer is
the solution x to

1

20
ln(1 − 0.25) + 19

20
ln(1) + 11.4 = (1 − x )11.4,

which is 0.13%.
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For the disutility of having flu, we define ûf as

ûf = −0.3 (ln(c̄) + ū) ,

following Hong et al. (2018). We set ûe = − (ln(c̄) + ū) , so that the flow value of being in
hospital is equal to the flow value of being dead (zero).

Sectors To calibrate the employment and output share of the basic sector of the econ-
omy, µb, we use BLS employment shares by industry. We categorize the following industries
as basic: agriculture, health care, financial activities, utilities, and federal government. Mining,
construction, manufacturing, education, and leisure and hospitality are allocated to the luxury
sector. The remaining industries are assumed to be a representative mix of basic and luxury.
This partition implies that pre-COVID, the basic sector accounts for µb = 45.4 percent of the
economy.

Redistribution We adopt the quadratic formulation of transfer costs described above.
We pick a value for τ using estimates for the excess burden of taxation, which suggest that
raising an extra dollar in revenue at the margin (which can be used to increase consumption
for non-workers) has a cost for taxpayers of around $1.38 (Saez et al. 2012). This suggests
τ 1−ν

ν cn = 0.38. Given the first order condition above, this means that an optimal redistribution
scheme would imply cn/cw = 1/1.38 = 0.72 in pre-COVID times. Moreover, given ηΘ = 0.021,
τ 1−ν

ν cn = 0.38, and v = µy = 0.85, section 3.2 implies τ = 3.51.

Hospital Capacity Tsai et al. (2020) estimate that 58, 000 ICU beds are potentially
available nationwide to treat COVID-19 patients. However, only 21.5% of COVID-19 hospital
admissions require intensive care, suggesting that total hospital capacity is around 58, 000/0.215 =

270, 000. Tsai et al. (2020) emphasize that this capacity is very unevenly allocated geographi-
cally, and in addition, there is significant geographic variation in virus spread. Thus, capacity
constraints are likely to bind in more and more locations as the virus spreads. We therefore set
Θ = 100, 000, so that hospital mortality starts to rise when 0.042 percent of the population is
hospitalized. Because the cost of a day in intensive care is around $7, 500, we set η = 50, so
emergency care consumes about 2.1 percent of pre-COVID output.13 We set the parameter λo

such that the mortality rate in emergency care for the old at the peak of the epidemic in our
13Total health care spending in the United States is 18% of GDP. Of this, around one third is spending on

hospitals.
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simulation in which economic mitigation ends on April 21 is 20 percent above its value when
capacity is not exceeded.14

Disease Progression There are twelve σ parameters to calibrate, describing transition
rates for disease progression, six for each age. These describe the chance of moving to the next
worst health status and the chance of recovery at the three infectious stages: asymptomatic,
flu-suffering, and hospitalized. We assume that young and old exit each stage at the same rate
but potentially differ in the share of these exits that are into recovery. In particular, the old will
be much more likely to require hospital care conditional on developing flu-like symptoms and
more likely to die conditional on being hospitalized.

Putting aside these differences by age for a moment, the six values for σ are identified
from the following six target moments: the average duration of time individuals spend in the
asymptomatic (contagious but without symptoms for the disease.), flu-suffering (relatively mild
symptoms), and emergency-care states, and the relative chance of recovery (relative to disease
progression) in each of the three states. Following the literature on COVID-19 models, we
set the three durations to 5.2, 10, and 8 days, respectively, with these durations common
across age groups. The exit rate from the asymptomatic state to recovery defines the number
of asymptomatic cases of COVID-19 and is an important but highly uncertain parameter. We
assume that asymptomatic recovery and progression to the flu-suffering state are equally likely.15

We let the relative rates of recovery from the flu-suffering and emergency care states vary
with age, to reflect the fact that infections in older individuals are much more likely to require
hospitalization and hospitalizations are also somewhat more likely to lead to death. We set
the recovery rate from flu-suffering to 96% for the young and 75% for the old, based on
evidence from Table 1 of the Imperial College study (Ferguson et al. 2020). Similarly, given
evidence on differential mortality rates, we set the recovery rates from the emergency care
state to 95% for the young and 80% for the old (assuming no hospital overuse). Given these
choices, the probability that a newly infected young individual will ultimately die from COVID-
19 is 0.5 × 0.04 × 0.05 = 0.1%, while the conditional probability, conditional on developing flu

14Much of the concern about exceeding capacity has focused on a potential shortage of ventilators. However,
recent evidence from New York City indicates that 80% of ventilated COVID-19 patients die, suggesting a limited
maximum potential excess mortality rate associated with this particular channel.

15Given that the asymptomatic state has roughly half the duration of the flu state, this implies that roughly
half of infected agents in the model will be asymptomatic. Recall that in a random sample in Iceland, half of
the positive subjects reported no symptoms.
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symptoms, is 0.2%. The corresponding numbers for an older individual are 2.5% and 5.0%.

Sources of Infection Given the σ parameters, the parameters αw , αc , βh, and βe

determine the rate at which contagion grows over time. We set βe , the hospital infection-
generating rate, so that this channel accounts for 5 percent of cumulative COVID-19 infections
though April 12. This implies βe = 0.80.16 The values of αw , αc , and βh determine the overall
basic reproduction number R0 value for COVID-19, and the share of disease transmission that
occurs at work, via market consumption, and in non-market settings.

Mossong et al. (2008) find that 35% of potentially infectious inter-person contact happens
in workplaces and schools, 19% occurs in travel and leisure activities, and the remainder is
in home and other settings.17 These shares should be interpreted as reflecting behaviors in
a normal period of time, rather than in the midst of a pandemic. We associate workplace
and school transmission with transmission at work, travel and leisure with consumption-related
transmission, and the residual categories with transmission at home. These targets are used to
pin down choices for αw and αc , both relative to βh, as follows.

The basic reproduction number R0 is the number of people infected by a single asymptomatic
person. For a single young person, assuming everyone else in the economy is susceptible and
zero mitigation (m = 0), Ry

0 is given by

Ry
0 =

αw xy + αcµ
y + βh

σyar + σyaf +
σyaf

σyaf + σyar
βh

σyfr + σyfe +
σyaf

σyaf + σyar
σyfe

σyfe + σyfr
βexyb

σyer + σyed

where this expression exploits the fact that when m = 0, βw (0) = αw and βc (0) = αc .

