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Abstract 

We investigate ex-ante efficient contracts in an environment in which implementation 

is costless. In this environment, standard debt contracts will typically not be optimal. 

Optimal contracts may involve defaults, even in states in which the borrower is fully 

able to repay. We then examine the welfare costs of arbitrarily restricting the set of 

feasible contracts to standard debt contracts. When model parameters are calibrated 

to realistic values, the welfare loss from exogenously imposing this restriction is 

extremely small. Thus, if implementation costs are actually nontrivial (as seems 

likely), standard debt contracts will be (very close to) optimal. 



Introduction 

Most theoretical analyses of financial contracting suggest that optimal financial 

contracts should have a relatively complex structure. Even in simple environments 

with risk neutral agents and straightforward informational asymmetries, theory 

suggests that optimal financial contracts should incorporate a rich set of state 

contingencies, and in addition should potentially allow for resources to be transferred 

on the basis of extraneous randomization. 

For example, one of the simplest financial contracting environments—the 

costly ex-post state verification (CESV) environment of Townsend (1979) with risk 

neutral agents—has the following implications regarding optimal contracts. The 

contract specifies a fixed repayment (principal plus interest). If this is not repaid, 

bankruptcy proceedings are initiated. Whether or not bankruptcy (verification) costs 

are born is determined by extraneous (and contractually agreed upon) randomization. 

Resources transferred under the contract depend on these extraneously randomized 

outcomes. In addition, bankruptcy proceedings can be initiated because the debtor 

fails to repay principal plus interest, even though he is fully able to do so. The 

debtor may retain resources when this occurs. 

These theoretical implications regarding optimal financial contracts stand in 

stark contrast to observed contracts, which frequently contain few state contingencies, 

and rarely explicitly call for extraneous randomization of payments. The most 

obvious example is the so-called "standard debt contract," which calls for 

noncontingent repayment of principal plus interest. When this repayment does not 

occur, bankruptcy proceedings are initiated (with probability one), and all resources 

are transferred to the holders of claims on the debtor. 
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Why do observed contracts contain relatively limited state contingencies—and 

relatively little provision for extraneous randomization—when theory suggests that 

this is a sub-optimal outcome? We consider this issue in a model in which "lenders" 

supply funds to "borrowers" who must make repayments contingently, depending on 

the success of the projects that are funded by their loans. Lenders can observe the 

outcomes of these projects only at some cost. This type of C E S V model was 

originally developed by Townsend (1979), and was subsequently extended by 

Diamond (1984), Gale and Hellwig (1985), and Williamson (1986, 1987) to consider 

exactly the problem of minimizing the expected costs associated with verification of 

the borrower's situation. The latter authors showed that, when agents are risk neutral 

and state verification is done nonstochastically, the optimal contract is a standard debt 

contract. More specifically, the borrower either repays principal plus interest fully 

(in which case no state verification is required), or else "defaults" and turns all 

proceeds of the project over to the lender. In this case the lender must "monitor" to 

verify that everything has been turned over to him. The latter event is associated 

with bankruptcy, and a standard debt contract minimizes expected bankruptcy 

(verification) costs—if monitoring is done nonstochastically.1 

The Diamond (1984), Gale and Hellwig (1985), and Williamson (1986, 1987) 

results depend upon the assumption that state verification must proceed nonstochastic­

ally. In some respects (but not all), this turns out to be a strong assumption. When 

costly verification of project outcomes can be done stochastically, optimal financial 

contracts have substantially different, and more complex, features. (Stochastic 

monitoring is considered by Border and Sobel 1987, Townsend 1988, Mookherjee 

and Png 1989, and Bernanke and Gertler 1989.) First, optimal contracts generally 



specify—in advance—provisions for a certain amount of debt forgiveness. The extent 

of this forgiveness wil l typically depend on the extraneously randomized decision 

about whether or not to verify the borrower's announcements regarding the project 

outcome. Second, it is possible that an optimal contract specifies contingencies under 

which a borrower can default and still retain some resources even if it is publicly 

known that complete repayment of debts is feasible.2 

If ideal contracts—stating a full set of state contingencies, and allowing 

arbitrary randomization of monitoring—were costless to write and enforce, we would 

not then expect to see the extensive use of standard debt contracts. And yet such 

contracts are the norm. Therefore we pose the following question: what is the 

welfare cost associated with exogenously—and suboptimally—prohibiting the use of 

stochastic verification in a C E S V environment? In answering this question, we 

address two issues. First, if stochastic verification—and its associated contractual 

complexities—are desirable, we can quantify the social benefits produced. And 

second, if the gains associated with the use of such clauses in an ideal world are 

small—as we find they are—this suggests that standard debt contracts are quite likely 

to be (nearly) optimal in practice when one takes account of the difficulties associated 

with implementing and enforcing contracts which contain explicit provisions for 

randomization. Or, in other words, even minor features of reality that are omitted 

from the model could easily render it optimal to employ standard debt contracts. 

Our vehicle for analyzing these issues is a minor modification of the model 

of Border and Sobel (1987), which results in essentially the simplest possible C E S V 

model with borrowing and lending. No restrictions are placed on the contracts that 

can be written other than those implied by the environment. We then analyze ex-ante 
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efficient, incentive compatible contracts, with and without stochastic monitoring. We 

show that optimal contracts with stochastic monitoring often exhibit a form of debt 

forgiveness, and may call for the initiation of bankruptcy—as well as some debt 

forgiveness—even though the borrower is able to repay in full. Optimal contracts 

without stochastic monitoring display neither feature. 

