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INTEREST RATES AND PRICES IN THE ILONG RUN:
A STUDY OF THE GIBSON PARADOX

by Thomas J, Sargent

0. Introduction

This is a study of the relationship between commodity price inflation
and interest rates; One of the chief avenues through which inflation has
been posited to affect interest rates is through the effect of actual infla-
tion on anticipated inflation, which is then taken to help determine the
"nominal" rate of interest. For this reason, the manner in which price anti-
cipations are formed is a topic that cannot help but occupy an important role
in a study such as this.

Although many papers have been written on the topic,l/ no single
explanation of the relationship between inflgtion and interest commands
wide acceptance. As proof of this statement, it is sufficient to note that
the name that Keynes gave to that relationship -~ the Gibson paradox -- has

~ was

stuck. Xeynes's claim/that over long periocds of time in the United States,
England, and other countries, interest rates had been highly correlated with
the aggregate level of commodity prices, Keynes [20] named this empirical
regularity the Gibhson paradoxz/ since it seemed to contradict the prediction
of classical monetary theory that the interest rate is independent of the '
price level. According to classical dogtrines, the intérest rate is determined
by the "real” factors of productivity and thrift which impinge on the market
for loanable funds, while the price level is determined primarily by the
money supply, as described by the quantity-of-money theory of prices. The
relationship between interest rates and prices which Keynes had detected
was a paradox for classical monetary theory because it seemed to constitute

a disconfirmation of one of the important predictions of that theory.
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The most famous explanation of the paradox is due to Irving Fisher (57].
Fisher built upon the classical proposition that during a process of fully
anticipated inflation, nominal rates of interest on assets whose returns are
fixed in monetary value will rise so that the relationship among real yields
on assets will not be affected, The rise in nominal interest rates on such
assets is enforced by in?estors' unwillingness to hold those assets at any
lower nominal rates of yield. Thus, ignoring uncertainty, the nominal rate

of interest on assets with returns fixed in money terms, r, is taken to be

’
the sum of the (real) rate of return on assets with returns fixed in real
terms, p, and the anticipated rate of inflation, Tt
(0.1) r, = Dt + ﬂt
Here the subscripts denote the period to which each variable refers. Helation
{1) states that the real rates of return on éll assets are equal regardless
of whether their streams of returns are fixed in money or in real terms.

Fisher combined relation (1) with an equation designed to explain
the formation of the public's anticipated rate of inflation, - Anticipating
the work of Cagan [3] and Friedman tS} by about twenty-five years, Fisher
posited that people formed expectations by taking a weighted sum of current
and past actual rates of inflation, i.e.
(0.2) m = X v Ap’c—i

t - 0V
=0 Pyia

where P, is the price level at time t, and the vi's and m are parameters,

Substituting (2) into (1) produces Fisher's fundamental equation,

2 A
(0.3) r =p + ¥ v “Pey
t t 1=0 i ————
Piliaa

In order to implement (3) empirically, Fisher made the crucial assumption

that p is statistically independent of the second term in equation (3},



that is, that

= + €
Py = & F &

where o is a constant and where et is a random disturbance distributed inde-

pendently of Apt i/p i =0, vsavr:., m. Here Q might be interpreted as

t-i-1’
the long-run real equilibrium rate of interest. Substituting the above

equality into egquation (3) yields

m AD, .
(0.4) r, = X4 vy =, €,
i=0 Pioi-1

which is the equation that Fisher implemented in his empirical work. Using
the distributed lag estimator which hg had developed§< Fisher estimated
equation (4) for both long-term and short-term interest rates and for several
countries, In each case, he estimated that m was very large and that the
coefficients v, were positive, declining slowly with increases in i. 1In
fact, the estimated v, were distributed over such a long period of time that
the estimated expected rate of inflation ﬂf resembles the level of prices
much more ¢losely than it resembles the current rate of inflatiomn., Together
with equation (1), very long lags in the formation of expectations described
by equation (2) provide an explanation of the high correlation between interest
rates and the price level. Thus, Fisher's econometric results seemed to
explain the Gibson paradox.

However, it is possible to argue that Fisher's explanation of the
Gibson paradox is really only a redefinition of it. Fisher's explanation
raises the question of why people’'s anticipations of inflation are apparently
s0 slow to adjust, As Cagan (2] nhas argued, the mean adjustment lags
estimated by Fisher and others are so incredibly long, ranging from ten to
thirty years or longer, that they seem highly implausible on the maintained

hypothesis that they are the result of lags in the formation of expectations.



- 4 -

The force of that argument undoubtedly explains many ecohomist's reluctance
to accept Fisher's conclusions., Some authorsé/ have seemingly argued that
Fisher's econometric techniques are at fault, suggesting that his results
are the consequence of estimating equation (4) improperly. Yet that is
exceedingiy unlikely, since Fisher was a very clever statistician; in fact,
using the distributed lag estimator thét he invented avoids many of the
pitfalls associated with the method proposed by L. M. Koyck [23] three
decades later. Nevertheles;, to dispel any doubts on the matter and to
extend Fisher's results in a couple of directions, it seems worthwhile to
present some estimates of Fisher’s equation using an alternative distributed
lag estimator, Those estimates are presented in section I; not surprisingly,
tor the most part they confirm Fisher's empirical results, long lags and all.

In section I1 we consider the merits of Cagan's contention that
the distributed lags estimated by Fisher and others are implausibly long.
That requires giving the notion of plausibility some operational content,
which we try to accomplish by utilizing John F, Muth's [ 28] suggestion that
the expectations of the market can fruitfully.be hyéothesized to he the same
aslthe optimalforecasts of statistical theory. 1In this section, we adopt
(quite restrictive) assumptions that are compatible with equation (2) being
the correct form of model for forming "optimal" expectations, We then
synthesize the distributed lag weights that would characterize optimal fore~
casts within that class of models. These synthetic distributed lags are
very much "shorter"” than those estimated by Fisher and others, and thus tend
to confirm the doubts expressed by Cagan; but the extent of confirmation
is much more limited than a casual glance at the shape of the “optimal
distributed lags would suggesf.

In secti_on III we attempt to characterize the relationship between

inflation and the interest rate with more precision, using cross-spectral
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methods to determine whether a model that, like Fisher's, incorporates only
a one-way direction of influence from inflation to interest rates is
sufficient to explain the data., Our results suggest that it is necessary

to take into account a second direction of influence, with influence flowing
from interest rates to the rate of inflation, This in turn implies that

it is too much to hope that a single-equation model like equation (4) can
adequately explain the relationship between inflation and interest rates.

It also raises doubts about the adequacy of equation (2) as a model for the
formation of expectations,

In section IV we try to illustrate how an empirical relationship
1ike that discovered in section III might emerge. Such a relationship is
predicted by a very simple model of the economy, Consequently, that model
can be used to formulate an explanation of the Gibson paradox that is an
alternative to Fisher's. In section IV we aiso discuss how much information
about the relationship between interest rates and anticipated inflation can
be gleaned from data on prices and interest rates alone.

Our conclusions are stated in section V.



I. Estimates of Fisher's Equation: 1870-1940

In order to implement Fisher's equation empirically, it is convenient to

agssume that the distributed lag weights in equation (l.4) trail off geometrically,

i .
v, S Y A i

v

0, <L

so that (0.4) becomes

_ 2 .1 Ap(t-i)
(1.1 re=aty =AM Cein te -

As is well known, this specification is equivalent to assuming that the antici-

pated rate of inflation is formed via the "adaptive expectations' scheme

: = 4 22t
(1.2) | T~ Ter T Y oD - AW Ty

which is equivalent with

(1.2 m T oAb el
t i=0 p(t-i-1)

Replacing (0.2) with the special form (1.2') yields equation (1.1).

In addition to its tractability for purposes of estimation, equation (1.1)
has the advantage that the geometrical form may often be a "sensible' one to
impose on the distribution of lag weights where thé source of tﬁe distributed
lag is an expectations generating mechanism, By sensible we mean that for an
.interesting class of stochastic processes that might be used effectively to
approﬁimate the evolution of the actual rate of inflation, it will be rational
or optimal (in the least-squares sense)} for market participants to forecast the
rate of inflation by the scheme described by (2). This aspect of specification
(2) will be exploited below in helping to determine the plausibility of our

estimates.
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Equation (1) was estimated by following a suggestion of Klein [ 16],

which involves noting that the distributed lag in (1) can be rewritten as
t_l 3 :. e i _1

y = Al Lp(k-1) + Y Ap(t-1)

- p(t-i-1) ~ Y it p(t-i~1)

The second sum equals

or
A Tl

o .
where ﬂo equals y X li Ap(0-1)/p(0-i-1) and represents the systematic part
i=0

of the initial condition of the difference equation, Klein's procedure involves
estimating ﬂo simul taneously with the other parameters of (1) by non-linear
estimation techniques. 1In this case we applied the simple search procedure

that Hildreth and Lu [ 16 ] have suggested.é/

For annual data for the U.S. spanning the period 1870-1940, and for various

sub-periods within those years, we have estimated equation (1) for both long-term

and short-term interest rates, Including rates on instruments with different

terms to maturity seems an interesting thing to do since the horizon over which



the forecasts of inflation are cast ought to be different. The speeds of
ad justment of expectations of inflation are likely to vary with respect to
horizon and hence across bond maturities. As the short-term rate we used
the yield on commercial paper while Macaulay;s [24] unadjusted yield dndex for rail-
road bonds was taken as the long-term rate, The commercial paper rate was
used rather than the call loan rate because of the latters extraordinary behavior
during stock market panics. Although a retail price index or GNP deflator would
have been preferable, our desire to extend the period of aobservation back to
1870 limited our choice of a price index to a wholesale commodity price index.
All data are annual averages of monthly data. The interest rate data are in
percentage points while the rate of inflation is measured in percent.

Our estimates are reported in Tables 1 and 2. Without exception, the
distributed iags are exceeding "long," the decay parameter A being estimated
aé being close to ﬁnity in each case. WNot infrequently, the ieast-squares
estimate of A is .99, the upper bound for’the values of A over which we
searched. These large values of A imply that the data are approximately described

by

[ -]
ro=sa+y I Ap(t-1)/p(t-i-1) + ¢,
=0 t

or, since Ap(t-i)/p(t-i-1) = 1oge p(t-i)/p(t-i-1),

[~+] -
- : p(t-1)
r,Eaoty iio log, Teti-n) T &t

or

(3 r, = O+ylog, p(t) +e, ,



Macaulay's Unadjusted Railroad Yields Regressed
Against Current and Past Raies of Inflation

t"l . 3
RiE 1.1 r =o+y. £ ab SRUED e Tl

g0 PCI-D)
. o
Period (0% Y by ﬂo RA d.w.

1870-1929  3.4746 2.0735 .95 4.8934 .9277 .6627
(.6673) (.1436) (.1780)

1885-1929 .9426 1.7888 .9 3.9755 .6903 .7880
(.5594) (.1907) (.6557)

1895-1929  1.8536 1.6451 .99 2.1240 .7254 .8226
(1.0181)  (.2642) (1.0691)

1900-1929  4.2129 1.5562 .95 -.4853 8027 1.1306
(.1929) (.23086) (.2440)

1905-1929  4.2991 1.5318 .94 -.3070 .7340 1.1075
(.2017) (.2555) (.2685)

1880-1929 L7427 1.8409 .99 4.3576 .7603 .8378
(,3710) (.1473) | (.4399)

1870-1936  4.2081 1.1223 .91 4.3334 .8283 4518
- (0.678) (.2324) (.2462)

1880-1936  2.2929 1.3964 .99 - 2.5746 .3994 L6171
(.4783) (.2231) (.5758)

1885-1936  3.1833 1.1305 .99 1.3984 .3278 .6315
(.6097) (.2497) (.7271)

1895-1936  4.6003 .9375 .99 -.7013 .4391 .7257
(.7976) (.2664) (.8546)

1900-1936  4.7380 ,8937 .95 -1.0321 4736 .8123
(.1760) (.2721) (.2716)

Estimated Standard errors are in parentheses
2 ) 2
RA denotes adjusted R

d.w. denotes Durbin-Watson Statistic



Period

1870-1929

1885-1929

1895-1929

1900-1929

1905-1929

1870-1940

1885-1900

1895-1940

1900-1940

1905-1940

1880-1929

Estimated standard errors are in parentheses

A

Table 1.2

a

4.3936
(.1620)

2.4255
(1.0139)

2.6813
(1.1270)

-3.2778
(3.5576)

-4.7784
(4.2820)

-3.4029
(.8910)

-8.2668
(1.5197)

-12.0294
(1.6328)

-12.5334
(1.6143)

-13.9551
(1.7269)

1.0692
(1.316)

Rz denotes adjusted R2

T
t

1.
(.