The logic is that this individual will spread the virus while asymptomatic, flu-suffering,
and hospitalized —the three terms in the expression. They expect to be asymptomatic for
(σyar + σyaf )−1 days, flu-suffering (conditional on reaching that state) for (σyfr + σyfe)−1 days,
and hospitalized (conditional on reaching that state) for (σyer + σyed )−1 days. The chance
they reach the flu-suffering state is σyaf

σyaf +σyar , and the chance they reach the emergency room
165% is an estimate by Kent Sepkowitz (Memorial Sloan Kettering Cancer Center) of the share

of infections accruing to health-care workers who acquired the infection after occupational exposure:
https://www.cnn.com/2020/04/15/opinions/health-care-deaths-sepkowitz-opinion/index.html

As of March 24th, 14% of Spain’s confirmed cases were health care workers:
https://www.nytimes.com/2020/03/24/world/europe/coronavirus-europe-covid-19.html

17Xu et al. (2020) discuss in detail heterogeneity in contact rates across different types of business (closed
office, open office, manufacturing and retail) and a range of interventions that can reduce those rates.
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is the product σyaf

σyaf +σyar
σyfe

σyfe+σyfr . While asymptomatic, they spread the virus both at work and
at home, and pass the virus on to αw xy + αcµ

y + βh susceptible individuals per day.18 While
flu-suffering, they stay at home and pass the virus to βh individuals per day. While sick they
pass it to βexyb basic workers per day in hospital.

The reproduction number for an old asymptomatic person is

Ro
0 =

αcµ
y + βh

σoar + σoaf +
σoaf

σoaf + σoar
βh

σofr + σofe +
σoaf

σoaf + σoar
σofe

σofe + σofr
βexyb

σoer + σoed ,

where this formula is similar to the one for the young, except that it recognizes that is less
common for the old to pass the virus on, because they do not work. At the same time, however,
because the old are less likely to recover once infected, they carry the virus for a potentially
longer time, inducing more transmission in hospitals.

For the population as a whole, the overall R0 is a weighted average of these two group-
specific values

R0 = µy Ry
0 + (1 − µy )Ro

0 ,

where µy is the fraction of the population that is young.

In the workplace, the share of total transmission that occurs from a randomly drawn, newly
asymptomatic individual is then given by

workplace transmission
all transmission =

1

R0
µy

(
αw

σyar + σyaf

)
,

while the share of transmission due to market consumption is

consumption transmission
all transmission =

1

R0

[
µy

(
µyαc

σyar + σyaf

)
+ (1 − µy )

(
µyαc

σoar + σoaf

)]
.

Given these three equations, we set the relative values αw/βh, αc/βh to replicate shares of
workplace and consumption transmission equal to 35% and 19%. Note that this evidence does

18Recall that xy is the pre-COVID number of workers, and αw is the probability that transmission occurs when
an infected worker meets a susceptible one. Recall that we assume consumption contagion is proportional to
output, and pre-COVID output is µy = xy .
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not pin down the levels of αw , αc , and βh, to which we now turn.

Table 1: Epidemiological Parameter Values

Behavior-Contagion

αw infection at work 35% of infections 0.30
αc infection through consumption 19% of infections 0.15
βe infection in hospitals 5% of infections at peak 0.80
βh infection at home remaining infections 0.18
ζ scale of social distancing deaths on April 12 0.38
R0 (pre 3/21) effective virus reproduction composite parameter 3.61
R0 (3/21 to 4/12) effective virus reproduction composite parameter 1.02

Disease Evolution

σyaf rate for young asymptomatic into flu 50% flu, 5.2 days 0.5
5.2

σyar rate for young asymptomatic into recovered 0.5
5.2

σoaf rate for old asymptomatic into flu 50% flu, 5.2 days 0.5
5.2

σoar rate for old asymptomatic into recovered 0.5
5.2

σyfe rate for young flu into emergency 4% hospitalization, 10 days 0.04
10

σyfr rate for young flu into recovered 0.96
10

σofe rate for old flu into emergency 25% hospitalization, 10 days 0.25
10

σofr rate for old flu into recovered 0.75
10

σyed rate for young emergency into dead 0.2% mortality, 8 days 0.05
8

σyer rate for young emergency into recovered 0.95
8

σoed rate for old emergency into dead 5.0% mortality, 8 days 0.20
8

σoer rate for old emergency into recovered 0.80
8

History, R0, and Initial Conditions We will think of a policy maker choosing a path
for mitigation mt starting from April 12, 2020. The dynamics of the disease going forward,
and thus the optimal path for mt , will be highly sensitive to the distribution of the population
by health status at this date: how many people of each type are susceptible, infected, and
recovered; and how the infected group is partitioned by stage into asymptomatics, those with
flu symptoms, and those in hospital. It is not easy to get an accurate cross-sectional picture of
the health of the population, given that only a very small share of the population has recently
been tested.

In addition, going forward, the dynamics of the disease will depend on the basic repro-
duction number R0, which in our model is determined at a structural level by the levels of
the infection-generating parameters αw , αc , and βh. Existing estimates for R0 for COVID-19,
absent additional social distancing measures or economic shutdowns, are in the range of 2 to 4

(e.g., Flaxman et al. 2020). But given all the precautions that Americans are currently choosing
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to take or being required to take, the current effective R0 is likely much lower. In addition, the
fact that a large share of the US economy has been shuttered has likely lowered R0 still further.

To pin down the April 12 health status distribution and the April 12 level for the infection-
generating parameters, we take the following approach. First, we will assume that America
changed on March 21. Before that date, people behaved as normal, and none of the economy
was shuttered, corresponding to m = 0. On March 21, we assume infection-generating rates fell
discretely and proportionately to new lower levels ζαw , ζαc , and ζβh with ζ < 1 (we assume
no change in the hospital infection-generating rate βe). In addition, and at the same date, we
assume that states introduced measures that effectively shut down a fraction m = 0.5 of the
luxury sector, therefore immediately idling 0.5(1 − µb) = 27.5 percent of the workforce. It is
difficult to assess how much of economy has been affected directly or indirectly by shutdown
measures, but our value for m is consistent with the Faria-e-Castro (2020) forecast that US
unemployment will rise above 30 percent in the second quarter (Bick and Blandin 2020 estimate
that it is already 20 percent). Of course, in reality changes in social distancing practices and
shutdowns happened more gradually, but March 21 seems a natural focal date: California
announced the closure of non-essential businesses on March 19, and New York and Illinois did
so on March 20.