To determine the welfare loss associated with exogenously (and here 

suboptimally) prohibiting randomization, we calibrate the model using U.S. data, and 

numerically solve the calibrated model for the optimal contracts—with and without 

stochastic monitoring. We find that the welfare loss from suboptimally imposing 

nonstochastic monitoring is about 0.003% to 0.03% (and certainly less than 0.12%) 

of beginning firm assets. This loss is tiny compared to the estimated welfare losses 

that result from any widely levied tax in the United States. Thus while nonstochastic 

monitoring may be suboptimal, we estimate that the losses resulting from its use are 

extremely small. This finding has a corollary: any implementation or enforcement 

costs associated with stochastic monitoring are likely to change the welfare ranking 

of the two contracting technologies. Numerous authors (e.g., Allen and Gale 1992) 

have noted that such costs are likely to be nontrivial, since the lender always prefers 

not to monitor—after the fact—when contracts are incentive compatible ex ante. 

An additional finding that emerges from the calibrated model is that, while 

standard debt contracts are not theoretically optimal in C E S V environments, optimal 

contracts with stochastic monitoring closely resemble such contracts—with a certain 

amount of debt forgiveness—in many respects. This conclusion is of some 

independent interest, as it tends to confirm that standard debt contracts are "almost 

optimal contracts" in practice.3 



Discussion 

The C E S V environment with risk neutral agents is one of the simplest, and 

most widely used models of financial contracting. And, as we show, even this 

environment yields the result that optimal contracts build in a substantial degree of 

state contingency, and have the feature that state contingent payments may be 

extraneously randomized. Moreover, optimal contracts may call for the initiation of 

bankruptcy proceedings—and some debt forgiveness—even when the borrower is fully 

able to repay principal plus interest.4 The level of complexity of these contracts, of 

course, is far beyond what is observed in practice. 

Since we consider only situations where contracts are costlessly written and 

enforced, our analysis is silent on issues of contract renegotiation, either privately or 

in court. Yet, we believe our findings have implications for the (as yet unresolved) 

issue of whether contractually agreed upon absolute priority clauses should be 

enforced in bankruptcy proceedings. (Recent studies on this topic include Harris and 

Raviv 1991 and Aghion, Hart, and Moore 1992.) In the model environment, 

standard debt contracts, if enforced, respect the absolute priority of debt claims in the 

following sense: in bankruptcy states, the borrower's wealth is always reduced to 

zero. However, the more complicated optimal contracts with stochastic verification 

often do not display this feature. Now, we conclude from the calibration exercises 

that standard debt contracts are "almost optimal," even abstracting from enforcement 

issues. In the model environment, therefore, the same conclusion would hold for the 

absolute priority of debt claims, as defined above. 

Finally, we note that our results (and particularly the characterization of an 

optimum that we borrow from Border and Sobel 1987), depend heavily on the 
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assumption that agents are risk neutral. For corporate borrowing, which is what we 

investigate empirically, this seems natural since corporations are typically modeled 

as risk neutral. Also we note that, with risk-averse agents, there is no presumption 

that standard debt contracts are optimal, even with nonstochastic monitoring (see 

Townsend 1979). Thus risk-neutrality seems appropriate for our purposes. 

The remainder of the paper proceeds as follows. Section I describes the 

environment, and summarizes the Border and Sobel characterization of optimal 

stochastic monitoring. Section II describes when bankruptcy may occur, even though 

borrowers are fully able to repay. Sections III and IV describe the calibration of the 

model, and the results we obtain on the welfare losses from prohibiting stochastic 

verification. Section V concludes. 

I. The Model 

In this section we describe the optimal (ex ante) contracting problem of an 

agent who must raise funds externally in the presence of a costly-state-verification 

problem. Our formulation mimics that of Border and Sobel (1987) in several 

respects, and we retain their notation wherever possible. 

There are several risk-neutral borrowers, who each have access to an 

investment project that requires one unit of funds to operate. The owner of the 

project is assumed to be endowed with a 6 [0,1) units of funds (which will represent 

equity in the project), and must raise 1 - a units externally. These funds are 

obtained from lenders. Lenders either invest in projects, or in a safe alternative asset 

paying the sure gross return p, which is taken as given. Lenders are also assumed 
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to be risk neutral, so that borrowers must at least deliver an expected return of p per 

unit on any funds they obtain. We define R = p ( l - a ) . 

A funded project pays a random return Xj in state i; i = 1, n. We order 

the states so that x, < x 2 < ... < x n > and we let hj • prob(x = Xi). The project 

return is, of course, observed ex post by its owner. For anyone else, the project 

return can only be observed by expending 7 units of resources. We assume that 0 < 

7 < x „ so that projects always return enough to cover their verification cost. We 

also assume that R > x,. 

Events unfold in two stages. First, project owners announce contracts 

specifying post-state payments to potential lenders. Lenders lend to those offering 

the most attractive (highest expected return), incentive compatible contracts. After 

funds are obtained, the project is operated and the state is revealed to the project 

owner. Then the project owner announces a state, verification of the announcement 

may occur, and the appropriate state contingent payments are made. We assume that 

lenders have no funds in the second stage (their funds have all been lent or 

consumed), so that all resources must come from project returns—including the 

resources used in state verification. 

Contracts 

A contract specifies several objects. First, if the borrower announces that 

state j has occurred, the contract specifies that monitoring will occur with probability 

Pj £ [0,1]. If monitoring does occur and the true state is i, the borrower pays the 

lender fy G [7,xJ (since the payment must at least cover the costs of state 
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verification, and cannot exceed x). If monitoring does not occur, the payment is 

tj 6 [O.Xj] (since again the lender has no resources, tj > 0 must hold). 

Assuming that contracts are designed to induce truthful revelation of the 

state,5 in state i the borrower receives Xj, pays tj with probability (1 -pX and pays 

fu with probability p,. Truthful revelation of the state requires that, for all i, j , 

(1) xs - [ (1 -p iX + P i f J > (1-pjXXi- t j ) + p j ta- fs) . 

