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I. Introduction

In this paper we study properties of the ex post forecast

distributions of the reduced forms of two quarterly models of the U.S.

1/
economy: the "old" FRB-MIT model and the Michigan model.- As part of

the study of these distributions, we are able to test for structural

change by, in effect, comparing the magnitudes of ex post forecast errors

-- differences between mean forecasts and actual outcomes -- to a measure

of the dispersion of the distribution of forecasts consistent with the

results of estimation.

Our approach is novel only because we know of no other attempt

to apply such a test to a simultaneous equations model, let alone to

large nonlinear models. There have been studies in which differences

between actual outcomes and what we call ex post nonstochastic forecasts

(forecasts generated from the point estimates of all parameters) are

compared across models including a variety of "naive" models, but those

comparisons cannot offer statistical grounds for acceptance or rejection

of a model. In contrast, the test we perform determines in a probabilistic

sense whether the magnitudes of ex post forecast errors can be attributed

entirely to randomness in the economy and to uncertainty stemming from the

size of the data set, or, must in part be attributed to structural defi-

ciencies of the model (structure here includes a stochastic speci-

fication consistent with the particular estimation procedure employed).

We recognize that there probably have been equation-by-equation

tests of the structural equations of certain models, but such tests and

those we apply to the reduced form are not perfect substitutes for one
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another. This is especially true when the forecast period is too short

to allow for separate estimation of the complete parameter set. But

whether that is the case or not, for many purposes -- in particular, for

prediction and control -- the properties of the forecast distributions implied

by the reduced forms are of primary interest.

The remainder of the paper is organized as follows. In section II,

after a brief description of the models, we describe the statistic we employ

and the way it was computed. Our grounds for employing that statistic are

presented in section III. The last three sections are devoted to a presenta-

tion of results: section IV to basic test results; section V to aspects of

the confidence regions and to tests of linear functions of the variables;

and section VI to other aspects of the forecast distributions -- comparisons

between mean forecasts and nonstochastic forecasts, comparisons between

forecast variances from multiperiod endogenous simulations and those from

one-period simulations, and comparisons between forecast variances and

residual variances.

II. The Specification of the Models
and the Computation of the Test Statistics

As noted in the introduction, we test two models in this paper. The

first, the Michigan model, is a relatively small model with 24 estimated equa-

tions. It has almost no financial sector and operates with the interest rate on

4-6 month commercial paper as its exogenous monetary instrument. The second

model, an old version of the FRB-MIT model, has 75 estimated equations and a

fairly elaborate financial sector which gives us a choice among possible mone-

2/
tary instruments.- We chose the money stock, because the model has most often

been used that way, and, because that is consistent with the estimation pro-
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cedure; the demand for demand deposits in the FRB-MIT model was estimated

with an interest rate as dependent variable and demand deposits as an inde-

pendent variable.

Both models are estimated on quarterly data, the Michigan model

on data for the period 1954-1 through 1967-4, the version of the FRB-MIT

model we test on post-Korean War data up through 1968-3. The Michigan

model was estimated by two-stage least squares with a special adjustment

for serial correlation in two of the equations. Many of the equations

are in first-difference form. The FRB-MIT model was estimated by ordinary

least squares. In a majority of the estimated equations first-order

serial correlation coefficients were estimated, and partial first differences

taken.

In both cases, we accept the chosen estimation procedure. In

addition, we make the estimation and forecast period breakdown for test

purposes according to the above reported estimation periods; that is, we

identify the estimation period for test purposes with the reported estima-

tion period for the base model. This gives us a "forecast" period outside

the period used to specify the model which seemed to us to yield stronger

tests than would another breakdown, since, in general, the specification

(functional forms, variables included, etc.) of each model was not deter-

mined before viewing the base-period data. Given the data available when

we performed the computation, that decision gives us a 12-quarter fore-

cast period for the Michigan model, 1968-1 through 1970-4, and a nine-

quarter period for the FRB-MIT model, 1968-4 through 1970-4.

A disadvantage of such a breakdown is that a wider class of

tests could be performed if the "estimation" period was shortened and

the "forecast" period lengthened enough to allow all parameters to be
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estimated from data for the "forecast" period alone. In particular, a

test of the hypothesis that all parameters changed -- as opposed to tests

that certain functions of the parameters change -- might then be possible.

However, even then, tests of the class we perform would still be of interest

and the calculation of the statistics for them not any simpler.

The models are noncomparable not only with regard to estimation

period, but also and perhaps more importantly, with regard to what is

taken as exogenous. In all cases we set the forecast-period values of the

exogenous variables at their actual values. To do otherwise would mean

specifying equations for those variables and, in so doing, venturing far

from the reported base models. On balance, the FRB-MIT model takes fewer

variables as given than does the Michigan model, which one might expect given

their relative sizes. The differences are summarized in a rough way in

Table 1. Note that the set of exogenous variables for FRB-MIT is not simply

a subset of that for the Michigan model. In particular, we should emphasize

that we shall be examining reduced forms as functions of two quite different

monetary instruments; the money stock in FRB-MIT, the commercial paper

rate in Michigan.

In order to make a test whose statistical properties can (in

principle) be determined, the models must be specified in stochastic terms.

This means that for the types of tests we wish to make, more must be speci-

fied or assumed about the models than has been reported. It follows that

the model tested is, in effect, a composite between a base model reported

by its originators and our addendum, which will be described in detail

below. One point, however, deserves mention here. We assume that the

structural equation residuals are independent across equations. This is

consistent with both the reported estimation procedures and the lack of
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reported covariances. We admit, though, that abandoning that assumption

could have far-reaching effects on test results. It should therefore be

stressed that our test results imply something about our addendum as well

as about the base models.

We have chosen to use a test statistic of the general form

(1) D=(Cy)'(C C')-1(Cy)/r

Here '=(Y 1 1 1 2 ... lM'y21 ... 2M' ... nl...nM) is an nM-element vector

of deviations between mean forecasts of endogenous variables, Y, and actual

outcomes, Y, n being the number of endogenous variables for which we

compute statistics (12 for the Michigan model, 16 for the FRB-MIT model)

and M the number of quarters in the forecast period (12 for the Michigan

model, nine for FRB). is the (MnxMn) covariance matrix of y, and C

is an (rxMn) matrix of constants, r<Mn. Y and are computed condi-

tional on the values of the endogenous variables during the estimation

period. They depend in no way on forecast-period values of the endogenous

variables.

D is a quadratic form in the deviations of the actual values

of the endogenous variables from their expected values given the observa-

tions in the estimation period. Rejection regions and confidence intervals

are set up using an F-distribution with r numerator degrees of freedom and

q denominator degrees for D, where we take for q a rough average of the

degrees of freedom (in estimating the residual) for the structural equa-

tions of the model. (In fact, for both models we set q=48 and always

use 5 percent rejection regions and 95 percent confidence regions.) The

implied confidence intervals or acceptance regions are ellipsoids in the

3/
space of deviations.-

r
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Because the models consist of sets of nonlinear structural equa-

tions, we estimate Y and by way of Monte Carlo experiments. That is done

by repeatedly drawing values of the structural parameters consistent with

the estimation period mean and covariance estimates, and values of the

residuals consistent with the estimation period residual variance estimates,

and for each drawing generating an Mn element observation on y. For each

model we take 300 random drawings and take as Y the (Mn-element) vector of

averages of those observations and as the sample (MnxMn) covariance matrix.

The random parameters are generated one structural equation at a

4/
time.- Letting ai stand for the column vector of random parameters of the

i

ith estimated equation, a priori sample values of .i are generated by the matrix

equation.

(2) a.i =a+R!v
1 1 i

where .a is the estimation period vector of point estimates, v is a column
i

vector of independent, mean zero, variance one, random variables generated

5/
by a random number generator- (drawn independently for different equations),

and R. is a matrix such that R'R. equals the estimation period estimated

covariance matrix of the point estimator. It follows, then, that ai

generated by equation (2) has mean a. and covariance matrix R'R., the estimated
1 1 1

covariance matrix of the point estimator.

