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Inference in Markov Chains Having Stochastic Entry and Exit
GEORGE T. DUNCAN and LIZBIE G. LIN

A model suitable for statistical inference in Markov chains
is considered featuring Poisson entry and absorbing state exit. Maximum
likelihood estimates are obtained and likelihood ratio tests derived.
Necessary asymptotic theory is developed. Forecasted occupancy counts
are presented. An application is made to the distribution of Ninth Fed-
eral Reserve District member banks with respect to the ratio of farm loans
to total loans. Predictions given by the model are examined for goodness

of fit and are found to be adequate.

1. INTRODUCTION

Considerable interest has been expressed concerning appropriate
statistical methods for treating entry and exit problems in a Markov chain.
Nevertheless, the fact that a variable number of entities are under obser-
vation over the several time periods is often ignored. But Conneman and
Harrington [3] argue effectively, in the context of dynamic analysis in
agricultural economics, that greater attention should be paid to the prob-
lems of exit and entry. A way of handling entry and exit is suggested by
Adelman [1]:

"There is, however, one modification which must be made in the
Markov process before we can use it profitably in our work - we must pro-
vide for entry into and departure from the industry. To do this, we add
to our m size classes a large additional group which acts as a reservoir
of potential entrants into the system. We then assign as the probability
of moving from the zeroth group to, say, the jth group a value Jjust suffi-

cient to make the average number of firms entering the jth class per year
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correspond to the actual number of new firms started annually in the
appropriate size range. Similarly, the failure of a firm will be repre-
sented as a movement into the zeroth class.”

It is difficult to see how this approach will maintain the
appropriate mean rate of entry into the various states. Nevertheless
this method is common, as is illustrated by Hallberg [S5]: "The fifth
state was utilized to represent a pool from which entrants may come and
to which exants may go." The basic methodological difficulty with this
approach is the fact that the number of entities in this reservoir state
can never be known. As recognized in [1]:

"The above definition of P 4o however, still leaves the prob-

J
abilities pOj arbitrary. For, since, by the very nature of the case, no
data on the number of businesses retaining the status of potential entrants

could be collected, a.. could not be evaluated empirically. This defi-

00
6

ciency was remedied by assuming that Zj = 100,000."

=0%03
We propose a model which avoids this difficulty and articulates
well with the work of Anderson and Goodman [2]. In our model entry is
described by a Poisson distribution and exit by the use of an absorbing
state. The model studied by Leysieffer [9] provides for a Poisson entry
into a single state and an exit which occurs independently of the state
presently occupied. It will be pointed out that this form of entry can
be made equivalent to a Poisson entry into each of the states of the chain.
In many cases, however, it will be useful to have the probability of exit
dependent on the state presently occupied. The model of Section 2 provides
for this by using an absorbing state as an exit. Methods of statistical
inference are considered for an absorbing state model, a case which was

not developed in [2]. The implications of a Poisson model for the descrip-

tion of the arrival of new entities in the system is explored. Maximum
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likelihood estimates are obtaiﬁed in Section 3. Necessary asymptotic
theory is developed in Section 4. Various interesting likelihood ratio
tests are derived in Section 5.

The problem of forecasting the occupancy counts in the various
states is taken up in Section 6. A formula for the expected occupancy
counts at each time t is given and a limiting result obtained.

An empirical example is presented in Section T which is con-
cerned with the distribution of Ninth Federal Reserve District member
banks in terms of their ratios of farm loans to total loans. The data
were taken from December Call Reports submitted by each bank during the
time period 1954-1969. The possible loan ratios are categorized so that
five loan ratio states and an absorbing state constitute the states of

the Markov chain.

2. THE MODEL

The chain is observed at fixed times, t= 0,1,...,T, as a random
number of entities move independently of one another through states labeled
i= 0,1,...,m. The randomness in the number of entities will be due to two
factors: one, the entities may have entered the system at different times,
and, two, there is the possibility in each time period of an entity leaving
the system. We first consider the probabilistic behavior of an entity which
is presently in the system and then later consider how it got there.
Initially, each of the entities is assumed to make transitions between states
according to the same probability law. We designate states 1,...,m as the

active portion of the system under consideration. State 0 is then outside

the active portion of the system and a movement to this state will indicate
an exit from this active portion. We treat state 0 as absorbing, i.e.,
once an entity has left the set of states l,...,m it has zero probability

of ever returning.
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The sample space of a single entity has as elements a vector
specifying the time that the entity entered the system in one of the
states 1,...,m, the state initially occupied and the sequence of states
subsequently occupied. We shall call the time of entry, t*, and the
sequence of states (i(t*),...,i(T)). Entry at the time t* = 0 is
equivalent to being initially in the chain.

The situation can be described as follows: first one of T+l

spaces, S t* = 0,1,...,T, is selected. The points in the space St*

t*?
will be vectors of dimension T-t*+1 with first coordinate i(t*), one
point corresponding to each of the possible histories an entity may
have. Since an entity may enter the absorbing state at any of the
times t*+1, t¥*¥+2,...,T or may not be absorbed at all, the number of
points in the space is

T-t*¥+1

m ) .

-t ¥* -]
m+m2+...+mT L = m(l

l-m
Thus, the total number of histories that an entity might have is

T

E
t¥=

-1 %
m(l-mT t +l)

T+1
1-m 1 -m- )}

o L= (1

m_om T+l

Note that we have omitted a finite number of histories which would other-
wise have a priori probability zero.

We define a random variable, X(t), on the sample space of an
entity such that X(t) = i when the entity occupies state i at time t.

Let the (nonstationary) transition probabilities be denoted by
pid(t) = P(X(t) = J|x(t-1) = 1). (2.1)

The chain is said to have stationary or constant transition probabilities

if pij(t) = Py for t = 1,...,T. Since state 0 is taken to be absorbing

we have

pOO(t) = 1 and poj(t) = 0 ¥ ® Usuenasly 3= loesoam, (2.2)
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In general, given that the time of entry, t*, and state of
entry, i(t*), are fixed, the sequence of states (i(t*),...,i(T)) has

probability pi( If the chain has constant transition

t*)...i(1)"

probabilities and is of first order, the sequence of states (i(t*),...,i(T))

has probability p. (Note that if some

1(4%)1(t*+1)" " Pi(T-1)i(T)"

i(t) = 0, t2t*, then all subsequent i(t'), t' = t+l,...,T, are also Zero. )

We have the random occupancy counts ni(t), denoting the number
of entities occupying the ith state at time t. Thus, in particular, we
have the initial counts, ni(O), which we assume to be multinomially

distributed with sample size

n=.2 fn,.(a) (2.3)

and ith occupancy probability ny - Note that nO(O) is necessarily zero

and hence o = 0.