Of the data we have on health outcomes, perhaps the most reliable are for the number of
deaths attributable to COVID-19. We will therefore target three specific moments involving
deaths: the cumulative number of deaths up to March 21 (343), the cumulative number as of
April 12 (22, 055), and the three-day moving-average number of deaths per day on April 12
(1, 632).19 To hit these target moments, we treat as free parameters (1) βh —the pre-March 21
infection-generating rate at home; (2) ζ, the proportional amount by which infection-generating
rates fall on March 21; and (3) the initial number of infections at the date we start our model
simulation, which is February 12.

To understand how this identification scheme works, consider that the death toll rose from
343 to 22, 055 deaths in only three weeks, but the number of daily deaths was not especially
high (nor was it growing especially fast) at the end of this period. This suggests that there
were already many infections in the pipeline on March 21, but those infections did not grow
rapidly from March 21 onward, which indicates a low value for ζ. At the same time, a high

19Death tallies vary slightly across data sources and are occasionally revised retrospectively.
We use the New York Times numbers: https://www.nytimes.com/interactive/2020/us/coronavirus-us-
cases.html?action=click&module=Spotlight&pgtype=Homepage
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level of March 21 infections is informative about the level of initial infections on February 12.
Finally, a large number of infections on March 21, but low death toll up to that date, points
to high R0 (and a high βh) before March 21: rapid spread can deliver lots of new infections
without many deaths (yet).

This calibration strategy yields an initial effective R0 before March 21 of 3.61, which falls
to 1.02 after March 21, reflecting a value for ζ of 0.38. Part of this decline reflects the start of
economic mitigation. Absent mitigation (with m = 0), the effective R0 after March 21 would
be 1.44. This calibration implies the distribution of the population by health status summarized
in Table 3. Thus, the calibration implies that 1.52% of the US population was actively infected
(including asymptomatic infections) on March 21, with that number rising to 1.75% by April
12, with an additional 3.9% having recovered.20

For the time path of mitigation, our baseline simulation, designed to approximate current US
policy, will assume m = 0.5 for 100 days from March 21 onward, followed by m = 0 thereafter.
Thus, extensive economic shutdowns are in place until June 29, and then shutdowns are abruptly
ended. This path is implemented in the context of the mitigation function (eq. 44) by setting
γ0 = 0.5, γ1 = −0.5, and γ2 = 100. Note that we assume no change in the infection-generating
parameters αw , αc or βh from March 21 onwards; thus relaxing economic mitigation does not
imply an end to all social distancing. All the epidemiological and economic parameter values
are summarized in Tables 1 and 2.

5 Findings

We start by describing model outcomes under what we think of as the policies currently in
place in the United States. We then turn in the next section to optimal mitigation.

5.1 Benchmark Results

In Figures 1 to 5, we display the population health dynamics from March 21 to the end
of 2020. The red dashed lines represent our baseline scenario with 50% economic mitigation
(mt = 0.5) for 100 days and social distancing as described in Section 4. The blue solid line
is an alternative that shares the same time path of parameters and policies before April 12 –

20These numbers are within the range of expert estimates from the COVID-19 survey compiled by McAndrew
(2020) at the University of Massachusetts.
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Table 2: Economic Parameters

ρy effective discount rate of young 4.0% per year 0.04
365

ρo effective discount rate of old 10% per year 0.10
365

ū value of life 11.4× consumption p.c. 11.24
ûf disutility of flu lose 30% of baseline utility -3.37
ûe disutility of emergency care lose 100% of baseline utility -11.24
µb size of basic sector 45.4% 0.454
µy share of young 85% 0.85
τ transfer cost $0.38 burden of excess taxation 3.51
γ0 initial share mitigated 50% 0.5
γ1 speed of mitigation −0.5
γ2 time mitigation begins 100 days 100

Θ hospital capacity 100, 000 beds 0.00042
η bed cost $7,500 50

λo impact of overuse on mortality 20% higher mortality at peak 6.30

Table 3: Millions of People in Each Health State

S A F E R D × 1000

03/21/20 323.71 4.17 0.84 0.01 1.27 0.34
04/12/20 311.31 2.95 2.72 0.12 12.88 22.1

including 50% mitigation between March 21 and April 12 – but in which economic mitigation
is set to zero from April 12 onward.

We start with the currently infected (asymptomatic plus those with flu symptoms and those
in hospital) in Figure 1. Under our baseline policy, the red dashed line indicates that on April
12, we are already close to a local peak in active infections. In contrast, if economic mitigation
were to cease being enforced starting on April 12, the share of the population actively infected
would more than triple, reaching almost 7 percent of the population at the end of May. In the
scenario when the end of the shutdown is delayed until mid year, the end of mitigation leads
to a second wave of infections in the fall, but peak infection rates are much lower than under
the scenario when economic mitigation ends now (April 12).

Turning to the heterogeneity across the population, note that absent economic mitigation,
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Figure 1: Share of Each Group Infected (Asymptomatic + Flu + Hospitalized).

basic workers are infected at a slightly higher rate than luxury workers, reflecting the fact that
hospitals are in the basic sector. The old – who do not face exposure at work – experience a
lower rate of infection than either of the young types. Economic mitigation reduces infection
rates for all three types. While mitigation has a larger direct health benefit for luxury workers –
they are the ones who stay home from work – all three groups benefit from economic mitigation
to a surprisingly similar extent. This is because lower virus spread at work means fewer infected
people outside of work and thus fewer new infections at home and in stores and hospitals.