The additive disturbance for each estimated equation is random

both among runs and among periods in each run. It is chosen independently

across time and equations according to

(3) w.(j)=ai.v
1 1
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where wi(j) is the residual for the ith equation at time j, i. is the

estimation period residual standard error of the ith estimated equation,

and v is a random variable with the same properties as the v in (2).

(Note that the v's referred to in (2) and (3) are drawn independently.)

Given (2) and (3), a single M-period simulation run may be

thought of as generated as follows. First a random set of parameters is

drawn for each estimated equation. Those drawings constitute the parameter

values for the run. Then, residuals are drawn, one for each estimated

(1)_
equation. These are embedded in the equations, and a solution, y =

yllY21,...Ynl , obtained via the Gauss-Seidel iterative procedure. That

solution is dependent on estimation-period values of all variables and

on forecast-period values of exogenous variables. Then a new set of

residuals is drawn, again according to (3), and a solution, an observation

on y(2), obtained. That observation is again dependent on estimation-

period values of all variables and on forecast-period values of exogenous

variables, and, in addition, is dependent on the previously solved for

(1) (3) (4) (M)
value of y . Proceeding in this way, observations on y ,y ,..(4) .y

are obtained. As noted above, for the principle tests, we performed 300

6/
such M-period endogenous simulation runs for each model.-

III. Considerations in Selecting Statistics

and Distributions Employed

The statistic we have chosen to use, described in the preceding

section, is a slightly modified version of the statistic:

-1
(4) D=g' g/r

where:

I
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(a) g is an r-vector of estimable parameters of the joint dis-

tribution of the endogenous variables y and the null hypothesis can be

stated as

(5) H0: g=0.

(b) g is the estimate of g made without regard to the restriction

imposed by the null hypothesis.

(c) is an estimate of the covariance of g, also made without

the null restriction.

(d) We have attempted to use "best" estimates in all cases.

With our particular models and small sample sizes, there are no

available tests with known optimality properties (in terms of power).

Therefore, in choosing both the general form of the test statistic (4), and

the particular estimates and modifications used, along with the distribution

used to define the critical region, we have been guided by known results

for more simple models and asymptotic results for a general class of models

which include ours.

We are painfully aware, however, that our model is too distant

from the simple models and our sample too small to provide any rigorous

justification at this time. Nevertheless in our judgment there are enough

favorable indications to justify its use relative to a nonstatistical test.

The simple models to which we refer are the normal linear model

(NLM) where the covariance matrix is known up to a scalar multiple and certain

reduced-form models.

Let Y~N(XB, 2V) where Y is Txl, X is a fixed TxK matrix, P is a

Kxl vector of unknown coefficients, V a known TxT matrix, and a2 an unknown

scalar. The classical F-statistic for the hypothesis g=CB-d=0, where C is
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a fixed rxK matrix and d a fixed rxl vector, is given by

-1

(6) g' g/r,

~ 2 1 -1 2.2. -1 I1
where g=CB-d, 1= C[X'V X] C', 2 ='u/T-K, u=Y-X, and =(X'VX) X'V- Y.

This statistic has an F(r,T-K) distribution under the null hypothesis, and

the critical region given by requiring that (6) be less than some constant

is known to yield a UMP invariant test, i.e., UMP among those tests whose

equal-power surfaces are certain "natural" ellipsoids.

Now consider a reduced-form model given by Y-N(XA,I IT), where

Y is Txn, X is TxK, A is Kxn, is an (nxn), unknown matrix, I T is TxT,

and the covariance matrix is partitioned according to columns of Y. For

the hypothesis HA-D=O, where H is pxK, an invariant set of statistics

is given by the roots of the determinantal equation in s

(7) (HA-D)'[H(X'X)-IH ' ]-l(HR-D)-(np)sV =0

where A=(X'X) X'Y, U=Y-XA, and V=U'U/T-K.

The sum of these roots is given by the trace

(8) trV - 1 (HA-D)'[H(X'X)-1H'](HA-D)/np

which can be put in the form

A-1

(9) g'G g/r

with g'=[(hlA-d l ),...(hA-dp)], r=np and h., d. the ith rows of H and

D. If p=l, (9) is a constant multiple of a Hotelling T statistic, i.e.,

it has the distribution of (T-K)F(r,T-K-n+l)/T(T-K-n+l). Here it should

be noted that the inversion of V loses n-l more degrees of freedom. Except

in the cases n=l or p=l, there is more than one nonzero root of (7)
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and no UMP test exists. It should also be noted, though, that the joint dis-

tribution of the roots under the null hypothesis is independent of V. The

reader is referred to Lehmann [7], and Rao [8] for a thorough treatment

of these linear finite-sample-size models.

As the last example shows, multivariate UMP tests do not often

exist for finite sample sizes. However, Wald [9] has shown that in an

asymptotic sense the results for the NLM hold for a wide variety of models

and hypotheses (including the above reduced-form model). The main

requirements are that the estimates of g be maximum likelihood (or

asymptotically equivalent to m.l.) and that 3 be the estimated asymptotic

covariance matrix. Normality as such is not required. In the limit, the

statistic (4) has a F(r, °° ) or X2(r)/r distribution under the null hypothesis

which is used to set up the critical region.

The rest of this section is devoted to comments on the major

choices that were made in adapting the general statistic (4) to our model.

As noted above the two models which we tested were estimated by

ordinary least squares (OLS) or two-stage least squares (2SLS) by their origina-

tors. We have continued to use their point estimates of the model parameters,

along with the covariance matrix for the "estimation" period. We are there-

fore treating their estimates as the best available. This means that to

some extent a statistical test of the structure is confused with a test

of the hypotheses implicit in the type of estimates the originator was

willing to accept.

Given the form of the model, the general hypothesis which we would

like to test is that the coefficient values and the distribution of the

structural disturbances are the same in the "estimation" and "forecast"

periods. The alternate hypotheses are that the structural coefficient

values are different in the estimation and forecast periods, but, and
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we emphasize this, that the distribution of the structural disturbances

remains the same.

However, given that our choice of estimation and forecast

periods involves a short forecast period, it is not possible to test

the complete hypothesis stated above; i.e., there is no appreciable power

against a subset of the above alternate hypotheses. This means that there

exists a set of functions of our parameters such that our test has rela-

tively high power against the alternative that they change any given

amount, and has relatively low power against the alternative that the

complementary set of function changes.

We do not see any practical method to determine and estimate precisely

those (estimable) functions which we can test with high power. Therefore

we have chosen to test the conditional means of the endogenous variables

in the forecast period -- given the actual values of the exogenous variables

in both periods and of the endogenous variables in the "estimation" period.

(Note that this does not imply we are testing all reduced-form parameters.

In fact, we are only testing certain functions of the reduced-form parameters.)

We could have tested the parameters in several equations, equation by equation,

by either an OLS or 2SLS method. Given the assumption of the independence of

disturbances across structural equations, this would be appropriate

asymptotically. We thought, however, that our method, which is equivalent

to using restricted predictors of endogenous variables, might give some

added power for small samples.

To construct our statistic we assumed that the best estimate of

the conditional means from the "forecast" period data were the actual values

in that period. But, since our alternate hypothesis stated that the

structural and not the reduced-form residual distribution remained the same,
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no estimate of the "forecast" period variance could be made without using

the null hypothesis. Given this complication, we decided to compute the

statistic as a prediction interval test, which is exactly equivalent to the

test (4) for the NLM, see Chow [1], when g is of the form

(10) g=C(ml-m2),

where C is a given rectangular matrix and ml-m 2 is the vector of differences

between the predicted conditional means using "estimation" and "forecast"

data respectively.

Our choice of a distribution to compute the critical region was

based on the behavior of the simple and asymptotic cases mentioned above.

2
An F distribution for finite samples is consistent with a X asymptotically.

In addition the simple models indicate that an F might be an appropriate

way to take account of the fact that the covariance matrix must be estimated.

