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ABSTRACT

For a wide class of dynamic models, Chamley (1986) has shown that the optimal capital income tax rate is
zero in the long run. Lucas (1990) has argued that for the U.S. economy there is a significant welfare gain
from switching to this policy. We show that for the Bewley (1986) class of models with heterogeneous agents
and incomplete markets (due to uninsured idiosyncratic shocks), and borrowing constraints the optimal tax
rate on capifal income is positive even in the long run. Quantitative analysis of a parametric version of such
a model suggests that one cannot dismiss the possibility that the observed tax rates on capital and labor income
for the U.S. economy are fairly close to being (long run) optimal. We also provide an existence proof for
the dynamic Ramsey optimal tax problem in this envircnment.
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I. Introduction

For a wide class of dynamic models, Chamley [1986] has shown that the
optimal capital income tax rate is zero in the long run. The capital income
tax rate for the U. S. economy appears to be qulite far from zerol. One
possible response to this is to accept the prescription of theory and
recommend a change in tax policy. Lucas [1990] took this route and, using a
representative agent model, has argued that for the U.S. economy there is a
significant welfare gain from switching to this policy. In Lucas’® words
(p.314), "...supply-side eccnomists...have delivered the largest genuinely

free lunch I have seen in 25 vears in this business." According to Lucas’
estimates eliminating the capltal income tax can result in a welfare gain
across steady states of over 5 percent of consumption, and about 1 percent
when transitional costs are taken Iinto account. He suggests that this
welfare gain is about twice as large as the gain from eliminating a 10
percent inflation rate, 20 times as large as the gain from eliminating
post-war business cycles, and 10 times the gain from eliminating all product
market monopolies as estimated by Harberger.

One way to summarize this argument is to say that the capital stock in
the U. S. economy is too low and that it ought to be higher, and, further,
that there are large welfare gains from making it so.

In this paper we take the contrary view that perhaps there are good
reasons for why the capital income tax 1s what it 1is, and, hence, that
cutting it would lead to welfare losses rather than welfare gains. To put it

another way, if the capital income tax were cut to zero, the capital stock

would be too high and it ought to be lower.

1Lucas [1990] calculates the capital income tax rate for the U. S. eccnomy
to be 0.36.



We present a class of environments together with a market structure
such that the optimal capital income tax rate 1Is not zero, but strictly
positive, even in the long run. Specifically, we show that for the Bewley
[1986]1 class of models with incomplete markets, heterogeneous agents and
borrowing constraints the optimal tax rate on capital income is positive
even In the long run?. If we regard such models ag providing a good
description of reality, then we need to reassess the presumed welfare gains
of reducing the capital income tax to zero. The presumed welfare gains may
well turn into losses.

We should emphaslze that the result iIn this paper is nolt just that the
capital Income tax rate is different from zero in the long run, but that it
is always positive for the type of environment/market structure considered.
In overlapping generations models with pure life-cycle consumers the long
run capital income tax is not generally zero; however, it may be positive or
negative.

In the Bewley [1986] class of models considered in this paper there is
a continuum of agents subject to idiosyncratic shocks which are uninsured.
Due to the absence of Insurance markets agents become heterogenecus
ex—posts. Because of the Idiosyncratlc nature of the shocks there ig

uncertainty at the individual level but there is no aggregate uncertainty.

2Jones, Manuelll and Rossi [1990] show that if government expenditures are
endogenous and productive, then the capital income tax rate can be positive
in the long run. Earl Thompson [1974] made an argument based on national
defense for capital taxation as part of an optimal tax structure.

3Presumab1y’ private information and the resuliing problems due to moral
hazard and adverse selection have a lot to do with "missing markets" and
incomplete risk sharing. Whlile it would be desirable to take explicit
account of these features of the environment as in some recent literature
(see, for eg., Green 1987, Fhelan and Townsend 1991, Atkeson and Lucas 1992)
this is beyond the scope of the present paper. Instead, we simply impose a
particular market structure as in Bewley [1986].




The intuition behind why the above features lead to a positive tax rate
on caplital income may be explained as follows. Because of incomplete
insurance markets there is a precautionary motive for accumulating capital.
In addition, the possibility of belng borrowing constrained in some future
periods also leads agents to accumulate additional capital. These two
features lead to increases in their saving and hence capital accumulation,
and thereby lower the return on capital below the rate of time preferenceQ.
That is, the above features lead to excesg (i.e., greater than the optimal
level of) capitals. As we will show, a positive tax rate on capital income
will be needed to reduce capital accumulation and bring the pre-tax return
on caplital to equality with the rate of time preference.

It is well known from the study of overlapping generaticns medels
{(Diamond 1965) that competitive equilibria may be characterized by capital
overaccunulation and that government debt (equivalently, interest bearing
money) can be used to soak up excess saving and reduce capital accumulation.
This suggests the possibility that in the Bewley [1986] class of models also
government debt may serve to eliminate excess capital accumulation and bring
the return on caplital to equality with the rate of time preference without a
tax on capital income. However, this turms out to be Infeasible, due to a
crucial feature of this class of models. This feature is that the demand for
assets on the part of households for precautionary saving purposes tends to
infinity as the return cn the assets approaches the rate of time preference.
However, the supply of capital is bounded because there is a maximum

sustainable capital stock in the economy; further, the supply of government

4See, Bewley [no datel, Laitner [1979, 1992], and Alvagari [1992].

5'I‘hls'. should be distinguished from the standard notion of capital
overaccumulation which refers to an inefficiently high level of capital.




debt is bounded above because tax revenues from labor and capital are
bounded above. Therefore, the supply of assets in the economy {(capital plus
debt) is bounded above. Consequently, it is not possible to support as an
equilibrium 2n Interest rate that is arbitrarily close to the time
preference rate. Making this argument rigorous and showing that it implies
that the capital income tax rate must be strictly positive even in the long
run is the main goal of the theoretical part of the paper.

The quantitative part of the paper is motivated by the following
question: Assuming that a reasonably parameterized version of such a model
is a reasonably good approximation to reality, can we easily dismiss the
possibility that the observed labor and capital Iincome tax rates in the U.

S. economy are approxlimately optimal? We will suggest that the answer to

this question is: Nos.

We also provide a general theorem regarding the existence of a solution
for the dynamic Ramsey optimal taxation problem for this environment.

The outline of the paper is as feollows. In Section II we describe the
dynamic Ramsey optimal tax problem in a Bewley type meodel with a continuum
of agents, stochastic and idiosyncratic shocks to labor productivities, and
borrowing constraints. In section III we try to provide some intuition for
the results by conducting steady state analysis. In section IV we prove the
result that the optimal capital income tax must be poslitive even in the long

run. Section V contains the quantitative results. Appendix A contains many

6Recently, models of this type have been used to address quantitatively a
variety of questions. See, for example, Imrchoroglu [1988,1989] on the costs
of inflation and the costs of the business cycle, Diaz-Gimenez and Prescott
[1989] on monetary policy and asset returns, Huggett [1989] on the risk free
interest rate, Aiyagarl and Gertler [1991] on asset returns with
transactions costs, and Aiyagari [1992] on the contributlon of precautionary
saving to aggregate saving.




of the proofs and Appendix B contains the details of computation inveolved in

the quantitative exercise.