Also, in order to obtain any funds, the borrower must offer an expected return of at 

least p on the 1 - a funds borrowed. This requires that 

(2) E W - P i t o + P i f a - P f f ] -
i 

In addition, nonnegativity of consumption requires that, for all i, j , 

(3) t, € [O.xJ 

(4) f s 6 (7.XJ. 

We assume that borrowers choose a contract—mat is a schedule (p i,t i.fi i)—to 

maximize their own expected utility subject to constraints ( l)-(4); or in other words 

to solve the problem 

(P. l ) max5>(x, - ( l - p t o - p j f j 

subject to (l)-(4). Observe that it is obviously the case that an optimum sets fti = 

Xj for all i ^ j . 

Following Border and Sobel, we transform this problem as follows. Define 

fi • fu, and let 

r, = (1-Pi)tj + Pif, 
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be the expected payment by the borrower, conditional on the occurrence of state i. 

Finally, let q as 1 — p{. The problem (P. 1) can then be rewritten as 

(P.2) max5>i(Xi-ri) 
i 

subject to 

(1') X i - r ; > q / x - t j ) for all i,j 

(2') ^ h ^ - T d - Q i ) ] ^ R 
i 

(3') + (l-q)y < r( < x ( for all i 

(4') 0 < tj < Xi for all i 

by choice of a schedule (^,^,0^. We observe that (3') is equivalent to fj € b s x j , 

and that we have used fa = x ; for all j ^ i in (1'). 

Our model is a minor modification of that in Border and Sobel: in particular, 

payments to lenders must cover monitoring costs when monitoring occurs (fj > 7), 

and we consider a slightly different optimization problem than they do. These 

modifications of the analysis are sufficiently small that it is not surprising that the 

following theorem from Border and Sobel survives intact. 

Theorem (Border and Sobel). Suppose that { i ^q , }? . , solves (P.2). Then, 

i f i > j , 

(a) r( > [j, and equality holds iff 4 = <jj = 1. 

(b) X; - r{ > Xj - Tj, and equality holds iff X; = r,. 

(c) q } < q ( , and equality holds iff q ; = 1 or q ; = 0. 

(d) tj > tj, and equality holds iff qj = 1. 
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In addition, 

(e) q . - 1 

(0 For each i > 1, there exists a j such that (1') holds with equality for that ( i j ) 

pair. 

(g) If qj < 1, there is some i > j so that (1') holds with equality for that ( i j ) pair. 

(h) If (1') holds with equality for some pair ( i j ) and 6 (0,1), then i > j . 

(i) (1') holds with equality for n and n - 1. 

(j) If T = max{j: q̂  < 1}, then (1') holds with equality for T + 1 and T. 

(k) If i • min{i: > 0} and q t < 1, then Xj = rj iff j < i. 

(0 x, - r,. 

The proof of the theorem is identical to mat in Border and Sobel (1987), 

except that their lemma 2 is replaced by 

L E M M A . For each j , tj = Xj or ij = qfc + (1 -q j )7, or both. 

The proof of the lemma is identical to that of Border and Sobel's lemma 2. The 

lemma states that f; = y if r( < x (; that is, the payment from the borrower to the 

lender is as small as possible when monitoring occurs (and reveals truthful 

announcement of the state), if the borrower retains anything at all in state i. 

Nonstochastic Monitoring 

Our interest is in contrasting solutions to the problem (P.2) with solutions to 

the nonstochastic monitoring problem, which constrains pi £ {0,1}. We refer to this 

problem as 
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(P.3) max £ hjtx-tv) 
i 

subject to ( l ' )-(4') and 

(5) qj e {0,1} for all i. 

Solutions to this problem deliver so-called "standard debt contracts:" x ; = r ; if 

4 = 0, and qi = ck = ... = q; = 0; (jj ™ 1 for all i > i. In such a contract the 

borrower can be viewed as making the payment of "interest plus principal"—r i + 1—if 

possible, and as "defaulting" if this is not possible. In the event of a default the 

lender monitors the project, and retains the complete (net of monitoring cost) value 

of it. Thus optimal contracts solving the nonstochastic monitoring problem (P.3) 

display "absolute priority" in the sense discussed in the introduction. We now show 

that this is not the case for solutions to the stochastic monitoring problem (P.2). 

II. Opt imal Stochastic Monitoring 

We now show that solutions to the stochastic monitoring problem (P.2) may 

result in debt forgiveness, and result in bankruptcy even in states of nature in which 

the borrower is able to repay in full. Solutions to the nonstochastic monitoring 

problem (P.3) do not display either of these features. Comparing the maximized 

value of the objective functions in (P.2) and (P.3) amounts to evaluating the costs—in 

this environment—of exogenously imposing the use of standard debt contracts (and 

thus prohibiting these more complicated contractual features). 

For simplicity of exposition, we now assume that there are only three states 

(n = 3). Since solutions to (P.2) satisfy x, = ru pan (e) of the Border and Sobel 

theorem implies that at least three states are necessary in order to observe the 

suboptimality of precluding debt forgiveness—as we now define that term. 
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We henceforth refer to a state with q, < 1 (p; > 0) as a default state. For 

states with i > T + 1 (and hence with q; = 1), we refer to the (common) repayment 

r I + , as principal plus interest. By definition, contractual debt forgiveness occurs 

when there exists a state i which is a default state (qj < 1), when T{ < r [ + 1 , and when 

X; > Tj. In other words, contractual debt forgiveness occurs when the borrower 

repays something less than promised principal plus interest (rf < r I + 1 ) and yet expects 

to retain something (Xj > r j . Also, we will say that strong contractual debt 

forgiveness occurs if there is a default state i with x ; > r I + l > rt. In such a state it 

is feasible for the borrower to fully repay principal plus interest. Yet the borrower 

does not do so, and still expects to retain something (x; > r^. 