1.
€.

o ~ —~ M —~ 0 ~ ~—~ O

~

3.
(

1.
(.

t-1
=x+y Z
£=0
y

8558 .91

5192)

9993 .98

6874)

.3168 .97

.8716)

4431 .99

.8672)

.5149 .99

-9288)

.5110 .99

.5519)

0318 .99

.6791)

.5561 .99

6146)

.2502 .99

5127)

9458 .99

- 6346)

7201 . .99

5224)

d.w., denotes Durbin-Watson Statistic.

Ap (t-1)
p(t-i-1)

Mo

3.8305
(.5573)

3.0489
{1.3658)

1.8564
(1.3165)

8.0365
(3.6978)

9.6580
(4.4583)

11,5720
(1.2899)

15,0554
(1.8251)

17.1390
(1.7594)

17.9610
(1.7462)

19.2015
(1.9041)

4.3564
(1.5604)

Commercial Paper Rate Regressed Against
Current and Past Rates of Inflation

T A nO

L4347
L1297
.1652
.1722
.1821
.3364
5467
.6779
L7277
.7525

1575

1.6415

1.7793

1.4693

1.2837

1.2692

.8647

.9866

1.0280

.9316

.9888

1,8035



where p(t) is measured in the units of the "base-period" price, P

Basically, therefore, the estimates simply recover the correlation between

interest rates and the price level (more pregisely, its logarithm) that characterizes
these data, thus confirming the existence of the Gibson paradox.

© 4
The sum of the distributed lag coefficients y X kl, which equals
i=0

v/ (1-}1), is easily calculated. The sum varies a good deal from period to
period, ranging from about ten to one-hundred and eighty. The extent of this
range is not surprising, since for large values of A the sum of weighis is very
sensitive to small changes in y and A. To calculate the corresponding sum of
weights in the expectations generator (2), it is necessary to divide the above
sums by one-hundred, since we have measured interest rates in percentage
points while recording inflation in percent.

These estimates corroborate the main outlines of Fisher's findings.
For the long-run data, an extensive set of estimates can be found in Fisher's

Theory of Interest, More recent studies using alternative distributed lag

estimators that are somewhat more flexible than those used here also confirm
Fisher's findings,g/ The cross-spectral calculations reported in secticon 3 also
confirm the existence of very long lags in the interest-inflation relationship.
Thus, the Gibson paradox does infest the long-run data. While Fisher's
explanation of that paradox formally "works,” the implied lags in forming
expectations do seem extraordinarily long. In the mnext section, we attempt to

examine those lags in the light of their extraordinary length.

e
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2. The Plausibility

Ever since empirical results like those
Irving Fisher, they have been challenged on

imply implausibly long lags in the formation

of Long Adjustment Lags
ébové were first reported by
the grounds that they seemed to

. . /
of expectations of 1nflat10n.z’

The appeal of that challenge probably explains why economists in general retain

strong reservations about Fisher's work in this area. Yet the argument that

Fisher's results are implausible has never been made with sufficient care

and force to displace Fisher's doctrine as the most widely cited explanation of

the Gibson paradox. The reason seems to be

that the criterion of plausibility

has uwsually been very vague and has failed to provide the basis for a really

compelling attack on Figher's results. 1In this section, we try to remedy this
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defect in the argument by providing a fairly careful statement of what distri-
buted lag estimates constitute implausible results.

By hypothesis, the distributed lag function in Fisher's equation emerges
because people form expectations about future rates of inflation by in effect
calculating a weighted sum of current and past actual rates of inflation.

Fisher and his followers have maintained that by estimating equation (0.4) we
recover the vi's of equation (0.2), the weights used in forming expectations.
To say that the estimates of the weights obtained by that procedure are
implausible apparently means that they do not resemble the weights that really
characterize the process by which people seem to form expectations about future
rates of inflation, To substantiate that claim, extraneous information about
the vi's is obviously required. That information is exceedingly difficult

to come by given the extreme paucity of data on expectations of inflation over
the period we are studying., If such data were available in sufficient quantity,
they could be used to estimate equation.(O;E) directly and so establish a basis
for a very sfraightforward check on the sensibility of Fisher's estimates of
equation (0.4),

In the absence of data directly measuring expectations, there is an alter-
native "source of information about the vi‘s which it seems worthwhile to exploit.
That information can be obtained at the cost of invoking John F. Muth's [ 28]
argumeht that the expectations of the market can be hypothesized to be the optimal
forecasts of statistical and economic theory. 1If the market's expectations
were to deviate markedly from that standard, extraordinary profits would accrue
to those who utilize the available information more efficiently than the market.

In order to implement Muth's argument it is necessary to posit. a class of
statistical models that are assumed to be capable of describing the evolution

of the actual rate of inflation. Once such a clagss of models is specified,
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the model that, within this class, produces "optimal'" forecasts can be
identified. Those optimal forecasts will be used as the yardstick against
which we will judge the "plausibility" of the expectations implied by Fisher's
estimates,

In this section, we implement the above strategy by considering a class of
very simple statistical models for the rate of inflation. In particular, we
shall confine our search for optimal forecasts to those produced by members

of the class of autoregressive models8/

(2.1) X,,, = L v, x_, +u
i/

where X, is the rate of inflation and where u

41 is an independently, identically

-distributed random variable with mean zero and variance 03.2/0ur justification
for conside.ing this class of models is that they imply thgt the optimal forecast
over each horizon will be formed by taking a wgighteﬁ sum of current and past
rates of inflation. The equations generating optimal forecasts are compatible
in form with the expectations generator Posited by Fisher and others. Thus,
while equation (1) defines a very naive class of models for explaining the rate
of inflation, its virtue is its consistency with the econometric practices of
Fisher and others.

An alternative, somewhat deeper rationalization for employing this class of
models can be produced by appealing to Wold's theorem which states that any

covariance stationary stochastic process can be ‘represented as the sum of two
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mutually uncorrelated processes

where ﬂt is a deterministic process, predictable with zero mean square error
given a sufficient number of its own past values, and z, is a one-sided moving

sum of "white noise,” i.e.

where u, is an independently and identically distributed random variable with
mean zero and finite variance. It is generally believed that economic time
series exhibit no important deterministic (i.e. strictly periodic) components

of variation, so that nt is in effect zero. Then Wold's representation becomes

simply

(2.2) X = % c.u

which is the moving-average representation for xt.‘ In many cases,

a series with such a moving average representation can also be represented as
an autoregressive process of the form of equation (l)ig/ln what follows,

we shall find it convenient to assume that the inflation rate possessés both

a moving average and an autoregressive representationiilﬁhe autoregressive
representation will be most useful in writing down the form of the optimal
predictors that are to be compared with Fisher's estimates, while the moving
average representation will frequently be of help in suggesting economical
parameterizations of the process that we are trying to model. We will find it

ugseful to have at our disposal a formula relating the coefficients of the auto-
A

regressive and moving average forms. To derive this formula, it will be
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convenient to use the lag operator L defined by

For many operations, L can be manipulated like any other algebraic

symbol. We shall utilize polynomials in the lag operator, such as

B(L) = by + bL + b2L2 + .. an“ .

The polynomial B(L) is often called a lag-generating function.
Using the lag operator notation, we move equation (2) forward cne period

and write

. ==}
. = +
@.3) “t+1 T %0 Yen jEO “51 Ye-j
= +
o Ye4p T O us
© .
where C(L) = X cj+1 LJ. At time t, the least squares forecast of x at time
i=0

t+l is found by setting ut equal to its expected value of zero:

+1

(2.4) E(xt+1‘ U Uy eea) = C(L) u, -

Using the autoregressive representation (1), the least squares forecast of x

at time (t+l) is achieved by setting u equal to its expected value of zero:

t+1
.5) 5
- LI = x
E(xt+1l o X ) .Z Vi Te-i
i=0
= X
V(L) "
® i
where V(L) = X viL . Expressing X, in terms of its moving-average representation,
i=0

{5) becomes

(2.6) E(xpyy | Xps Xppr o0) = V() [e_ + L6 Tu,.
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Being based on equivalent representations, (4) and (6) must yield identical

forecasts, which implies that C(L) and V(L) are related by

2.7) c(L) = V(L)[co + LC(1)].

1f we normalize by dividing both sides of (7) by c¢_,which we assume does not equal
zero, we have o

(2.8) C*(L) = V(L) [1 + LC*(L)]

w C, .
where C*(1L) = Z —gilLJ .
j=0 o

Once V(L) is known, the generating functions for forming least squares
forecasts over horizons of more than one period can be easily determined. For

example, the two-period-forward forecast can be found by substituting the one-period-

forward forecast X for x in the formula
t+1 t+1

A
Xego = VL) Xy -

Thus,

2
[voV(L) + vy +v2L + V3L + el ] Xt .

A
t4o

A
Similarly, the expectations generator for x can be calculated recursively by

t+j
A

substituti . for . 1i>0, i ressio
ng X 44 Xegqr 211 1> 0, in the expression

(2.9) X = V(L) X,

t-+]j +j-1 °

Through use of relations (8) amd (%), information about the stochastic

proceés generating the x _'s, i.e., information about V(L) or C(L), can be

t

used to calculate the lag-generating function Vj(L) that produces the optimal

forecast over any horizon j:

A
xt+j = Vj(L) xt .
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It is these lag-generating functions that we propose to compare with those
implied by estimates of Fisher's equation.

In order to implement our procedure, it is necessary to impose some
additional restrictions on the process generating the actual rate of inflation.
We will assume that the X-process is a mixed autoregressive, moving-average
error process of low order. This restriction is compatible with the rest of
our analysis since it implies via relations (8) and (9) that the lag-generating
functions Vj(L) will be members of Jorgenson's [ 18] class of rational distributed
lag functions. That is a desirable resulé since for the most part the empiri-
cal results in section I and in other studies were obtained by estimating
rational distributed lag functions. Thus, for example, suppose that the x-process
takes the form of the second-order mixed autoregressive, moving-average error

process

= x ’ ‘
(2.10) Xt a, X g + a, xt—E + bl ut_1 + b2 u s + u,

where u, is a white noise and a b and b, are parameters., The process

1’ %20 Py 2

can be written

2
_byL + bl .\ )
* = T-ail-aill ot lra.l-a. 12 Yt
177 % s Ralihg”

2
(by+a)L + (byta )L

- - 2]
i alL a2L t t
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For this process C(L) is thus given by

(b, -+ al) + (b2 + ae)L

- - 2 .
1 alL a2L

1

cL) =

Using relation (8) it follows that V(L)}, the‘lag-generating function for the

12/
optimal one-period forward forecast of inflation, is given by —

(b, +a.) + (b, +a)L
by ¥y o a5
.11) V) = —5% b L + b 17 -

Here V(L) is a (first-order numerator, second-order denominator) rational dis-

tributed lag generating function. Specializing this somewhat, suppose b2 = a, = 0,
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so that (10) becomes a first-order mixed autoregressive, moving-average--
error process. Then V(L) is

b, + a s .

1 1 ot i i

T+or - (yp*ta) Z (b)) L,
1 i=0

V(L) =

which with a equaling one and b1 being negative is the lag-generating function
that Cagan and Nerlove used to model the formation of expectations, and which
was used extensively in section I.

Our strategy is thus to estimate the parameters of a mixed autoregressive,
moving~average-error process like (10) for wholesale commodity price inflation
in the U.S., and then use relations (8) and (9) to calculate Vj(L) over
various horizons. The mixed autoregressive, moving average error processes
were estimated by the least-squares search procedure described by Jenkins and
Watts [18 ]. For example, to estimate (10) given.xt, t=1, ... , T, it was
assumed that Go = 3_1 = 3_2_= 0. For predetermined values of 315 ays bl’ and

. ) . A
b2, equation (10) was then solved repeatedly for the residuals u t=1l, ... , T

t!
associated with these particular parameter values. The associated sum of squared

T a
residuals = u 2 was then calculated. By calculating the sum of squared
t=1

residuals repeatedly, conducting a search over the (al, b be)—space for

%0 P
the parameter values which yield the minimum sum of squared residuals, the
least squares estimates of the parameters were found. Our final estimates
emerged from a search over a grid whose width was ,01 for each parameter.