As an approximation to the "denominator" degrees of freedom we

use a rough average number of degrees of freedom for our equations in

the "estimation" period. We did not attempt to subtract the additional

degrees of freedom suggested by the "reduced form" simple model because of

our assumption of independence of residuals across equations.

IV. Basic Test Results

Before turning to test results, it may be helpful to focus on

some of the raw data. Figure 1 shows a number of single-quarter forecast

distributions for real GNP from the Michigan model; while Figure 2 shows

such distributions for the GNP deflator. Figures 3 and 4 show corresponding

distributions from the FRB-MIT model. There is a clear-cut relationship

between the forecast span and the variances of those distributions: the

greater the forecast span, the greater the variance. We shall argue below
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that this arises mainly from the presence in the models of lagged endogenous

variables and the fact that the greater the forecast span, the greater the

number of those variables generated randomly within the simulations. Notice

that in Figure 4, at each date the actual value of the deflator lies outside

the estimated distribution of possible outcomes forecast by the FRB-MIT

model.

We limit all our testing to a subset of the endogenous variables

of the models: for Michigan, the 12 variables listed in Table 2, for FRB-

MIT, the 16 variables listed in Table 3. For Michigan, the list includes

an exhaustive breakdown of the endogenous components of nominal GNP --

variables 3, 5, 9, and 12 -- while for FRB-MIT it includes a similar break-

down except that imports, which are endogenous, are excluded. Tables 2 and 3

contain a variable-by-variable view of the output; for each variable and

each date, we list the actual value, the actual minus the mean value (the

means of distributions like those in Figures 1-4), and the standard error

of forecast (standard deviations of distributions like those in Figures 1-4).

To the extent that the structure embodied in each estimated model

applies over the forecast period, the standard errors of forecast in Tables

2 and 3 measure the precision of single-date, single-variable forecasts

made conditional on values of the variables assumed to be exogenous. For

some variables, those standard errors seem quite large. For real GNP for

the Michigan model, they range from almost 1 percent of the level for the

first quarter of the forecast period to about 5 percent for the twelfth

quarter; for the FRB-MIT model they range from about three-fourths of 1 percent

in the first quarter to almost 4 percent in the ninth quarter.

For any variable at any date, the ratio of the forecast error -- the

second entry -- to the standard error of forecast -- the third entry -- is a

r
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single-variable version of the D of sections II and III and can be treated

as a t statistic with 48 degrees of freedom, t. 0 5 (48)=2.01. The F statistics

in the last column are for each variable over all quarters of the forecast

period. 7 / The relevant 5 percent critical values are F05(12,48)=1.96 for.. 05(12,48)=1.96

the Michigan model, and F.0 5 (9,48)=2.08 for the FRB-MIT model. For the

Michigan model, F statistics for the GNP deflator, business fixed investment

and the corporate AAA bond interest rate exceed the critical value; for the

FRB-MIT model, F's for the GNP deflator, the two interest rates, nonresi-

dential structures, and state and local purchases exceed the critical

value. It is interesting that despite differences between forecast periods

and exogenous variable sets, the models fail on roughly similar sets of varia-

bles: sets which include the GNP deflator, business fixed investment, and

8/
the long-term interest rate.-

In interpreting the F statistics in Tables 2 and 3, it should be

noted that if the model predicted zero correlations among outcomes for the

same variable in different quarters, the F statistic for each variable would

equal the average of the squared t statistics for the variable. Some examples

of the correlations among variables are given in Tables 4 and 5 which, in

each case, contain submatrices from the matrix of simple correlations between

all pairs of the nM variables. The simple correlations between real GNP at

different dates are given in the upper left-hand block; those between the

GNP deflator at different dates in the lower right-hand block; and those

between the two variables in the upper right-hand block. The submatrices

for the two models are remarkably similar.

In each case, the correlations between forecasts of a variable at one

date and at another date are positive. Moreover, the correlations decline as the
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time span between the dates increases: namely, looking from the diagonal either

across a row or up a column. More interestingly, holding the span between dates

fixed, the correlations tend to increase with time: namely, looking down from

upper left to lower right on other than the main diagonals. This occurs

despite the fact that the variances in Tables 2 and 3 increase with time and

implies that the within-path covariance increases even faster. In a sense, it

suggests that individual forecast paths become increasingly smooth as the

fixed initial set of lagged endogenous variables gets less and less important.

The similarity between correlation matrices for the two models

extends to the off-diagonal block. The pattern of asymmetry is common to

both models. Real GNP is negatively correlated with past prices and positively

correlated with future prices, although the former gets weaker and the latter

stronger the further one gets from the beginning of the forecast period.

The positive correlations between real GNP at t and at t+j in

Table 4 help explain, for example, why the F statistic for the Michigan model

for the vector of GNP outcomes is lower than the average of the squared t's,

which is 1.32. The actual forecast errors for real GNP for that model are all of

the same sign; the model underpredicts real GNP in every quarter. But given

the positive correlations in the upper left block of Table 4, those errors

cast less doubt on the model than would a sequence of errors of similar absolute

magnitude but with randomly varying signs. An average of the squared t's

takes account only of the absolute magnitudes. In contrast, the F statistic

credits the model for predicting correctly that forecast errors for different

dates will be positively correlated.

Table 6 contains joint test results across variables and time.

For the Michigan model, tests are performed for variables 2-12 in Table 2
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for the first quarter, the first four quarters, the first eight quarters, and

all 12 quarters. Real GNP is omitted, because an identity connects it to

the deflator and the endogenous components of GNP. (The test statistics

are virtually unaffected by including real GNP and omitting one of the other

variables entering the identity. They would be completely unaffected if

the identity were linear.) For the FRB-MIT model, tests are performed on all

16 variables in Table 3 for the first quarter, the first four, the first

eight, and all nine. Given the variable-by-variable tests in Tables 2 and

3 and the seemingly large standard errors of forecast exhibited there, these

results are somewhat surprising. They suggest that neither model's structure

is adequate during the forecast period, although that result comes through

less strongly for Michigan than for FRB-MIT. Loosely speaking, if these

results are put along side Table 2 and 3 results, they suggest that although

the models predict fairly well the correlations over time between forecast

errors for single variables, they do not correctly predict the correlations

among forecast errors for different variables.

V. Aspects of the Confidence Ellipsoids and Tests
on Linear Functions of the Variables

As indicated above, the tests which we perform correspond to

examining ellipsoids. Geometrically, for an r-vector of "deviations" y,

the examination involves first setting up a standard ellipsoid, a region in

r-dimensional space consisting of all r-vectors of y satisfying

-1

y' y<l

where C is the covariance matrix of y, which we estimate by C. The ellipsoid

has r axes, one corresponding to each of the characteristic roots,
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1 >1 >...>1r and corresponding vectors, v1v 2 ,...vr, of . The ith axis

lies in the one dimensional subspace spanned by vi, is centered on 0, and

1/2has radius length 1 /2 . The sum of the A's equals the sum of the diagonal

elements of .

The ellipsoid to make a joint test of a set of s<r linear func-

tions of y, c'y, i=1,2,...,s, at the significance level 6, is found in two
1

steps. First, the radius length of each axis of the standard ellipsoid is

multiplied by [sF 6 (s,q)] 1 / 2 . Second, the resulting ellipsoid is projected

perpendicularly onto the s-dimensional subspace spanned by the vectors

Clc 2"''..,cs. If we define the (sxr) matrix C by C'=(cl,c 2,...,cs ), the

projection, which is the desired ellipsoid is given by the set of vectors

y satisfying

(Cy)'(C C')-1Cy<sF6 (s,q)

In the last section, we examined to some extent and performed

tests which involved choosing for C those matrices consisting of different

sets of rows of the identity matrix of order nM. In this section we shall

examine the shapes of the ellipsoids for certain subvectors of y, and shall

perform tests on linear functions of them: first, tests suggested by the

shapes of the ellipsoids; and then a test of interest, a priori.