We denote by ei(t) the random number of entities which enter
state i, i = 1,...,m, at time t, t = 1,...,T, from outside the system.
This stochastic entry is described by a Poisson probability model. It
will be assumed that entries are made independently into each state

and over time; the mean rate of entry is Ei, possibly different for

each state i but constant over time. Thus

Eiei(t)exp[-ai]

P&, (%) = e.{t)) = where ei(t) = 0,1,2,...3 &,20.
* ei(t)!

Note that the parameter gi may be zero indicating that with probability one

there will be no additional entries into state 1i.
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The following assumptions would give rise to this Poisson
probability model:
(1) Entities observed to be in the system for the first time at time

t actually entered at some time in (t-1, t);

(2) The number of entities entering during the non-overlapping time
intervals (a,a+h) and (b,b+h) are independent and identically distributed

random variables;

(3) If the probability that an entity enters in (a,a+h) is p(h), we

have Eéhl + A, & constant, as h + 0;

(4) The probability of two or more arrivals in the time interval
(a,a+h) approaches O as h -+ 0.

This form of entry can be viewed as equivalent to that of
Leysieffer [9] if his single state of entry is entered at time t*-1 and
left with probability one at time t*. An "artificial" transient state
would then have been introduced whose function would be to receive a
Poisson distributed random number of entries, X, and then to distribute
them in a multinomial fashion to each of the active states of the chain
during the next time period. Now the mean of X will be £=£1+...+ £

m

and each éi will remain Poisson distributed since

P(e, = e,) = xEO P(&; = e |X = x) P(X=x) (2.4)

which in turn equals

r=g .\ e

@ X ei x-ei x
I p; {l-pi) £ exp(-£)/x!
.

1 %4 e x
w1 (l-pi) z [(l-pi)E] exP(-a)/(x-ei)! (2.5)

i xX=e,
-




and this then equals

1 o i(yp,) 1 I texp(-€) 1 [(1-p,)E]"/v!
o1 P (1-p;) “[(1-p;)E] “exp(-¢ 2 Py '
i
=(p;€) “exp(-p,;€)/e,! (2.6)

3. ESTIMATION
Consider a typical sequence of states (i(t*),...,i(T)). The
number of entities which follow this particular sequence, i.e., enter the
system for the first time at time t* in state i(t*), etc., is denoted by
Bi(t*)...1i(T)"
A basic statistic of interest is the number of entities which
make a transition from state g to state h at time t (t = 1,...,T). We

write this as ngh(t). Then

n (t)=2nﬂ

gh £%) 00T (3.1)

where the sum is over all sequences such that i(t-1) = g, i(t) = h,

i(t*) < i(t-1).
The quantity ngh is defined as the total number of entities
making a transition from state g to state h, i.e.,

T

B w8 .. (3.2)
gh 4=y &b

We now develop in detail the probability relations for the first order
Markov chain whose transition probabilities are possibly not constant
over time. First, we condition on the number of entries from outside
the system into each of the m states, 1,...,m, and during each of the t

time periods, 1,...,T. Thus we are holding fixed, éi(t) = ei(t) for

i=1l,...,mand t =1,...T. Then the conditional probability of observing the
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T % e dt) =% n

=1 %=0 1 i(t*)...i(T) (3-3)

sequences of the form (i(t*),...,i(T)) is

Bi(t#)...4(T)
I | 2y (emys(eman) (8% oo ePy (pg )3 () () (3.4)

where the sum in (3.3) and the product in (3.4) are overall values

of the indices with t* = 0,1,...,T-1. Now (3.4) can be written as

tlig 1(t;¥¥i(t*+1) (B (1)1 (g%421) +1)}ni(t*)"'i(T)
m..l]%(m{pi(“-’-l)l('f)(T” i (3.5)
- [l(oggg(l){pi(o) i (l)}ni(O)i(l}( )
ki(T;%¥’i(T){pi(T-1)i(T)(T)}ni(Tul)l(T)(T) i %ii iy Pgh(t3ngh(t)

Now this result is formally the same as the one Anderson and Goodman [2]
obtain when the number of entities moving through the chain remains con-

stant. Therefore defining

ni(t-l) = Jil nij(t) , (3.6)

the conditional distribution of the n, (t) is given by

ij



T m n, (t-1)! m f, .{5)
T T e T 5,08 (3.7)
t=1 | =1 =1 :

II nij(t)!

m
J=1

v

The joint distribution of the ei(t) and the nij(t) is obtained
from (3.7) by multiplying by the marginal distribution of the ei(t).

Then to obtain the likelihood function we multiply the con-
ditional likelihood given the initial counts ni(O)(i =1,...,m) and the
entry counts ei(t)(i =1l,...,m3 t =1,...,T) by these respective mar-

ginal likelihoods. The likelihood function is given by

n.(0) e.(t)
T LT T g & . T m m nij(t) .
1L xp (-¢,) IT | IT »,.(t) )
i=1 niin! égg ezftjl * %ZI i=1| j=1 iJ (3.8)

By the factorization criterion the sufficie;t statistices for the
parameters n, (9 = T 00initils &y (i = 1,00e.m), 8nd pij(t) (3.5 = 0.0sieosms
t = 1ly.0.,T) are then n, ni(O) (1% Jyees)s ei(t) (1=1,,..,m), and
%ﬁﬂ(gj=mL“”mt=1““ﬂL

Noting the way L factors, the maximum likelihood estimates of

the parameters are immediately obtained as the usual multinomial and

Poisson estimates.

Thus,
n, (0)
fiy = 1n (1 = Lyueugti)s (3.9)
" T
g = ¢ ei(t)/T (1 = Lienesm)s (3.10)
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; {4 nijct) - nij(t) (1 =1,c0.om3 J = 0y000,m; (3.11)
iJ ni(t-l) m s I, )
kzo nik(t)
e _ J = dseaealti
poo(t) =1 and goj(t) o -t T (3.12)

(Note that (3.12) follows from the fact that state 0 is a priori absorbing.)
If it is assumed that the transition probabilities are stationary,

we obtain instead of (3.11),

T
> nij(t) - F IRESEE.
~ b=l 3= 0o} (3.13)
Piy T = S S
. £ n..l%)
t=1 k=0 K

L. ASYMPTOTIC BEHAVIOR

In developing asymptotic results, we let Ei + o gnd n > « in

such a way that

3

Hi rey s 0 < e, < = (k.1)

Consider a certain time t*, 1 < t* < T, and a state i(t*). Then we note
that, conditional on a fixed value of the Poisson distributed ei(t*), the

set of random variables n. has a multinomial distribution

i(t*)i(t*+1)...1i(T)

i *
with sample size e, (t*) and parameters Py (4#)i(t%+1) " Pi(T=1)i(T)"

conditionally, they are asymptotically normal when properly scaled as

Thus,

ei(t*) increases by the multivariate central limit theorem. Just as in [2],

the {ni T)} are also asymptotically normal random variables with

(0)i(1)...i(
sample size ni(O) and parameters P (0)i(1)...1(T)" Since the nij(t) are
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fixed linear combinations of these multinomial variables, they are also
asymptotically normally distributed.