The next three figures decompose active infections into the asymptomatic (Figure 2), those
suffering from flu-like symptoms (Figure 3), and those in hospital (4). The key observation to
note here is that while a smaller share of the old develops mild symptoms, reflecting a lower
infection rate (see Figure 3), a much larger share of the old population ends up being severely
sick and hospitalized, as the lower right panel of Figure 4 shows. This is true under both
mitigation scenarios, but the effect is especially pronounced if economic mitigation is abolished
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Figure 2: Share of Each Group Infected but Asymptomatic

early: infections skyrocket first in the workplace and then at home and during shopping trips,
translating into more infections among the old. Recall that conditional on becoming infected,
the old are over six times as likely as the young to eventually require hospitalization.

The red horizontal line in the upper left panel of Figure 4 plots hospital capacity, Θ, which
we assume to be fixed in the short run. This plot shows another dramatic difference between
the two mitigation scenarios. Under the benchmark scenario with 50% economic mitigation
until the end of June, the demand for hospital care does not exceed capacity until the fall.
In contrast, when economic mitigation policies are (counterfactually) suspended on April 12,
capacity is drastically exceeded in May, June and July.

Figure 5 shows daily deaths from COVID-19. Under the baseline policy, with 50% mitigation
until mid-year, deaths remain around 2, 000 per day until the fall, when the end of mitigation
leads to a second wave which peaks at 4, 000 deaths per day. When economic mitigation
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Figure 3: Share of Each Group with Flu Symptoms

instead ends at Easter, the daily death toll rises dramatically, reaching 11, 000 at the peak.
The breakdown across population groups indicates that the virus is predicted to kill more older
individuals than younger ones, even though the old account for only 15% of the population.

A useful test of the model is to compare model-predicted mortality by age to the data
that is available to date. In the model, the old account for 73.5% of cumulative deaths up
to April 12. By comparison, of the 6,839 deaths reported in New York City as of April 14,
72.3% were associated with individuals over 65.21 Thus, the age variation in infection and
disease progression probabilities in our model is consistent with the observed age distribution
of mortality.

In Figure 6 we display the population health dynamics over the next 18 months, starting
21Data from New York City Health Department as reported by Worldometers

https://www.worldometers.info/coronavirus/coronavirus-age-sex-demographics/
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Figure 4: Share of Each Group Hospitalized.

on April 12. The left panel plots, against time, the share of the population that has not yet
been infected (i.e., the susceptible group). The right panel displays the cumulative share of the
population that has died from the virus,

Absent economic mitigation, the virus spreads rapidly, and after about six months, 55.4%
of the U.S. population has been infected with the virus: the blue line with the never-infected
share of the population rapidly drops to 44.6%. In contrast, under our projection for the
current economic mitigation plan, the never-infected share declines more slowly, and a larger
share of the population is never touched by the virus (51.5% rather than 44.6%). That is,
aggressive mitigation measures do not just flatten the curve: they also reduce the total number
of infections. The logic is that in the SIR class of models, the growth rate of infections depends
not just on how many people are infected but also on the relative shares of susceptible versus
recovered individuals in the non-infected population. More aggressive mitigation measures slow
the spread of infection, such that infections peak later. But delaying the peak in infections
gives time for more people to recover and develop immunity, which slows infection growth. The
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Figure 5: Daily Deaths from COVID-19

result is that the economy converges to a steady state in which a larger share of individuals has
never been infected, relative to the scenario in which the economy open up at Easter.

The right panel translates infections into mortality associated with the virus. In the absence
of economic mitigation, the death toll of the virus rises rapidly, and by the end of the outbreak
0.26% of the U.S. population is predicted to have lost their lives, which amounts to 858, 000
people. Under the current benchmark economic mitigation policy, that number falls to 0.19%
(627, 000 individuals). The difference in lives lost (231, 000) comes from two sources. First, with
economic mitigation in place, there is less hospital overload and excess associated mortality.
Second, with mitigation, a smaller cumulative total number of infections means that fewer
people ever risk adverse health outcomes and death. Of the 858, 000 total death toll absent
any economic mitigation from April 12 onward, 191, 000 deaths are due to hospital capacity
being exceeded. Under the baseline 50-percent-for-100-days mitigation policy, only 32, 700 out
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Figure 6: Left Panel: Share of the Initial Population Deceased. Right Panel: Share of Population
Never Infected (Susceptible).

of 627, 000 deaths reflect hospital overload. Thus, 158, 300 of the extra 231, 000 lives lost
when the shutdown ends at Easter reflect a severely over-stretched hospital system.

Figure 7 plots the dynamics of consumption for workers, and non-workers through the
course of the pandemic. Recall that in this economy, all workers independent of sector, enjoy
the same consumption level, and the government provides equal consumption via transfers to
all non-workers, irrespective of whether they are not working because they are old, sick, or asked
to stay home because of economic mitigation. The four panels correspond to four different
economies. In the top two panels, we assume our baseline value for τ, which implies that it is
costly for the planner to redistribute from workers to non-workers. In the bottom two panels,
we set τ = 0, so that the planner can freely redistribute. In that case, the planner equates
consumption between workers and non-workers at each date.22

22Recall that the evolution of the population health distribution is independent of the cost of transfers.
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Table 4: Millions of People in Each Health State

S A F E R D × 1000
03/31/20 318.36 2.97 2.33 0.07 6.28 5.59
04/30/20 303.11 2.57 2.53 0.13 21.60 53.38
06/29/20 249.42 1.68 1.72 0.09 46.86 154.81
09/30/20 201.42 4.31 4.59 0.24 119.03 406.81
12/31/20 171.52 0.47 0.62 0.04 156.74 599.38
12/31/21 168.82 0.00 0.00 0.00 160.56 621.95

Comparing across columns, the left two panels display the evolution of consumption when
economic mitigation ends on April 12, and the right two panels maintain 50% mitigation until
the end of June. In the first case, the economy immediately recovers as all healthy workers
who were affected by the shutdown in the luxury sector return to work, increasing output,
income, and thus aggregate consumption in the economy by about 27.5%.23 The right two
panels show that in terms of output and thus consumption, a later end to the shutdown simply
(and somewhat mechanically) postpones the economic recovery by 2.5 months. Note from the
upper right panel of Figure 7 that the cost of economic mitigation is borne disproportionately
by non-workers: the ratio of non-worker to worker consumption declines (from two-thirds to
one-half) during the mitigation phase. This reflects our assumption that extracting resources to
redistribute from workers becomes ever harder the more the planner wants to tax each worker.
To avoid very large redistribution costs, the planner optimally chooses to reduce insurance
during the mitigation phase and increases it again as the economy recovers.