II. A Beuwley Type Model

In this sectlion we consider the problem of optimal capital income
taxation in a Bewley [1986] type model with a continuum of agents receiving
stochastic, idiosyncratic shocks to 1labor productivities which are

uninsured.

The Environment

We assume that there is a continuum of agents of size unity. Per capita
variables (or averages across individuals) are distinguished from individual
specific variables by using upper case letters for the former and lower case

letters for the latter.

Endowments and Technology

Agents are endowed with one unit of perfectly divisible labor each
period which can be used either in the market sector or in the home sector.
Let n, and 1--nt be an agent’s market work at time t, and home work at time
t, respectively. Home production is given by a production function etH(l-nt)
where H: [0,1]1 = R+, is bounded, continuously differentiable, strictly
increasing, and strictly concave. In addition H(.) satisfies: H(0) = O,
H' (0) = », H (1) > O.

et denotes an idiosyncratic shock te the home production of an agent in

period t. We assume that et is 1.i.d. across agents so that there is no




aggregate uncertaintyT. Further, Gt follows a Markov process over time with

probability transition function denoted by P(8°,8) = prob[9t+1 = 9'|9t = o].
We assume that the Markov process has a unique non-degenerate stationary
distribution (denoted by F) to which it converges strongly and that the

gstationary distribution has bounded support. Let emin and emax denote the

lower and upper ends of the support. We assume emin > 0.

In the market sector production 1is governed by a neoclassical

production function f(Kt,Nt], where K, is the per capita amount of capital

t

in the economy, N, is the per capita amount of market work, and f(.) is the

t

per capita market output net of capital depreclation. We assume that £(.)} is
homogeneous of degree one, and twice continuously differentiable. Further,

£f{.)} satisfies: (i) f{O,N) = f(K,0) = 0, {(ii) for (K,N) >> 0, f.. <0, f

11 22 <
0, (iii) for X > O, f, > 0 and Limy o f, = w, (iv) for N > O, lfLmK__>0 £, =o,

1imKem f1 = -8 < 0.

Preferences

An agent consumes the amount ¢, of goecds in period t, and the

t

government consumes the amount G, of goods (per capita) in period t. An

t

agent’s preferences are described by the following expected value of the sum

of discounted utilitles of private consumption and public consumption:

oo

=0
consumption and U(.)} is the utility from public consumptions. The functions

EO{Z Bt[u(ct)+U(Gt)]}, where 8 € (0,1), u(.) is the utility from private

TThe technical difflculties arising from a continuum of 1i.i.d. random

variables (see Judd 1985, Feldman and Gilles 1985) will be finessed in this
paper in the same way as in Bewley [1986].

8It should be emphasized that Chamley’s [1986] result that the capital

income tax is zero iIn the long run holds for general recursive preferences,
not Jjust time additive preferences, as 1s assumed here. However, the
environment here, unlike Chamley’s, contains uncertainty at the individual



ul(.) and U(.) are each assumed to be bounded, continuously differentiable,

strictly increasing, and strictly concave.

Marketis
There are competitive markets in labor, capital services, the output

good, and one period consumption loans.

Competitive Equilibrium
Firms
Competition In product and factor markets and profit maximization on

the part of firms implies that w, = fz(Kt,Nt}, and r, = flcxt’Nt)’ where w

denotes the pre-—tax real rental

L

denotes the pre-tax market real wage and r

t
on capital services, respectively.
Government
The government consumes the amount Gt (per capita) in period t, issues

new debt in the {per capita) amount (Bt+ _Bt) where B, is the per capita

1 t

debt outstanding at the beginning of period t, and taxes market labor income

and interest income at the rates Tnt and Tt

assumption here is that while market work can be taxed, home work cannot be

respectively. A crucial

level and results on the "income fluctuation problem" (Schechtman and
Escuderoc 1977) which we will rely on are only available for time additive
preferences. The separabllity of utility in private and public consumption
is convenient but not essential. It enables us to pose the consumer’s
optimization problem by simply ignoring the utility from public consumption.
Together with the specification of market Ilabor supply this turns the
problem inte a standard income fluctuation problem and enables us to use
results developed in that literature directly. See Bewley [undated, 19861,
Laitner [1979, 1992], Chamberlain and Wilson [1984], Clarida [1987, 1990].




taxedg. Let ;t and ;t be the after-tax market real wage and the after tax

real rental on capital services, respectively. Note that ﬁt = (1—Tnt)wt, and
Ft = (1—tkt)rt. Since there 1is no aggregate uncertainty caspital and
consumption loans are perfect substitutes. Therefore, the pre-tax interest

rate on one period consumption loans (and government debt) must equal Ty

The government budget constralint is as follows.

(2.1) Gt+rtBt =B —Bt+t w N+t v (K +B,}.

t+1 nt'tt kt' 'ttt

nt¥t kt't T Tt
fl(Kt,Nt)-;t. Making these substitutions into (2.1) and using the first

degree homogeneity of f(.) we can rewrite (2.1) in the following form.

Note that 7  w, = WoW, = fZ(Kt’Nt)_wt’ and that =

(2.2 Gt+rtBt = Bt+1—Bt—tht-rth+f(Kt,Nt).

Consumer

An agent starts with some assets a, and a realized productivity shock

0

60 in period 0, and solves the following problem.

Maximize Eo{z:=0 Btu(ctJ} subject to the sequence of budget constraints

and borrowing constraints given by

(2.3a) Cp * 8y

(2.3b) 0= n, = 1, ¢

= BtHil-nt) +Wn, + (1+rt)at,

tz 0, 2y = 0.

9Our specification of market labor supply is equivalent to assuming that
there is no income effect on non-market work (home work or leisure) in the
more conventional specification of preferences where non-market work is also
an argument of the utility function u(.).



We will now refornulate the consumer’s optimization problem in a
dynamic programming framework.

To simplify the reformulatlon we start by noting that the solution to
the labor allocation problem is obtained by maximizing [etH(l—nt) + w.n,l

it

over n, € [0,1]. This vields a supply function for market work denoted
n(Gt/Gt). Using this we can define an agent’s total {market plus home)
earnings function (denoted by y(et,wt)) as: y(et,wt) = ethl-n(wt/et)} +

wtn(wtfet). Note that y(Bt,wt] = BminH(I) > 0.

Now, let
(2. 4a) = ww }, t 20
. tr M1t Va2t ’
(2. 4b) Rt = 1+rt, tz0,
(2. 4c) &t = (&R R ...} tzo.

EA £ R £ -3

An agent’s decision problem can now ke expressed in terms of the

following Bellman’s equation, where v is the value function.

-t =t, _ —t+1 =t+1
(2.5a) v(at,et,w ,R) = Max{u(ct)+BEtv(at+1,et+1,w R 713,
subject to:
(2.5b) L y(et,wt)+(1+rt)at, c, = 0, 2, = 0, t =0.

t

Note that in (2.5a) the sequences w~ and ﬁt are deterministic.