Now considering the fact that the ei(t) contribute new entities
to the chain throughout its observed length, it is of interest to consider
the unconditional behavior of the n,

1{t*)...1(T)°

that if a category count has a multinomial distribution conditional on a

We note, as in Section 2,

fixed total sample size and the sample size is Poisson distributed, then
the unconditional distribution of the category count is Poisson. Thus
unconditionally we have the asymptotic result that as Ei + », the Poisson
variates (again when properly scaled), ni(t*)...i(T)’ are normally distri-
buted. As in the conditional case, the nij(t) are then asymptotically
normally distributed.

We now establish the asymptotic normality and consistency of

the transition probability estimates, p,,(t). We have that

i
: 1 = Lgwwwall
) _ng,(8) / V/m 1 % BT e ol | - (4.2)
/n pij(t) - niat—l) / n Rt T )

Now if we define nkﬂ'ij(t) to be the number of entities which
]
enter the system at time ¢ in state k and make a transition from state i

to state j at time t, we have

m T-1 m
n,(t=1) = I z B of. o () 1 & 0,00 B8 e, (3.3)
4 k=1 =0 j=0 X%3id
Now since, conditionally on the entry count ek(ﬁ), the nki-ij(t)

are multinomial random variables with sample size e (2), the conditional

k

expectation is given by

(p, By (4.4)

E(ny,.54(¢) | e (2)) = e, (M)py, Py ;
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(m)

where Prs denotes an m-step transition probability from state r to state s.

The unconditional expectation is then expressed as

Ekpig"g"l)pij, 221
Blogqg00) = 4 gl oo (4.5)

Then with (h.l)kin mind we can rewrite (4.3) as

ni(t-l) n ? ? B 4 (£) N ? ? Tgl n, 1( )c l._i . )
i k=1 §=0 . k=1 j=0 =1 gk "%

Taking the limit in probability as n + = we then obtain

(t-2-1)
T-1 m . .
n(t-1) _ % % ()., . = "2 7 ShPu 2y el

A e © L WPy Pij . £ .

n-+o B k=1 j=0 k=1 =1 j=0 k

Since Zpij = 1 for each fixed i, (4.7) simplifies to
J
R O o m m T-1

BUBL e gl l) o 5y J(t-2-1), (1.8)

ke M k=1 k=1 2=1 ‘kFki

which is a nonzero constant. But the numerator of the right hand side of
(4.2) converges to a normal random variable and then by the Mann-Wald theory

Vn p..(t) is asymptotically normal as n - .

iJ
We now show that our estimates ﬁij(t) are consistent.
Write
m T-1
I Z .. (t)/n
o il IR e (4.9)
ij m m T-1 m
E nik,(t)/n A z nkﬂ'ik,(t}/n
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But the probability limit of ﬁij(t) is then

. (t-1) m Tk fere)

Ty By o Byt B B Gy Pj j
k=1 k=1 2=1 (k.10)
m m m T-1 m

. nkpiz*l)pik' * & & & 5kp£:-g-l)P1k'
k=1 k'=0 k=1 2=1 k'=0

m m T-1

i ”kpiﬁ'l) ¥ B & ikpii'g'l)] Pij
k=1 k=1 2=1 & Bas 1o

= i

. ) . BT ) .

D By FLEE BBy
k=1 k=1 2=1

where we have factored pij out of the numerator and used the fact that
m

L Pipr = 1 in the denominator.
k'=0

5. HYPOTHESIS TESTS
5.1 Likelihood Ratio
For statistical hypotesis testing on the transition probabilities,

the p, (t)'s, we will make use of the likelihood ratio criterion. In

J
the tests considered the parameters will be assumed to span a space {;
under the null hypothesis they will span a subspace of { called w.

Define A to be the ratio of the supremum of the likelihood function

under w to the supremum of the likelihood function under . Then with

the asymptotic results of section 4 we have that -2 log A is asymptotically

distributed as x2 with degrees of freedom given by the dimension of §

minus the dimension of w.

5.2 Test for Stationarity in the Absorbing State Case

Assume the chain is first order and consider the null hypothesis

H : (t)

pij - pij T = Lgwnwals
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= T -

We are then testing the hypothesis that transition probabilities
are constant over time against the alternative that the transition
probabilities vary with time.

Let O be an absorbing state. Then for t=1,...,T,

Pglt) = 1 = Pgo and poj(t) ¥ Po; F = Fyaane gl

If we omit irrelevant constants the likelihood function
maximized under the null hypothesis is then

T'j ﬁp ﬁ I[mﬁijn”, (5L1)

t=l i=1 3j=0 i=1 j=0

while under the union of null and alternative hypotheses the maximized

likelihood is

m a. . (%)
II[pi.(t)}lj ! (5.2)
=0 J

it

I
=1

i

J

The likelihood ratio is then

m m
T TP : (5.3)
i=1 j=0

We have -2 log A asymptotically distributed as x2 with Tn® - m° = m2(T-l)

degrees of freedom. Therefore an approximate size o test rejects when

2
"2 108 X > ¥ o tallT-1)). (5.4)

Simultaneous Test of Order and Stationarity With State 0 Absorbing
Consider the following null and alternative hypotheses:
H: first order and stationary
K: second order and nonstationary

The likelihood ratio for this test is then
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m m njk
1L g
\ = j=0 k=0 . (5.5)
T m m _m nljth)
IL IT IT IT a5 (8)
t=2 i=0 j=0 k=0
where the two-step transition probabilities are defined by
P (t) = P(X(t) = k | X(t-1) = §, X(t-2) = i). (5.6)
The maximum likelihood estimates are given by
B, . (t) = fid%ﬁfly and (5.7)
ijk ny g t-1
T T-1
P...= T n.(8) [/ T n/(t) (5.8)
JE  tap IK t=1 9

while p, - =1 O W [ 0 (] =dssevemy k= 0slseeaam),

Posx =
=0 (i= 0,1,.0.,m3 k =1,...,m). Now -2 log A is asymptotically x2

with degrees of freedom (T-1) [m2(m+l)qm2] - m2 = (T-l)m3 - m2.