Next, we report the expected welfare gains and losses for each type of individual for various
assumptions about the level of economic mitigation and the parameter τ that indexes the cost
of redistribution. In particular, we consider three mitigation levels: m = 0.5 (our baseline used
to construct the previous plots), m = 0.75, and m = 0.25. The welfare calculation asks, What
percent of consumption would a person be willing to pay every day for the rest of her life to
move from the economy where work mitigation ends on April 12, 2020 to one where work

23Note that we assume that infected people with symptoms stay home rather than go to work, and since the
share of infected individuals is endogenously evolving over time, the increase is not exactly equal to the 27.5%
decline in output when economic mitigation was introduced in the first place.
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Two Panels, m = 0. Right Two Panels, m = 0.5 for 100 Days, Then m = 0.

mitigation changes to m = 0.75 or m = 0.25 (or remains at m = 0.5) through June 29, 2020?
For this calculation, we use April 12 as the starting date, and assume m is fixed at the values
considered level until June 29, after which date m = 0 in each case. We report results for our
baseline value for τ (3.51) and for a case in which redistribution is costless (τ = 0).

The first clear message from Table 5 is that economic mitigation offers significant welfare
gains for the old but has much more modest welfare effects on the young. For example, in our
baseline case (m = 0.5 and τ = 3.51), the old gain 2.17% of consumption, while the young
basic workers gain only 0.24% from the shutdown, and young luxury workers are marginally
worse off. The reason the gains are much larger for the old is simply that the old face a much
higher likelihood of being killed by the virus, and strong economic mitigation policies reduce
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Table 5: Welfare Gains (+) or Losses (-): Mitigation from 4/12/20–6/29/20

Mitigated Share 75% 50% 25%
Transfer Cost τ 3.51 0 3.51 0 3.51 0
Young Basic 0.06% -0.04% 0.24% 0.18% 0.33% 0.30%
Young Luxury -0.37% -0.05% -0.01% 0.16% 0.23% 0.29%
Old 1.44% 2.00% 2.17% 2.64% 2.60% 2.93%

infections in the workplace, which in turn lowers the risk that the old meet infected individuals
at home or while shopping.

The second key message is that the cost of redistribution matters. In particular, when redis-
tribution is costless, young luxury workers and young basic workers perceive essentially identical
welfare effects from mitigation. On the one hand, mitigation offers more direct protection to
luxury workers, because they are the ones to stay home. On the other hand, mitigation reduces
hospitalizations, which reduces transmission to basic sector hospital workers. These two effects
essentially offset.

However, when redistribution is costly, young luxury workers fare notably worse than young
basic workers because they risk larger expected consumption losses from economic mitigation.
The reason is that when mitigation is increased, the planner needs to redistribute from a smaller
pool of workers toward a larger pool of non-workers. Given convex costs of extracting additional
resources from workers, this induces the planner to reduce insurance, translating into a larger
consumption gap between workers and non-workers.

We now briefly discuss a few factors that shape these welfare calculations. First, the overall
level of the welfare numbers is sensitive to several choices. A key one is the value of a statistical
life: a lower value would make life-saving economic mitigation trivially less attractive. Second, if
we assumed lower recovery rates at different stages of an infection, or a higher mortality rate at
the hospital stage, agents would perceive a greater risk of death and be more willing to sacrifice
consumption to avoid that risk. Third, in our model, when a shutdown raises non-employment
and reduces consumption, there is no upside in households’ utility functions from more leisure.
In the analysis of optimal shutdowns in Eichenbaum et al. (2020), the fact that households
experience reduced disutility from labor supply when economic activity is taxed compensates
strongly for the utility cost of reduced consumption. Fourth, if we were to make outputs of the
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basic and luxury sectors imperfect substitutes, then reducing luxury sector output would have
a larger negative impact on aggregate consumption, and shutdowns would be less appealing.
Fifth, if business failures caused by the shutdown lead to the destruction of firm-specific capital,
then the shutdown will continue to depress output even after it is lifted, again suggesting a
softer optimal shutdown. Finally, the attractiveness of shutdowns clearly depends on the share
of virus transmission that occurs through different forms of economic activity: the larger that
share is, the more powerful shutdowns are as a tool to slow transmission.

5.2 Optimal Policy

The mitigation policies we have compared thus far were not chosen optimally. We now turn
to exploring the optimal time path for economic mitigation and the associated statically optimal
degree of redistribution, given that path. To start, we optimize over the three parameters in
our parametric process for mt . That is, we choose γ0, γ1, and γ2 in eq. 44 to maximize social
welfare as defined in Section 3.2. The choice of these parameters lets the government control
the initial size of economic mitigation, when it ends, and how quickly it is phased out. Figure
8 describes the preferred policies within this class.

The left panel describes optimal policies under our baseline cost for redistribution, with
τ = 3.51. The blue line is the policy chosen by a utilitarian planner, who weighs the expected
utility of each type in proportion to its date 0 population shares. The other lines describe the
policies preferred by each of the three different types (young workers in the basic sector, young
workers in the luxury sector, and old individuals, respectively). The right panel corresponds to
a case in which redistribution to soften the economic effects of mitigation is costless (τ = 0).

There are clearly large differences across individual types in terms of what fraction of the
economy they would like to see shut down and for how long. As a point of comparison, recall
that up until April 12, the level of mitigation is set at 50% of the luxury sector. We first focus
on the benchmark calibration with costly transfers (the left panel).

The old (15% of the population) would like to see 30% of the luxury sector shut down, and
for a partial shutdown to remain in place through the end of the year. In contrast, young luxury
workers (close to 50% of the entire population) would prefer a much lower level of mitigation
and for that mitigation to end much earlier. Basic sector workers have a policy preference
roughly in the middle of these two extremes, and a utilitarian government adopts a similar
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Figure 8: Preferred Intensity and Duration of Shutdowns

policy. Thus, a utilitarian government closes about 25% of the luxury sector until around
mid July, before gradually opening up over the following couple of months. Note that this
policy implies a notably lower level of economic mitigation than the one currently in place, but
indicates that mitigation should remain in place for longer than our baseline 100 assumption.