Equilibrium
Let Jt(a,eJ be the cross-section distribution (c¢c.d.f.) of agents
according toc asset holdings and 8 in period t, and let Jo(a,e) be given as

an initial conditlion. The evolution of Jt(.) over time will have to be
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determined as part of the equilibrium.
The solution to the consumer’s problem (2.5) will consist of the
following decision rules.

t

(2.6a) c ,ﬁt],

t st

£ = c(at,et,w

= a(at,a W

(2.6b) a . ,RT).

t+1

Using (2.6b) and the probability transition function for 8, we can
update the given initial distribution Jo(a,B) to obtain Jt(.) for all t.
Note that these distributions for tx1, will depend on the sequence of
after-tax prices. To make this dependence explicit, we will denote them by

Jt(a,e,ﬁo,ﬁo). Per capita consumption Ct is then given by the following.

(2.7) c, = .rc(a,e,ﬁt,ﬁt)th(a,e,ﬁo,ﬁo) = xt(ﬁ",ﬁo).

Per capita market work (denoted by Nt previously) is given by the

following.
(2.8) Nt = In(wt/G)dF(e) = v{wt).

We can also write per capita output of home produced goods {denoted by

Ht] as followus.
(2.9) H, = IeH(l-n(Gt/e))dF(eJ = n(Gt).

Note that Ht = n(wt) = Bmathl} < .

The resource constraint for this economy can now be written as follows.
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- — -0 =0
(2.10) f(Kt,v(wt)}+n(wt)+Kt~K Gt-xt(w LR)Y =0, t =20,

L+l

In (2.10), v(ﬁt) is per—-capita market work (from 2.8), “(;t) is per
capita home production {(from 2.9), and xt(ao,ﬁo) is per capita consumption
(from 2.7).

Given time paths for ;t and ;t’ and the =stochastic process for et,
individuals choose processes for consumption and asset accumulation to solve
the problem {2.5). This results in a time path for per capita consumption
and per capita assets. Together with a time path for Gt’ the government
budget constraint (2.2) then determines the time path for government debt,
since Kt must equal per capita assets at time t (dencted At) minus Bt' The

time paths for Gt’ We and ry

resulting time paths for per capita capital and consumption clear the goods

are consistent with equilibrium if the

market at each date, i.e., satisfy the resource constraint (2.10).
The above description is now formally summarized in the following
definition of a competitive equilibrium.

Definition. For given Iinitial conditions K0 and JD(.), and time paths

{Gt,ﬁt,Ft}, a competitive equilibrium consists of a value function wv(.),
consumer’s decision rules c(.) and a(.), and sequences {Jt(')’Kt} such that
the following hold:

(i) v(.) solves the Bellman eguation (2.5a),

(ii) e(.) and a(.) attain v(.),

(111) {Jt(.)} is generated from JO(.) and a(.),

(iv) {Kt} satisfies (2.10).
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The Oplimal Tax Problem
The government’s optimal tax problem is to choose time paths for Gt' Gt

and ;t consistent with equilibrium such that the utilitarian soclial welfare
[IV(a,B,ao,ﬁo)dJo(a,G) + ZBtU(Gt}] is maximized.
More formally, the government's optimal tax problem may be written as

follows.

(2.11) Max [.rv(a,e,GO,ﬁo)dJO(a,e) + zﬁtu(ct)l subject to (2.10) and (Gt, ﬁt,

G Kt+1) =z 0, t 20, by choice of {wt, R,. G

. K } for t =z 0.

LA A A )

Nete that in the above problem, the only constraint (aside from
non-negativity constraints) 1is the resource constraint (2.10). The
government budget constralint need not be included as an additional
constraint since the 1individual decision rules automatically satisfy
individual budget constralints, which together with the resource constraint

Implies the government budget constraint.

I11. Steady State Analysis
In this section we try to provide some intuition for the way ihis class
of models work and why they necessarily imply a positive tax on capital
income, by analyzing steady states. The formal analysis of the Ramsey
optimal tax problem is postponed to the next sectlion.
For the steady state analysls of this section only the following
10

additional assumptions are made: (i) 8, is i.i.d. over time , (ii) u is

twice differentiable and there exist positive numbers p* and c* such that

10Steady state results for this class of models are avallable in the

literature only for i.1i.d. shecks.
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(-cu’’/u’) = p* for all c c*ll.

It is convenient to index a steady state by r (the pre-tax return to
capital), T (the wage tax), and government consumption G. The condition
fI(K,N) = r, fixes the K/N ratio and, hence, the pre-tax wage w = fz(K,N).
Therefore, W (the after tax wage) is given by (1-rn}w. Further, market work
N is determined by w in accordance with the steady state version of (2.8).
Since K/N 1is determined by r, it follows that K is determined. Individual
optimization and asset market clearing will then be used to determine B, and
r (the after-tax return to capital). The capital income tax rate Ty is then
given by (1-r/r).

The value of r is found in the followlng way. The steady state version

of the government budget constraint (2.2) can be manipulated to express

(K+B) as a functlon of r (the after-tax return to capital) as follows.
(3.1) K +B= (f(K,N) - wN - G)/r.

Note that (f(X,N) - wN - G) is completely determined by the given
values of r, Tn and G. We assume that this expression 1is positive.
Therefore, the graph of K + B versus r looks as shown in Figure 1.

For a given value of r (assumed less than p = 1/8 - 1) the consumer’s
problem Is a stationary problem in the steady state and is described as

follows.

11This condition ensures that the asselt accumulation process for an

individual remains bounded so long as the return on assets ls less than the
rate of time preference. Further, there exists a unique 1long run
distribution of assets which is stable, 1i.e., starting from any initial
distribution of assets the sequence of distributions of assets converges to
the unique long run distribution. See Schechtman and Escudero [1977],
Clarida [1987, 1990].
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00 t
Maximize E0{2t=0 B u(ct)} subject to:

(3.2} c, + a

¢ = y(et,w) + (1+r)at, c

20,8, 20, t =0.

t+1 t t

The solution to the consumer’s decision problem yields a stationary
decigion rule for asset accumulation, at+1 = a(at,et;F). This decision rule

together with the distribution of 8, determines a Markov process for assets

t

a This Markov process has a unique stationary distribution (see Clarida

¢
1990, proposition 2.2 and Corollary 2.3), denoted J(a;r). Average asset
holdings (denoted A(r)) are given by A(r) = fadJ(a;r). From proposition 2.4
in Clarida [1990] we know that A(.) 1s a continuous function of r and that
A(.) tends to infinity as r tends to p. A possible graph of A(r) versus r is

also shown in Figure 1. The value of r is determined as the solution to the

asset market equilibrium condition
(3.3) K + B = A(r),

that iz, by the intersection of the two curves In Figure 1. Note that by
virtue of the properties of the twe curves In Figure 1, a scolution is
guaranteed to exist. Further, since K is determined by r and T,» once r is

known B can be found from (3.3).

We now give some intuition for why with incomplete markets the capital
income tax rate is strictly positive even in the steady state. If there were
no idlosyncratic shocks (equivalently, if markets were complete) then the
consumers’ asset demand function A(.) would coincide with the vertical axis

for r < p. and would be perfectly elastic at r = p. Therefore, r will equal
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p in a steady state, regardless of the values of T, T, or G. In particular,
if there were no capital Income tax, then r = p which is the standard result
that the capital stock satisfies the modified golden rule.