The lemma, and the Border and Sobel theorem, indicate that contractual debt 

forgiveness will typically be observed.6 As we will demonstrate, however, strong 

contractual debt forgiveness can also easily occur in solutions to (P.2). A l l of the 

statements that follow apply to the problem (P.2) when n = 3. It is useful to begin 

with the following preliminary results. 

Result 1. Suppose that 

(A . l ) h,[l + y/(x2-Xi)] < min[R,l] 

and 

(A.2) x 2 > {R - h,x,[l + 7/(X2-X,)]}/{1 - h,[l + y/(X 2-X,)]} 

hold. Then it is feasible to set % = 1. 

Result 1 states conditions under which it is feasible for state 2 not to be a 

default state in the problem (P.2). 
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Proof. It is straightforward to check that the following contractual terms 

satisfy (1') and (2'): 

(6) q, = ( x 2 - r 2 ) / ( x 2 - x , ) 

q 2 = q 3 = 1, r, = x, 

(7) r2 = r2 - {R - h,x,[l + 7/(X 2-X,)]}/{1 - h,[l + 7 / (x 2 -x , ) ] } 

and r3 = r2. This contract is feasible if the value of r2 given by (7) satisfies r2 G 

[0,x 2J. But this is implied by (A . l ) and (A.2). Q . E . D . 

Result 2. Suppose that (A. l ) and (A.2) hold. Then an optimum has r2 < x 2 . 

Proof. Suppose to the contrary that an optimum has r2 = x 2 . Parts (a) and 

(I) of the Border and Sobel theorem assert that r, = x, , and r3 > r 2 = x 2 . Then the 

expected utility of the borrower is h,(x,—r,) <> h 3 ( x 3 - x 2 ) . 

Now set contractual terms as in the proof of result 1. This contract delivers 

the borrower an expected utility level of r ^ X j - r ^ + h 2 (x 2 - r£) > h 3 ( x 3 - x 2 ) [by 

(A.2)]. This contradicts the optimality of a contract with r2 • x 2 . Q . E . D . 

We are now prepared to derive conditions under which solutions to (P.2) 

(with n = 3) display strong contractual debt forgiveness. To do so, we begin by 

stating several conditions that these solutions satisfy. A l l of our statements assume 

that (A . l ) and (A.2) hold. 

Result 3. If (A . l ) and (A.2) hold, the solution to (P.2) satisfies 

(8) q, = ( x 2 - r 2 ) / ( x 2 - x , ) 

(9) q, = ( X j - r j M x j - t j ) 
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(10) t, - Ir, - (l-cfefrl/q, 

r, = x, and q 3 = 1. 

Proof, r, = x, and qj = 1 are parts (e) and (I) of the Border and Sobel 

theorem. Parts (f)-(j) ° f die same theorem and lemma 20 of Border and Sobel imply 

that the binding incentive constraints are between states (1,2), and states (2,3). Thus 

(8) and (9) hold. Finally, the lemma implies (10) if < x 2 . But ̂  < x 2 is implied 

by Result 2. Q . E . D . 

Solving (9) and (10) yields the equivalent conditions 

(9') q 2 = [x, - 7 - ( r , - r 2 ) ] / ( x 3 - 7 ) 

(10') ta = ( r 2 x 3 -7 r 3 ) / ( x 3 -7 - r 3 +r 2 ) . 

Since x 3 > x, > 7, qa E [0,1] iff r3 6 [r2,x3]. < 1 holds iff r2 < r3. In 

addition, the expected return constraint (2') may be written as (using r, = x,), 

(11) h 2r 2 + h 3r 3 = R - h,x, + -y[h,(l-q,) + h 2 ( l - q ^ J -

Substituting (8) and (9') into (11) and rearranging terms gives 

(12) r2 = 4>0 ~ 

where 

(13) \J/Q = [R - h,x, - 7h,x,/(x 2-x 1)]/{h 2[ l + 7 / (x , -7) l - h,7/(Xj-x,)} 

(14) ^ = [h, - h 2 7 / (x 3 - 7 ) ] / {h 2 [ l + 7 / (x 3 -7 ) l " h l 7 / ( x 2 - x , ) } . 

It is straightforward to show that (A. l ) and (A.2) imply that 

W(l+iM > 0. 
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Moreover, since r3 ^ r2 must hold, r3 must satisfy 

(15) * r, £ 

In addition, q, G [0,1] requires that r2 E [x 1,x2] be satisfied. Then, from (12), 

(16) x, < - tih =S x 2 

must hold. 

The problem of a borrower can now be written as 

(P.4) max h^X j - l j ) + h 3 ( x 3 - r 3 ) = h 2 x 2 4- h 3x 3 - h2i/<0 - r3(hj-hjiZ-j) 

subject to (15) and (16). It is easy to show that (^0—x,)/^-, > i/-0/(l + holds, and 

(A.2) implies that x 3 > x 2 > ^</0+^i)- T h u s w e constraint set for problem (P.4) 

is nonempty. 

Result 4. Suppose that 

(17) h2<A, > h3 

holds. Then the solution to (P.4) has 

(18) r3 = min[x3, W0-*iWil. r3 > r2, and (fc < 1. 

F roo / That (17) implies (18) is obvious. r3 > r2 follows from (\pQ — 

x,)/^, > MO+tf i ) . (12), and (15). q 2 < 1 is implied by (9') and r3 > r2. Q . E . D . 

Result 4 asserts that if ( A . l ) , (A.2), and (17) hold, a solution to (P.4) has state 2 

being a default state. It is feasible to repay principal plus interest in state 2 iff x 2 > 

r3. This condition, in turn, holds iff, 

(19) x 2 > M>-x,W,. 
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We have now established the following proposition. 

PROPOSIT ION 1. The solution to (P.4) displays strong contractual debt 

forgiveness if (A . l ) , (A.2), (17), and (19) hold. 