5.4 Test That Later Entries Follow the Same Probability Law as the
Original Entities
It is possible that the transition probabilities governing the
behavior of the original entities in the chain may be different from
that of the late entries. This can be tested in the following manner.
Suppose that the chain is first order with constant transition probabilities.
Let
H: p0 = p¥ $ 2 E Loaeomallk
13 ij
where the ngls are the transition probabilities of the original entities
and pij's are the transition probabilities of the newcomers. Then



w 16 -

1.1
OJ ais
1 1
E 13 ;*J (5.9)

IT:
i,3=0

where nyy = ngj - n§J; -2 log XA is asymptotically x2 with 2 [(m+l)2
- (m+1)] - [(m+1)2 - (m+1)] = m2 + m degrees of freedom in the non-
absorbing state case and 2[(m*1)m - m] - [(m*+l)m - m] = m? degrees

of freedom when state 0 is absorbing.

6. FORECASTING
Let {at ft) be the row vector of dimension (m+l) which gives
the number of entities occupying each of the m+l possible states at time

t (t=0,1,2,...T). For forecasting purposes the expected value of (&t ft)
is of interest, and in our model

) s L
E (a,,£7) = (O,fo) EowmfG.ET) & P .. (6.1)

where £° = (51...,gm).

Now with state 0 known to be absorbing, P can be written in

partitioned form as

1 0
. : (6.2)

Using this partitioned form we note that for t21

1 0

I

P = (s Q B Qt (6.3)
k=0

and since P0 =1,
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t 0
il $up . t-l
p opd = | (148 (£-1-3)0%)r 5 & | (6.4)
J=0 J=0 J=0

Thus substituting in (6.1) we obtain

t=1 K t=2 3 + t=-1 3
E(at,f;) = ({f;J (z Q) +¢&g7(1+z (t-1-3)Q")}r,£2Q" + £°2 Q). (6.5)
k=0 J=0 Jj=0

Substituting the sample estimates of Q and £ in equation (6.5) gives a
forecast for time t of the number of entities absorbed (i.e., leaving the

system), a,, and the occupancy numbers, f

t i
We might consider the asymptotic result as t + «». Here we
note that if state 0 is the only non-transient state, then I-Q has an

inverse [8, Theorem 3.2.1]. Therefore Qt +0as t > « and

lim E(a,,f7) = ( + =, £ (I-Q)™). (6.6)
t > =

T. AN EMPIRICAL EXAMPLE
T.1 The Problem -- Changes in the Distribution of Ninth Federal Reserve
District Member Banks in Terms of Their Ratios of Farm Loans to

Total Loans

During the past few decades, numerous revolutionary changes in
the agricultural industry have stimulated the use of large capital
investments by farmers as a means of modern farm production. As a
result, there was a tremendous demand for farm credit in rural areas,
and agricultural loans became one of the major credit operations of
rural commercial banks. During the past twenty years, the volume of
both loans to farmers and total loans in commercial banks grew

substantially. Agricultural loans outstanding at country member banks
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of the Ninth Federal Reserve District, which is comprised of the

four states of Minnesota, Montana, North Dakota, and South Dakota,
plus Upper Michigan and Northwestern Wisconsin, were almost tripled
every ten years. Besides the seven-county Twin City metropolitan
area, the region is dominated by agricultural businesses which

include dairying, commercial grain, livestock and ranching. In

1969, nine-tenths of district member banks made some loans to farmers,
and about half of these banks had farm loan ratios of at least 21 per-
cent of their total loans. Farm loans outstanding at district country
member banks rose from $78 million in 1948 to $203 million in 1958
and up to $620 million in 1969. Meanwhile, total loans at these banks
grew from $518 million 21 years ago to $1,341 million in 1958 and up
to $3,832 million in 1969. Despite the growing loan volumes in the
district, the ratio of farm loans to total loans at country member
banks as a whole was very stable, about 16 percent per year. How-
ever, the historical changes of farm loan ratios in individual banks
reflect a somewhat different picture. In the past 16 years, ratios

of farm loans to total loans in each member bank not only changed
frequently but also moved from one farm loan ratio class to another

(classes are defined in Table 1).
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Table 1. DISTRIBUTION OF MEMBER BANKS BY RATIOS OF FARM LOANS TO TOTAL LOANS

NINTH FEDERAL RESERVE DISTRICT

States n:?g 5y Sy S5 S, Sg Total Ex:::::g
Year (cumulated) 0Z >0-<212 21-<412 41-<61% 61% & Over Sp- S5 S)- S5
1954 - 32 218 132 64 27 473 413
1955 1 35 208 141 59 30 474 473
1956 4 35 212 139 60 27 477 473
1957 5 32 211 127 73 31 479 474
1958 3 33 222 121 73 27 481 476
1959 6 37 202 109 79 50 483 477
1960 9 34 200 117 85 k1] 483 474
1961 10 37 197 113 78 51 486 476
1962 18 34 207 99 87 43 4BB 470
1963 18 37 206 101 88 53 503 485
1964 19 38 213 105 80 58 513 494
1965 21 42 207 94 81 71 516 495
1966 25 42 206 94 86 66 519 494
1967 28 45 203 96 86 63 521 493
1968 32 4h 206 107 80 53 522 490
1969 k1] 50 205 109 77 49 528 490

Table 1 shows the number of member banks in different farm loan
ratio classes during the l6-year period. The number of member banks
which had no farm loans (Sl) increased substantially from 1954 to
1969 partly because of the many new banks in the district's Standard
Metropolitan Statistical Areas. The number of banks which made smaller
proportions of their loans to farmers (those in S, and 53) decreased
during this time span, while the number in the higher ratio classes

(Sh and S_) rose substantially until the last two years. Several

p)
factors may have contributed to reducing the number of banks in the
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latter categories in 1968 and 1969: higher growth rates in non-
agricultural loans than in farm loans, faster farmer loan payments,
delayed capital investments by farmers due to high cost of bor-
rowings, tight monetary policy resulting in bank loan contractions,
ete. But regardless of causes it is important to be able to esti-
mate the extent to which banks shift among loan ratio classes. Also
forecasts of the distribution of banks in these loan ratio classes
provide essential policy guidance. A Markov chain analysis based

on the theory of the previous sections provides a framework for such
an investigation.