We are interested in the shape of the ellipsoid as a means of

summarizing the forecast distributions. Thus, v1 is the length-one vector

such that the variance of vy is a maximum equal to k1. In a sense, then

v'y is the linear combination about which the model has least to say. Similar

interpretations can be given to v'y, v'y,...,v'y, where v'y is the linear
2 3 r r

combination with minimum variance. We are also interested in how well the

model actually predicts these linear combinations.
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We begin with results for the M-vector of deviations of each

variable for the different dates of the forecast period. Although we are

interested in the shape of each of the M-dimensional ellipsoids, space does

not permit us to list all roots and their corresponding vectors. We can,

however, give an example, and since an almost completely uniform pattern

emerged for every variable in both models, an example chosen at random is

very informative.

As illustrated by the vectors in Table 7, the general pattern of

characteristic vectors is that those associated with lower variance exhibit

higher frequency oscillations. In each case, vl, the vector associated

with the highest variance component, exhibits cycles with a period much

greater than the forecast period, (i.e., frequency near 0), while v 2 and v 3

exhibit periods with frequency close to the length of the forecast period.

The vector associated with the lowest variance typically has a period of

two quarters. A second feature of the canonical form is that the first one

or two components account for a very large percentage of the variance.

While we cannot present all characteristic vectors, we can

present each root and the test statistic for each corresponding linear

combination. In Tables 8 and 9 we give for each variable the M roots (ranked

from largest to smallest and expressed as a fraction of the sum) and the

corresponding test statistic, (v.y)2/1i, which can be evaluated using an

9/F(l,q) distribution.- Note that the F statistics in Tables 2 and 3 are

simply averages of these. Although we do not discern any clear pattern from

these tables directly, by splitting the characteristic vectors into high and

low variance groups, certain features can be noticed.

For each variable, we have divided the M-dimensional space into

a space of high variance linear combinations (in a sense, those about which
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the model has little to say) and a space of low variance linear combinations

(those about which the model has a lot to say). The test results for each

subspace are given in Tables 10 and 11. The parameter k, which is the

dimension of the high variance space was determined as follows. Given that

the roots are ranked from largest ( 1I) to smallest -- k=4 if X4/X1>.05,

k=3 if q4 /X 1 <.05 and X3/X1>.05, k=2 if N3/ 1<.05 and N2/ 1>.05, while k=l

if X2 /X1<.05. Given the value of k for each variable, the high variance test

statistic for that variable is the average of the corresponding first k test

statistics in Tables 8 and 9, while the low variance test statistic is the average

of the remaining M-k. The former can be treated as F(k,q) and the latter as

F(M-k,q). Since the results for the FRB-MIT model (Table 11) are clearer

than those for Michigan, we discuss them first.

The variables which did not pass the nine-period test for the

FRB-MIT model are y 2, y 5, y6' Y1 1, Y1 3. None of these variables pass the

joint test of the high variance linear combinations, but all of them except

Y6 pass the joint test of the low variance linear combination. Thus the

actual data seem to exhibit a low frequency component with higher variance

than the model itself. This can be interpreted to mean that the real

world differs from the model in the direction of a naive model. Another

way of stating this result is that the model tends to compensate sufficiently

for high frequency autocorrelation but not for low frequency autocorrelation.

For the Michigan model where variables y 2, y5 and y 7 did not pass

the 12-period test, variables y 2 and y 7 fail the joint test of the high variance

(low frequency) linear combination and pass the joint test of the low variance

(high frequency) linear combination.

We also examined the ellipsoid generated by several variables

jointly. In particular, we examined the characteristic vectors and values

for the covariance matrix for real GNP, the GNP deflator, and the unemployment
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rate.10/ It would have conveniently fit with our interpretation of the

eigen vectors of single variables as frequency components if the joint eigen

vectors could have been described as the components of the (3x3) corre-

lation matrix for each frequency, with (approximately) distinct frequencies

uncorrelated. This, alas, was not the case. The components of the single

variables are obviously correlated across components. For example, the

highest variance (joint) component had (roughly) the same form as in the

single-variable analysis for the GNP and unemployment partitions, but the

price partition behaved in a manner similar to the second and third single-

variable components. Indeed, we were not able to find any useful general

interpretation of these joint components.

This completes our examination of linear combinations suggested

by the forecast distributions themselves. We now examine annual averages,

a set of linear combinations which might be considered of interest, a priori.

We present joint test results for all the variables for which

quarterly forecasts were tested in Tables 2 and 3. For the Michigan model,

we test annual forecasts for the first year, the first two years jointly,

and all three years jointly. For the FRB-MIT model we omit the first

quarter of the forecast period and test annual averages for 1969, and for

1969 and 1970 jointly. In each case, the test statistic (1) is computed using

the relevant matrix C. The results are given in Table 12.

As a forecaster of annual averages, the Michigan model fails the

test for the whole forecast period, but passes it for one- and two-year

horizons. While the relative standing of the model for different horizons

is the same as in Table 6, the model is more consistent as a forecaster of

annual averages. The same kind of comparison cannot be made for the FRB-MIT

model, because all joint tests on quarterly forecasts were inclusive of
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1968-4. Nevertheless, the poor showing of FRB-MIT as an annual forecaster

over 1969 and 1970 is not entirely surprising. In the quarterly tests,

the model did better forecasting only 1968-4 than it did forecasting for any

longer period.

VI. Other Properties of the Forecast Distributions

1. Nonstochastic Point Forecasts and Their Relationship to Mean Forecasts

Tables 13 and 14 contain nonstochastic point forecasts, those minus

mean forecasts, and the standard errors of the mean forecasts, which we take

to be the standard errors of forecast in Tables 2 and 3 divided by the square

root of 299 -- 299 is the number of Monte Carlo replications minus one. The

nonstochastic point forecasts for each model are obtained from a single

endogenous simulation over the forecast period with parameters and residuals

set at their means: the parameters at their point estimates, the residuals

at zero.

For both models, there are some large discrepancies between points

and means. A single joint test for each model -- to determine whether all the

discrepancies could arise from sampling error attributable to the Monte Carlo

experiment -- yields an F statistic equal to 4.85 for the Michigan model, and

one equal to 5.55 for the FRB-MIT model, in each case exceeding the relevant 5

percent critical value. In a statistical sense, at least, points do not

adequately represent means, which is what one expects to find for any model

other than one consisting of estimated linear reduced-form equations. Of

course, despite the high values of the test statistics, one might still want

to use the nonstochastic estimates because they can be obtained more cheaply.

The important point, though, is that such a judgment would be hard to make

before appraising the kind of discrepancies that result for each model.
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2. A Sequence of One-Quarter Forecast Distributions

The variation over time of the standard errors of forecast in

Tables 2 and 3 could, in principle, be traced to two different sources. One

involves the presence in both models of lagged endogenous variables: the

greater the forecast span, the greater the number of lagged random disturbances

affecting forecasts by way of their effects on the values of lagged endogenous

variables. The other involves changes in average initial conditions: each

standard error of forecast is a function of the fixed values of the predeter-

mined variables conditional on which the forecast is being made. By analogy

with linear models, we expect standard errors of forecast to be larger the

more distant are the values of the predetermined variables from their

sample period means. And since most variables in these models are stated

in terms of levels, deviations of predetermined variables from their means

can be expected to increase with time during the forecast period.

The results in Tables 15 and 16 allow us to draw some inferences

about the importance of each source of variation. The statistics in these

tables are derived from sequences of one quarter simulations in which lagged

11/
endogenous variables are each quarter set equal to actual values.- Hence

the standard errors of forecasts in Tables 15 and 16 vary only because average

initial conditions change.

Our suggestion that most of the increase in variance in Tables 2

and 3 is attributable to the presence of lagged endogenous variables seems

largely correct. In Table 15, there is, if anything, only a slight tendency

for variances to increase. There is a clearer pattern in the results for the

FRB-MIT model, but the rate of increase is very small relative to that in

Table 3.