It is easy to produce parameter values that satisfy all of these conditions. For 

instance, setting h, = h 2 = h 3 = 1/3, y = 0.2, x, = 0.4, x 2 = 0.6, x 3 = 0.8, and 

R = 0.41 is one example that does so. 

Proposition 1 describes sufficient conditions for the solution to (P.2) (with 

n = 3) to display strong contractual debt forgiveness. As it turns out, these sufficient 

conditions are quite often satisfied by the data. We now turn to an empirical 

investigation of the costs of exogenously imposing the use of standard debt contracts 

in this environment. 

III. Calibration 

In this section we calibrate the parameters of the model using U.S. data. The 

parameters are the monitoring cost (7), the ratio of borrower's equity to assets (a), 

the alternative risk-free gross interest rate (p), and the return distributions on projects 

x = [ x „ x 2 , . . . , x j , h = [h,,h 2 , . . . ,hj . For each set of parameters we choose a "best 

guess estimate" and a "conservative estimate." A conservative estimate is one which 

is likely to give the greatest gain to stochastic monitoring that we can justify on the 

basis of available empirical information. 

Having chosen calibrated parameter values, we then numerically solve the 

problems (P.2) and (P.3), and compute the gains from stochastic monitoring (or, put 
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another way, the deadweight losses resulting from exogenously imposing the use of 

standard debt contracts). 

A. Monitoring Costs 

As is widely recognized, costly-state-verification models are a way of deriving 

bankruptcy costs from more primitive assumptions. Bankruptcy costs in the model 

are driven by the monitoring cost 7 . Bankruptcy costs have been heavily studied in 

the finance literature, the seminal work being by Warner (1977). Warner found, for 

a sample of railroad firms, that bankruptcy costs averaged about 1 % of total assets. 

Subsequent researchers have obtained somewhat higher estimates. For example, 

based on a sample of firm failures in New York state, White (1983) concluded that 

7 was about 3% of assets for firms that liquidated, and 1.7% of assets for firms that 

reorganized. For a sample of industrial firms, Altman (1984) estimated y to be about 

6 % ; the highest estimate we have found in the literature. For purposes of 

calibration, we assume a "best guess" value of y of 3.5% of assets, and a 

"conservative estimate" of 10% of assets.7 

B. Ratio of Equity to Assets 

We consider 10 industries chosen at random from the Compustat Annual 

Master data set. For each industry data were pooled over time and across firms. We 

then computed the average fraction of total assets financed with equity in each 

industry, a . The results are reported in table 1. For this parameter we did not select 

a "best guess" or "conservative" estimate. Instead, we will solve (P.2) and (P.3) for 
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all 10 industries. This will give a sense of how sensitive are the results to a , since 

a varies from 0.306 to 0.584 in the sample. 

C. Risk-Free Rate 

Since lenders are risk-neutral in the model, a risk-free real interest rate is the 

appropriate opportunity cost of funds. We chose the real interest rate to be the three-

month treasury bill rate, less the rate of change in the implicit G N P deflator, 

geometrically averaged over the period 1972-91. The result was a risk-free real 

gross rate of return of 1.0168. Of course, then, for each solution of (P.2) and (P.3), 

R = 1.0168(1 —or), with a corresponding to each of the values in table 1. 

D. Project Return Distributions 

The project return variable x, is defined as the rate of return on total assets 

(inclusive of extraordinary gains and losses), before the payment of taxes and interest 

expenses. This corresponds most naturally to the model specification, where x is a 

prepayment return, and where the size of a project is normalized to one. As before, 

return distributions for x (x) were separately estimated for the same 10 industries 

listed in table 1 using the Compustat Annual Master data set. For each industry, data 

were pooled over time and across firms. 

Within an industry, we first found the highest overall return realization in the 

data, Xa, and the lowest, x,,^. The distance between x„ and x m i n was then divided into 

10 intervals of equal length, corresponding to discrete return states. Then, all return 

observations were assigned to 1 of the 10 states and located at the mid-point of the 

interval. A probability was assigned to each state according to its empirical 
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frequency. Table 1 shows the first and second moments of the raw and transformed 

data; clearly the two are always quite close. 

There are significant problems in obtaining usable return data for firms which 

have gone into reorganization or liquidation. Some data bases (including the one 

employed here) delete all data for firms which have failed, including historical data. 

Even when failure state return observations are available, there are severe problems 

in interpreting them. In the fiscal period in which a firm enters bankruptcy, total 

costs are partly composed of operating costs and partly of costs associated with the 

bankruptcy itself. To separate out these costs requires a detailed analysis of account­

ing statements at a level of disaggregation not available on machine-readable data 

bases. For present purposes it is essential to separate these costs, however, since 

operating return realizations, x, and bankruptcy costs, 7, are separate variables. 

A detailed firm-by-firm analysis was beyond the scope of this study, and 

therefore an alternative approach was employed. Knowing that our sample included 

no observations for firms which had failed, we assumed that the lowest observed 

sample return in each industry, x ^ , was at the boundary of "bankruptcy." In other 

words, we assumed that x ^ was the upper bound on the range of return states in 

which a firm with ordinary debt outstanding would be monitored. This is a 

simplification because the decision to monitor or declare "bankruptcy" depends not 

only on the return realization, x, but also on the monitoring cost 7. Further, for 

purposes of estimating return distributions, we are assuming sample firms employed 

standard debt contracts. This seems empirically reasonable. The lower bound on the 

range of these return states was assumed to be - 1 . 0 , that is, the case in which the 

firm is worthless.8 
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The "bankruptcy" range was split into several discrete return states, as was 

done for the "nonbankruptcy" range. Figure 1 pictures a return distribution 

constructed in this matter for some hypothetical industry. We assumed that each 

discrete return state in the "bankruptcy" range was equi-probable. This is a 

conservative assumption since it seems likely that, in reality, probability mass is 

greater to the right side of the "bankruptcy" range than to the left. Finally, 

probabilities of "nonbankruptcy" states were adjusted downward so that the sum of 

all state probabilities equaled one. 