The application of the Markov process model in economic and
social studies has gained wide attention among researchers in recent
years. Although various journal articles related to this subject
appeared in the fifties [1,2,4,7,10,11], it was not until the middle
and late sixties that numerous research papers on this subject began
to be published in the fields of economics, agricultural economics,
psychology, and medicine. In agricultural economics, the pioneers
in this area were Judge and Swanson [6] in 1961. Later on, most of
the studies were concentrated on the estimation of transitive prob-
abilities of existing firms and projections of firms in a particular
agricultural industry. In 1969, Conneman and Harrington introduced
the importance of new entries of firms in a dairy industry [3]. That
paper, however, only worked with experimental data without a sup-
porting theoretical framework. A month later, Hallberg developed a
procedure of projecting agricultural firms by nonstationary tran-

sition probabilities as a function of exogenous variables [5].
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It is hoped that this paper would offer both a theoretical
framework of stochastic exit and entry in a Markov chain as stated
in the first six sections, and an empirical example for testing
various assumptions as well as projecting bank distributions, as

presented in this last section.

The Model and the Data

It is empirically true that a bank's farm loan operation,
measured by its ratio of farm loans to total loans, varies each
year. It is also reasonable to believe that a bank's farm loan
operation is a continual phenomenon to the extent that the farm
loan operation of a bank in one year is likely to influence its
farm loan operation in the following year. This is due to the
fact that a farmer's indebtedness in one year is likely to affect
the farmer's indebtedness in the succeeding year. This idea of
the year-to-year dependence in a bank's farm loan operation sug-
gests the application of a Markov chain model. Once a bank's
mobility is estimated, it is possible, using the derived model
to project that bank's future movements from one stage to another.

The empirical data in this study were taken from December
Call Reports submitted by each member bank in the Ninth Federal
Reserve Distriet in the time period 1954-1969. Ranges of a bank's
ratio of farm loans to net total loans were used to define states
of the Markov chain. Then, using this method of definition, five

loan ratio states and an absorbing state were determined:
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il S0 (exit): An absorbing state for banks leaving the
Federal Reserve System, for example, by
withdrawing memberships, liquidating bank
properties, and merging with other banks.

2) s, (0%): A state which includes banks with no farm
loans, such as some banks in the metro-
politan area.

3) S, (>0-<21%): A state which includes banks that make some

2

but less than 21 percent of their loans to

farmers.
L) 83 (21-<k1%): A state which includes banks that make 21 to
; less than 41 percent of their loans to farmers.
5) 8), (41-<61%): A state which includes banks that make L4l to
less than 61 percent of their loans to farmers.
6) S5 (61% and over): A state which includes banks that make 61 per-

cent or more of their loans to farmers.

The data from 1954 to 1967 were used in estimating the transition
probabilities rather than 1954 to 1969 in order to test how well the
transition matrix of 1954-1967 could predict the bank distribution in
1968 and 1969. Likelihood ratio tests were made to detect whether or
not the transition probabilities of those two years were different
from those of 195L4-1967.

The Markov chain in this case, thus, is an absorbing one with
states i = 0,1,2,3,4,5 (where O is the absorbing state) observed at
fixed times t = 0,1,2,...,13 (where 0 is the starting year 1954 and
T = 13 is the year 1967). Table 1 presents a historical view of the

distribution of banks in these various states as well as the accumulated
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number of banks which left the Federal Reserve System in the

Ninth Distriet since 1955.

Estimation of the Transition Matrix and the Rate of Bank Entries
For a first order stationary absorbing Markov chain, the
relevant statistic is the number of banks moving from state i to

state j at any time t during the ll-year period. This is

s U B 0E) fed = Ty J 2 04T 00055

The absorbing state model is appropriate since no banks

came back to the System after they had left. Therefore,

an =0 for j =1,2,...,5. The frequency matrix of banks'
movement in the district since 195L until 1967 is a matrix
= [nij]:
13 9%
S8 8 8, 83 §, S5 tgl Jioni‘j(t)

So 28 0 0 0 0 0 28

B, |2 W3 W 1 2 1 468

N = 82 10 50 2507 13k 6 2 2709
83 8 2 13 33/ 78 10 1492

Sh L 1 T i 738 118 993

S5 _h 1 2 5 87 1+73_ 572
6262
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The estimated transition matrix P = [pij] where, for example,

éll = %%% = .8825 according to equation (3.13) is:

% S1 B B B 5 ; g’ij
J=0

S, 8 1 0 0 0 0 (;- 1.0000
8, .0043 .8825 .104T .0021 .0043 .0021 1.0000

~ 8, | .0037 .0185 .9254 .0k95 .0022 .0007 1.0000
i 85 .0054 .0013 .0757 .T916 .1193 .006T 1.0000
8, | -00k0 .0010 .0050 .1280 .Th32 .1188 1.0000

85 0070 .0018 .0035 .0087 .1521 .8269 | 1.0000

This transition matrix provides substantial dynamic information
on bank movements among states. The diagonal elements in the matrix
indicate probabilities of banks remaining in their own particular

states. For example, indicates that 88 percent of the banks

Pia
in S1 will remain in S_, that is, will continue to make no farm loans
in the following year. The high values of diagonal probabilities in
the above matrix imply a strong tendency for banks to stay in their
original states. However, the degree of immobility of banks in each
state is different. For instance, the high values of Pyq and Py
indicate strong tendencies for banks in states Sl and 82 to remain

in their respective states. The first column of the transition
matrix also reveals the probability of a bank in any state leaving
the system next year. Banks with the largest farm loan ratios are
most likely to leave the system than those banks in the states with
smaller loan ratios, but their probabilities of leaving are all less

than 1 percent. A general picture of bank mobility in terms of the

number of banks moving could also be obtained from the matrix N.
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During the ll-year period, 28 member banks left the system, while
5312 observations (one bank in a particular year is treated as one
observation) or about 85 percent of the sample remained in their
own states during a two-year period. There were 922 observations
or 15 percent of the sample moving among states in this time span.
As stated in the model, entry of new member banks is allowed
into state i at any arbitrary time t*. The pattern of these new

entries in the Ninth Federal Reserve District is shown in Table 2.