However, when there are Ildiosyncratic shocks (and markets are
incomplete) the Iindividual has a precautionary motive for accumulating
agsets and will held positive amounts of assets on average even when r < P
in order to buffer earnings shocks and smooth consumptioniz. The borrowing
constraint also plays a role since the possibility of being borrowing
constrained in future perlods serves to enhance the individual’s desire for
current assetsls.

More crucially, asset demand A(.) tends to infinity as r tends to p
from below. The intuitiecn is that when r equals p, the individual would like
to malntain a smooth marginal utility of consumption profile. However, since
there is some probabllity of receiving a sufficiently long stiring of bad
©’s, the only way to maintain a smooth marginal utility of consumption

profile is to have infinite assetsl4.

121f r is sufficiently low (clese to negative unity, for example) then the
individual will not hold any assets ever and will simply consume his
earnings in each period.

13Even though we have ruled out borrowing this 1is not essential to the

analysis. If r > 0, then the present value budget constraint and
non-negativity of consumption imply that a, = —y(smin,w)/r. That is, there

is always a borrowing_limit in this class of models. The intuition is that
if ever ay < -y(Bmin,w)/r, then a sufficiently long series of bad 0's will

force the consumer to increase his debt level to such an extent that from
then on even if he received the best 8’s forever he would never be able to
pay off his debt. See proposition 1 (p. 34) in Aivagari [199Z2].

14Individual agsets go to infinity (a.s.) if r > p- In this case the
individual wants to be a lender and postpone consumption to the future,
Therefore, per capita assets are infinite when r > p. This holds also when r
= p. The intertemporal first order condition for individual optimization lis:
u’(ct) = B(1+r)Et{u’[ct+1]}, with equality if a0 > 0. If B(l+r) = 1, then

u'(ct) + 0 a.s. and, hence, ¢, & © a.s. Therefore, a

t > o 8.8, See

t
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It follows that with iIncomplete markets the steady state equilibrium
value of r 1is always less than p, again regardless of the values of r, T, or
G. As we vary r, the curve marked (K+B) in figure 1 shifts {since K in the
numerator on the right side of (3.1) depends on r) and leads to different
steady state values of r all of which will be less than p. Therefore, it
must be the case that the return on cepital r consistent with zero capital
income tax is strictly less than p. Consequently, under incomplete markets,
there will always be capital overaccumulation if there is no tax on capital,
i.e., the capital stock will be higher than the modified golden rule level.
The additional capital accumulation and the implied higher saving rate may
be atiributed to precautlionary saving.

As we will prove in the next section, the solution to the Ramsey
optimal tax problem has the feature that (in the steady state) the modified
golden rule holds, i.e., the pre~tax return on capital equals p (proposition
1). From the above dlscussion, this can only be achlieved by having a
positive tax on capital Income, thereby eliminating capital
overaccumulatlon.

Proving that the 1limiting pre-tax interest rate equals the time
preference rate and that the limiting after-tax interest rate is strictly
less than the time preference rate in the Ramsey optimal tax problem is the

main goal of the analysis iIn the next section.

IV. The Optimal Capital Income Tax in the Long Run
In this sectlon we return to the analysis of the Ramsey optimal tax

problem formulated in section II and show that the optimal capital income

Chamberlain and Wilson [1984], especially, Thercem 1 (p.12), Theorem 2
(p-15) and Corollary 2 (p.26).
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tax rate must be positive even in the long run. First, we provide an

existence result for the optimal tax problem.

Theorem 1. A solution to the optimal tax problem exists.

Proof. See Appendix A (part 1). g

Theorem 1 does not guarantee that in the solution, market production is
necessarily positive, i.e., Nt > 015, or that, in the long run, it is bounded

away from zero, l.e., lim 1nft%m N, > 0. The proof works by showing that

t
there always exists a feasible policy which involves zero market production
and autarky for individuals. Given the existence of such a feasible policy,
an optimum policy is shown to exist by using continuity and compactness
arguments.

In what follows it 1Is assumed that a scolution to the optimal tax
problem converges to a steady state 1in which factor prices, per capita
capital, per capita private and government consumption, per capita market
work, and per capita home work converge to limiting wvalues which are all

strictly positive and finitels. This is formalized as assumption 1 below.

15Note that this guarantees that Kt > 0. Otherwise, W, = fZ(Kt’Nt) = 0,
implying that ;t = 0, which is lnconsistent with Nt > 0.
16

It seems quite difficult to guarantee that a solution to the optimal tax
problem converges to a steady state. Even for the simpler version of the
model wlthout a government sector results are only available for steady
states with i.1.d. over time shocks. See Bewley [undated], Laitner [1979,
19%2]1, Clarida [1990]. There is no existence result or convergence to a
steady state result for an arbitrarily given initial condition nor even an
example. The technical difficulty is that the distribution of assets across
individuals is an aggregate state variable which is, in general, changing
over time. In any case this assumption is also made by Chamley [1986] and
Lucag [1990]. However, Chamley does provide an example which exhibits
convergence to the unique steady state.
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Assumption 1: The solution to the optimal tax problem (2.14) is such that

R _ g™ -
(Rt’Gt’Nt’l Nt) + (1+r*,G,N,1-N) >> 0 and finite. g

The Long Run Capilal Income Tax
From assumption 1 it follows immediately that Gt + w* > 0 and finite.

Proposition 1. r, > p = (1-B)/B.

t
Proof: Let Btht be the non-negative multiplier associated with the
constraint (2.10) in the planning problem (2.11). The first order necessary

conditions with respect to K and G, for this problem are {for Kt+1 >0

t+1 t
and G, > al,
(4.1a) ALt BAHl[fl(KtH,v(th)Hi] = Q.
(4.1b) U'(GtJ - lt = 0.

From (4.1b) it follows that A, converges to some A > 0 and finite.

t

Therefore, r =f (K (§t+1]) > p= (1-B)/B. g

t+1 1 e+t Y

The nature of the variational experiment underlying the proof of
propesition 1 1is the following. Imagine that the government increases

investment at date t by one unit (i.e., AKt+1 = 1) and decreases government

consumption by one unit (AG, = -1). The reduced public consumption is met by

t

g reduction in new debt, also by one unit (ABt+1 = -1). As a consequence,

the resource constraint and the govermnment budget constraint continue to be

gatisfied at date t and per capita assets do not change (AAt+1 = Q).
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Further, individuals are unaffected by these changes so that per capita
consumption, per capita market work, per capita home production and per
capita assets do not change. At time t+]1 suppose the government increases
government consumption by the amount of the increment in output due to

increased investment, i.e., AG = f (X 1)+1, and increases new

t+1 177+

debt Issue s0 as to maintaln Bt+2 at the same level as before the

1’V(§t+1
experiment. It is easy to verify that the resource constraint and the budget
constraint continue to be satisfied at date t+1 as well. The first term in
{4.1a) measures the utility loss from reduced government consumption at date
t and the second term in (4.1a) measures the utlility gain from increased
government consumption at date t+l discounted by 317.

Proposition 1 says that in the long run the pre-tax return to capital
must equal the rate of time preference. Therefore, to show that the capital
income tax is strictly positive even in the long run we need to show that r*
= lim ;t < p. This is shown in Appendix A (part 2) via a series of
claims. The proof is by contradiction, i.e., we rule out r* = p by showing
that per capita assets go to Infinity. Since, per capita capital is bounded
(there is a maximum sustainable capital stock) and per capita government

debt is bounded (since tax revenues are bounded) the result follows.