We chose the probability of falling somewhere in the "bankruptcy" range to 

be the national average annual failure rate for nonfinancial firms over the period 

1972-91 (as reported in the Annual Report of the President, 1992). Our "best guess" 

estimate was simply this average, which was 0.677%. We also report a calibration 

based on a "conservative estimate," where the probability of "bankruptcy" was three 

times the national average failure rate. 

A l l results reported in this study are obtained with two discrete "bankruptcy" 

states. However, we also experimented with economies where the "bankruptcy" 

range was partitioned into four discrete states. Results based on the finer partition 

did not differ substantively from those reported. 

E. Numerical Solutions 

The problems (R2) and (P.3) were solved, using the calibrated values we 

have described, by transforming them into either linear programming problems or a 

sequence of linear programming problems. In such a problem there are 132 incentive 
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constraints (with 12 states). This proliferation of incentive constraints dictates that 

the number of discrete return states be kept relatively small, as we have done. 

IV. Cal ibrat ion Results 

Figure 2 displays qualitative properties of the solutions to (P.2) and (P.3) for 

the mining industry. The figure was obtained using our "best estimate" parameter 

values. (The complete solutions to (P.2) and (P.3) for this example are shown in 

table 2.) Panel A in figure 2 shows the net resources retained by borrowers under 

(P.2) when monitoring does (does not) occur in each state. It also displays the net 

resources retained by the borrower in each state in the solution to the nonstochastic 

monitoring problem (P.3). Panel B shows the expected return to the borrower, 

contingent on being in state i, in the solutions to (P.2) and (P.3). Finally, panel C 

displays the optimal monitoring probabilities (pj in each state for (P.2) and (P.3). 

As is apparent, in states that set p ; = 0 under (P.2), the return to the 

borrower is virtually identical whether monitoring is stochastic or not (panel A) . The 

expected return to the borrower, conditional on being in state i, also differs by a 

relatively small amount in the solutions to (P.2) and (P.3) (panel B). Finally we note 

that the state contingent expected returns to the borrower are monotonically 

increasing under (P.2) and monitoring probabilities are monotonically decreasing—as 

the Border and Sobel theorem asserts. 

Panel A clearly displays the contractual debt forgiveness associated with 

solutions to the problem (P.2). In states 1-6 monitoring occurs with positive 

probability under (P.2). When monitoring occurs, the borrower retains something 

in states 2-6. Moreover, the borrower retains something even if monitoring does not 
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occur in states 4-6. This example also displays strong contractual debt forgiveness. 

In particular, it is feasible for the borrower to repay principal plus interest in states 

4, 5, and 6. However, even though it is feasible for the borrower to fully repay in 

these states, he does not do so, and still retains positive quantities of resources 

(whether monitoring occurs or not). Similar results were obtained for many of the 

industries and parameter combinations that we examined. Thus strong contractual 

debt forgiveness would appear to be widely desirable, rather than just a theoretical 

possibility. In other words, for reasonable parameter values, strong contractual debt 

forgiveness seems often to be optimal. 

Also, as is clear from figure 2, even though contractual debt forgiveness and 

strong contractual debt forgiveness are optimal, the optimal contracts do resemble 

standard debt contracts in a variety of respects. This is particularly apparent in 

panel B of figure 2: the expected returns to the borrower—state by state—are close, 

either with or without stochastic monitoring. 

A. Losses Due to Universal Imposition of Standard Debt Contracts 

We now report the estimated deadweight losses if the use of standard debt 

contract is exogenously and suboptimally imposed. Table 3 reports this deadweight 

loss for each industry—which is just the difference between the maximized objectives 

in (P.2) and (P.3). For each industry we report results with both the "best guess" 

and "conservative" parameters. 

Panel A (in table 3) shows the deadweight loss expressed as a fraction of the 

expected monitoring cost in the solution to (P.3) (nonstochastic monitoring). In 

effect, this represents the percentage reduction in monitoring costs due to stochastic 
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monitoring. That reduction is typically substantial, averaging around 50%. 9 Panel 

B shows deadweight loss expressed as a fraction of the net project return; that is, 

how much higher the net project return would have to be to offset the deadweight 

loss associated with the suboptimal use of standard debt. This fraction is typically 

small, averaging about 0.1% with best guess parameters and about 0.9% with 

conservative parameters. (However, it varies considerably across industries, and is 

as high as 2.5% with conservative parameters.) Finally, panel C expresses 

deadweight loss as a fraction of initial total assets; e.g., the percentage reduction in 

the initial value of the firm due to imposing the use of standard debt contracts. 

Expressed this way deadweight loss is very small indeed, representing 0.01% on 

average with best guess parameters, and 0.07% on average with conservative ones. 

In sum, the calibration exercise suggests that stochastic monitoring can 

substantially reduce expected monitoring costs. However, with reasonable parameter 

values, expected monitoring costs are themselves very small relative to project 

returns, and smaller still relative to firm assets. Thus, if there are any costs that are 

at all substantial (or any incentive problems) associated with stochastic monitor­

ing—such stochastic monitoring is unlikely to be observed. Our results therefore may 

provide an explanation for why stochastic monitoring is so rarely observed in 

financial contracting.1 0 

Finally, in order to evaluate the size of our estimated deadweight losses due 

to the suboptimal use of standard debt contracts, it is interesting to compare them 

with other estimates of deadweight losses from the public finance literature. Cooley 

and Hansen (1989), for instance, estimate the welfare cost of a permanent 10% 

inflation in the United States to be about 0.4% of GNP. Browning (1976) estimates 
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the marginal excess burden of income taxation in the United States to be 9 cents on 

the dollar. Stuart (1984) obtains a similar estimate, while Ballard, Shoven, and 

Whalley (1985) estimate marginal excess burden in the United States to be 15 cents 

on the dollar. Other estimates are substantially higher. These flow measures of 

deadweight loss are, perhaps, best compared with panel B in table 3. The welfare 

losses due to the (suboptimal) imposition of standard debt contracts appear quite small 

when compared to the welfare losses that result from the imposition of virtually any 

tax that is currently widely employed in the United States. 