Table 2. NUMBER OF NEW MEMBER BANKS WHICH ENTERED EACH STATE (e4(t))

Year 51 Sp S, S S Total
1955 1 1
1956 1 2 3
1957 1 1 2
1958 1 1 2
1959 1 1 2
1960 0
1961 2 1 3
1962 1 2 2
1963 2 6 2 3 2 15
1964 4 4 2 10
1965 1 1 1 3
1966 . | 1 1 3
1967 1 1 2
1968 1 1

1969 2 1 2 1 6
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The estimated mean rate of entry Ei during the first lb-year period,
thus, is computed according to equation (3.10):

States Sl 82 53 Sh S Total

£, : | 1.4 .6 .3 .3 30

The 1961 liberalization of chartering and regulatory policies
for national banks by James Saxon, the Comptroller of the Currency,
had encouraged the entry of and the conversion of banks to national
banks in 1963 and 196L. There were twelve and eight new national
banks in 1963 and 1964 respectively. This fact makes the assump-
tion of constant mean rate of entry quite untenable. It would be
realistic in this situation to regress £(t) on the relevant exog-
enous variables. If this is done with the policy change above,

the following estimated mean rates of entry would be obtained:

8, 8, 53 8, 35 Total
gi(l) i . B8 51(8) .9 .9 A 0 0 1.9
51(9) = = 51(13) L.k 22 1.h 8 8 6.6

Testing of Hypotheses

In economic analysis, it is essential to test statistically
some of the basic assumptions underlying the model in use. The hy-
pothesis tests developed in Section 5 can be used to examine sev-

eral assumptions about the model.

a) Test of stationarity for first order Markov chain: (see

section 5.2).
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The values of n,

id

Tables 1 and 2 respectively. The 13-year average pij's and n,

iJ

(t)'s and Py (t)'s are listed in Appendix

are shown in Section 7.3. According to equation (5.3),

A 13 5 5 &
nij log pij = £ E I n,(t) log pij(t)

5
log A = I
= t=1 i=1 j=0 9

= - 3253.08 - (-3068.69) = - 18k4.399 then,
- 2 log A = 368.798 with (5)2{13-1) = 300 degrees of freedom.
The x2 table shows that the calculated value exceeds the table
value of 341.395 at 5 percent significance level, but is fairly
close to the table value 366.8L44 at .5 percent significance

level.

Test of both order and stationarity: (see section 5.3).

According to equation (5.5), log A = - 393.64 and - 2 log A =
787.28 with (13-1) (5)3 - (5)2 = 1475 degrees of freedom. This
value is much less than the table value for rejection at 5 per-
cent significance level for the corresponding degrees of free-

dom.

Test of transition probabilities for the new entries: (see

section 5.4).

According to equation (5.9), log A = = 3253.08-[-3141.6 +

(-102.571)] = -5.91, and - 2 log A = 11.82 which is smaller

than the x2 table value with (5)2 = 25 degrees of freedom at
the 5 percent significance level. This test leads to a con-

clusion that the new entries follow the same probabilistic

law as the ones originally in the system.

Vs



Based on the results of the above tests, the small vari-

ation in piJ(t) over t, the large sample size and the desire
for a simple mathematical model, the system is well represented

as a first order and stationary Markov chain.

T.5 Forecasting
If the chain is of first order and stationary, forecasting

of its future behavior could be made as stated in Section 6. To

-

0
the row vector of the bank distribution in the starting year,

predict future bank distributions in this example, f  represents
1954, i.e., £ = (32, 218, 132, 64, 27), and P is the estimated
13-year average transition matrix as shown in Section 7.3, The
estimated annual rate of new bank entries is E' & [Tde Lol 0.5,
0.3, 0.3) if a constant mean rate of entry is assumed. The pro-
cedure given in Section 6 is used to obtain projected bank dis-
tributions (A) for each successive year since 195lU; they are
shown by a dotted line in the figure for the period 1955-69 and

in the upper half of Table 3 for years 19T70-T5.

Table 3. PREDICTED BANK DISTRIBUTIONS (A) and (B), 1970-75
NINTH FEDERAL RESERVE DISTRICT

S0 Sl S2 S3 Sh S5 Existing
Total
Exit
Year (cumulated) 0%  >0-<217% 21-<41% 41-<61% 61% & Over §,-S5
(A) With A Constant Mean Rate of Entry
1970 35 43 200 106 87 62 498
1971 37 43 200 106 87 63 499
1972 40 43 199 106 88 64 500
1973 42 43 199 106 89 64 501
1974 44 43 199 107 89 65 503
1975 46 43 199 107 90 65 504
(B) With Varied Mean Rates of Entry

1970 35 44 202 108 88 64 506
1971 37 hb 203 109 90 65 511
1972 39 44 203 110 91 66 514
1973 42 45 204 111 92 67 519
1974 b4 45 205 112 93 68 523

1975 47 45 206 113 95 69 528
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Using two mean rates of entry, as estimated in the latter
part of Section 7.3, the predicted bank distributions (B) have
been plotted with a broken line in the figure for the period
1955-69 and listed in the lower half of Table 3 for years 1970-75.
The first estimated annual rate of entry E‘ = (0.9, 0.9, 0.1, 0, 0)
was used in projecting bank distributions from 1955 to 1962, while
the second entry rate of %‘ = (1.4, 2.2, 1.4, 0.8, 0.8) was used
in projecting bank distributions from 1963 to 1975.

Although the projected numbers of bank distributions (A)
and (B) are slightly different, the projected percentage dis-
tributions of banks from these two processes are very close.

The overall percentage distribution of banks in the early 1970's

will be less than 10 percent in Sl’ about L0 percent in 82, 20

percent in 83, less than 20 percent in Sh’ and slightly over 10

percent in 85'

The Goodness of Fit

How good are these Markov chain projections?

a) Graphic comparison: The figure gives a general view of the dif-
ference between the actual and the projected number of banks in
each state. Both projections (A) and (B) not only provide smooth
trend lines for each state, but most of the time also closely
follow the actual number of banks in these states during the past
16 years. Does the fact that the actual number of banks in Sh
and 55 (as shown in the figure) has declined in the past few years
suggest that the downward trends in these two categories will con-
tinue in the future? This question is difficult to answer, first,

because 1969 was a very unusual year since tight monetary policy

prevailed; and second, because the value of a bank's farm loan
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ratio depends on several factors, such as the bank's growth
rate of farm loans relative to that of total loans, the future
behavior of farmers' capital investment patterns, the changing
farm size to a larger scale thus requiring larger amounts of
farm loans, the cost of borrowing, etc.

x2 test of the goodness of fit for the time period 1955-1967:
Various x2 tests were performed to measure the differences
between the actual and the projected number of banks in each
state. The resulting x2 values for individual years are all
smaller than the critical x2 table value, which is 9.49 at the 0.5
significance level with 4 degrees of freedom, for rejection. It
is, then, concluded that there is no evidence of a difference be-
tween the actual bank distributions and those projected by Markov
chain techniques.