Note by the way that the corresponding 1968-1 mean forecasts and

variances in Tables 2 and 15 and the 1968-4 values in Tables 3 and 16 differ



- 23 -

only because they were generated from different samples of random variables.

The differences give some indication of sampling error that arises from

the Monte Carlo procedure given a sample size of 300.

3. Residual Standard Errors

For a single linear equation, the forecast variance is the sum of

two parts -- the residual variance and the variance of the mean forecast --

where the latter is attributable entirely to parameter estimate variance

which approaches zero as the sample size increases. The forecast variances

we have computed cannot be split up in this way because structural parameters

and residuals enter the reduced form nonlinearly. Thus, if we had computed

the variances of mean forecasts from a set of simulation experiments in which

only parameters were drawn randomly and added them to the corresponding

residual variances computed from experiments in which only residuals were

drawn randomly, we would not expect the sum to equal the forecast variance.

Nevertheless, it is of interest to examine the residual variance, because

it provides an estimate of the part of the forecast variance that, in principle,

is independent of the amount of data available and that can be reduced only

by altering the specification of the model.

In Tables 17 and 18 we report the ratio of each residual standard

error to the corresponding standard error of forecast from Tables 2 and 3.12/

For both models, the ratios tend to decline with time although the pattern

is more consistent and far more pronounced for the Michigan model. For

example, consider the results for real GNP in the ninth quarter of the

forecast period for both models. While the standard error of forecast is

about 25 billion for both models (see Tables 2 and 3), for the Michigan model

only about 50 percent is directly attributable to the structure of the
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model and would remain no matter how large a data set had been available;

for the FRB-MIT model about 75 percent is attributable to the structure

of the model. The models differ more in this respect than in almost any

other we've examined.
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Appendix 1

Check for Strange Runs

The models we deal with are nonlinear. Hence, in general, there

will not be a unique solution. The solution procedure, the Gauss-Seidel

iterative routine, finds a solution. But, as illustrated by Friedman [4],

there is no guarantee that quarter by quarter the solution is not switching,

say, between alternative roots of a quadratic equation. The procedure outlined

below is designed to discover such anomalies from an examination of the

within-run behavior of each variable. The procedure is designed to discover

runs in which the path over time of any variable exhibits unusually large

jumps or oscillations.

Let Yi(t) be the solved-for value of the ith variable at date t

in a particular simulation run where i=l,...n, and t=l,...M. Let x.(t)
1

= y.(t)-y.i(t)-[yi(t-1)-y.(t-1)] where yi(0)=y.(0) -- the actual value

of the ith variable in the last quarter of the estimation period -- and where

for t>0, Yi(t) is the mean forecast of the ith variable at the tth quarter.

The variance of x.(t) is V.(t)=S.(t,t)+S.(t-l,t-l)-2S.(t,t-l), where S.(a,b)

is the covariance of the ith variable between quarters a and b. We compute

the ratio

R(i,t)= x i ( t) /[V.i (t)] 1 /2

which we expect to be large for runs for which the solution routine is

oscillating quarter by quarter between different multiple solutions.

Since for Michigan, M=12 and n=12, and for FRB-MIT, M=9 and

n=16, and since for each model we performed 300 simulations, we end up

with 43,200 observations on R for each model. The distribution of R for

each model is summarized below.
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Interval

0 - 2.0

2.0 - 3.0

3.0 - 4.0

4.0 - 5.0

5.0 - 6.0

6.0 -

Since the results are strongly in accord with what we would expect

from a normal distribution for x, we concluded that there were no "strange

runs" among our simulations. For example, if the distribution of R is

normal, approximately 4.5 percent of the sample, 1,965 observations, should

be greater than 2.0. For Michigan 1,928 fell in that range while for FRB-MIT,

1,963 did.

Frequency

Michigan FRB-MIT

41,272 41,237

1,811 1,814

103 140

8 9

6 0

O 0
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Appendix 2

Since the computer programs that were written to solve the Michigan

and FRB-MIT models were not designed for our computations, it was necessary to

add a significant amount of new coding. Our computations required two major

programming additions: the first was to include a stochastic residual in each

structural equation which was consistent with the form of the estimated equa-

tion; the second was a subprogram that generated random coefficients and

residuals consistent with the distributions implied by estimation.

To check our residual coding and the randomization procedure, a pro-

gram was written to generate for the estimation period 100 sets of stochastic

predictions of the dependent variables and a nonstochastic set. For each

equation we generated predictions using actual values of right-hand side

endogenous variables and then calculated two statistics: a residual variance

A2 A

2 =(y-y)'(y-y)/(N-k)

and the ratio

100

R=100 (Yi ) ( y i - ) / (N+k)2
i=l

where y is the (Nxl) vector of actual values of a dependent variable, over

the estimation period, y the corresponding vector of nonstochastic single-

equation predicted values, and y the vector of stochastic single-equation

predicted values generated using the ith set of random coefficients and

residuals. N and k are the number of observations used in estimating the

equation in question and the number of independent variables, respectively.

If the original coding was correct, J2 should equal the residual variance

reported in estimation. If our new coding is correct, the ratio R can

be treated as F[(100)N,N-k].
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In both models these statistics proved helpful in detecting and

locating numerous errors that were bound to occur in a project of this size.

For example, in a number of equations the residuals were improperly coded

causing R to range as high as 1000.
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Appendix 3

Generating Random Values
of the Serial Correlation Coefficient

In the FRB-MIT model, a number of equations were corrected for

serial correlation by taking partial first differences using an estimated

first-order autocorrelation coefficient. Therefore, just as with all other

estimated parameters, it was necessary to pick values of the autocorrelation

coefficient consistent with the distribution implied by estimation.

Hildreth [5] has shown that the maximum likelihood estimator, p,

is asymptotically uncorrelated with all other estimated parameters, is

^2
asymptotically unbiased, and has asymptotic variance -- (1-p )/N, where N

is the number of observations. Based on that result and on the constraint

that p lies in the interval (0,1), we constructed an approximate distribution

for p as follows.

Define

* 1

S+eA+BX

where X is distributed normally with mean zero and variance one. Clearly,

*
p is confined to the interval (0,1). The problem is to find values of A

* * ^2
and B such that, E(p )=p and V(p )=(l-p )/N. To approximate such values,

we used a series approximation to p , denoted r ; where r consists of the

first two terms of a Taylor expansion of p about the mean of X:

A 2 A A* 1 Be Be (e -1) 2
r X- + X

l+e (l+e A ) 2 2(l+eA ) 3

Since X is normal,

* 1 BeA(e-1)
E(r )=- +

l+e 2(l+eA )

I
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V(r )= + 2 e
(l+e )  2(l+eA ) 3

Setting E(r ) equal to the estimated mean, p, and V(r ) equal to the estimated

^2
variance, (1-p )/N, the resulting equations can be solved for A and B.

The approximation was checked for different p's by drawing samples

of 500 p 's and calculating sample means and variances. It was found that for

p close to one, the approximation was poor; for p's greater than .9, the sample

^2
variances exceeded (1-p )/N by more than 20 percent. That led us to try a

third-order Taylor expansion for p . With the third-order approximation, for

p less than .98, sample means and variances differed from the actuals by less

than 5 percent. However, for p's greater than .98, the approximation was still

poor. Therefore, for the two equations with p's in excess of .98, we assumed

zero variance as one would if first differences had been taken.

r



Table 1. Principal Exogenous Variables by Model

Mich.