Proposition 2. ™ < p.

Proof. In Appendix A (part 2). 4

It remains to show that in a complete markets version of this model the

17The argument underlying the proof of proposition 1 is intuitively easler

when governmeni consumption is endogenous but the result does not hinge on
this modeling feature. The result would still follow from the steady state
version of (4.1a) without appealing to (4.1b).
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capital Income tax is zero in the long run, 1i.e., r* = r, This is

done in the following propositlion.
Propozition 3. Under complete markets the capital income tax rate is zero.

Proof. This follows because under complete markets the modél in section II
iz & special case of that in Chamley [1986]. The complete markets case is
equivalent to eliminating the idicsyncratic uncertainty, i.e., setting Gt =
E(e), across agents as well as t. For simplicity assume that initially all
agents have the same assets, l.e., we have ldentical agents. In this case,
the intertemporal Euler condition for an agent is given by u’(ct) =

BEl-i-Ft_'_l)u’(ct ). Therefore, in the steady state, r* = p. Proposition 1

+1
continues to hold in the complete markets case implying that r = p, Hence,

it follows that the capital income tax is zero in the long run. g

V. Quantitative Results

The goal of this section is to suggest that the observed labor and
capital income tax rates in the U. S. economy cannot be easily dismissed as
being far from optimal relative to a reasonably parameterized version of the
model described earlier. To put this another way, the question is whether it
is possible to interpret the observed tax rates as being (approximately) the
limiting wvalues of the tax rates assocliated with the sclution path of a
dynamic Ramsey optimal tax problem for the type of model described earlier.
To address this questlion we proceed as follows.

We try to construct a locus of points where each peoint represents a
pair (tn,rk], where T and t. are the long run labor and capital income tax

k
rates assoclated with a solution of the dynamic Ramsey optimal tax problem
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for particular initial conditions. The locus 1is generated by wvarying the
initial conditions. A possible example of such a locus is shown in figure
218. For comparison, in the types of environments congidered by Chamley
[1986], the locus would coincide with the portion of the horizontal axis in

figure 2 representing a value of T, equal to zero, and values of T between

k
zerc and some upper bound.

A locus such as the one in figure 2 can be used to address the question
posed in the following way. IF the observed labor and capital income tax
rates are quite far from the locus then one can conclude that the actual tax
policy is quite far from being long run optimal. That is, no conceivable
initial conditions could have led to the observed tax rates as being long
run optimal. Therefore, a minimum condition for not dismissing the observed
tax rates as being long run optimal is that they lie on the locus. Of
course, the observed tax rates being on the locus does not imply that actual
tax policy is long run optimal. This latter question can only be resolved by

computing the solution path for the optimal tax problem and the assoclated

1imiting values. Thls computational problem is very hard, and it requires

18The reason that there is a locus of points rather than a single peoint in
figure 1 is thait, in general, different initial conditions will lead to
different steady state values of the tax rates. For example, assume that
government consumptlon 1s exogenous, and that iwo economies differ in
initial per capita assets (AO), and initlal capital (KO), but have the same

initial debt (BO), assumed positive. The economy with the higher KO (say,

economy 1) has available a higher capital levy at date zero. Consequently,
we would expect economy 1 to reach a steady state with a lower level of debt
and taxes than the other economy. A similar argument holds if the two
econcmies have the same initial capital KO’ but differ in terms of initial
debt B0 (assumed positive), provided that we do not permit ;0
do not permit all of initial assets of consumers to be taxed away. Note that
we are assuming here that the solution to the optimal tax problem converges
to a steady state.

= -1, i.e., we
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taking a stand on initial conditionslg. In contrast, constructing the locus

only involves computing steady states which is a lot easier. However, the
drawback i1s that we are only able to provide a more limited answer.

We will show that there exisi reasonable parameter values for which the
observed labor and capital income tax rates are quite close to the locus
depicted in figure 2.

If the soluticn path of the dynamic Ramsey optimal tax problem
converges to a steady state then ihe limlting values must be consistent with
the steady state analysis of Section III. Therefore, the locus of steady
state tax rate pairs (tn,rk) can be constructed by following the procedure
ocutlined in the steady state analysis of section III wlith the pre-tax return
r being set equal to p by virtue of proposlition 120. The steady state value
of government consumption (G) is taken as given. For each given value of Tn
the corresponding value of r, and, hence, T, can be determined from the

asset market equilibrium condition. Thus, we can find steady state pairs

).

(.7
We now describe model specification and parameterlization, and the

results. Detalls of computation are described in Appendix B.

Model Specification and Parameterizaiion

The model period is taken to be 1 yvear and the utility discount factoer

19The computational problem 1is hard because the consumer’s problem is

non-stationary and one of the state varlables for the economy is the
cross—-section distribution of asset holdings, which is an infinite
dimensional variable.

20It is possible that some steady states described in Section III (with r
equal to p) may not be approachable from any initial conditions. There is no
way to get a handle on this without doing the explicit dynamic analysis
which is beyond the scope of this paper.



B is set at 0.96. The utility function over privalte consumption is of the
CRRA form, ul(c) = [cl_”—ll/(l—u). Two different values of the risk aversion
coefficient g € {3,5} are considered.

The market sector net production function f(K,N) is specified as K“NI-a
- 8K with the capital share parameter (a) taken to be 0.36 and the
depreclation rate of capital (8) taken to be 0.08.

The specification of home production is as follows,

1/A 1+1/A
n

(5.1) hy = (etn)" (1-n, }/(1+1/A), A >0, D>0, 0 =n, =1,

t

which leads to the following individual market labor supply function®..

_ = A
(5.2) n, = etD(w) .
Thus, A represents the labor supply elasticity. We experimented with

three different values of A € {2, 1.5, 1}. The mean of e, is normalized to

t
unity and the value of D is chosen such that when the tax rate on labor (tn)
is 0.35, per capita market work N = D(ﬁr)l‘/;l = 1/3. According to Lucas [1990]
the labor and capital income tax rates are both 0.36.

The stochastic process for e is specified az a Markov chain with seven
states to match the following first order autoregressive representation for
log(et).

1/2

2
(5.3a) log(et] = (Const.) + pelog(et_l} + cetl—pe ) £,

21 -1/

Note that by interpreting e as Bt and writing n, as [1—(1—nt)] the

specification in (5.1) can be seen to be a special case of the specification
in Section II.
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(5.3b) o, € {0.2, 0.4}, Pe € {0, 0.6}, €, - Normal(0,1).

t

The constant Iin (5.3a) is chosen so that E(et) equals unity. The
coefficient of varlation equals o, and the serial correlation coefficient
equals Pa- We then follow the procedure described in Deaton [1991, p.1232]
and Tauchen [1986] to approximate the above autoregression by a seven state
Markov chain. Table 1 below reports the Co and Pe values implied by the

Markov chain and shows that the approximation is quite good.