Table 1 records the results of estimating first-order autoregressive, first-
order moving average error processes for data on the rate of inflation of whole-

sale commodity prices in the United States, the same data used in the regressions

reported in section I. Use of the first order autoregressive, moving-average



Table 2,1

Estimated Parameters of Mixed
~Autoregressive Moving Average Error Process

Per}od a, _ bl SSR/N
1870-1929 .29 -.05 .008497
1870-1970 .22 .06 .008108
1880-1929 -.49 .75 .009089
1880-1970 -.45 .75 .008529
1880-1914 27 -.21 .002822
SSR denotes sum of squared residuals
N = number of observations minus four

Table 2.2 (a2 constrained to equal - bz)
Egtimated Parameters of Mixed
Autoregressive Moving Average Error Process

Period a1 32 b1 b2
1870-1929 .76 -.60 -.49 .60
1870~1940 .88 ~-.61 -.63 .61
SSR denotes sum of squared residuals
N = number of observations minus six

: Table 2,3

Estimated Parameters of Mixed
Autoregressive Moving Average Error Process
i b

Period al a2 b1 5
1870-1929 .11 -.56 -.24 1.05
1870-1240 .15 -.60 -.24 1.06

SSR denotes sum of squared residuals

N = number of observations minus seven

SSR/N

.008144
.008542

SSR/N

.007431
.007484
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error model implies that at time t the optimal forecast over horizon j will be

given by

A (a1 + bl) aljhl )
(2.12) X, ,. = X
t+j 1+ blL t

where ay and bl are the parameters that appear in (10). The estimates in
Table 1 imply that within this class of models the distributed lag weights
associated with the optimal forecasts decline in absolute value swiftly with

lag,

increases in / since the decay parameter b, is estimated to be much less

1
than unity. It is interesting to note that the lag distributions implied by
the estimates for three of the time periods studied digplay oscillating weights
rather than smoothly changing ones like those generally assumed in empirical
estimation,

A 99 percent confidence region for the estimates for the period 1870
through 1940 is shown in figure l.lz/ihe region is banana shaped and includes

the parameter estimates obtained for the other sub-periods. Notice that the

region includes the origin, which means that at the 99 percent confidence
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level we cannot reject the hypothesis that the inflation rate behaved like
white noise.

For wvariables that close%y resemble white noise, we would expect to find
an elongated confidence region resembling the one shown in figure 1. For

suppose Xt evolves according to
(2.13) X =u

where u is white noise, i.e., an independently and identically distributed
random variable with variance Ui. Such an x process can be represented equally

well by any first-order mixed autoregressive moving average error process

g =g ¥ g vbypu gty

that has the property a, = - bl; for using the lag operator notation, we can

rewrite the above equation as

1+ byl
Ty T 1-aL Ue
If b1 = - a, the numerator and the denominator in the above expression cancel,
leaving us with X_ = u_, Thus if we fit a first order mixed autoregressive,

t t
moving-average error process, we will find that the sum-cof-squares surface has
a valley extending along the line a; = - bl' For such a process, parameter
values implying widely different mean lags in (11) may differ very little in
their explanatory power. That is because the mean lagin (12), which for
a, # b1 is given by
- bl

T oL x
1+ bl

e
'
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depends only on the value of bl' Inspéctiou of figure 1 shows that parameter
values implying very long mean lags are contained in the confidence region
around the least squares estimates., This fact has the consequence that on the
basis of their very long mean lags alone, it.is not possible to reject the
estimates in section 1 as implying very poor forecasts of inflation. Very
long mean lags in (12) are compatible with "nearly optimal" forecasting pro-

vided that al = - bl’ which implies that the sum of the weights in (12) will

be small, since the sum of weights in (12) is given by

j-1
(a1 + bl) a

1
1+ b1

It will be recalled that in section I we estimated lag distributions with sums of
weights on the order of from one-tenth to two. With a value of b1 of -.99, a sum of
weights of two requires a value of a, of 1.01, if the sum of weights is inter-
preted as applying to a one-period forecast. Such calculations establish
that the estimates reported in section I represent (al, bl) pairs that lie
close to and sometimes within, the upper left hand corner of the confidence
region depicted in figure 1. On the other hand, the slope of the sum-of-squares
surface is very steep near the upper left hand corner of the confidence region,
so that, for example, the sum of squares increases quickly as ay increases
above unity where bl is slightly less than unity.

These results suggest that ruling on the plausibility of the very long
dis;ributed lags estimated in section I is a rather delicate matter. The

configuration of the distributed lag weights associated with the best-fitting
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first order mixed autoregressive, moving-average error process is very
different than the patterns estimated in seétion I. Yet there are lag
distributions with very long lags that would not haye generated forecasts
significantly worse than those produced by the optimal forecasting schemes.
These very long lag distributions closely resemble those estimated in section T.
Thus, while the.forecasts produced with the aid of the lag distributions of
section I are not fully optimal, neither are they '"very ridiculous." We there-
fore conclude that unless one is prepared to lean very heavily on the hypothesis
that forecasts are optimal, placing great emphasis on even relatively minor
differences in means of squared errors of forecasts associated with alternative
predictors, it is difficult to sustain the charge that estimates of Fisher's
equations are implausible on the basis of the results presented above.ié/

The mean lags associated with the j-period-forward forecasts formed via the set
of geometrical distributed lag functions (12) all equal —b1/(1+b1) and thus
are independent of the horizon of forecast j. Milton Friedman [ 9 }, among
others, has contended that it is often reasonable to expect the mean lag to be
positively associated with the horizon over which expectations are cast. It
thus seems desirable to adopt more general parameterizations of the x-process
that permit such a dependence between mean lag and horizon to emerge as a
consequence of optimal forecasting. One very simple such parameterization is

the second-order mixed autoregressive, moving-dverage error process

X = X - +
Fe T ey et Xt by e by u T
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which implies, via relation (11) that the distributed lag generating function

appropriate for forming one-period forward forecasts is given by

(b, + aP

V(1) =

1
1+b.L+b1°
1 2

It has been shown elsewhere (see Sargent and Wallace [ 31 ]) that for such a
process the mean lag in the lag generating function for forecasts j periods
forward will be positively associated with horizon j if and only if b2 <0
where b1 + a; > 0.

Table 2 reports least-squares estimates of the second order mixed auto-

regressive, moving-average error process where a, is constrained to equal - b

2 2’
as is required in the above parameterizations. As for the first order processes,
the estimates imply lag-generating functions for the optimal forecasts that
are quite short. In addition, since b2 is estimated to be positive, the mean
lag of those lag - generating functions diminishes rather than increases as
the horizon of forecast increases.

Table 3 reports least-squares estimates of the second order mixed auto-
regressive, moving-average error process ﬁhere a and b2-are not constrained
to be equal. Once again, these estimates imply that the optimal one-period
forward forecasts of inflation are not characterized by long lag distributions,
For example, the estimates based on data for the period from 1870 to 1929 imply

that the lag generating function to be used in calculating one-period forecasts

is given by

- .13 4+ .49L
V(L) = 5
1 - .24L + 1.05L

Expanding this polynomial in L shows that in addition to following an oscillatory

pattern, the weights decline fairly swiftly with increases in lag.
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In summary, our estimates of the lag distributions that would
be optimal for forecasting inflation are all very much shorter than those
that are obtained by estimating Ficher's equation directly. On the face
of it, this finding would seem to confirm Cagan's argument that estimates
of Fisher's equation are characterized by lags that are implausibly long.
However, the estimates we have made are.surrounded by large confidence
regions, regions that include implied lag distributions with very long mean
lags. For this reason, our estimates do not seriously diminish the credibility
of estimates of expectations produced by estimating Fisher's equation
directly. The optimal expectations implied by our estimates differ from those
obtained by estimating Fisher's equation chiefly in their behavior at very
low frequencies. With the relatively short time series at our disposal
it is difficult to say much about those low-fregquency components, making

15/

it unwise to stress differences at those frequencies.—
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III. Cross-Spectral Analysis of Interest and Inflation

The model used in the preceding two sections and in many other studies
of the Gibson paradox to analyze the relationship between interest and infla-

tion can be written

]

(3.1)1‘t a(L) r. + b{(L) X + €

(B2 = d(L) X+ ug

where u, and ¢, are mutually independent white noises and a(L), b(L), and c(L)

are one-sided polynomials in the lag operator L, i.e,

°° j

a(L) = = a, L
=1

b(L) = = b, 17
=0

pad j

d(l)y = = d, L
j=1

Equation (1) can be written in the distributed lag form

- b _1
e T T - am e TT-aw S

which is the form estimated in section 1, The experiments involving optimal
forecasting that we reported in section 2 entailed determining whether the
relationship between b(L)/[l-a(L)] and d(L) was comsistent with interpreting
[b(L)/(1-2(L))] Xt as the market's forecast of inflation over some horizon.
The class of models summarized by (1) and (2) are distinguished by the

fact that they admit only one direction of influence, one which flows from
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inflation to the interest rate. Thus, while a large value of u, will increase
the rate of inflatioﬁ, thereby influencing subsequent rates of interest, the
rate of inflatign is posited to be independent of €. The model asserts that
there occurs no feedback from the interest rate to current or subsequent rates
of inflation. In that sense, the rate of inflation is assumed to be exogenous,
That is a specification that would undoubtedly seem unduly restrictive to most
economists, particularly those with monetarist inclinations. In this section,
we use techniques that permit and almost invite us to subject that specification
to an empirical test. The techniques fall within the field of cross-spectral
analysis and were developed by Akaike [ 1 1, Granger [12,13, and Sims { 32].
The model described by equations (1) and (2) can be regarded as a special

case of the system

e - [~ B
1 - -b(L
a(L) (L) r €,
(3.3)
- ¢(L) 1-d(L) lxt U
L' -t S - -1
@ :
where c(L) = X cj LJ, and where u, and €, are again mutually independent white
=0

noises. The system formed by equations (1) and (2) emerges when c(L) equals zero.

Now (3) is a quite general representation of the two series r,_ and Xt, being the
. Tt
autoregressive representation of the vector process . For we know that

X
t

any two covariance stationary, indeterministic variables, say r_ and X, can

t

be represented by pairs of one-sided moving averages of the same mutually

independent white noises:
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rt CX(L) B (L) €
(3.4) =
X v (L) & (L) u,
where c(L), B(L), vy(L), and 8(L) are one-sided polynomials in the lag operator L.
The capacity of (4) to represent such a [;] process emerges from a generalization

of the theorem of Wold that we referred to in section 2. Equations (3) and (4)

are equivalent representations of the processes, one being easily derived

from knowledge of the other-lg/

Sims [32] has proved a very useful theorem that permits a strajightforward test
for the existence of feedback. Supposing as we now are that 1-d(L) is not
zero, Sims's theorem states that r. can be expressed as a one-sided distributed
lag of X with a residual w(s) that is independent of X, for all t, if and only

if ¢(L) = 0, i.e. if andonly if there is no feedback from interest rates to

: 17/
subsequent rates of inflation.— The theorem implies that we can test for the

presence of feedback from x to r by estimating a two-sided distributed lag of

T on x,

(3.5) r =
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where m, and m, are positive parameters, the hj's are the estimated distributed
lag parameters and Ve is a statistical residual. The absence of such feedback

implies that bj =0 for j< 0. If future values of X make a significant

t
contribution to explaining r, in (5), we must reject the hypothesis that there
is no feedback, i.e. that c(L) = 0.

While two-sided distributed lag functions such as (5) have been estimated
only rarely in the time domain, they underlie cross—spectral.methods. Cross-
spectral analysis involves estimating the parameters of (5), but most studies
using cross-spectral analysis summarize the parameters by reporting only various
statistics for the frequency domain, statistics whose implications for the
presence of feedback are generally very difficult to read, Since those statistics
do provide an interesting way to look at some information, however, we shall
present some frequency-domain statistics as well as estimates of the hJ's in
(5). Another reason for using the cross-gpectral method_is that it has some
computational advantages in estimating relationships like (5), in which we can expect
very long distributed lags.