MONETARY

FISCAL

GNP AND
INCOME

COMPONENTS

DEFLATORS

Narrowly Defined Stock of Money

Interest Rate on 4-6 Month
Commercial Paper

Ratio of Personal Tax Payments

to Personal Income

Ratio of Corporate Tax Liability
to Before-Tax Profits

Transfer Payments to Persons

Federal Gov't Expenditures

Capital Consumption Allowances

Exports

Imports

State and Local Gov't Expenditures

Farm Investment

Gross Auto Product

Gross Farm Product

Total Gov't Purchases

Exports

Imports

Inventories

X

X

X

X

X

X

X

X

X

Y

X

X

X

X

X

X

FRB-MIT

Xb

Yc

Y

X

Y

Y

X

X

X

Y

Y

X

Y

X

Y

Y

X

Y

a Not in the model.

b "X" stands for independent or exogenous.

c "X" stands for dependent or endogenous.

d
In the Michigan model, net exports and its deflator are exogenous variables.
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Table 3. FRB-MIT: Actuals, Forecast Errors, and Standard Errors of Forecast

1. Gross National
Product ($1958)

2 Implicit Deflator
for GNP (1958=100)

3. Consumption ($)

4. Dividend Price
Ratio (%)

5. Commercial Paper
Interest Rate (%)

6. Corporate AAA
Interest Rate (%)

7. Deposits at
S&Ls ($)

8. Corporate Before-
Tax Profits ($)

9. Residential
Construction ($)

10 Producer
Durables ($)

1. Nonresidential
Structures ($)

Q. Change in Business
Inventories ($)

13. State & Local
Purchases ($)

14. Employed Civilian
Labor Force (mil.)

15.Unemployment
Rate (%)

Taxes ($)

1968-4

721.8
9.8

(5.3)

123.5
.7
(.3)

550.8
3.1

(4.6)

2.9
.3

(.2)

6.0
.8

(.6)

6.2
.4
(.2)

132.1
.0

(1.0)

95.7
8.7
(4.8)

31.7
1.6
(1.0)

61.3
-. 6
(1.1)

30.3
1.2
(.7)

9.7
.4

(2.7)

104.6
7.5
(1.6)

76.4
.3
(.4)

3.4
-. 4
(.2)

1969-1

722.0
11.8

(10.1)

125.7
2.3
(.5)

561.8
6.7
(7.1)

3.1
-. 2
(.3)

6.7
1.6
(.8)

6.7
.8
(.3)

134.1
.8

(2.1)

93.0
10.9
(7.3)

33.0
3.0

(2.4)

63.1
1.5
(1.8)

32.6
3.4
(.8)

7.3
.6

(4.0)

107.6
10.4
(2.1)

77.4
1.4
(.8)

3.4
-.7
(.4)

1969-2

726.2
8.9

(14.1)

127.2
3.4
(.6)

573.3
10.4
(8.7)

3.1
-. 2
(.3)

7.5
2.3
(.9)

6.9
.9

(.3)

135.3
.8

(3.1)

93.4
8.6

(9.2)

33.9
4.6
(3.9)

65.2
4.5

(2.8)

32.3
3.1
(1.0)

7.6
3.1
(4.9)

110.0
11.3
(2.5)

77.6
1.5
(1.2)

3.5
-. 9
(.6)

1969-3

730.7
9.0

(16.9)

129.0
4.7

(.8)

582.1
11.5
(10.5)

3.3
-. 1
(.4)

8.5
2.6
(1.2)

7.1
.8
(.4)

136.0
.4

(4.0)

89.9
6.1

(9.8)

31.0
2.5

(4.9)

66.3
6.8

(4.0)

35.2
6.1

(1.3)

10.8
7.1

(4.9)

111.7
11.4
(2.8)

78.1
2.0

(1.6)

3.6
1.0
(.8)

1969-4 1970-1 1970-2

729.3 723.6 724.7
8.6 2.2 -3.5

(19.9) (21.8) (22.7)

130.5 132.6 134.0
5.8 7.4 8.5
(1.0) (1.1) (1.3)

592.6 603.1 614.4
16.6 19.8 21.8
(12.6) (13.9) (14.8)

3.4 3.6 4.0
-.1 .1 .5
(.4) (.4) (.4)

8.6 8.6 8.2
3.2 3.9 3.6
(1.2) (1.1) (1.1)

7.5 8.0 8.1
1.4 2.0 2.2
(.4) (.4) (.4)

136.2 136.8 139.2
.2 -.9 -1.2

(4.8) (5.5) (6.1)

88.5 82.6 82.3
7.2 2.2 3.1

(10.7) (10.9) (11.0)

30.4 29.1 28.4
3.1 2.5 1.0
(5.3) (5.6) (5.8)

67.5 66.9 67.5
9.6 11.3 14.0
(5.1) (6.2) (7.1)

35.1 35.7 35.3
6.2 7.2 7.2
(1.8) (2.2) (2.6)

6.5 .9 2.6
4.6 1.2 4.1
(5.4) (5.6) (5.5)

114.3 117.4 118.6
11.4 11.6 7.7
(3.3) (3.5) (3.8)

78.6 79.0 78.5
2.5 3.1 2.7
(2.0) (2.3) (2.6)

3.6 4.1 4.8
-1.3 -1.2 -.7
(1.0) (1.2) (1.3)

187.0 197.2 202.5 200.8 202.0 195.9 196.6
5.6 17.7 19.4 17.2 18.2 17.2 15.2

(3.4) (5.0o) (6.5) (7.4) (8.2) (9.0) (8.9)

1970-3

727.3
-5.5

(24.0)

135.5
9.7

(1.4)

622.1
20.8

(16.5)

4.0
.5

(.5)

7.8
3.4

(1.0)

8.2
2.4
(.5)

143.1
.5

(6.7)

84.3
2.4

(11.6)

29.2
-. 2

(6.0)

68.6
16.7
(7.7)

35.0
7.5
(3.0)

5.0
5.3

(5.9)

122.4
11.0
(4.1)

78.5
2.7

(2.8)

5.2
-. 5

(1.4)

1970-4

720.5
-19.5
(25.3)

137.4
11.4
(1.6)

627.0
17.5

(18.0)

3.6
.1

(.5)

6.3
1.8

(1.1)

7.9
2.1
(.5)

147.4
3.0

(7.3)

76.3
-8.8

(12.7)

32.2
.2

(6.7)

66.6
15.2
(8.1)

34.7
7.5

(3.3)

3.0
2.2

(5.9)

125.0
11.1
(4.5)

78.6
2.7

(3.0)

5.8
.0

(1.6)

F(9,48)

.98

6.75

.37

1.22

2.45

5.18

.63

.82

2.05

1.23

3.40

4.01

1.72

1.07

1.63
194.9 191.7

16.7 10.8

(9.2) (9.7)
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Table 6. Joint Test Results

Michigan

M F(11M,48)

1

4

8

12

FRB-MIT

M F(16M,48)

2.23

2.62

2.26

3.90

3.89

4.63

5.81

5.79

F
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Table 9. FRB-MIT: Test Statistic and Root as a Fraction of the Sum