Table 1
Markov Chain Approximation to the Labor Endowment Shock

Markov Chain we/Markov Chain Po

o-a\pe 0 .6
.2 .21/0 .21/.59
.4 .43/0 .44/.58

The values cof Ty and p, Were chosen from various studies of individual
market hours and individual market earnings, since (5.2) 1implies that
individual market hours and individual market earnings are proportlonal to
e . Kydland [1984] reports that the standard deviation of annual hours
worked from PSID data is about 15 per cent. Abowd and Card [1987, 1989] use
data from the PSID and NLS and calculate that the standard deviations of per
cent changes in real earnings and annual hours are about 40 per cent and 35
per cent, respectlively. The Iimplled value for the coefficient of variation

{c.v.) in earnings depends on the serial correlation in earnings. If

earnings are 1i.i1.d. this yields a figure of 28 per cent for the c.v. of
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earnings. Positive correlation would 1lead to a larger figurezz. The

covariances reported in Abowd and Card [1987, Table 3, p.727 and 1989,
Tables IV, V, VI, pp.418~422] suggest a first order serial correlation
coefficient of about 0.3. This would give a figure of 34 per cent for the
c.v. of earnings. Heaton and D. Lucas [1992] alsoc use PSID data to estimate
several versions of equation (5.3a2). Their estimates (see their Tables A.2 -
A.5) indicate a range of 0.23 to 0.53 for Pe and a range of 0.27 to 0.4 for
Tgr These studies suggest that a c.v. of 20-40 percent in earnings at an
annual rate may be reasonable.

Note that we have made no allowance for the possiblility that the
reported earnings varlabllities contain significant measurement error. As
the discussion In the papers by Abowd and Card suggests, this is a serious
possibility, and the relevant degree of idiosyncratic earnings variability
may be somewhat lower. However, this is balanced by the possibilities that
the data do not include uninsured losses and tasie shocks. In addition since
the agents 1iIn the model are Inflnitely rather than finitely lived a larger
value of we may be needed to capture the relevant degree of variability in

23
permanent income .

zzLet v be the log of earnings, Wy be the standard deviation (s.d.) of y, and

ag be the s. d. of (yt—yt 1). Suppose that y follows the first order

process: y, = trendt + PY; _q + £y, where £ is 1.i.d. It is straightforward

to calculate that o /03 [2(1-p)1 1/2

23Suppose that earnings (yt) follow the process: Visl = (1—p]ya + Py, t

o(i- p211/2 €441 where £, i1g i.1.d. with zero mean. Let ¥ = 1/(i+r) be the
market discount factor and T be the horozon. Then permanent income (yp) is
given by: yb = + (y,~y") [(1-9)/(1-3p) 11~ (#2)117(1-¢7). Therefore, the

variability of permanent income as measured by the standard deviation (s.d.)

is higher when the horizon is finite as compared to when the horizon is
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Government consumpiion is chosen to be 20 percent of gross market
output, i.e., G/[f{K,N)+3K] = 0.2, when the labor tax rate is 0.3524.
The computational details are described in Appendix B. We now describe

the results.

Results

Tables 2, 3 and 4 below contain the results of the above computational
exercise for three different sets of parameter wvalues. For comparison the
values of the labor and capital income tax rates for the U. S. as calculated
by Lucas [1990] are reported in Table 2. A reasonable range of values for
the labor Ilncome tax rate is chosen since the wvalue calculated by Lucas
[1990] is probably only an approximation.

In Table 2, labor supply Is fairly elastic, the idiosyncratic shock has
relatively low varlabillty and is i.i.d. over time. The capital income tax
rates are quite close to zero suggesting that the results of Chamley [1986]

and Lucas [1990] would continue to hold (approximately) for this economy. It

Infinite. For illustrative purposes if we take r = 0.04, p =0, and T = 50,
then the =.d. of permanent Iincome is higher by a factor of 1.16 as comﬁared
to the infinite horizon case. Note that higher values of p reduce this
ad justment factor. This suggests that to capture the effects of the observed
variability in earnings in a model with Infinitely lived agents the standard
deviation of earnings in the model needs to be scaled up by a factor of
about 1.2. The Markov chain approximation that we use tends to deliver this
automatically for the high value of Tq (0.4); see Table 1 in the text.

24Most of the above functional forms and parameter values are commonly
employed In quantitative analyses of aggregative models of growth and
business cycles. See, for example, Prescott [1986]. Our specification of
home production is not so common but the wvalues of the labor supply

elasticity and the fraction of total time spent in market work are quite
commonly employed in the above mentioned siudies.
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appears that one can easily reject the notion that the observed capital

Income tax rate ls anywhere close to being optimal.

Table 2 (p = 3, A = 2, Tq = 0.2, Py = 0)

U. S. DATA
(LUCAS 1990)
T 0.30 0.35 0.4 0.36
T 0.004 0. 005 0.007 0.36

However, Tables 3 and 4 below show that modest changes in parameter
values are sufficient to generate quite large values for the capital income
tax rate; wvalues that cluster around the actual wvalue from the data. In
these tables labor supply is less elastic and market earnings are more
variable and persistent. With the parameter values of.  Tables 3 and 4, one
cannot now easily dismiss the possibility that the observed capital income
tax rate is close to being optimal. One could even conclude that the

observed tax rate is too low rather than too high.

Table 3 (u =5, A = 1.5, o = 0.4, p_ = 0.6)
T 0.30 0.35 0.4

T 0.25 0.28 0.32

Table 4 (u =3, A =1, ¢ = 0.4, P, = 0.6)
T 0. 30 0.35 C.4

T 0.44 0. 44 0.45

Risk aversion, serial correlation Iin earnings, and the labor supply

elasticity have quite a significant impact on the capital income tax rate. A
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higher risk aversion coefficient leads individuals to desire to accumulate a
larger quantity of asseits requiring a higher tax on capital income in order
to maintain the modified golden rule level of capital. The intuition for the
effect of serial correlation is that a high persistence in earnings implies
a much larger variability in the consumer’s permanent income which is the
relevant measure for precautionary saving. As a consequence, high
persistence leads to much larger desired saving and capital accumulation
requiring a larger tax on capital income to maintain the modified golden
rule capital. A lower elasticity of labor supply makes total (market plus
non-market) earnings more variable also leading to larger desired asset
holdings and thereby requiring a higher cepltal income tax. The influence of
the labor supply elasticity is quite strong. For example, if the labor
supply elasticlity is reduced from 1.5 to 1 with the other parameter values
as in Table 3, the capltal income tax rates rlse from around 28 percent to
around 58 percent.

The above results are consistent with the results found in Aiyagari
[1992] in which the impact of precautionary saving on aggregate saving (with
no taxes) was studied. In that paper, high values of risk aversion,
variability and serial correlation in earnings led to significant increases
in the aggregate capital stock and the aggregate saving rate, and lowered
the return to capital significantly below ihe rate of time preference rate.
This muggesats that a large tax on capital income would indeed be needed to
bring capital accumulation back to the modifed golden rule capital. This is

confirmed by Tables 3 and 4.
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APPENDIX A
This appendix is divided into two parts, part 1 (proof of Theorem 1)}
and part 2 (Proof of Proposition 2).