When redistribution is costless (right panel of Figure 8), policy preferences remain qualita-
tively similar but quantitatively change quite significantly. First, young workers in both sectors
now agree on the preferred mitigation policy, which is because they face identical consumption
consequences, and benefit essentially equally on the health front.24 Second, the old now prefer
even more mitigation, because they do not have to worry about a reduction in relative consump-
tion during a shutdown. The utilitarian policy is more aligned with the preferences of young
workers, simply because they constitute the lion’s share of the population. Interestingly, the pre-
ferred utilitarian mitigation policy is more aggressive when redistribution is (counter-factually)

24Although again mitigation benefits the two groups via different channels: reduced hospital infection for basic
workers, and reduced workplace infection for luxury workers.
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Table 6: Welfare Gains (+) or Losses (-) from Preferred Mitigation, τ = 3.51

Utilitarian Old Luxury Basic
Young Basic 0.37% 0.29% 0.34% 0.36%
Young Luxury 0.21% -0.05% 0.25% 0.22%
Old 3.60% 4.15% 2.89% 3.37%

costless, both in terms of level as well as in terms of a longer and more gradual phasing-out.
However, even when redistribution is costless, the optimal level of economic mitigation is still
below the level we believe to be currently in place.

The next two tables (Tables 6 and 7) describe expected welfare gains, relative to a no-
economic-mitigation baseline, under each of the policies described in Figure 8. In each case,
the starting date for these welfare evaluations is April 12. The columns of each table identify
the policy in place. The rows report expected welfare for each type.

Table 7: Welfare Gains (+) or Losses (-) from Preferred Mitigation, τ = 0

Utilitarian Old Luxury Basic
Young Basic 0.30% -0.05% 0.32% 0.32%
Young Luxury 0.29% -0.06% 0.32% 0.32%
Old 4.49% 5.30% 3.68% 3.68%

Consistent with the results in the previous section, the old experience large welfare gains from
any of these policies. Irrespective of the cost of redistribution, the welfare gains or losses for the
young are much smaller. Second, and again in line with the previous section, the welfare gains
for young luxury workers are always smaller than for young basic workers when redistribution is
costly, but nearly identical when redistribution is costless. Third, when redistribution is costly,
the policy that is welfare-maximizing for the old is actually welfare-reducing (relative to no
mitigation) for young luxury workers.

Finally, Figure 9 compares key model predictions under three policies: (1) 50 percent
mitigation for 100 days from March 21 (red), (2) ending mitigation on April 12 (dark blue),
and (3) the optimal policy chosen by a utilitarian planner (cyan). The top left panel highlights
the key optimal policy finding: the shutdown should be relatively modest (initially 25 percent
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of the luxury sector or 13.7 percent of the economy as a whole) but it should stay in place for a
long time. This translates into a modest but prolonged contraction in output and consumption
(top right panel). This policy delivers a mild but lengthy increase in infections, hospitalizations,
and deaths during the spring. But crucially there is no second wave of infections in the fall. A
final and very important benefit of the optimal policy is evident in the bottom right panel: it
translates into a larger share of the population never being touched by the virus. In particular,
the share never infected by the end of 2021 under the optimal policy is 58.1 percent under
the optimal policy, compared to 51.5 under the harsh 100 day shutdown, and 44.6 under the
counterfactual in which the shutdown ends at Easter.

These different dynamics for infections and hospitalizations translate into large differences in
cumulative deaths under the different policies. The total number of deaths under the utilitarian
optimal policy is 533, 400, compared to 621, 900 under the policy when the shutdown ends at
the end of June, and 868, 800 when it ends at Easter.

5.3 Small Gains From More Complex Policies

We have thus far optimized over shutdown policies within a simple parametric class. The
parametric class we have explored has the advantage of being easy to communicate: the three
parameters in eq. (44) control the initial extent of the shutdown, the date around which the
shutdown ends, and how gradually or abruptly the shutdown is relaxed.

We now solve for the optimal path of mitigation without restricting the path for mitigation
in any way, i.e., we solve for the fully optimal non-parametric path. This amounts to numerically
solving the optimal control problem outlined in Appendix 1. We then address two questions.
First, how different are the fully optimal paths of mitigation and induced variables relative to
the best-in-parametric-class policy we have focused on to date? Second, how much better can
the planner do, in welfare terms, when she can choose any possible path for mitigation instead
of being restricted to our baseline parametric function of time?

Figure 10 illustrates the optimal paths of key variables when the planner chooses the path
for mitigation optimally with no parametric restrictions, and offers a comparison to the corre-
sponding paths under our optimal parametric mitigation policy. The top left panel shows the
amount of economic activity that is shut down under each policy. The optimal non-parametric
policy tracks the parametric policy closely, though the extra flexibility allows for a hump shape
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in mitigation that tracks infections more closely than the simple policy.

The more flexible policy implies slightly more volatility in consumption, which reduces
welfare, while slightly flattening the curves for infections and hospitalizations, which increases
welfare. The gains and losses from flexibility are approximately equal in magnitude, leading
to tiny marginal welfare gains from the optimal non-parametric policy relative to the optimal
parametric one, as shown in Table 8. The utilitarian non-parametric policy reduces the welfare
of the old relative to the parametric by 0.05%, but increases the welfare of young people by
0.01% for each group. Since the old are 15% of the population, flexibility delivers a 0.01%
increase in the utilitarian planner’s payoff.

We have also experimented with computing optimal non-parametric policies starting on
February 15, as opposed to April 12. With an earlier start date for policy, the additional welfare
gains from allowing a more flexible path for mitigation are much larger. In particular, given a
February 15 start date, it is optimal to impose relatively modest mitigation for a while, before
ramping up (see Figure 14 in the Appendix). This sort of policy is precluded by our parametric
functional form, which therefore delivers welfare inferior outcomes.