1. Gross National .00 1.84 .02

Product ($1958) .81 .13 .03

*

2. Implicit Deflator * 49.41 .02 2.13
for GNP (1958=100) .88 .08 .02

3. Consumption ($) 1.75 .12 .28

.86 .08 .03

4. Dividend Price .13 1.76 .47

Ratio (%) .72 .15 .16

*

5. Commercial Paper 11.37 .10 .14

Interest Rate (%) .63 .18 .08

6. Corporate AAA 22.60 3.60 .90

Interest Rate (%) .77 .08 .05

7. Deposits at .01 .06 1.98

S&Ls ($) .88 .09 .02

8. Corporate Before- .13 1.27 .18

Tax Profits ($) .62 .22 .07

9. Residential .14 .42 .50

Construction ($) .67 .25 .06

10. Producer 4.14 .01 .00

Durables ($) .90 .07 .01

11. Nonresidential 8.53 9.32 2.47

Structures ($) .85 .07 .03

12. Change in Business 1.02 .08 .17

Inventories ($) .40 .23 .09

13. State & Local 11.28 13.58 4.31

Purchases ($) .82 .08 .03

14. Employed Civilian 1.28 .66 .02

Labor Force (mil.) .91 .06 .01

15. Unemployment .37 2.64 .32

Rate (%) .85 .11 .02

*
16. Federal Taxes ($) 5.11 2.78 2.72

.70 .14 .05

.87 .60 3.81 .31 1.35 .01

.01 .01 .00 .00 .00 .00

1.88 .59 2.83 .29 .06 3.49

.01 .01 .00 .00 .00 .00

.68 .23 .00 .01 .12 .17

.01 .01 .01 .00 .00 .00

1.82 4.59 .01 1.03 .84 .54

.02 .01 .01 .01 .01 .01

4.02 1.53 .23 1.59 .62 2.44

.03 .02 .02 .02 .01 .01

11.52 .07 5.09 2.22 .05 .46

.03 .02 .02 .02 .01 .01

2.17 .44 .02 .46 .33 .22

.00 .00 .00 .00 .00 .00

2.62 .22 2.15 .39 .02 .42

.03 .02 .02 .01 .01 .01

.68 2.34 1.62 .23 8.75 3.73

.01 .00 .00 .00 .00 .00

.11 1.52 .88 1.09 3.01 .27

.00 .00 .00 .00 .00 .00

.04 .04 .66 1.14 8.30 .07

.01 .01 .01 .01 .01 .00

.00 .08 2.45 .04 .08 .03

.07 .06 .05 .04 .04 .03

.01 .94 .21 5.47 .24 .04

.02 .01 .01 .01 .01 .01

.26 1.54 .81 2.74 1.83 6.09

.00 .00 .00 .00 .00 .00

.18 2.23 3.11 .62 .02 .03

.01 .00 .00 .00 .00 .00

3.01 .24 .04 .59 .17 .04

.02 .02 .02 .02 .01 .01

7

7

7



Michigan: High and Low Variance
Test Statistics by Variable

High Variance
K Test Statistic

Low Variance
Test Statistic

1. Gross National
Product ($1958)

2. Implicit Deflator
for GNP (1958=100)

3. Consumption ($)

4. Corporate Before-
Tax Profits ($)

5. Business Fixed*

Investment ($)

6. Private Nonfarm
Housing Starts

(000's)

7. Corporate AAA
Interest Rate (%)

8. Unemployment

Rate (%)

9. Change in Business

Inventories ($)

10. Output Per Manhour
Nonfarm Index
1957-1959=100

11. Employment Rate
of Males (20 Years
and Over (%))

12. Residential

Construction ($)

Table 10.

1.86

4.18

.17

1.40

.36

1.84

.97

.53

2.091.21

.35 .79

4.34

2.19

.75

1.85

.38

1.44

.271 5.07

1.62 .33

.12 1.43

r

I



Table 11. FRB-MIT: High and Low Variance
Test Statistics by Variable

High Variance

K Test Statistic

Low Variance
Test Statistic

I. Gross National 2

Product ($1958)

2. Implicit Deflator 2

for GNP (1958=100)

3. Consumption ($) 2

4. Dividend Price 3

Ratio (%)

5. Commercial Paper , 4

Interest Rate (%)

6. Corporate AAA , 3

Interest Rate (%)

7. Deposits at 2

S&Ls ($)

8. Corporate Before- 4

Tax Profits ($)

9. Residential 3

Construction ($)

10. Producer 2

Durables ($)

11. Nonresidential 2

Structures ($)

12. Change in Business 4

Inventories ($)

13. State & Local, 2
Purchases ($)

14. Employed Civilian 2

Labor Force (mil.)

15. Unemployment 2
Rate (%)

.92

24.72

.93

.79

3.91

9.03

.04

1.05

.35

2.07

8.92

.32

12.43

.97

1.50

3 3.54*16. Federal Taxes ($)

1.00

1.61

.21

1.47

1.28

3.24

.80

.64

2.89

.99

1.82

.54

1.60

2.00

.93

.68



Table 12. Annual Joint Test Results

Michigan

Forecast Span

1968

1968-69

1968-70

FRB-MIT

F

1.67

1.26

2.122.12

Forecast Span

1969

1969-70

8.26

8.41
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Table 14. FRB-MIT: "Point Forecasts," Points Minus Means,

and Standard Errors of the Discrepancy

1968-4 1969-1 1969-2 1969-3 1969-4 1970-1

1. Gross National

Product ($1958)

2. Implicit Deflator

for GNP (1958=100)

3. Consumption ($)

4. Dividend Price

Ratio (%)

5. Commercial Paper

Interest Rate (%)

6. Corporate AAA

Interest Rate (%)

7. Deposits at

S&Ls ($)

8. Corporate Before-

Tax Profits ($)

9. Residential

Construction ($)

10. Producer

Durables (S)

11. Nonresidential

Structures ($)

12. Change in Business

Inventories ($)

712.7
.8
(.3)

122.9
.1
(.0)

548.9
1.3
(.3)

3.2
.0
(.0)

5.3
.1
(.0)

711.7
1.5
(.6)

123.6
.2

(.0)

556.6
1.5
(.4)

3.3
.0
(.0)

5.2
.1

(.1)

718.1 722.1 720.4 720.6
.9 .3 -. 3 -. 8

(.8) (1.0) (1.2) (1.3)

124.1
.3
(.0)

563.8
1.0
(.5)

3.3
.0
(.0)

5.3
.1
(.1)

124.6 125.1 125.6
.3 .3 .4

(.0) (.1) (.1)

571.5 577.3 584.6
.9 1.3 1.3
(.6) (.7) (.8)

3.4
.0
(.0)

3.5
.0
(.0)

3.5
.0
(.0)

1970-2 1970-3 1970-4

726.3 730.4 736.1
-1.9 -2.4 -3.9
(1.3) (1.4) (1.5)

125.8 126.1 126.3
.3 .3 .3

(.1) (.1) (.1)

593.4 601.7
.8.4

(.9) (1.0)

3.6
.0
(.0)

608.9

-. 7

(1.0)

3.6
.1
(.0)

3.6
.1

(.0)

6.1 5.5 4.7 4.6 4.4 4.5
.1 .1 .1 .0 . 0 .0
(.1) (.1) (.1) (.1) (.1) (.1)

5.9 5.9 6.0 6.3 6.1 5.9 5.9 6.0 5.9
.0 .0 .0 .0 .0 .0 .0 .0 .0
(.0) (.0) (.0) (.0) (.0) (.0) (.0) (.0) (.0)

132.3
.1

(.1)

88.0
.9
(.3)

30.1
.1
(.1)

133.6
.3

(.1)

83.6
1.5
(.4)

134.7
.2

(.2)

85.8
.9

(.5)

30 3 29.7
.2 .4

(.1) (.2)

62.1 62.1
.2 .4

(.1) (.1)

29.1
.0
(.0)

29.2
.0

(.1)

135.7 136.0 137.5
.0 .0 -.2

(.2) (.3) (.3)

84.9
1.0
(.6)

82.2
.9

(.6)

28.8 27.2
.3 -. 1

(.3) (.3)

61.3 60.3
.6 .8
(.2) (.2)

29.1
.10
(.1)

29.1
.0
(.1)

58.7
.8

(.3)

29.0
.1

(.i)

81.6
1.2
(.6)

140.0 142.0
-. 4 -.6
(.4) (.4)

79.9
.7

(.6)

25.9 26.2

-. 7 -1.2

(.3) (.3)

56.3
.7
(.4)

28.6
.1

(.1)

54.1
.6
(.4)

28.1
.0
(.2)

82.2
.2
(.7)

27.9
-1.5
(.4)

52.4
.5
(.4)

27.5
.0
(.2)

143.4
-1.0
(.4)

85.0
.2
(.7)

30.2
-1.9
(.4)

51.5
.1

(.5)

27.1
-.1
(.2)

9.3 7.4 5.2 3.9 2.1 .1 -1.2 -.3 .8
-. 1 .7 .7 .2 .2 .4 .3 .0 .0
(.2) (.2) (.3) (.3) (.3) (.3) (.3) (.3) (.3)

13. State & Local

Purchases ($)

14. Employed Civilian

Labor Force (mil.)