x2 tests on predicted bank distributions in 1968 and 1969: The
data from 1968 and 1969 were not used in the initial estimation
of the transition probability matrix. Therefore a comparison of
the projected bank distributions with the actually observed bank
distributions for those years is particularly valuable. Tests
were made to examine how close the two types of Markov projec-
tions for 1968 and 1969 were to the actual bank distribution in
those years. The actual number of bank distribution in a par-
ticular year could be compared with projections (A) and (B)

based on the distribution in a starting year such as 1954 (the
first year involved in the computation of transition probabil-
ities), a year or five years preceding the year to be projected.
For 1968, three starting years -- 195k, 1963, and 1967 -- were

chosen in the projection process. The transitian matrix of a
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13-year average was used in all three cases. The resulting pro-
Jections (A) and (B) and the actual bank distributions in 1968
as well as their respective x2 test values are shown in the
upper half of Table 4. All projections have x2 values less than
the critical table value x2 = 9.49 for rejection. Thus,

95,4

any one of them is a good predictor for bank distributions in
1968.

Three starting years —-- 1954, 1964, and 1968 -~ were used
in the projection for 1969. The two types of predicted number
of banks in each class and their corresponding X2 values are
shown in the lower half of Table 4. These x2 values are also

smaller than the critical value for rejection.

Table 4. ACTUAL AND PROJECTED BANK DISTRIBUTIONS FOR 1968 AND 1969
USING 13-YEAR AVERAGE P

NINTH FEDERAL RESERVLE DISTRICT

Total 9
States 8p Sy S S, 5, Sg Existing x -value
1968 Actual 32 &4 206 107 80 33 490 -
1954 bame A 30 42 201 105 85 60 494 1.50
B 30 43 202 106 86 61 498 1.71
1963 bagse A 29 40 200 105 86 61 492 2,40
B 29 42 204 109 89 63 507 2.96
1967 base A 30 45 202 98 86 63 494 3.07
B 30 45 203 99 86 G4 497 3.16
1969 Actual k1.] 50 205 109 77 49 490 -
1954 A a3 43 201 105 86 61 496 5.43
B 32 43 202 107 87 62 501 6.22
1564 A 30 41 206 106 86 62 301 . 1.87
B 30 43 210 110 89 64 516 8.53
1968 A 34 &4 205 106 8L 55 491 2.53
B 34 &4 206 107 82 55 494 2.2°
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d) Test for the stationarity of the transition probabilities in 1968

and 1969:

i)

Test of 1968 transition probabilities: Since the data for
1968 were available, the frequency distribution in each

state and a transition matrix [];J.l (1968)] were calculated

d
(see bth column from the end in both Appendix Tables 1 and

2). It is of interest to test if the 1968 pijls follow
the same probabilistic law as the one with the 13-year

average pij's. The null hypothesis under testing, then, is

H .

o pij(l968) = p, VS.

iJ

H_: (1968) # Pig -

Ps5
If ni; and 513 represent the pooled 1lh-year (195L-1968)

number count of banks and the average transition probability
respectively (see second column from the end in both Appendix
Tables 1 and 2), the likelihood ratio test can be written as

follows:
- nij(t)

~ 1

P

Nl =
W=

~

Pis Py (1968)

i
o 1
r*-

|

t= _

-2 log X is asymptotically x2 with m2 = 25 degrees of freedom.
The computed value of -2 log A is 33.9 which is less than the
x2 value of 37.7 for rejection. It is, then, conecluded that
the new 1968 transition matrix is not different from the one

with 13-year averages at a .05 level of significance.
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ii) Test of 1969 transition probabilities: By the same procedure,
the stationarity of transition probabilities in 1969 could be

”~

tested, with T = 15 and the pooled 15-year n, 's and Py

j 3"
(see last columns in Appendix Tables 1 and 2) for the numer-
ators, and pooled lhi-year nij's, ﬁij‘s’ nij(l969), 513(1969)
for the denominators in the above equation. The frequency
distribution and transition probabilities of 1969 banks are
listed in the third columns from the end of the Appendix
Tables 1 and 2. The computed value of -2 log A is 2L.T7T7
which is also less than the critical value of x2 for re-
jection, 37.7. Therefore, it is also concluded that the

transition matrix from 1968 to 1969 is not different from the

one with lh-year averages.

8. CONCLUSION

The model proposed in Section 2 for a Markov chain having stochastic
entry and exit provides a general tool for predicting the behavior of complex
systems. Due to the completeness of historical data available on banks in
the Ninth Federal Reserve District, it was possible to apply and test the
theoretical model on these empirical data. The results shown in Section T
reveal that (1) the movements of district member banks could be effectively
described as a Markov chain with stochastic entry and exit; (2) the transition
probabilities of these banks could be treated as first order and stationary;
(3) the transition probabilities of newly entered banks follow the same
probabilistic law as the original banks in the system; (4) projections based
on 1954 provide estimates yielding relatively low chi-square values. It is,

then, hoped that the methods illustrated here will suggest interesting new

paths for future researchers into banking system behavior. Most importantly,
it is hoped that the model presented in this study will provide some insight

into the ways of handling statistical problems involving entry and exit.
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NUMBER OF MEMBER BANKS IN FIRST ORDER MARKOV CHAIN STATES

Appendix Table 1.
NINTH FEDERAL RESERVE DISTRICT

(ngo(t) = WUMBER IN COLUMN 1, TABLE 1, ng(t) =Ofor j=1, ..., %)