Table 8: Welfare Gains (+) or Losses (-): Non-Parametric vs. Parametric Policies

Utilitarian Old Luxury Basic
Policy Form Non-Par Par Non-Par Par Non-Par Par Non-Par Par
Young Basic 0.37% 0.36% 0.30% 0.29% 0.34% 0.34% 0.37% 0.37%
Young Luxury 0.22% 0.21% -0.03% -0.05% 0.25% 0.25% 0.22% 0.22%
Old 3.55% 3.60% 4.15% 4.15% 2.79% 2.89% 3.38% 3.37%

6 Extensions

We now consider how three different public health innovations would affect optimal mit-
igation and redistribution policies. First, we consider a case in which a successful vaccine is
expected to arrive in October 2020. This implies large benefits to avoiding infections until
the vaccine arrives, which translates into much more extensive mitigation than in our baseline
simulation in which there is no prospect of a vaccine. Second, we consider the possibility that
rapid testing for antibodies becomes available, so that all recovered workers can be identified
and exempted from mitigation. In this case, we find slightly more desire for mitigation, since
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it can be better targeted. Overall, however, antibody testing has disappointingly little impact
on the trajectory of the pandemic or optimal policy. Third, we consider an intervention in
which the young do all the shopping for the old, allowing the old to be protected from infection
through this channel. This reduces optimal mitigation for a utilitarian planner, with additional
welfare benefits for the old.

6.1 Policy Response to a Future Vaccine

Researchers around the world are racing to develop a COVID-19 vaccine. A team at the Jen-
ner Institute at the University of Oxford hopes to have one in production as early as September
2020.25 How do preferred policies change if people know that a vaccine is in the pipeline? To
answer this question we solve for optimal policies when individuals expect a perfectly effective
vaccine to end the flow of new infections on October 12 (six months after our April 12 starting
date for computing alternative mitigation policies).

Figure 11 illustrates the optimal policy and key outcomes when a vaccine is expected. The
main takeaway is that the planner prefers a much more extensive shutdown when she knows a
vaccine is coming. The reason mitigation is now more attractive is that the arrival of a vaccine
stops new infections cold, and thus mitigation can dramatically reduce the total cumulative
number of infections and deaths from COVID-19. Absent a vaccine, in contrast, mitigation
is less attractive, because most of the infections that mitigation prevents in the short run are
simply postponed further into the future. Effectively, without a vaccine the epidemic will only
die down after some form of herd immunity has been achieved. Mitigation efforts can only delay
deaths and avoid an overload of the health system. In contrast, if a vaccine can be deployed
in the fall, postponing potential infections until after that date massively increases the share of
the population that never contracts the disease (see the bottom right panel).

The ability to mitigate until a vaccine arrives and therefore avoid many serious illnesses
and deaths implies large welfare gains from mitigation, especially for the old (see column 3 of
Table 9). The welfare gains for the old nearly double in the scenario in which a vaccine will
arrive, relative to the no-vaccine baseline. Basic sector workers also gain more from mitigation
relative to the baseline no-vaccine case. In contrast, luxury sector workers view the effects
of mitigation similarly whether or not they expect a vaccine since their overall risk of getting

25https://www.nytimes.com/2020/04/27/world/europe/coronavirus-vaccine-update-oxford.html Note that
most experts do not expect a vaccine to be widely available until 2021.
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infected, severely sick and die from the disease is relatively low.

6.2 Policy Response to Antibody Testing

The mitigation of luxury workers studied thus far has been uniform across susceptible,
asymptomatic, and recovered people. Given that we maintain the assumption that recovered
people are no longer infectious, nor can be reinfected, it would make sense to allow them back
to work. The challenge is that identifying who is recovered is not easy, for two reasons. First,
people in the model (and in the world) can recover from the asymptomatic state, and this
group might not be aware of their own recovered status. Second, even if people are privately
fully aware of whether they are in either (i) the susceptible or asymptomatic state, or (ii) are
recovered, they might individually prefer to work rather than to be mitigated, given that workers
enjoy higher consumption.26 Thus, identifying health status would remain a challenge for the
planner.

However, in recent weeks, antibody testing has become much more widely available. We
now consider a scenario in which the planner tests all young workers at high frequency, and
offers immunity passports to all recovered individuals, exempting them from mitigation. Figure
12 plots key outcomes under the utilitarian-optimal parametric policy in the economy with
antibody testing.

The planner now chooses slightly more extensive and notably longer-lasting mitigation (top
left panel). Changes in outcomes are relatively small. Column (4) of Table 9 shows that each
group gains more from the utilitarian optimal policy if antibody testing is available, especially
the old who gain 0.31% in consumption equivalent terms. Note, however, that these welfare
gains are much smaller than those associated with the arrival of a vaccine.

This finding of relatively modest welfare gains might seem surprising and disappointing,
given that we have assumed maximally effective antibody testing. The intuition for why an-
tibody testing is not especially useful is as follows. In the early days of the pandemic, there
are very few recovered individuals, so being able to identify them is not very helpful. Toward
the end of the pandemic, exempting a large number recovered from lockdowns is more useful,
because it implies that a significantly larger share of those mitigated are asymptomatic (or

26We have verified that under the consumption allocation characterized in Section 3.2 the young in our model
do prefer working to being mitigated.
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susceptible) rather than recovered. For this reason mitigation is optimally prolonged. However,
in this phase the disease is dying out anyway, so the welfare gains from further hastening the
end of the pandemic, while real, are fairly modest.

6.3 Policy Response to Elderly Isolation

One widely-proposed policy has been to isolate older people at home. In our model, the
old do not work, so the only way to lower their risk of infection outside the home is to reduce
their market consumption activity. We therefore consider a simple policy to protect the old
from infection risk while shopping, which is to ask the young to shop on behalf of the old.27

To model this, we remove the consumption channel as a possible source of infection for the
old, and simultaneously increase the importance of the consumption channel for the young, in
such a way that the total number of infections through consumption would remain unchanged,
given the same distribution across health states for young and old.28 Importantly, we assume
that this policy intervention is costless.

Obviously this intervention directly benefits the old. But, once the old do not shop, the
planner wants to change the path for mitigation, because mitigation no longer directly protects
the old from infection. In particular, the planner now optimally reduces mitigation (see the top
left panel of Figure 13). This benefits young workers, and especially those in the luxury sector.