Cross-spectral calculations proceed in terms of the Fourier transform of (5):
(3.6) R(w) = R(w) X(w)} + V(w)

-iwt -iwj -iwt -iwt
where R{w) = X r.e , Hw) = ; hje , V{w) = & v.e and X(w) = I, xte .
t j t t
The function H(w) is called the transfer functién and is characterized by its
squared amplitude or '"gain" and its phase. The spectral density functions of

r, x, and v are given by

£ () = E‘R(w)le ,
£ (W) = E|>;(w)|2 ,

£,w) = E l V(w)l2 :
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From (6), we know that fx(w) and fr(w) are related by

- 2
£(w) = \Hgy)\ £ (W) + £ )
where IH(W)I2 is the squared amplitude of the transfer function. The cross-

spectrum between r and x is given by

£ 0 = E@X*(w) R(W))

]

H(w) ElX(w)l2

]

(3.7) HW) £ ),
assuming that v and x are statistically independent, which implies that
E(X*(w) V(w)) = 0. Here the asterisk denotes complex conjugatation., It is

’ 2
usual to characterize the cross spectrum by its gain,'H(w)' , 1its phase,

o1 Im CE_ ()
Re (£ _(w))

@(w) = tan

and its coherence,

2
[,
rx
Rt = E W @

which indicates the proportion of the variance in one series that is explained
by the other series at a given frequency band centered at w.

From (7) it is clear that

-1 Im (H(w))
Re (H(w))

22 h, sin w,
-1 J=apg

= tan o .

22 hj cos Wj
j=-m1

tan

il

p(w)
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As Howrey and Klein [ 17] have observed, differentiating the above expression
with respect to w and evaluating the result at w equals zero yields

Zjh

(3.8) @' (0) =

which is the meanlag of h(L).

Solving (7) for H(w) yields
3.9 H(w) =~ ,

which suggests recovering the hj‘s of (5) by taking the inverse Fourier trans-

form of estimates of the right side of (9):

(G .
(3.10) b = ()t 5 rx kv L TR

] - k n
k=-n+l %x(wk)

where the hats denote estimated magnitudes and where
n is the maximal lag used in the covariogréms and
cross-covariograms that are used in calculating the spectral densities and the
cross. spectrum. The estimator in (10) is Hannan's "inefficient estimator."
Utilizing this estimator has computational advantages in a study such as this
one in which the distributed lags seem to be very long.

Figures 1 and 2 and Tables 1 and 2 report estimates of the spectral
densities and cross spectra between the rate of inflation of wholesale commodity
prices and both the commercial paper rate and Macaulay's unadjusted yield index

over the period 1880-1929. The data are annual averages of monthly data. The
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Table 3.1

Cross Spectrum between Inflation

and Macaulay's unadjusted Yield Index

Period (years) Coherence Phase (radians)* Gain
L)
© 0.0
40 429 -1.32 (.38) .0792
20 .674 -1.45 L0767
13.3 .691 -1.44 .0551
10. . 648 -1.42 .0368
8. 571 -1.55 .0229
6.67 491 1.25 0142
5.71 .206 .72 .0092
5.0 .040 - .34 .0073
4,44 .080 - .55 .0183
4.0 .158 - .22 .0205
3.64 .205 - .30 .0136
3.33 .143 - .59 .0082
3.08 .011 07 7 .0026
2.86 .313 - .97 L0165
2.67 . 606 -1.36 L0244
2.50 .621 1.50 .0257
2.35 . 341 1.19 .0211
2.22 .051 .36 .0053
2.11 034 .88 .0082
2.0 .120 ’ .00 .0162
cospec (0} - .4328 _
E0) T T iaae o T 0%

snegative phase indicates that interest rate 'leads" inflation rate at
frequency in question.



Period (years)

=8
woo
w

.67
.71
.0

A4
.0

.64
.33
.08
.86
.67
.5

.34

’_l
MMM ONDNWWWEREPRROULORO

22
.1
.0

Cospec (0) _

*negative phase indicates that interest rate '"leads" inflation rate at

frequency in question

oL om_l17s
£ (0) 14.16

Table 3.2

and commercial paper rate

Coherence

413
.679
.710
641
.667
.598
.372
251
.209
490
463
. 364
.284
274
.399
.511
.529
.560

431

44

- .0083

Phase

-1.
-1.
-1.
=1.
.81
.81
.25
.26
.32
.56
.31
.99
.83
.10
.37
.45
.33
.01
.82
.00

— e

(radians)*

47
54
45
13

Cross spectrum between inflation

(.39)

Gain

.053
.078
.083
074
.070
.065
.056
.057
.062
.089
.085
074
.062
.053

.054

.056
.062
.067
.050
.025



Table 3.3

Regression of commercial paper rate on past and future

rates inflation (1880-1929)

20 Ap,
r = ¥ N =

£ 4=-20 .7 Pr-j-1

Coefficients on
future rate of inflation

[

)
1 -.0504
2 .0034
3 .0033
& . L0043
5 -.0122
6 .0010
7 -.0030
8 -.0078
9 .0010
10 , i .0034
11 .0026
12 -.0031
13 .0009
14 ,0003
15 .0023
16 -.0006
17 .0002
18 .0003
19 .0017
20 -.0002

Estimated standard error of coefficients equals .0106

Coefficient on past
rates of inflation

L0055
L0267
.0004
.0179
L0121
.0129
L0023
-.0012
-.0044
.0047
-.0004
.0011
-.0010
.0026
. 0004
.0014
.0003
.0016
~.0005
.0008
-,0002



Table 3.4

Regression of Macaulay's Yield Index on past and

Future rates of inflation (1880-1929)

20 N
T T T e
Coefficients on future Coefficients on lagged

|jl rates of inflation rates of inflation
0 . 0002
1 -.0100 .0041
2 -.0109 .0001
3 -.0182 .0108
4 -.0070 . 0084
5 -.0057 ' 0046
6 -.0105 .0037
7 -.0015 .0029
8 -.0062 .0037
9 -.0031 .0013
10 -.0031 .0004
11 -.0021 -.0001
12 -.0022 .0014
13 -,0012 .0004
14 -.0012 -.0000
15 -.0015 - . . -.0007
16 -.0002 . 0003
17 -.0012 -.0003
18 -.0002 .0001
19 -.0008 -.0010
20 -.0001 -.0001

Estimated standard error of coefficients = .0062



Table 3.5

Regression of inflation rate on past and future

values of commercial paper rate (1880-1929)

20
.=z k. L
j=—20 J 4

Coefficients on future Coefficients on lagged
lje commercial paper rates commercial paper rates
0 0.392
1 2.256 : , ~ =5.152
2 0.468 0.072
3 3.013 -1.533
4 0.979 1.065
5 1.274 -0.821
6 0.240 0.039
7 -0.078 -0.598
8 -0.116 -1.000
9 0.680 -0.071

10 -0.024 : 0.372
11 0.647 0.224
12 -0.057 -0.153
13 0.563 -0.037
14 -0.042 -0.010
15 0.365 - . : 0.267
16 -0.031 -0.018
17 0.375 0.182
18 0.004 -0,002
19 0.276 0.319
20 -0.028 -0.028

Estimated standard error of coefficients equals 1.1124



Table 3.6

Regression of Inflation Rate on past and future values

of Macaulay's unadjusted yield index (1880-1929)

20 5
& j=>-:20 it
Coefficients on future Coefficients on past

lj‘ interest rates interest rates
0 2.56
1 5.49 ~-5.33
2 - .90 ~4.17
3 4,94 -8.88
4 - .27 » 2.54
5 -3.39 3.48
6 .39 -1.55
7 .61 4,69
8 .36 ) -3.49
9 . - .39 -3.62
10 .05 .19
11 - .89 1.36
12 -~ .37 .22
13 .26 . .16
14 .15 - .26
15 - W48, -1.53
16 .04 - .15
17 - .26 .23
18 - .18 27
19 - .51 - W45
20 .03 .03

Estimated standard error of coefficients - 3.59
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spectral densities and cross spectra were calculated by the standard method of
taking the Fourier transforms of the estimated covariance and cross-covariance
functions. The spectra and cross spectra were calculated using a Parzen
window, twenty being the maximal lag used in the estimates reported in the
tables and the figures. However, we also carried out calculations with other
maximal lags to make sure that our results are not unduly dependent on this
particular choice of maximal lag. For our purposes here, twenty seems to be
an adequate number of lags. Both x and r are measured in percentage points.
Notice that while the spectral density of the price level has the general
form of what Granger calls the "typical spectral shape" ,with power decreasing
fairly regularly with increasing frequency, the spectral density of the inflatiem
rate does not have that shape, being much flatter; The wide peaks in the
spectrum suggest that the inflation rate experienced weak "business cycles"
with somewhat irregular periods centered at about eight and three years, period-
icities which roughly correspond in length with NBER major and minor business
cycles. The width of the peaks suggests that these "cycles" were quite variable
in length, The fairly flat nature of this spectral density simply confirms our
finding in section II, which we obtained by fitting the parameters of mixed
autoregressive, moving average error processes, that the inflation rate fairly
18/
¢losely resembled white noise, ™
The spectral density of the commercial paper rate reseﬁbles that of the

inflation rate, its two peaks being centered at slightly longer periocdicities
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than are those of the inflation rate. On the other hand, the spectral density
of Macaulay's yield index has a fairly typical shape having very great power
at the lowest frequencies. From a comparison of the spectral densities of
Macaulay's rate and the inflation rate it is.apparent that if a fairly "white"
variable like the inflation rate is to explain Macaulay's rate well via a
one-sided distributed lag, that lag must be very long. Thus, consider the
geometric distributed lag model that we fit in section I,

2

r:._ﬁ._.%i +Ut Q<cracl
1 - AL

where u, is a statistical residual. The spectrum of r is related to the spectrum

of X via the relationship

n

2
f_(w) E;j—s;;{;, fx(W) + £ W)

44ﬁ2

1+?\2 - 2\ cos w

1

fx(w) + fu(w) .

If fu(w) is flat or relatively small, it will require a large value of A to
transform the relatively flat spectrum fx(w) into the "typical" spectral shape
assumed by fr(w). It requires a large A to deliver a gain that decreases
swiftly with increases in angular frequency w.

Statistics that summarize the cross spectrﬁm between the inflation rate
and each yield are reported in Tables 1 and 2., The phase statistics at low
frequency are very large, implying that the interest rate is very much out of

phase with (that is displays a large lead over or lag behind) the low frequency
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oscillations of the rate of inflation. To make this more clear, we can
approximate the derivative of the phase at zero frequency, which by (8) equals

the mean lag of (5), by

(3.12) §ro) = & ('1?27"_‘1’80) .

where ,157 is the angular frequency corresponding to a periodicity of forty
years.igfhe phase at zero frequency is zero, whereas at the frequency band
centered at a periodicity of forty years it is estimated to be -1.47 radians for
the commercial paper rate and -1.32radians for Macaulay's rate. These estimates
have sizable approximate asymptotic standara errors of .39 and .38 radians,
respectively.zg/in addition to their high standard errors, it is known that

the phase statistic may be biased for processes which, like the ones

under study, are badly out of phase. Thus the foilowingestimatesof the mean

lag in (5) must be interpreted somewhat cautiously,
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Substituting -1.47into the above expression for the mean lag delivers an

estimate of 9.4 years. Since the phase statistic is negative, the indication

is that the mean lag of the rate of inflation behind the interest rate is 9.4

years or, what is equivalent since we are using the phase statistic at the forty

year periodicity to estimate the mean lag, that the interest rate lags behind

the rate of inflation by approximately 31 years. For Macaulay's rate, the indication

is that the mean lag of inflation behind interest is about 8.4 years.
The estimated phase statistics thus are consistent with the very long /

mean lags estimated in section I using time domain methods together with one-
sided distributed lags.

Next notice that for Macauiay's rate fhggain pf the interest rate over the
rate of inflation behaves in the expected manner, generally decreasing with
increasing frequency. This implies that the h's in (5) constitute a "colorful”
filter that help transform the relatively "white" inflation rate into a variable
that displays high power at low frequencies.

Using (7) and the definition of H(w) we have

My £ (0)

= = Ix
H(O) z hj fx(o) .