V . Conclusion 

We have considered ex ante contracts in an idealized world where contracts 

can specify a complete set of state contingencies, and where there are no difficulties 

of implementation or enforcement associated with contractual provisions. We have 

found that standard debt contracts are not optimal in such a world, at least for any 

reasonable assumptions about parameter values. Indeed, optimal contracts call for 

the randomized initiation of bankruptcy proceedings. The borrower (or junior 

claimant) "does better" when bankruptcy proceedings are initiated. And optimal 

contracts specify ex ante contingencies calling for some degree of debt forgiveness. 

It may be objected that these contractual features do not seem to be observed 

in actual contracts, and hence are odd. To a substantial extent we do not disagree." 

Rather, we believe that standard debt contracts are "nearly optimal" in our idealized 

world. Indeed, our results suggest that the gains due to stochastic monitoring are 

small, at least when reasonable exogenous parameter values are employed. Thus, if 

there are significant costs or incentive problems associated with randomized 
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monitoring, it is unlikely to be employed. This finding may give some comfort to 

the many researchers who have, for tractability, ruled out randomization. By 

implication, the welfare gains associated with deviating from standard debt contracts 

are small, too. 
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Footnotes 

*We thank Doug Diamond, Ed Green, Ellen McGrattan, Janet Mitchell, John 

Moore, Andy Winton, and an anonymous referee for helpful comments, with the 

usual disclaimer absolving them from responsibility for remaining errors. Joel 

Krueger provided excellent computational assistance. The views expressed herein are 

those of the authors and not necessarily those of the Federal Reserve Bank of 

Minneapolis or the Federal Reserve System. 

'This result has been extended by Krasa and Vil lamil (1991) and Winton 

(1992) to allow for some risk aversion, by Boyd and Smith (1993) to allow for 

heterogeneity (and private information) about borrower type, and by Chang (1990) 

to allow for multi-period contracts. 

2Harris and Raviv (1992) note that U.S. bankruptcy courts often leave 

borrowers with some assets as part of a negotiated bankruptcy settlement. 

3The C E S V environment is probably most appropriate for the investigation 

of publicly traded claims. First, for traded corporate bonds, with hundreds or 

thousands of holders, out-of-court renegotiation is extremely difficult. Second, as the 

C E S V model emphasizes, bankruptcy proceedings do result in out-of-pocket costs, 

and an important part of bankruptcy proceedings is to discover the true value of the 

firm. By contrast, bank loans and credit facilities are different in a variety of 

regards, most of which facilitate out-of-court renegotiation. For an excellent analysis 

of these issues, see Berlin and Mester (1992). 

"Some, but not all, of these results appear in Border and Sobel (1987). They 

did not consider a financial contracting version of their environment, however, and 
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the implications of their results for optimal financial contracts appear to have been 

largely overlooked. 

5 For a statement of the "revelation principle" in this environment see Border 

and Sobel (1987). 

6Border and Sobel were not primarily concerned with a borrowing/lending 

interpretation of their environment, and hence did not emphasize that contractual debt 

forgiveness could occur. The possibility of strong contractual debt forgiveness was 

not discussed by Border and Sobel. 

7 Much higher estimates of 7 are reported in some studies, but these include 

"indirect" as well as direct costs of bankruptcy. So-called indirect costs represent 

lost sales, increased borrowing costs, foregone investment opportunities, and so on. 

By construction, these can be experienced by weak firms which do not actually fail 

(Altman 1984), as well as those which do. Clearly, such indirect costs are largely 

transfer payments, not dead-weight losses, and do not belong in the parameter 7 

employed here. 

Also, by allowing 7 to be as high as 10% of assets, we believe we are 

making ample allowance for the potential existence of unobserved losses due to 

delays in bankruptcy arising from strategic interactions among parties to the contract. 

8Firms which perform poorly over a period of several years are likely to be 

dropped by Compustat, even if they do not actually go into bankruptcy. (Compustat 

is largely marketed to investors, who may lose interest in firms which are suffering 

losses, shrinking, having their shares delisted, etc.) For that reason, x ^ is likely to 

be larger than the actual cut-off return for bankruptcy. The data suggest that this is 

often the case. Using x,,,,,, as the cut-off return is a conservative procedure for our 
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purposes, since it makes bankruptcy realizations at least as common in the model as 

they are in reality. 

9In some industries, the "conservative" deadweight loss computation is less 

than the "best guess" one in panel A . This occurs because the conservative assump­

tions increase both the probability of bad states and the cost of monitoring. This 

raises both the numerator and denominator in panel A . 

I 0 Our result is similar in spirit to that of Oh and Green (1992). They compare 

two infinite horizon partial-equilibrium models. In one, agents are restricted to 

employing noncontingent, dated, wealth claims. In the other, they can write a full 

range of contingent contracts. The two models are calibrated and solved numerically. 

The conclusion is that the welfare loss due to restricting the set of feasible contracts 

is small. 

"We are not sure that it is necessarily so odd that borrowers may be better 

off if bankruptcy proceedings are initiated than if they are not. Often financially 

distressed borrowers do "seek the protection" of the bankruptcy courts. And also, 

substantial bargaining power is sometimes given to incumbent management in 

bankruptcy in the form of the temporary right to propose reorganization plans. 

Finally, some literature suggests that incumbent management enjoys private, 

nontransferable benefits from remaining in control of a firm's assets during the 

interval until the resolution of the bankruptcy proceedings. 