Figure 13 illustrates that reduced mitigation translates into more infections. But because
these infections are more heavily tilted toward the young, deaths are reduced. Fewer deaths plus
higher average consumption is an attractive package. Column (5) of Table 9 documents welfare
gains for all groups. In this instance we report welfare gains from a joint policy of isolation of
the old plus optimal mitigation relative to a baseline of no mitigation and no isolation. The
table indicates similar welfare gains for the young and even larger welfare gains for the old,
relative to the baseline case (column 1) in which the isolation instrument is not used.

27Alternatively, this policy intervention can be interpreted as introducing special shopping hours for the elderly
where infection risk in minimized, in turn reducing shopping hours for the young, resulting in more crowded and
infectious stores for them.

28In particular, the consumption term in eq. (4) becomes βc (m)y (m)xya
(

xy+xo
xy

)
xybs

(
xy+xo

xy

)
. The adjust-

ment for eq. (5) is similar.
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Table 9: Welfare Gains (+) or Losses (-): Utilitarian Planner in Extensions

Baseline Non-Parametric Vaccine Antibody Tests Elderly Shut In
Young Basic 0.36% 0.37% 0.47% 0.38% 0.34%
Young Luxury 0.21% 0.22% 0.17% 0.23% 0.20%
Old 3.60% 3.55% 6.04% 3.91% 4.80%

7 Conclusion

In this paper we have built a model in which the distributions of economic activity and
health are jointly determined. Individuals in the model are heterogeneous by age, sector, and
health status. We model multiple sources of disease transmission, and how this transmission
affects and is affected by the level of economic activity. We studied optimal economic mitigation
policies and argued that costly redistribution reduces the desire of the government to engage
in such policies. Our results also starkly illustrate how unevenly the welfare gains and losses
from economic mitigation are likely distributed across different segments of society. The elderly
gain much more than the young from extensive reductions in economic activity than the young.
Those working in the partially shuttered sector are the most adversely impacted, especially
when it is costly to soften the distributional consequences via public transfers.

Our baseline calibration suggests that the shutdown in place on April 12 was too extensive,
but that a utilitarian planner would keep a partial shutdown in place into the fall. Looking into
the future, our framework can be used to quantify the distributional consequences of the actual
policy path that will be chosen in the U.S. and elsewhere.
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Figure 9: Key Outcomes under Alternative Mitigation Policies
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Figure 10: Key Outcomes, Parametric Vs Non-Parametric Utilitarian Policies
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Figure 11: Key Outcomes, Baseline vs. Vaccine Oct. 12
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Figure 12: Key Outcomes, Baseline vs. Antibody Testing
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Figure 13: Key Outcomes, Baseline vs. Elderly Shut In
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A The Unrestricted Optimal Policy Problem

The complete characterization of the optimal policy path is the solution to an optimal
control problem. In the main text we already have derived the period return function W (x, m).
In addition, the evolution of the state (the distribution of the population by health status
x = (x i ,j )) evolves according to the vector-valued equation (summarizing Equations (4) to (22)
the paper in a compact form):

x = G (x, m) (45)

To solve for the optimal time path of the scalar mitigation variable is then a straightforward
optimal control problem with a multi-dimensional state vector and a one-dimensional control
variable. Define the current value Hamiltonian as

H(x, m,µ) = W (x, m) + µG (x, m) (46)

where µ is the vector of co-state variables associated with the population state vector x.
Necessary conditions at an interior solution for mitigation m are the optimality condition for m

Wm (x, m) = −µ · Gm (x, m) (47)
µ = ρµ − [Wx (x, m) + µ · Gx (x, m)] (48)
x = G (x, m) (49)

The key trade offs with mitigation efforts m discussed in the main text are encoded in equation
(47). A marginal increase in m entails static economic costs of Wm (x, m) stemming from the
loss of output and thus consumption of all individuals in the economy, as encoded in yn (m).
The dynamic benefit is a better change in the population health distribution, as encoded in the
vector Gm (x, m). Concretely, as is clear from equations (4 − 6) an increase in m reduces the
outflow of individuals from the susceptible to the asymptomatic state. The value (in units of
the objective function) are given by the co-state vector µ.

It should be kept in mind that since (x,µ) are vectors, so are the entities Gm (x, m) =
(G i ,j

m (x, m)) and Wx (x, m) = (Wx i ,j (x, m)) and Gx (x, m) = (Gk
x i ,j (x, m)) so that equation (47)

reads explicitly
Wm (x, m) = −

∑
i ,j
µi ,jG i ,j

m (x, m), (50)

and a specific row of the vector-valued equation (48) is given by

µi ,j = ρµi ,j −
[
W x i ,j (x, m) +

∑
k
µkGk

x i ,j (x, m)
]

. (51)

In practice, we must solve this problem numerically. It can be written as a finite-time
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constrained optimization problem by finding a date, T , sufficiently far in the future that all
aggregates are constant from then on. We set T = 1000 and solve for the discounted utilities for
every person who lives until T , under the assumption that old people are non-workers from T
onward. We then maximize the integral in Equation 43 from zero to T with these continuation
utilities as terminal values, discounted to t = 0. This is subject to the laws of motion for state
variables and the relevant definitions of the shares of people currently working and consumption
of workers and non-workers. We implement this optimization using the OpenOCL toolbox in
Matlab (Koenemann, et al. A1).

While the optimal control approach did not achieve large gains relative to our simple rule
starting from April 12, we do find value in flexibility if the policy maker must commit to a
path of mitigation on February 15, before infections have started to increase. We illustrate
this in Figure 14. A policy maker that must commit to a policy in our parametric class cannot
suppress the virus without suffering months of low consumption, whereas a policy maker with
flexibility chooses to ramp up mitigation as the virus starts to spread. Therefore, restricting to
our baseline functional form cannot increase utility relative to zero mitigation forever, whereas
the non-parametric utilitarian optimal increases welfare for basic, luxury, and old people by
0.40%, 0.19%, and 3.88%, respectively.

B Appendix References

[A1] Koenemann, J., Licitra, G., Alp, M., Diehl, M. (2017), “OpenOCL–Open Optimal Control
Library”.
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Figure 14: Key Outcomes, Starting Feb. 15
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