Substituting estimated quantities into the above expressions produces estimates

0of a sum of weights of -,0083 for the commercial paper rate and - 0306 for
Macaulay's yield. These estimates are close to zero and thus are very different
than those found in section I, which were on the order of +1. The differences
between the above estimates and those obtained in sectien I must be traced to

our here relaxing the assumption of a one-sided distributed lag function which

we employed in section I.
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Our estimates of equation (5), obtained by substituting our cross—-spectral
estimates into equation (10), are reported in Tables 3 and 4. The estimates
of (5) for Macaulay's yield index depict a two-sided lag distribution in which
the largest coefficient is on a future rate of inflation. The coefficients
on the future rates are predominantly negative, and they outweigh the
coefficients on the lagged rates of inflation, which for the most part are
positive. It is those negative coefficients on future rates of inflation
that explain why the sum of weights that we calculated above was negative.

The large estimated standard error for the estimated coefficients suggests
that these results ought to be interpreted cautiously.gl/ Nevertheless,

the results pretty clearly force us to reject the hypothesis that there is
no feedback from interest rates to the rate of inflation. Thus equations (1)
and (2) constitute an unduly restrictive description of the relationship
between inflation and Macaulay's yield index.

The‘estimate of equation (5) for the commercial paper rate, which is
reported in Table 3.3, is also two sided. Thd lag distribution is characterized
by a small positive weight an the currént inflation rate, a large negative
one on next period's inflation rate, and a sizable positive weightj?nflation
lagged once. The nature of these estimates is such that we should consider
the possibility that, rather than being a symptom of feedback, the two-sided
character of the lag distribution results from aggregation over time of data
that are more adequately described by a one-sided lag distribution in a
shorter time frame. In particular, Sims [33] has pointed out that if the

true continuous-time relationship is

r(t) = a&— x(t)

d
dt

then the discrete time distributed lag weights will be approximétely
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h =20
O
a 131
—_ (= = 2 e
hJ ljf 1) J 1, 2,
a 131 :
=y =""1!_l’.
hJ i-]l( 1) J 2

With a value of a of about -~.035, this scheme would very approximately describe
the distributed lag in Table 3.3. To invéstigate this possgibility we have
estimated (5) for quarterly data for the commercial paper rate over the

period 1880-1929. The data are averages of monthly data. The estimates,

which are reported in Table 3.3a were obtained using Hannan's inefficient
estimator, eighty being the maximal lags in the covariograms and cross-
covariograms used to construct the estimates. If the data are more properly
described by a continuous-time relationship, then the estimates from the
quarterly data should follow the same oscillatory pattern just described.

They do not follow such a pattern, instead being fairly consistent with

the estimates from the annual data. There is a string of sizable negative
weights on future rates of inflation, and a string of sizable positive weights
on lagged rates of inflation. We conélude from this that the two-sided character
of the estimates from the annual data is not simply a result of inappropriate
aggregation over time; instead, it indicates the presence of apparent feed-
back from the commercial paper rate to the rate of inflation.

Tables 5 and 6 report our estimates of the reverse diétributed lag

relationship
3.13 = "
(3.13) e T ) hj_,.-r * U

*
where ut is a statistical residual and m in this case equals twenty. It

too appears two-sided, with predominantly negative coefficients on lagged
interest rates but positive ones on future interest rates. The apparently

two-sided nature of this relationship implies that the rate of inflation

has some influence on subsequent rates of interest.



Table 3.3a

Regression of Commercial Paper Rate on Past and Future
Values of Wholesale Commodity Price Inflation
(Quarterly) 1880-1929

20
r. = j=§20ijt_j
lj] Coefficients on Future Coefficients on Past
Values of Inflation . Values of Inflation

o -.0437
1 -.0485 -.0086
2 -.0559 .0320
3 -.03%4 .0222
4 ~.0308 0237
5 -.0172 _ .0097
6 ~.0111 .0219
7 .0059 .0154
8 -.0177 | 0137
g -.0036 .0082
10 -.0183 . -.0086
11 -.0019 .0041
12 -.0070 . 0200
13 .0113 -.0063
14 -.0048 .0141
15 -.0029 .0271
16 ~-.0049 .0058
17 -.0130 .0062
18 -.0077 .0105
19 ~.0028 .0232
20 -.0089 .0094

Estimated standard error of estimated coefficients equals .0127
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Figure 3 and tables 7, 8, and 9 report the results of a cross-spectral
in average wholesale prices
analysis of inflation/in Great Britaln and the yield on British consols over
the period 1800-1938. The data are annual, the inflation rate being cal-

“

culated from the Gayer-Schwartz-Rostow index from 1800 to 1846, and from the

Saurheck-Statist index from 1847—1938.22/ In this case, forty was the

maximal lag for the covariances used in eétimating the spectral densities

and cross spectrum. Examinations of‘the hehavior of the yield on consols

were an important part of both Fisher's and Keynes's work on the Gibson paradox.
Figures 3a and 3b report the logs of the.spectral densities of the

inflation rate and the yield on consols, respectively. While the spectrum

of the inflation rate is fairly flat, that of the interest rate has the

"typical" spectral shape, with power generally decreasing with increases in

angular frequency. This meéns that if inflation is to explain a sizable

proportion of the variation in interest rates, the impulse-response function

connecting the two variables must be a long distributed lag function.
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Table 3.7

Cross Spectrum Between Inflation and Yield on Consols (1800-1938)

Period (years) Coherence Phase
80 .338 1.46 (.39)
40, .573 1.54
26,67 544 -1.52
20. .365 -1.35
16. 176 -1.19
13.3 .206 -1.38
11.4 423 -1.24
10, .588 - .96

8.89 .663 - .79
8.0 .597 - .71
7.27 .530 - .77
6.67 .595 - .96
5.71 .175 - .77
5.33 .108 - .60
5.0 149 -1.10
4.71 .181 -1.57
4,44 .206 1.11
4,21 253 .54
4.0 .370 07
3.81 459 - .08
3.64 .357 .15
3.47 . 311 .75
3.33 .278 .92
3.20 216 1.02
3.08 257 1.29
2.96 .363 1.32
2.86 497 1.01
2.76 576 .82
L2.67 456 .91
2.58 271 1.33
2.50 124 -1.39
2,42 .010 - .58
2.35 046 - .94
2.29 .296 - .28
2.22 450 - .16
2.16 .294 - .32
2.11 071 - .96
2.05 .055 .69
2.0 .082 - .00
cospec (0) _ .3043 _
£ (0) T 10,3292 102946

*negative phase indicates that interest rate "leads’
frequency in question.

Gain

.164
147
.092
. 045
022
.024
031
.028
.023
.018
.014
.013
.008
.010
.013
.010
.008
.009
.013
017
.016
.013
.012
012
.015
.013
.012
.013
.011
.007
.004
.001
.003
.010
.012
.008
.004
.005
.007

inflation rate at



Table 3.8

Regression of yield on consols on lagged and future

rates of inflation (1800-1938)

20 .
T gt e
Coefficients on future Coefficients on lagged

|j[ rates of inflation rates of inflation
0 0012
1 -.0098 0042
2 -.0066 L0047
3 -.0043 .0102
4 -.0054 - L0122
5 -.0051 0072
6 -.0083 .0086
-7 -.0063 .0094
8 -.0058 .0078
9 -.0061 .0075
10 -.0086 0067
11 -.0057 0094
12 -.0060 0069
13 -.0048 0071
14 -.0052 ) _ .0068
15 -.0047 ’ .0054
16 -.0039 .0048
17 -.0032 .0027
18 -.0025 .0028
19 -.0020 .0022
20 -.0019 .0016
21 -.0022 .0013
22 -.0014 .0019
23 -.0011 .0013
24 -.0010 L0010
25 -.0013 0016
26 -.0012 : 0014
27 -.0010 .0010
28 -.0008 .0011
29 -.0007 .0008
30 -.0005 L0007
Estimated standard error of coefficients = ,0053

Sum of estimated coefficients = .02946



Table 3.9

Regression of inflation rate on past and future

yvields on consols (1800-1938)

30
x = & k, r
.t 122230 j t-]

g Coefficients on future Coefficients on lagged
j\ consol yields consol yields
0 4,20
1 3.21 -17.50
2 - .99 - 1.92
3 7.13 1.91
4 6.23 2.9
5 -5.90 6.16
6 - .52 - 5.93
7 -2.90 .14
8 .52 : - .89
9 2.91 14
10 -3.72 . - 3.97
i1 4.72 3.57
12 ~3.80 - .21
13 .25 2.07
14 1.62 : -~ 2.29
15 - .57 - 2.15
16 .82 ’ .96
17 -2.57 1.75
18 - .00 - 1.21
19 - .64 - .37
20 .03 .38
21 .75 - 1.58
22 - .13 .70
23 - .35 - .51
24 - .27 A4
25 - .32 - .23
26 .36 .02
27 -.33 - .67
28 .39 - .03
29 - .59 - .34
30 - .15 .29

Estimated standard error of coefficients = 3.45
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Inspection of Table 3.7 establishes that interest and inflation are
badly out of phase, and that the gain of the consol yield over inflation
does generally decrease with increases in frequency, thus confirming the
presence of the Gibson pafadox, i.e. a véry long lag between inflation and

interest. Using (8) to estimate the mean lag of the impulse-response function,

we have

8" (0) = @(.07%7; 2(0)

1,46
075 " 18.6 years,

which is an estimate of the mean lag of the yleld on consols behind the rate
of inflation.

Tables 3.8 and 3.9 report the results of estimating the regression of r
-on past and future x, and the regression of x on past and future r. The
general pattern of the results resembles that for the U,S5, data. Regressing r
on x produces positive coefficients on past values of x, but negative cnes
on future valges of x. Regressing x on r produces predominantly negative
coefficients on past x, positive ones on future x. Unlike the results for
the G.S. data, for the regression of r on x, the coefficients that are largest
in absolute value are associated with lagged values of x, However, a substantial
number of future values of x pick up sizable negative coefficients. The
sum of the estimated coefficient in the regression of r on x is only .029,
a result of the substantial negative coefficients on future x's, Like the
results for the U.5, data, these estimates suggest that an explanation of the
interest-inflation relationship that does not permit feedback from interest

to inflation is probably unduly restrictive.
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Another way to view our estimates of equation (5) is provided by
asking what they imply about the relationship between the interest rate
and the price level, that is, by asking what they imply about the lag

distribution in the relationship

=4 T
3.14 = f, 1o 4
( ) re _E 5 108 Py "
J:-'OD
L}
= f a +
(1) dog p,_ + v,
L o« ) j
where vt is a statistical residual and I(L) = 3 ij .
j=-e

Since xt approximately equals (I-L) log P> equation (5) can be written
approximately as

(3.15) rt

h(L) (I-L) 1log P, + V.

n

(I-LYh(L) log P, + Ve

Comparison of (14) and {15) establishes that the coefficients of f(L) and
h(L) ought approximately to be related by

(3.186) fj =h, - h .

Tables 3.10, 3.11, and 3.12 report estimates of equation (3.14) for
the commerical paper rate, Macaulay's unadjusted yield index, and.the British
consol yield, respectively. The estimates of the r - log p relationships
are largely compatible with our estimates of the r-x relationships. For
example, for the regression for the British consol yield, the large pos?tive
coefficient on current log p and the several sizable coefficients on lagged
values of log p are compatible with the marked rise in the value of the
' coefficients in the r - x distributed lag coefficients as the lag of X ﬁehind
r goes from -1 to +4. The negative values on the first two future values
of log p imply that coefficients }n the r - X relationship will decrease as

the lag index goes from -3 to -1. The lag distribution in the r - 1oz p
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relationship is characterized by a much shorter mean lag than is that for
the r - x relationship. TFor example, using the estimated phase statistic
.at the 80-year periodicity (which equals -.099 radians with an approximate
standard error of .167 radians) to estimate the mean lag for the r - log p
relationship for the British consol yield, we obtain an estimated mean lag
of the consol yield behind the logarithm of the price level of 1.3 years.

Notice that for bhoth Macaulay's unadjusted yield and the commerical
paper rate, the r - 10g p relationship has sizable, predominantly negative
coefficients on future values of 10g p. This implies feedback from r to log
For the British consol yield, however, the coefficients on future values
of log p are relatively smaller, and are roughly compatible with the absence
of feedback from r to log p {of course, we cannot rule out contemporaneous
feedback).