Part 1 (Proof of Theorem 1)

r

We start by providing bounds for K G Gt’ £

t, t,
Claim 1. (i) {Kt} is bounded above, (ii) {Gt} is bounded above.
Proof. (i) From the resource constraint (2.10}) we have that Kt+1 =
f(Kt,1)+Kt+Ht = f(Kt’1)+Kt+9maxH(1)' Let K’ satisfy the following equation:
f¥',1) + BmaxH(I) = 0. Such a K’ exists since f(.) is output net of
depreciation and by assumption limKaw f1 < 0. Define Kmax= max (K., ¥K'1,
where KO is the Initial per capita capital. Then it is obvicus that Kt s
). , for all t.

max

(i1) Gt = f(Kmax,1)+Kmax+9maxH(1] = Gmax' .

Now let w =0 ., H (1) > 0 and let
min min

(A. 1) ¢(th = fz(Kmax,v(th).

¢(§t] Is a continuous and strictly decreasing function, tends to o as

w, tends to w , and tends to f_ (X ,1) as w, tends to w. Therefore, there
t min 2 "max t
exists a unique positive value, denoted w , such that w = ¢(w ). Let
max max max

r > -8 be the return to capital and let z{r) be the corresponding
capital-labor ratio, i.e., f1(z(r),1) = r. Let w(r) = fz(z(r),l) be the
corresponding market real wage. Note that w(r) is strictly decreasing, tends
to w as r tends to (-8) and tends to zZero as r tends to w. Let T oo be
defined by w(rmax) = W

min’

o [+1]
Now we define the set S = [0, K ] = [0, G } x[wmin ] x[0, 1+rmax}

< R” and endow S with the subspace product topology Let K = (K K K

2 3
o o -0
.) e [0, K ] s G' = (G., G G .) e IO’Gmax]

o . W € [wmin maxlm’ and
o
R € [0, 1+r ax] .

]

1’

ret s* = {(k!,c%w0,8% e s| ',c%,w’,R%) satisfy the constraint

(2.10)}.
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Claim 2. The set S* is compact.
Proof. S is compact by Tychonoff’s theorem and S* is a closed subset of S. =

Claim 3. The maximand in (2.11) is continuous (in the product topology) over
S.
Proof. Follows from the fact that u(.) and U(.) are bounded and continuous.

Therefore, v(.) and EBtU(.) are continuous in the product topology over S. g

Theorem 1. A solution to the opiimal tax problem existis.

Proof. In view of claims 2 and 3, we only need to show that $S* is nonempty.
Choose K, =0, t =1, G, = (_1-6)1(0. G =0 t=1, we =W, t=0, Ft =
-1, t = 0. Note that Nt = v(wt) = 0, t =2 0. Under this policy, individuals
never hold any positive assets, i.e., the asset distribution is completely
concentrated at zero for t =z 1. Individuals work only at home and eat
whatever they produce. Therefore, per capita consumption equals per capita

home production. Further, government debt B, =0, t = 1. g

t
Part 2 (Proof of proposition 2)

We start by stating some simple properties of the solution to the
agent’s optimization problem (2.5) which will be needed later. Let lm be the
space of bounded sequences with the sup norm (denoted |.|m], and let l; be
emin,emax]. let ¢ =

{V:R+x®x1:xl:+R|v continuous and bounded} and let the norm on € be the sup

the non-negative orthant of lm. let @ = |

norm. The following proposition consizsts of easy extensions of standard
results and, hence, the proof is omitted (see, for example, Stokey and Lucas
with Prescott, 1989, chapter 9].

Claim 4. (1) There exists a unique v € € which soclves the functional
j]} subject to (2.5b); (ii)
v is strictly increasing and strictly concave in a.: (1i1) There exist

unique decision rules (2.6) which attain v; (iv} The decision rules (2.6)

. = 0 J
equation (2.5); further v = sup Et{Ej=0 B u(ct+

are continuous and non-decreasing in a; (vl v is continuously
differentiable in a, and v, (a,,8,,#,R") = (147 Ju’(c,); (v1) The solution
to the maximization problem on the right side of (2.5) is characterized by:

’ ~t+] =L+1
u (ct) z BEtvl(at+1'9t+1’w ,R ") with equality if 2,1 > 0, where Et
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denotes expectation conditional on information at time t. g

Now we show that r* = p. This result uses a special case of Thecrem 1
(p.12) and Theorem 2 (p.15) of Chamberlain and Wilson [1984].

Claim 5. r* = p.
Proof: Suppose if possible that r* > p. Let Ct = BtH§=0 (1+Fj)’ and note
that §, » w.

From Claim 4 (v) and 4 (vi) the following intertemporal Euler equation

holds for a typlical agent.

’ - ’
(A.2) u’(c,) = B(1+rt+1)Et{u (c,,q)}, with equality If a ., > O.

By multiplying both sides of (A.2} by ct we can rewrite it as follows.

(A.3) gu (ct) z Ct+1Et{u (ct+1J}, with equality if a > 0.

t+1

It follows that Ctu’(ct) 1s a non-negative super martingale. Further,
y(et,wt) = GminH(l) > 0, implies that Cou (co) < w. Therefore, Ctu (Ct)
converges with probabillity one (w. p. 1) to a finite random variable (Doob,
p. 324, Theorem 4.1s). Since Ct - o, it follows that u’(ct) > 0 w. p. 1,
and, hence, that ¢, » o w. p. 1. Since it must hold for all Individuals this

t
implies that per capita consumptlon Ct + o, However, assumption 1 and
proposition 1 imply that Kt + K > 0 and finite. The resource constraint
{2.10) then implies that C

r*¥ = p. g

t % C finite, which is a contradiction. Therefore,

Now we rule out the possibility that r* = p. This is done by showing
that when r* equals p per capita assets go to infinity. However, since per
capita capital is bounded (there is a maximal sustainable capital stock) and
per capita government debt is bounded above (because tax revenues are
bounded above)} this leads to a contradiction. Thus, we establish that r* =
p. Hence, r* < p.

Consider the following stationary problem (dencted P(S,p)).

P(S,p): maximize EO{E:=O Btu(ct)} subject to:
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= ™
(A.4) o, + A, y(et,w )+ (1+p)at, c, 0, a =0, t =0.

t
In contrast the original problem with constraints (2.5b) is

non-stationary and is denoted P(NS). Note that when r* = p, problem P(S,p)

is obtained by substituting the limiting values of Gt and Ft in problem

P(NS). We will use the result that for problem P(S,p), E(at|a0=0,60,P(S,p)]

+ w. Using this we will show that when r* = p, E(at|a0,90,P{NS)J + w, This

implies that per capita assets for P(NS) go to infinity because At =

-0 =0, _

Iath(a,B,w L,LR) = IE[at|a0,BO,P(NS)}dJO(aO,GO).

Claim 6. E(at|a0=0,eo,P(S,p)] > o,

Proof. See Corollary 2 (p.26) of Chamberlain and Wilson [1984]. They show

that Prob(lim c, =w) = 1. It follows that Prob(lim

_tam TR too Tt
= y(Bt,w*]+(1+p)at. Therefore, E(at|a0=0,60,P(S,p)] > 0 g

a, = ) = 1, since

°t
Claim 7. If r* = p, then E(a,|a,,8,,P(NS)) > a.