Table 1: 

Gross Returns to Assets, x 1 

Compustat Annual Data 1972-1991 

Compressed Industry Mean 
Compressed Standard Standard of Ratio of 

Industry SIC and Name Observations Mean Mean Deviation Deviation Equity to Assets 

10 Mining 269 .0785 .07610 .17131 .17253 .583 

15 Building Contractors 377 .1117 .11052 .07557 .06781 .306 

16 Heavy Construction 189 .0634 .06093 .11277 .11354 .494 

24 Lumber and Wood Products 146 .1178 .11797 .08989 .08945 .486 

25 Furniture 192 .1561 .15502 .06459 .06406 .584 

26 Paper and Allied Products 508 .1202 .11910 .06714 .06900 .462 

34 Fabricated Metal Products 540 .1213 .12083 .09759 .10090 .501 

38 Technical and Photographic Equipment 524 .1217 .12025 .07958 .08098 .505 

49 Utilities 549 .0967 .09629 .02667 .02725 .313 

58 Eating and Drinking Places 243 .1519 .15092 .08971 .09342 .508 

Note: The transformed data is the actual data divided into 10 intervals of equal length. Each interval's mean is used to 
calculate the grand mean for each industry. The standard deviation is calculated in a similar fashion. 

'The variable we use, x, is calculated as follows with the appropriate Compustat data field in parentheses: 

x = (Income (172) + Taxes (16) + Interest (15))/Assets (6). 



Table 2: 

Complete Solutions to Problems P.2 and P.3: 

Mining Industry, "Best Guess" Parameters* 

Choice Variables Return Distribution 

State P x - t x - f t f - 7 
h x 

Solution to Problem P.2 

1 .712 .000 .000 .056 .021 .003 .056 

2 .491 .000 .065 .167 .067 .003 .167 

3 .265 .000 .260 .295 .000 .011 .295 

4 .157 .088 .402 .349 .000 .007 .437 

5 .072 .184 .545 .396 .000 .011 .580 

6 .027 .305 .688 .418 .000 .011 .723 

7 .000 .435 — .430 — .052 .865 

8 .000 .578 — .430 — .399 1.008 

9 .000 .721 — .430 — .380 1.151 

10 .000 .863 — .430 — .089 1.294 

11 .000 1.006 — .430 — .026 1.436 

12 .000 1.149 — .430 — .007 1.579 

objective function = .6457488 

Solution to Problem P.3 

1 1.000 .000 .000 — .021 .003 .056 
2 1.000 .000 .000 — .132 .003 .167 
3 1.000 .000 .000 — .260 .011 .295 
4 .000 .010 — .428 — .007 .437 
5 .000 .152 — .428 — .011 .580 
6 .000 .295 — .428 — .011 .723 
7 .000 .438 — .428 — .052 .865 
8 .000 .580 — .428 — .399 1.008 
9 .000 .723 — .428 — .380 1.151 
10 .000 .868 — .428 — .089 1.294 
11 .000 1.009 — .428 — .026 1.436 
12 .000 1.151 — .428 — .007 1.579 

objective function = .6454483 

*7 = 0.035, h, + h 2 = 0.677% (annual average "bankruptcy" rate), R = 0.4235. 



Table 3: 

Estimates of the Cost of Imposing Absolute Priority 

[Difference Between the Solution to Problem P.3 (Nonstochastic Monitoring) and P.2 (Stochastic Monitoring)]1 

Expressed as a Percent of: 

(A) Expected Monitoring Cost (B) Expected 
With Solution to P.32 Net Project Return3 (C) Initial Total Assets4 

Parameters5: "Best Guess" "Conservative" "Best Guess" "Conservative" "Best Guess" "Conservative" 

Industry 

Mining 48.09563% .43167% — .03005% 

Building Contractors 44.69791 47.94295% .10004 1.01019% .01062 .09730% 

Heavy Construction 57.68272 56.85084 .24383 2.49861 .01365 .11537 

Lumber and Wood Products 36.65876 35.03654 .03834 .34306 .00437 .03556 

Furniture 69.12364 68.29995 .05438 .49000 .00819 .06934 

Paper and Allied Products 34.77993 34.55793 .03599 .33404 .00414 .03508 

Fabricated Metal Products 55.84541 57.49857 .11471 1.12038 .01317 .11673 

Technical and Photographic Equipment 27.98837 29.04213 .02880 .28153 .00340 .02952 

Utilities 56.90617 56.68214 .14657 1.38251 .01351 .11506 

Eating and Drinking Places 26.43709 30.24072 .02151 .22788 .00315 .03068 

Mean 45.80000 46.30000 .12100 .85300 .01000 .07200 

'in all entries, the numerator is ^(l̂ pjh, — EfjhJ, where the superscript k indicates the solution to problem k. 

'Denominator is •yE.pJh,. 

'Denominator is E.x^ - 1.0. 

'Denominator is 1.0 since initial assets arc normalized to 1.0. 

'"Best Guess" - most likely parameters, y = 3.5%, h, + ha = 0.677%. "Conservative" parameters: 7 = 10%, h, + h, = 2.031%. 

For this set of parameter values, "bankruptcy" costs exceed project returns in the worst slate, which violates a nonnegativity constraint. Solutions cannot be obtained. 



FIGURE 1 

ESTIMATED DISTRIBUTION OF RETURNS, x FOR A HYPOTHETICAL INDUSTRY 
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10 Non-bankruptcy returns states. 
Frequencies estimated from data. 

[1 ] x = [Net Income After Taxes + Interest Expense + Taxes]/Total Assets 

[2] Frequency based on national average failure rates for non-financial firms, 1972-1991. 
x n (xmin) = highest (lowest) return realization observed in sample data. 
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(1) The Optimal contracts for industry 10, Mining, assuming the 'best guess' parameters, y • 3.5%, 
h 1+h 2 = .677%. 