The relationship between the r - x and the r - log p regressions shows
again how our regressions confirm the presence of the "Gibson paradox” in
the data we have studied. A very 'short” distributed lag relationship
between r and log p can easily appear io be a very long, and perhaps two-

sided, distributed lag between r and x.



Table 3.10

Regression of Commerical Paper Rate on Past and Future Values of
One Hundred Times the logarithm of Wholesale Price Index

20
r, = jz—zohj log pt-j
li| Coefficients on Future Coefficients on Past
Values of log p ‘ _ Values of Iog p

0 .04357
1 -, 03817 .01961
2 . 00202 -.01865
3 -.00341 .01439
4 00770 -.00549
5 -.00592 . 00403
6 .00792 -.00670
7 .00793 -.00168
8 -.00601 : | .00472
9 -.00189%9 .00332
10 | . . 00547 . -.00084
11 .00b42 .00580
12 -.00190 -.00033
13 .00114 00388
14 . 00089 -.00038
15 .00294 .00310
16 .00022 |  -.00041
17 -00304 ' .00248
18 . 00035 -.00007
19 . 00296 .00314
20 . 00002 . 00002

Estimated standard error of coefficients = .01237



Table 3.11

Regression of Macaulay's Yield on Past and Future Values
of One Hundred Times the logarithm of the Wholesale Price Index

20
r. = jg_goh. log 1:)1;__.j
|i| Coefficients on Future Coefficients on Past
Values of ilog p . Values of log p

o . 00626
1 -.00374 ] . 00609
2 . 00390 -.00388
3 ~.00712 . 00578
4 —-OOO?i -.00417
o . 00153 -.00132
6 -.01017 .00022
7 . 00585 . -.00313
8 -.00113 . 00008
9 -.00153 -.00217
10 -.00190 - .00007
11 -.00124 -.00069
12 - 00068 . -.00026
13 -.00140 -.00096
14 -.00086 -.00037
15 -.00141 ~.00150
16 -.00009 ~.00019
17 -.00132 -.00166
18 -.00022 -.00020
19 -.00148 -.00168
20 -.00016 -.00016

Estimated standard error of coefficients = .00508



Table 3.12

Regression of Consol Yield on Past and Future Values of
One Hundred Times the logarithm of Wholesale Price Index

20l

r, = Jz_zoh- log pt—j
3| Coefficients on Future Coefficients on Past
Values of Log p . Values of log p
0 . .01145
1 -,00246 .00421
2 -.00148 .00137
3 00172 . 00596
4 . 00060 . 00247
5 .00285 -.00371
6 -.00165 . 00201
7 . 00023 ' .00170
8 . 00087 -.00100
9 .00254 .00004
10 ~-.00235 : -.00014
11 . 00050 .00303
12 ~.00075 ’ -.001486
13 . 00078 . 00049
14 -.00024 ‘ .00010
15 -.00072 -.00061
16 -.00034 -.00028
17 -.00047 -.00147
i8 -. 00007 .00052
19 .00014 ' -.00025

20 . 00041 -.00027

Estimated standard error of coefficients = .00195
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It may be of interest to note that Irving Fisher himself was aware of
the reverse influence that the interest rate seems to have exerted on the

rate of inflation. In the Theory of Interest, Fisher wrote:

"As implied by what has just been said regarding banking policy, the
relationships of P' and i [x and r, respectively, in our notation] are
mutual. A change in i undoubtedly has an effect upon P' as well as the
reverse. QOur analyses have demonstrated that, in a decisive majority of
instances, price changes precede changes in i. This does not mean that
. changes in the interest rate can never be used to forecast changes in
prices and in business activity. In fact, an arbitrary increase in i at
any time does tend to pull down the level of general commodity prices,
while a decrease in i tends to increase P. This is a fact which has been
quite well established and is made use of by central banks in formulating
their banking and credit policies.

"The influence of changes in interest rates upon prices and business
activity is made use of also by forecasting agencies in making their prog-
nestications of business and price movements for the near future. The
fact that i follows P', in most instances over secular and cyclical periods,
is not inconsistent with the other fact that every increase or decrease in
i exerts an influence upon P in the opposite direction. Within limits, a
fall in the rate of interest may and often does produce a rise in prices
and of business activity almost immediately. This effect may be continued
for many months until increased prices again become dominant and pull the
interest rate up again. s

"In so far as the rate of interest is cause and the price movements
are effect, the correspondence is just the opposite of that which occurs
in so far as the price movements are cause and the interest movements effect."”
(pp. 443-44).
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Fisher was thus clearly aware of fhe mutual influence that appears
to characterize the relationship between interest and inflation. 1In addition,
there are indications that he made some preliminary attempts to implement
this insight in his formal statistical work. For example, in Charts 45 and

50 in the Theory of Interest, Fisher reported correlation coefficients between

interest and lagged inflation for both positive and negative lags. For a

fairly serially uncorrelated inflation rate, these correlograms ought to

have patterns generally similar to those displayed by two-sided distributed
lags. Fisher's charts do broadly resemble the distributed lags we have

reported above, the correlations between interest and lagged inflation generally
being positive, those between interest and subsequent inflation being negative.
Moreover, Fisher seems to have experimented with regressions of inflation on

. , X 2
lagged rates of interest, although he viewed these experiments as UHSUCCESSfulrg/

We conclude that equations (1) and (2) seem not adequately to account for
the relationship between interest and inflation. Instead, while.working
within the class of bivariate models described by equation (3), it is necessary
to take into account feedback from current rates of interest to subsequent
rates of inflation. If one wished to continue working only with models of
that class, the proper approach would be to attempt to estimate the parameters
in all four "corners" of the matrix on the left of (3). That task might well
be intractable, since the parameters of (3) will be estimable only under
circumstances which will not generally obtain. Moreover, even if that system

were to have been estimated, it would not be easy to interpret the results.
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That is, few would be willing to interpret the second equation of (3) as a
]

i uti f inflation.
ngrructural™ relationship explaining the evolution of the rate ©

In fact, even the first equation of (3) would lose the relatively straight-
forward interpretation that it had when C(L) was specified to be zero. This
is because it will no longer be "rational" to form expectations of inflation
by looking at current and lagged rates of inflation alone, since current and
past interest rates are of some help in predicting subsequent rates of inflation,
If one wants to build rationality into the model, it will consequently be a
more delicate job to interpret the first equation of (3).

Probably a more fruitful approach than tryiné to estimate and interpret
(3) would follow from noting that what appears to be feedback between r and x
within the context of model (3) may emerge because some omitted series are
influencing both r and x, For example, in the context of model (3), feedback
between x and r could emerge because the variable "aggregate demand" or
"monetary growth" affects both r and x. Such influences are implied by most
macroeconomic models., In the next section of this paper, we attempt to estimate
the dividends that are likely to flow from this somewhat expanded approach to

explaining the historical relationship between Anterest and inflation.
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1V. Inflation and Interest in a Simple Macroeconomic Model

The results of the preceding section cast considerable doubt on the
adeguacy of Fisher's explanation of the Gibson paradox. That explanation
of the relationship between inflation and interest hypothesizes that there
is a single direction of influence, one flowing from inflation to interest.
Our empirical results imply that such an hypothesis is overly simple because
it neglects the influence that the interest rate seems to exert upon sub-
sequent rates of inflation. In this section, we describe an approach that
accommodates that apparent feedback from interest to inflation and also
provides an alternative explanation for the Gibson paradox.

Our approach is to analyze the rglationship between interest and inflation
that emerges in a simple stochastic aggregative model. In its short-run
behavior, the model is basically "Keynesian' in nature. However, price
level adjustments and anticipations of inflation play important roles,
especially in governing the evolution of the system over time, S0 that the
model incorporates some of the key elements of monetarist doctrine. In the
absence of stochastic terms the model-will in fhe loﬂg run approach the
neo—classical steady-state of Solow [4D] and Swan [41]. In this model, the
jnterest rate and the rate of inflation are jointly determined, together
with output and its cémposition. Our purpose is to determine whether, given
plausible parameter values, the model is capable of generating the kind of
relationship bztween interest and prices that obtaing in the actual historical
data.gﬁ/

Our analysis qf the interest-inflation relationship will be based on
a discrete-time, stochastic version of the model. However, to ease the
exposition, we begin by describing a nonstochastic, continuous-time version
of the model. The model is basically a simplified version of the "Keynesian"

model described by Sargent and Wallace [31]. The model contains one good
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whose output Y is determined by the production function

Y = Y(K,N)
where K is the capital stock and N -is employment. The production function
is assumed to be linearly homogeneous in K and N, and to be characterized
by positive though diminishing marginal products and positive cross-partial
derivatives. We will generally take advantage of the linear homogeneity

of the production function and write it in the intemnsive form

2evap =y@
or
(4.1) y =y 5y ) >0, yO) < 0
where y = % and A = g .

Labor is assumed to be a perfectly variable factor of production, with
firms choosing the employment.- level so that at each moment the marginal

product of labor equals the real wage,

“4.2) v _ _,
S =y

where w is the money wage rate and p is the price of the one good in the model.
While firms can adjust their employment levels at a point in time, it

is assumed that capital is a fixed factor of production at any moment, there

being no market in which firms can purchase or-sell existing stocks of the

one good in the model. The absence of this market is presumably due to the

high transaction costs that might be assumed to be associated with trading

existing stocks of capital. Alternatively, it might be attributed to the

possibility that capital put in place is not a homogeneous good, being specialized

to each firm. For such reasons, firms are not able instantaneously to obtain

more capital when there is a gap between the marginal product of capital,

y( - Ay'(V, and the cost of caﬁital, which equals the nominal interest

rate on bonds, r, plus the constant rate of depreciation, §, minus the public's
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Instead, firms respond to a gap bhetween

anticipated rate of inflation 1.
the marginal product and cost of capital by investing as if attempting to

change the capital-labor ratio at a rate that depends directly on that gap:

)
& |
Al - W - @ 4s-m) L, I'>0 10 =0
X i
or
1N
(4.3) =R 7 IO - w' O - (r+8-mM).

where dots above variables dencte time derivatives and where I(=K) is net

investment. To simplify (3), we set N/N equal to its long-run equilibrium

-

value n which equals NS/NS, the proportionate rate of growth the labor
Thus, letting i equal I/K, (3) becomes

We assume that n is a constant.

(4.3") i=n4+I@O) - w'(N - (+ 8-,
which is the kind of Keynesian investment demand function that has been

supply.

posited by Stein {35] and Tobin [36]. We assume that firms finance invest-

ment by issuing only equities.
Consumption per unit of capital, c, is assumed to depend linearly on

output per unit capital minus taxes per unit capital, t, minus the depreciation

rate, §:
D<cz <1

z(y - t - &)

c =
Taxes per unit of capital, t, are assumed to be

(4.4)

where z is a constant.
collected by the govermment in a fashion that makes them independent of

income and relative prices at a point in time.
Equilibrium in the goods market requires that at each moment of time

the supply of output per unit capital equals the demand,

{4.5) y=¢+ 1+ 8§ +g
where g is government expenditures per unit of capital.
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There are three paper assets that individuals own: money, variable-
interest-rate bonds, and equities. Money has a nominal yield of zero while
bonds, issued by the government and individuals, have a nominal vield of r
and, like savings deposits, have a fixed nominal value. Equities are issued
by firms and constitute a claim on firms' net cash flow, all of which the
firms pay out as dividendg. We assume thét individuals regard equities and
bonds as perfect substitutes when their real yields are equal.

Portfolio balance is described by the equation
(4.6) M_ = m(r, y) m <0, m >0
pK ’ r 'y

where M is the supply of money. Equation (6) posits that the demand for real
balances is linearly homogeneous in the capital stock, which in the long run
equals the real value of the public's equities. Once equation (8) is satisfied,
it follows that individuals are happy with therdivision of their portfolios
between money, on the one hand, and bonds and equities, on the other hand.
The value of equities, S, is the discounted present value of firms'

dividends. Since wealth-holders regard bonds and equities as perfect sub-
stitutes the appropriate di;count rate is the bond rate r:

©

= [ e T ROTEE®) N W ()N -p (£) 8K (E) dt
0 .