Proof: Since the asset accumulation decision rule {(2.6b) is non-decreasing
in ay (Claim 4 iv) it follows that E(atlao,eo,P(NS)) r E(at]a0=0,90,P(NS]).
Therefore, it is sufficient to show that E(at|a0=0,90,P(NS)) + w. So suppose
to the contrary that E(at|a0=0,60,P(NS)3 =%+ o. Then, it must be true that
for any date T, E(at+T[aT=O,BT,P(NS)] —-x+ o, This is because
E(a,, . |2,=0,6,,P(NS)) = E(E(a,, [2_,0_,P(NS))]|a =0,8,,P(NS)), and
E(at+r|at,et,P(NS)J F 3 E(at+r|ar=0’et’P(NS))’ again by Claim 4(iv). Therefore

there exists a subsequence of dates {t _+t} and a number M such that

J

(A.5) E(at +T|ar=0,9t,P(NS)) <M< w, for all t, > O.

3 J

Since E(at|a0=0,90,P(S,p)) > w (Claim 6), there exists T < » such that

for any T,
(A.6) E(a,, la =0,6_,P(S,p)) > M+, t = T.
In view of (A.5) we can choose T in such a way that

(A.7) E( |a=0,6_,P(NS)) < M < w.

a
T+t
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Let w(S) = (w*, w* w* ...), and R(S) = (1+p, 1+p, 1+p, ...). Let A,
be an upper bound on asset holdings that can be attained in T periocds
starting from zero assets at any date T in P{NS). Such an upper bound exists
(independently of the starting date T) since {ﬁt}, {ﬁt}, and y(et,ﬁt) are
bounded. It follows that E{aT+T|aT=O,BT,P(NS]} < AT for all T. Now note that
E{aT+T|aT=0,et,P(NS)} depends only on w° and R°. Therefore, by making T
suitably large we can make |'.TIT-—'}(S)|m and lﬁT—E(S)|m as small as we like.
Hence, by the continuity of the asset accumulation decision rule (2.6b} -
Claim 4(iv} - we can choose a T sufficiently large such that the following

holds.
(A.8) |E{a;, |2 _=0,0 ,P(NS)}-E(a, |a =0,6 ,P(S,p))] < 1.

However, (A.6)}, (A.7) and (A.8) are mutually contradictory. Therefore,
E{at|a0=0,90,P(NS]} 3 w. Hence, E{at|a0,90,P(NS]} > o
Proposition 2. r* < P.

Proof. By Claim 5, r* = p. So, suppose, if possible, that r* = p.

From the government budget constraint (2.2) we have

(A.9) Bt = [Bt+1+f(Kt,1)}/(1+rtl
Let ;t = H§=0 [1+FJ]_1. Since Ft <+ p > 0, consumer optimization implies
that lim = 0 (a.s.), and, hence, that limJ+m 7t+jAt+j+1 = (],

oo Trajtegel

Since, Bt = At - Kt‘ and {Kt} is bounded {claim 1), it follows that limjém

§t+JBt+j+1 = 0. Using this in (A.9) and noting that {f(X,,1)} is bounded
above we can conclude that {Bt} is bounded above. Therefore, {Kt+Bt}’ and,
hence, per capita assets are bounded above. This contradicts Claim 7 and

shows that r* # p. This fact together with Claim 5 establishes that r* < p-
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AFPENDIX B

Details of Computation
Markov Chain Approximation to (5.3)
We divide the real 1line into seven intervals as follows. 1 =

1
(~e0, -5 /2), I, = (-5¢ /2,-3c /2), 1., = (~30 /2,~¢ /2), I, = (-c /2,0 /2),
e e e e e e e

2 3 4
I5 = (0é/2’3¢e/2)’ I6 = TSoe/Z,Sme/Z), and I7 = (Sﬁéfz,m). The gstate space
of ln(et) is taken to be the finite set {-3¢ , =20 , -¢_, 0, ¢, 200, 3¢_}
e e e e e e
so that e, = exp[(i—4)¢e], i=1,2,...,7- We then compute the transition
probabilities nij = prob{lnet+1 € Ij.lnet = log ei} by numerical integration

using the Normal (0,1) density for £, assumed in (5.3b). We then compute the

t
stationary probablility vector p associated with the probability transiticn

matrix nx and the expected value Ee = Eipiei. The per caplita value of e is
normalized to unity by scaling the support of its distribution by Ee. That
is, we define e'1 = ei/Ee. The Markov chain for {et} is defined by the state
space {e’i} together with the probability transition matrix w. Note that e’
will have the same coefficient of variation and serial correlation
coefficient as e. Table 1 in the text shows that the approximation is quite
good for moderate values of Tps though for high values of Co the Markov
chain has a =somewhat higher coefficient of variation. We alsc tried the

following alternative for calculating the transition probabilities: “ij

t+1 € IJ.lnet € Ii}' This procedure yielded a vwvery good

approximation to o, even for high values. However, iits approximation to Pe

prob{lne

(especially for the high values) was not so good. The values of Py basgsed on

the Markov chain were somewhat lower.

Solving (3.3) for r

Recall that in the quantitative analysis the idiosyncratic shock e, may

t
be serially correlated over time. The Bellman equation for the consumer’s

problem can be written as follows.

(B.1) viz,,e.) = max{ulz -a, ,) + BE [viwe,  +(1+r)a, .,e, ,)fe 1},
subject to:
{B.2) 0O<a, ,6 =z = y(et,w]+(1+r)at,

where y(et,ﬁ] is total earnings and the maximum on the right side of (B.1)
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is taken over at+1. This leads to an asset demand function of the form

(B.3) a1 = a(zt,et],

which together with the definition of z, and the Markov chain for e,

determines the stochastic evolution of at.

We approximate the asset demand as a functlon of zt (for each of seven
possible current values of e) by a continuous, piece-wise linear function
over an interval with 27 sub-intervals not of equal length. Finer
sub-intervals were chosen at the lower end of the interval and coarser
sub-intervals at the upper end of the intervalzs.

The algorithm for finding the value of r that solves (3.3) uses

simulated series and the bisection method. To initialize the process, let r

i
equal p and let r, equal zero. Let ry equal (r1+r2]/2. We then compute the
asset demand function as described above corresponding to r We then

simulate the Markov chain for the labor endowment shock usiéi a random
number generator and cbtaln a series of 50,000 drawszs. These are used with
the asset demand function to obtain a simulated series of assets. The sample
mean of this is taken to be equal to per capita assets A.. If A, exceeds XK+B

3 3

evaluated at rs (see equation 3.1), then r, is replaced by Ty, @ new rg is
calculated and the process ls repeated. If,,A3 is less than K+B evaluated at

r then r, is replaced by r is calculated and the process is

3 2 3’ 3
repeated. Note that by construction ry and r, are always on opposite sides

of the steady state interest rate r*, and that with each iteration |r1-r2|

a new v

is getting halved (see figure 1). Typically, this yields an excellent
approximation to the steady state within ten iterations.

25The reason is that for low levels of total resources assets will be zero

since the borrowing constraint will bind. At some critical level of total
resources assets will become positive. This introduces a high degree of
nonlinearity in the asset demand function. Consequently, it is important to
have a finer grid at the lower end of the interval to cbtain a good
approximation. It turned out that throughout the upper half of the Iinterval
the asset demand function was very nearly linear sc that a small number of
grid points was adequate to obtaln a good approximation in this region.

26'I'he results were about the same even when we used 20,000 draws.
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