e s ——————————————  —  —  —  —— ———— —— —  —— — — —— —  ———— —

Years 191* 1955 1956 1957 1998 1959 1960 mr.l 1962 1963 1964 1965 1966 1967 1968 1:;{:;:- 1&{:?
gy 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 (1954-68) (1954=69)
n10 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 k] 3
ny 27 29 30 30 0 29 1 1 30 12 k1] s 40 40 40 453 493
LIT) 5 6 4 2 2 6 2 5 4 5 2 4 2 4 3 53 56
™3 0 0 (] 0 0 1 0 0 ] 0 0 0 (] 0 0 1 1
L 0 0 0 0 0 1 0 0 0 0 1 ] 0 0 0 2 2
s 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 2
n g 0 0 0 0 0 1 1 2 0 0 1 3 2 : 2 1 13
ny 8 5 1 2 4 4 4 2 5 1 7 k] 4 . 3 8 33 61
L 192 192 197 199 197 187 183 187 191 199 196 192 195 192 190 2699 2889
a3 17 11 12 10 19 10 12 6 11 6 9 6 5 7 6 141 147
5 1 0 1 0 2 0 (] 0 0 (] 0 2 0 0 0 6 6
L 0 0 1 0 0 0 0 0 (] 0 0 1 (] 0 0 2 2
"0 1 0 0 0 0 1 0 3 0 1 0 1 1 1 2 9 11
Wi 0 0 0 0 1 0 (] 0 0 1 0 0 0 0 0 2 2
" 10 11 9 19 2 7 11 14 5 5 4 10 [ 10 11 123 134
iy 109 117 106 98 86 92 93 82 77 86 81 76 78 83 87 1264 1351 |
Ny, 12 13 22 10 28 ] 11 14 17 8 19 6 9 2 7 180 187 |
n45 0 0 2 0 4 0 2 0 0 0 1 1 0 0 0 10 10 l
%0 0 2 0 0 1 1 0 0 0 0 0 0 0 1 1 5 6
ney 0 0 0 o o 1 0 0 0 0 0 0 0 0 0 1 1 |
N42 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 5 5
ngy 15 10 9 12 4 12 8 10 11 11 3 11 11 17 12 144 156
By 39 41 41 55 47 63 64 61 65 66 59 66 69 65 58 803 861
L 10 5 8 6 21 2 13 6 11 11 15 4 6 3 9 121 130
Hsg 0 1 0 0 0 0 0 2 0 0 1 0 0 0 1 4 5
ngy 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
ngy 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 2
ngsy 2 1 0 1 0 2 0 0 0 0 0 0 1 0 2 5 7
Ny 7 6 7 8 3 12 3 12 3 6 1 12 8 13 11 100 111
fgg 20 22 20 21 25 36 35 37 40 47 55 59 56 50 39 523 562
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THE NINTH FEDERAL RESERVE DISTRICT
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(pm(t) "= Po0 " 1"‘01 (t) = Poy * Ofor J=1, . .., %)

FIRST ORDER TRANSITION PROBABILITIES FOR MEMBER BANKS IN

—_ —— — ———————
Years 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 lé-year 15-year
| | average average
Py 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 (1954-68) (1954-69)
Pio 0 0 .0286 0 (] 0 0 .0270 0 0 0 0 0 .0222 0 .0058 .0054
Piy 8438 ,B286 .8571 ,9375 ,9394 ,7838 9118 ,8378 8823 .B649 ,9211 .9048 .9524 .BBBY .9091 .8830 .8851
Pya \1562 L1714 .1143 .0625 .0606 ,1622 .0S88 .1352 .1177 ,1351 .0526 .0952 .0476 ,0889 .0682 .1033 .1005
b 0 0 0 o o .0270 0 0 0 0 0 0 0 ¢ 0 .0020 ,0018
Pia 0 0 0 0 0 .0270 () (] 0 0 .0263 0 0 0 (i 0039 .0036
g 0 0 0 0 0 0 0294 (] 0 0 0 (i 0 o .0227 .0020 .0036
Iag 0 0 0 0 0 .0050 .0050 .0102 0 0 .0047 .0145 .0097 .0049 .0097 .0038 .0042
'y .0367 .0240 .0047 .0095 ,0180 ,0198 ,0200 ,0101 ,0242 ,0049 .0329 ,0145 .0194 .0148 ,0388 .0182 .0196
B .8807 9231 .9293 .9431 .8874  .9257 .9150 .9492 .9227 .9660 .9202 .9275 .9466 .9458 9224 .9269 .9266
Pyy .0780 ,0529 ,0566 .0474 .0B56 .0495 .0600 .0305 ,0531 .0291 ,0422 .0290 .0243 .0345 ,0291 L0484 L0471
" . 0046 0 .0047 0 .0090 0 0 (] 0 0 0 .0097 0 0 0 .0020 ,0019
Pas 0 0 .0047 (] 0 0 (] 0 0 0 0 .0048 (i 0 0 .0007 .0006
Pio .0076 0. 0 0 0 .0092 0 ,0265 0 .0099 0 .0106 .0107 ,0104 ,0187 .0057 .0C65
Py [ 0 0 0 .0083 0 0 0 0 .0099 0 0 0 0 0 .0013 .0012
Py, .0757 .0780 .0647 .1496 .0165 .0642 .0940 .1239 .0505 .0495 ,0381 .1064 .0638 .1042 ,1028 0774 -0791
Py 8258 .8298 .7626 .7747 .7107 .B440 7949 .7257 .7778 ,8515 .7714 .80BS .8298 .8646 .8131 . 7960 .7970
P L0509 ,0922 .1583 ,0757 .2314 .0826 .0940 .1239 .1717 ,0792 .1810 .0638 .0957 .0208 .0654 T L1133 .1103
Pis 0 0 ,0144 0 .0331 0 .0171 0 0 0 .0095 .0107 0 0 () .0063 .0059
s 0 .0339 0 0 .0137 .0126 ‘0 0 0 0 0 0 0 .0116 .0125 .0046 .0052
Pay 0 ()} 0 0 o .0127 0 0 0 0 0 0 0 0 0 .0009 .0009
P2 0 .0170 [} 0 0 0 0 .0128 o o0 .0375 0 0 0 0 . 0046 .0043
P43 .2344 ,1695 .1500 .1644 .0548 .1519 .0941 .1282 ,1264 .1250 .0375 .1358 .1279 .1977 .1500 .1335 L1346
Pas -6094 .6949 L7167 7534 .6438 7975 .7529 .7821 7471 ,7500 .7375 .8148 .8023 7558 .7250 7442 L7429
Pus .1562 .0847 .1333 ,0822 ,2877 .0253 .1530 .0769 .1265 .1250 .1875 .0494 ,0698 .0349 ,1125 1122 1121
Pso 0 .0333 () 0 0 0 0 .0392 0 0 .0172 0 0 0 .0189 . 0063 .0073
Pey 0 0 0 0o 0 0 0 0 0 0 0 0 .0151 0 0 .0016 .0014
Psy 0 0 0 .0323 0 0 0 0 0 0 .0172 0 0 0 0 .0031 .0029
Bes 0 .033) 0 .0323 0 .0400 0 0 0 0 0 0 .0152 0 .0377 .0079 .0102
Psy .2593 .2000 .2593 ,2580 .0741 .2400 .0790 ,2353 .0698 ,1132 .0173 .1690 .1212 .2063 .2075 1575 .1613
Pss 7407 7334 7407 .6774 .9259 .7200 .9210 .7255 .9302 .8868 .9483 .8310 .B485 .7937 .7359 8236 .8169
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