We assume that p(t) and w(t) are expected to follow the paths

mt

p{t) = pe ,

Il

T
wit) = we t

where 1T is the anticim ted rate of inflation. Then we have

_ I?e‘(r—n)t

7]
|

dt:[pY-wN-5pK]

pY-wN-§pK
r—1
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_ PY-wN-p iy Q)Y OK . p O -ay O - (r+85-m))

+ pK
— g p&,

which by the linear homogeneity of Y(K,N) yields

_ POy Q- (r+8-m))

(4.7 8 —

+ pK

When the marginal product of capital exceeds (falls short of) the cost of
capital, the value of equity exceeds (falls short of) the replacement value
of the capital stock, pK.EE/ Some writers, most notably Tobin [36], view
the Keynesian investment demand schedule as postulating a direct dependence
of investment demand on the difference between the value of equity (i.e.,
individuals' claims on existing capital) and the capital stock evaluated
at the price of newly produced capital; The investment function (3') can
obviously be given such an interpretation.

The monetary avthorities can conduct open market operations at a point
in time subject to the constraint

dM = -dB
where B is the stock of bhonds. Government expepditures are made subject
to the flow budget.constfaint
B

- t + n + =
&= b-K T pK

where M and B are the rates at which the government is adding to the stocks
of money and bonds, respectively.

The rate of wage inflation is determined by the Phillips curve

N-N

(4.8) s

W , ‘
el h( )+ Y1y h' >0, vy >0

N
8

where NS is the full-employment labor supply, which we have assumed follows
the path

nt
Ns(t) = Ns(O)e .

The full-employment labor supply is a construct that is assumed to make
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allowance for normal hours worked, normal turnover rates, etc. As a con-
sequence, employment in man-years can exceed the full—employﬁent labor supply
if aggregate demand is high enough and if there is sufficient rigidity in
the money wage rate. We will assume that Y equals unity, which implies that
there is no long-run tradeoff between wage inflation and employment. waeyer,
the implications of our mgdel for all variables except the employment level
would be unchanged if we Qropped the assumption that y is unity. We will
usually assume that the anticipated rate of inflation, 1, that appears in

(8) and (3') is determined via some version of the adaptive expectations

scheme, e.g.,

(4.9) M= s(-g— -m B>0

-

where p is interpreted as a left-hand derivative. Given (9), if y equals

unity in equation (8), real wages can be constant over time only if employment

N equals the full-employment laboxr supply NS.

The model can now be summarized by the following equations:

4.-1) ¥y =y
. w .
(4.2) p =7 G

(4.3 1i=n+ IGFQ) - W' Q) - (r+6~-m)
(4.4) ¢ = z(y-t-8)

(4_5)y=c+i+g+.5

M

(4.6) 7f = m(r,y)

(4.8) W:h(N ) +ym
s

- _ a® -
(4.9) 11 = B(p m
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CE
1l
=

(4.10)

{4.11)

%I .
0

s
These equations are assumed to hold at each moment.

At a point in time, K, f, and w are fixed. At any moment the positions
of y, », w/p, i, ¢, and r are determined'by equations (1), (2), (3"), (4,
(5), and (6), while equations (8), (9), (10), and (11) govern the evolution

of the system over time. The fact that is finite permits disturbances to

£]g.

affect the level of output and employment at a point in time.

The momentary equilibrium of the system can be determined by solving
equations (1) - (6) for versions of "IS" and "IM" curves. The 15 curve
gives the combinations of r and y that make equal the demand for and supply

of output. It is derived by substituting (3') and (4) into (5):

y = z(y-t=-8) +n+I(y Q) -y ' Q) - (r+8-m) ) +g+5

Since y'()\) > 0, we can invert (1) and obtain

-y O ()
) 2
L ARON

A =AW NG = o > 0.

T 00 >0, V' (y) =

Substituting this into the above expression yields the IS curve:

A y)

(4.12) Yy = z(y-t—6)+n+1(y = X1(y)

- (r+§~r) ) ++b.

The slope of the IS curve in the y - r plane is given by

dy -1
dr L AT

18 1
A y) 2

which is of ambiguous sign since L''(y) > 0. The denominator of the above

expression is the reciprocal of Hicks's "supermultiplier,” the term

1N . . ‘
I'—ﬁﬁ_ being the marginal propensity to invest out of income. We will

X

assume that this term is less than the marginal propensity to save, so that
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the IS curve is downward sloping. The position of the IS curve depends on
the parametems t, g, and 7 in the usual way. An increase in g shifts the
Ié curve upward by the amount of tﬁat increase.

We can write the marginal productivity condition for labor as

p = wi'(y).

Substituting this expression for p into (6) yields the LM curve:
(4.13) M = w)'(y) -Km(r,y),
the slope of which is easily verified to be positive in the r - y plane.
The IM curve shows the combinations of r and y that guarantee portfolio
balance. Its position depends on M, W, and K, all of which are parameters
at a point in time.

The momentary equilibrium of the system is determined at the inter-
section of the IS and IM curves. That egquilibrium will in general be a
nonstationary one, the interest rate, the real wage, and the capital-labor
ratio possibly changing over time. However, given fixed values of g, t, and
M/M, the system may over time approach a "steady state' in which the interest
rate, rezl wage, and employment-capital ratio are fixed, while prices and
wages change at a rate equal to ﬁﬂm minus n. We will use two curves to
characterize the steady-state growth patﬁ in the r - y plane. The first
is simply a vertical line at the steady state output-capital ratio, which ¢
we denote by y*. From (5), the rate of growth-of capital ié

i =y-z(y-t-5)-g-5
Subtracting n from i yields the proportionate rate of growth of the capital-

' *
labor ratio. Setting it equal to zero and solving for y yields the value of y :

.14 §F - “+g+§§f;§)"2t

*
We show y graphically as a vertical line in figure 1. On our assumptions,

the steady-state value of y is independent of the interest rate.
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If investors are to be content to increase the capital stock precisely
at the rate n, so that i - n equals zero, the real cost of capital must
equal the marginal product of capital:

YOO O)

(r+&-1)

(4.15) _ A6
N

which is an equation that tells us what r + § - yr must be if the system is

to be in a steady-state equilibrium at a given y. The slope of (15) is

gr _ 2 G) >0,
dy vy 2
3 )

which is positive, reflecting the direct dependence of the marginal product
of capital on the output-capital ratio. We call (15) the capital-market
equilibrium curve, and label it KE. An increase in 77 causes the KE curve
to shiff upward by the full amount of the increase.

The determination of equilibrium is depicted in figure 1.

[figure 1 goes here]

thice that the IS curve has been drawn so that it intersects the KE curve
at y*, the steady-state output-capital ratio. That our IS curve has this
property can be verified by setfing r + 8 - mequal to y(-)v'() in (12)
and solving for y, which turns out to equal y*.

To illustrate how the modei works, suppose that the system is initially

in a full steady-state equilibrium, the IS, IM and KE curves all intersecting



F\ﬂuve .1
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% = n, so that the equilibrium rate of

at y*, as in figure 1. Suppose that
inflation is zero. Now suppose that at some point in time there occurs a
once-and-for-all jump in M, engineered via an open-market operation, that
leaves ﬁ/M unaltered. To simplify matters, we will suppose that 1 remains
fixed at zero, its steady-state value, dqring the movement to a new steady-
state equilibrium. We also assume that g and t are constant over time. The
effect of the jump in the money supply is to shift the IM curve to the right,

say toIM, in figure 1. The result is an instantaneous jump in employment

1
and in the output-capital ratio. Employment now exceeds the labor supply,
causing wages to adjust upward over time. In addition, the nominal interest
rate has fallen, creating a positive discrepancy between the marginal product
of capital, which has risen, and the real cost of capital. Firms respond
by adding to the capital stock at a rate e*ceeding n. Since capital is
growing faster than the money supply, and since money wages are rising over
time, the LM cur§e shifts upward over time, from LMl_toward UMO in figure 1.
The upward movement of the IM curve depresses_y and causes employment N
to approach the labor supply Ns from above as time passes. The real wage
rises as IM shifts from LM1 back toward LMO’ so we know that p/p falls short of
W%/w during the movement back to the steady-state equilibrium. The IM curve
will stop shifting when it finally reaches LMO’ since then I/K = n = ﬁ/M,
and w/w = 0. The final result of the once-and-for-all increase in the money
supply is thus to drive the level of money wages and prices upward
proportionately, and to leave the interést rate, the real wage, and the
output~capital ratio unchanged. Employment will equal the labor supply
when the steady-state is achieved.

The adjustment process would be considerably more complex if we were

to permit 11 to respond to the occurrence of actual inflation, as in egquation (9.

For then the IS curve and the KE curve would shift upward as 17 increased in
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response to the emergence of inflation. It is easily verified that when 71
changes, the new IS curve continues to intersect the new KE curve at y*

The result of allowing 1 to depend on past values of p/p is 1likely to be
the emergence of 'overshooting."” Following the original jump in M, the

IM curve will be shifting toward an interseciion at y* with an IS5 curve
associated with a positivé anticipated réte of inflation. But at that
intersection at y*, w/w will equal 11, which is likely to be positive since
it depends heavily on recently past values of p/p, which were positive. '
Since the relative rate of change of the money wage exceeds the difference
between ﬁ/M and k/K, which equals zero at y*, the IM curve must be shifting
upward over time.zg/ This means that the output-capital ratio will fall
below y*, employment will fall below the labor supply and w/w will fall
below 17, as will p/p, causing 11 to fall. That will cause the IS curve

to shift downward. Assuming that the system is dynamically stable, the
final resting place for all variables will be the same as if ; had remained
at ité steady-state value throughout the adjustment process; but the path
to steady-state equilibrium may be muéh different.

In steady-state equilibrium the nominal interest rate is related to
the anticipated rate of inflation by (15), wﬁich is a version of Fisher's
equation. When the system is not at steady-state equilibrium, however, (15)
need not hold. Moreover, it is clear that if |y were to increase at a point
in time, the immediate effect would in general be to drive r up by an
amount less than the increase in 3. That would be associated with an increase
in the value of equity as compared with the réplacement value of the capital
stock and increases in the demand for investment goods and in output and
employment.

111,

Using the same techniques employed in section / we have analyzed the

relationship between the nominal interest rate and the inflation rate in a
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discrete-time, stochastie version of our model.

time model are:

(i) y = Ax®

£
!

(i) = =y (V)
(iii) i = n+ge YOOy ' W= (x+6-1)) + €
(iv) ¢ = z(y—t—é)fec

(v) v = c+i+g+8

m, m

oM Tt
{vi) ok = By r €
w=w N-N
.. -1 . s
(vii) — =h (=) +ym+ g,
-1 5
P17P_g
(viii) m = g, + & (T;_—).

. K = iK
(ix) K+1 i

. t
(x) Né = Nso(l+n)

The equatiors of the discrete-

where variables with no time subscripts correspond to the current period,

while those with numerical subscripts denote the corresponding variables

shifted foward or backward in time the appropriate number of periods. The

variables ei, €. €yt and log em are stochastic terms that are assumed to

be mutually and serially uncorrelated, and normally distributed. Notice

that our specification of the discrete-time Phillips curve makes the cur-

rent money wage rate a function of the current level of employment.

Tables 4.1, 4.2, 4.3, and 4.4 and figure 4.2 report the results of

simulating the model where the parameter values assumed the following values:



A = 759.836
o = -75

n = .03

z = .8

B = .025

m1 =1.0

m2 = -.75

h =1.5

t
Mt = (1+n) M0

where Gei denotes the standard error of ¢
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i!

1.0 M
(e}

= 0.
K
O

= 0.

N
= .003 so
= ,01 6
= .00067
= ,01
.0217
.05 ’

100 (billions)

1500 (billions)

.05 (billion)

.02

etc. The initial conditions

were chosen so that the system was initially on a steady-state growth path.

Notice that the money supply grew at the same rate as the labor force, so

27
that there was no trend in the price level.ﬂ—/

In addition, note that

anticipated inflation is held at zero throughout this simulation, so that

it exerts no influence on the interest rate.

The parameter h takes the

value 1.5, which implies that, ceteris paribus, a one-percent unemployment

rate would cause money wages to fall by 1.5 percentage points.

We believe

that this much response in the wage level would occur only over a‘périod

of at least a year. As a consequence, we think of the model as generating

annual data.

of prices,

inflation, and interest

The logs of the estimated spectral densities/are recorded in figures

4.2(a-c), while table 1 reports the estimated cross-spectral statisties.