97.5 97.5

.4 .3

(.1) (.I)

98.9 100.4 102.9

.2 .1 .0
(.1) (.2) (.2)

76.1 76.1 76.1 76.2 76.1
.0 .1 .1 .1 .0
(.0) (.1) (.1) (.1) (.1)

105.7
-. 1
(.2)

110.7

-. 2

(.2)

75.9 75.8
.0 -.1

(.1) (.2)

111.1 113.4
-. 3 .6
(.2) (.3)

75.7 75.7
-.1 -. 1
(.2) (.2)

3.8 4.1 4.3 4.5 4.8 5.2 5.4 5.6 5.8

(.0) (.0) (.0) (.0) (.1) (.1) (.1) (. ))

180.7 184.0 184.1 184.5 179.4

1.2 .9 .5 .8 .7

(.3) (.4) (.4) (.5) (.5)

181.6 178.2 180.4
.3 .0 -. 9

(.5) (.5) (.6)

15. Unemployment

Rate (%)

16. Federal

Taxes ($)

182.0
.6

(.2)
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Table 16. FRB-MIT: Sequence of One-Quarter Forecasts:
Actuals, Forecast Errors, and Standard Errors of Forecast

1. Gross National

Product ($1958)

2. Implicit Deflator

for CNP (1958=100)

3. Consumption ($)

4. Dividend Price

Ratio (%)

5. Commercial Paper

Interest Rate (%)

6. Corporate AAA

Interest Rate (%)

7. Deposits at

S&Ls ($)

8. Corporate Before-

Tax Profits ($)

9. Residential

Construction ($)

10. Producer

Durables ($)

11. Nonresidential

Structures ($)

12. Change in Business

Inventories ($)

13. State & Local

Purchases ($)

14. Employed Civilian

Labor Force (mil.)

15. Unemployment

Rate (%)

16. Federal Taxes ($)

1968-4

721.8
9.1
(5.0)

1969-1

722.0
16.4
(6.2)

1969-2

726.2
14.4
(6.3)

123.5 125.7 127.2
.7 1.6 1.2

(.3) (.4) (.4)

550.8 561.8 573.3
2.5 8.6 10.7
(4.8) (4.9) (4.9)

2.9
-. 3

(.2)

3.1
.0

(.2)

3.1
-. 3

(.2)

6.0 6.7 7.5
.7 1.4 1.6

(.7) (.6) (.7)

6.2 6.7 6.9
.3 .7 .5

(.2) (.2) (.3)

132.1 134.1 135.3
-.1 1.2 1.1

(1.0) (1.3) (1.3)

95.7 93.0 93.4
8.1 .0 3.0

(4.7) (12.6) (12.6)

31.7 33.0 33.9
1.7 1.8 2.2

(1.0) (1.2) (1.2)

61.3 63.1 65.2
-. 8 .1 .4

(1.2) (1.2) (1.2)

30.3 32.6 32.3
1.2 2.2 .7
(.7) (.8) (.8)

9.7 7.3 7.6
.1 -1.4 -. 7

(2.5) (2.7) (2.7)

104.6 107.6 110.0
7.3 10.3 9.8
(1.5) (1.7) (1.8)

76.4 77.4 77.6
.3 1.3 .1

(.3) (.4) (.4)

3.4 3.4
-. 4 -. 5
(.2) (.2)

3.5

(.2)

187.0 197.2 202.5
5.0 13.4 13.9
(3.4) (5.0) (4.9)

I
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Table 18. FRB-MIT: Ratios of Residual Standard Errors
to Standard Errors of Forecast

1. Gross National
Product ($1958)

2. Implicit Deflator
for GNP (1958=100)

3. Consumption ($)

4. Dividend Price
Ratio (%)

5. Commercial Paper
Interest Rate (%)

6. Corporate AAA
Interest Rate (%)

7. Deposits at
S&Ls ($)

8. Corporate Before-
Tax Profits ($)

9. Residential
Construction ($)

10. Producer
Durables ($)

11. Nonresidential
Structures ($)

12. Change in Business
Inventories ($)

13. State & Local
Purchases ($)

14. Employed Civilian
Labor Force (nil.)

15. Unemployment
Rate (%)

16. Federal Taxes ($)

1968-4 1969-1 1969-2 1969-3 1969-4 1970-1 1970-2 1970-3 1970-4

.84 .78 .72 .74 .73 .72 .77 .75 .76

.79 .81 .76 .67 .67 .70 .69 .71 .71

.82 .73 .73 .74 .72 .73 .77 .74 .75

.73 .67 .78 .81 .82 .88 .84 .83 .86

.97 .93 1.01 .95 .94 .91 .91 .88 .91

.95 .88 .97 .90 .92 .86 .88 .85 .86

.86 .74 .73 .74 .79 .78 .80 .79 .80

.86 .84 .79 .85 .88 .91 .91 .85 .88

.78 .69 .71 .75 .77 .76 .75 .73 .72

.99 .83 .76 .73 .69 .68 .71 .71 .72

.93 .95 .88 .77 .69 .70 .71 .70 .73

.99 .97 .86 .93 .92 .86 .94 .83 .91

.70 .63 .61 .61 .59 .59 .64 .61 .62

.74 .68 .65 .64 .64 .61 .61 .60 .59

.82 .78 .71 .70 .71 .71 .73 .73 .71

.95 .87 .78 .79 .79 .79 .81 .82 .85

r



Figure I MICHIGAN FORECAST DISTRIBUTIONS OF REAL GNP
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Figure 2. MICHIGAN: FORECAST DISTRIBUTIONS OF THE GNP DEFLATOR
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Figure 4. FRB-MIT: FORECAST DISTRIBUTIONS OF THE GNP DEFLATOR
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Footnotes

1//- The Michigan model is described in [6]. The version of the
FRB-MIT model we test has not been published. Versions much like it are
described in [2] and [3].

2/
/- We altered two equations in the FRB-MIT model, those for

capacity utilization and the unemployment rate. In both cases it was
an alteration of form only, one that constrained the variables to their
economically meaningful ranges, roughly speaking (0,1). In both cases,
residual standard errors for the variables themselves were lower for
our forms than for those originally in the model.

3/ In the next section we attempt to justify the distribution
assumption and the use of D for a test for structural change.

/ This follows from the assumed independence of disturbances
across structural equations.

5/
-5/The elements of v are drawn from a truncated normal distribu

tion. Let x be a zero-one normal random variable. We draw values of x
and accept only those for which x <2. The accepted x's have mean zero

and variance (.88) 2 , so that v=(l.137)x has mean zero and variance one,
the desired distribution. We choose v's from a truncated distribution,
because most parameters and disturbances do not a priori have infinite
range.

The above description applies to all parameters except first-
order serial correlation coefficients in the FRB-MIT model. For their
distribution, see Appendix 3.

6/
- We performed checks on both the input and the output; the

output was checked for oscillatory within-run behavior, (see Appendix 1),
while the input was checked for coding errors (see Appendix 2).

7/ 27/- In terms of the statistic D, the t statistic for variable i-- statistic for variable i
in quarter j is found by using for C the relevant row of an identity matrix
of order Mn: namely, the row with unity in the [(i-1)M+j]th column. The
F statistic for the ith variable is found by using for C the rows obtained
by letting j=1,2,...,M.

8/
- It may also be of interest to note that the FRB-MIT model does

poorly predicting the corporate AAA interest rate, but does well predicting
the dividend-price ratio, variable 4, even though the former is an important
determinant of the latter.

9/
- This statistic is a special case of D, since if C is chosen

to be a subset of the characteristic vectors of , then C C' is a diagonal
matrix with the corresponding roots as diagonal entries. (F. 0 5 (1,48)=4.04.)



1 0 /For these computations, each variable was expressed as a ratio
to its corresponding mean forecast, so that variances become coefficients
of variation, etc.

11/
"Because we were missing data for many of the endogenous varia-

bles for the FRB-MIT model for the period 1969-2 through 1970-4, we could
not perform the entire sequence of one-period simulations.

12/12/The residual variances were calculated from a set of simulation
experiments similar in all respects to those underlying the statistics in
Tables 2 and 3, except that parameters were held fixed at their point
estimates.
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