Tables 2, 3, and 4 record our estimates of two-sided distributed lag functions

between rt and xt,

and between rt and log Py~

Reference to these figures and tables establishes that the relationship

between the interest rate and inflation rate in these artificial data in

important ways resembles that found for the historical data analyzed in

section III. Reference to figures 4.2a and 4.2c and the gain of r over x
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Table 4.1

Cross Spectrum Between Interest and Inflation

Period ”
In Years Coherence EEEES (radians) gﬁiﬂ
80 .311 -1.51 (.25) .264
40 .514 _ -1.56 .261
26.67 .607 1.55 .226
20, .657 1.47 .198
16 | ' - .621 0 1.33 .175
13.3 .550 1.25 .149
11.43 .478 ) 1.17 .116
10. .492 ‘ 1.09 .095
8.89 .600 1.04 .095
8.0 .730 1.02 .103
7.27 .773 .98 .101
6.67 . 687 .87 .087
6.15 .583 . LT .074
5.71 . 550 .74 .074
5.33 .602 .69 .078
5.00 .675 ' .64 .075
4.71 650 .62 .066
4.44 _ .521 .58 .059
4.21 : . 441 " .63 .055
4.0 . 466 .69 .053
3.81 .514 .52 .055
3.64 .598 ..33 . 062
3.48 .700 .27 .068

3.33 ' .726 .29 .069



Table 4.1 (Continued)

Cross 8Spectrum Between Interest and Inflation

Period

In Years Coherence Phase (radians) Gain
3.20 , .696 .38 .063
3.08 .631 . .49 .053
2,96 .473 .47 .042
2.86 .338 ..35 .031
2.76 .373 .35 .027
2.67 .462 .32 .031
2.58 . 580 .28 .045
2.50 .728 .31 .059
2.42 770 .33 .059
2.35 .731 - .29 .054
2.29 . 645 .15 .049
2.22 .600 .05 . .047
2.16 .639 : .25 .047
2.11 .748 .37 .054
2.05 .783 .23 .061
2.0 | . 796 .00 .065
Heoy = Sosp(0) _ -2.0393

- fx(O) ~ 69.7926

*negative phase indicates that interest rate "leads” inflation rate at
frequency in question.



Table 4.2

Regression of interest rate on future and past
values of inflation

20
rt = jz_zohjxt”j
|Jl Coefficients on future ’ Coefficients on past
rates of inflation rates of inflation

0 .044
1 -.033 .026
2 -.033 .020
3 -.031 .020
4 -.023 ' .018
5 -.023 ) .016
6 -.019 .014
7 -.014 . .018
8 =.017 .010
9 -.013 .011
10 -.008 ' .013
11 -:009 : .008
12 -.005 .005
13 -.006 .009
14 -.003 , .005
15 -.003 : .008
16 ‘ -.006 .005
17 -.005 .008
18 -.005 ) .004
19 -.003 005
20 -.003 , : .003

Estimated standard error of estimated coefficients equal .006



Table 4.3

Regression of inflation on future and past
values of interest rate

20
xt = jz_gokjrt"j
13| Coefficients on future _ Coefficients on past
interest rates interest rates

0 7.508

1 .028 -5.679

2 -.159 -.745

3 . 762 | -.537

4 -.392 -.072
'5 412 .383

6 .069 . . 060 ,
7 .469 . 226 -
8 -.202 .143

9 580 -.037
10 .149 ‘ .022
11 .504 . 298
12 ~.489 -.007
13 .637 : .121
14 -.150 ' .395
15 .331 . 157
16 | -.030 .08¢
17 .385 .034
18 -.166 .194
19 .518 _ .446
20 -.040 . -.202

Estimated standard error of estimated coefficients equals .420



Table 4.4

Regression of interest rate on past and future
values of log of price level

10
e T jE.mhjpt'j
13} Coefficients on future Coefficients on past
values of log of price level values of log of price level
o -080
1 -.017 . 003
2 -.002 003
3 .003 -.005
4 .001 .002
5 . 001 .001
6 -.001 ‘ -.003
7 .005 -008
8 -.006 ) -.001
9 . 003 -.001
10 . 003 . 003

Estimated standard error of estimated coefficients equals .003
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recorded in table 1 shows that the spectrum of the inflation rate is much
flatter than that of the interest rate, which is fairly “typical” in
shape, with power generally decreasing with increases in angular frequency-
The gain statistics and the phase statistics both indicate that the impulse-
response function is characterized by a very long mean lag. At low frequencies,
the interest rate and infiation rate are‘approximately /2 radians out of
phase, which is consistent with the interest rate being related to the (log
of the) price level, rather than with the rate of inflation. Thus, the
Gibson paradox characterizes the artificial data that we have generated.

The regression of r on future and past values of x, which is reported
in table 4.2, appears generally similar in configuration with those estimated
using historical data. Lagged values of x pick up mostly positive coefficients
while negative coefficients are associated wifh future values of x. Using
the cospectrum divided by the spectral density of inflation at zéro Irequency
to estimate the sum of the weights produce a value of -.028. One notable
difference between these estimates and those reported in section III is the
sizable coefficient that appears on the current value of x. In section III
that coefficient was estimated to be relatively much smaller.

The regression of r on.past and future values of log p, which is shown
in table 4.4, is characterized by a domiﬁant coefficient on the current
value of log p. While there is evidence of feedback from log p to r, the
relationship is well approximated simply as a contemporaneous one between
r and log p.

While the relationship between inflation and interest in the artificial
data is broadly similar to that characterizing the historical data, it is
clear that anticipations of inflation play no role in shaping the relationship
for the artificial data, since they are assumed to be zero throughout the
simulation. In this case, the long mean lag that characterizes the relationship

between interest and inflation has nothing to do with long lags in adjusting
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expectations of inflation in response to the occurrence of actual inflation.
The simulation results give content to our earlier assertion that
what appears to be feedback within the context of the class of bivariate
models utilized in section III can be interpreted as indicating that r and
x are both being influenced by some other variables. In our model, r and
X are mutually determined, both being influenced by the stochastic terms
€ir €40 € and €y The model generates realizations of r and x that, within
the context of a bivariate model, are inconsistent with the notion that
x is influencing r, with no reverse feedback occurring.
In summary, our model is capable of generating realizations in which
the interest-inflation relationship brpadly resembles that characterizing
the actual historical data. It follows that the model is capable of providing
an explanation of the Gibson paradox which is an alternative to Irving Fisher's.
The key reason that the Gibson paradox may infest the data generated by the
model is the failure of wages and prices to adjust sufficiently quickly to
keep output always at its full-employment level. Thus, consider again the
effects of a once-and-for-all increasé in the ﬁoney éupply, which occurs at
time t and is assumed to leave ﬁ/M unchanged. Assume that the system is
in steady-state equilibrium up to E, with M/M = n. In addition, assume that
events are described by the nonstochastic, continuous-time version of our model.
In a'classical’version of our model, in which the Phillips curve is dropped
and replaced by the assumption that output is fixed at its full-employment
level at any moment, wages and prices being perfectly flexible, the effect
of the increase in M is to leave r unaltered, and to cause w and p to jump

once and for all at T, as depicted in figure 4.3.
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[figure 4.3 goes here]

The response of our '"Keynesian' model to a jump in M is depicted in
figure 4.4. The jump in M causes r to fall at ?, but then to rise over time
back toward its steady-state value. The price level jumps at t and then
continues to rise over time as r rises toward its steady-state level. During
the transition back to the steady stafe, both r and p are too 1ow.(or else
too high in the case in which overshooting emerges) to be steady-state values,
and they tend to move together over time. The result is a tendency for r
and p to be positively correlated, eveﬁ though their steady-state values are

not related.

[figure 4.4 goes here]
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The results of this section demonstrate that it is possible to
construct an explanation of the Gibson paradox that does not, like Fisher's,
rely importantly on hypothesized movements in the anticipated rate of in-
flation. Thus it does not seem necessary to stress differences between
nominal and real rates of return in order to explain the Gibson paradox.
This finding carries the implication that the Gibson paradox ought to char-
acterize measures of the real rate of return on equities as well as the
nominal yields that we examined in sections I and III. To determine whether
this implication is borne out. we have analyzed the relationship between
wholesale commodity price inflation, and the real return omn equities, as
measured by Cowles' [42] dividend-price index or earnings-price index for
the United States. A sample of the results is reported in Tables 4.5, 4.6,
4,7, and 4.8. Table 4.5 records the cross spectrum between inflation in whole-
sale commodity prices and Cowles' dividend-price ratiolfar railroads over
the period 1871-1929. Thirty was the maximal lag in the covariograms and
cross covariograms used in estimating the cross spectrum. The cross spectrum
resembles those reported for nominal yields in section III. The gain of
the dividend-price ratio over inflation falls off sharply as frequency in-
creases, while the two series are approximately m/2 radians out of phase
at low frequencies. These findings imply that the relationship between the
dividend-price ratio and the rate of inflation was characterized by the
Gibson paradox.

Table 4.6, 4.7; and 4.8 record varioué estimates of the two-sided

distributed lag

1
where r_ is the "real" rate of return on equities and W, is a statistical



Table 4.5

Cross Spectrum Between Railroad Dividend-price Ratio and

Inflation in Wholesale Commodity Prices (1871-1929)

Period in Years Coherence Phase (radians) Gain
60 .396 1.52 (.46) .195
30 | .534 1‘51. 212
20 .324 -1.44 L1111
15 .432 -.97 .082
12 .505 -.83 .076
10 .343 -.93 .052

8.57 .208 -1.20 .033
7.5 .143 -1.49 021
6.67 240 -1.30 .019
6.0 .587 -1.13 ' .030
5.45 .511 -1.24 .037
5.0 .163 -1.55 .029
4.62 .069 .06 .026
4.29 .311 -.05 .064
4.0 .229 .42 .045
3.75 .189 1.33 .030
3.53 .450 ~1.43 .041
3.33 .575 -1.44 .045
3.16 .411 ~1.39 .034
3.0 .192 .84 0.19
2,86 .185 -.58 .016
2.73 . 207 -.94 .014
- 2.61 .302 ‘ -1.17 w014
2.50 . 366 -1.31 .015

2.40 .292 -1.38 : .015



Period in Years
2.31
2,22
2,14
2.07

2.00

Table 4.5 (Continue)

Coherence
.148
.030
.105
.292

.195

Phase (radians)
-1.35
-.82
.73
.77

00

Gain

.014

.008

.018

.029

.021



Table 4.6

Regression of Total Dividend-price Index on Future and

Lagged Rates of Inflation (1871-1929)

20
L.
Ty % _Z h, x_,
j=-20 1 t7J

Coefficients on Future Coefficients on Lagged
151 Rates of Inflation Rates of Inflation
0 .0069
1 -.0113 ' .0228
2 -.0044 ' .0045
3 -.0135 0094
4 -.0178 .0220
5 -.0044 .0181
6 .0011 . .0026
7 -.0099 .0105
8 -.0160 L0176
9 -.0060 .0037
10 -.0070 ' .0024
11 -.0080 -.0025
12 ~.0095 .0028
13 ~-.0072 0047
14 ~.0049 .0043
15 -.0010 -,0019
16 ~.0023 .0011
17 -.0031 .0026
18 -.0027 .0019
19 .0005 ~.0004
20 .0003 | -, 0004

Estimated standard error of estimated coefficients = .0119

Estimated mean lag of real interest behind inflation = 14 years



Table 4.7

Regression of Railroad Dividend-price Ratio on Future and

Lagged Rates of Inflation (1871-1929)

EO
h, x .
B je—z0 3

Coefficient on Future Coefficients on Lagged

|31 Rates of Inflation Rates of Inflation
0 -.0048
1 -.0191 .0158
2 -.0172 ' .0038
3 -.0133 .0125
[ -.0097 L0235
5 ~-.0072 .0192
6 -.0134 . L0101
7 -.0115 : .0150
8 -.0101 .0204
9 -.0027 .0089
10 -.0112 .0053
11 -.0138 ) .0034
12 ~.0110 .0083
13 -.0057 .0053
14 -.0074 .0035
15. -.0055 ~.0010
16 ~-.0036 .0035
17 ~.0030 | ' .0026
18 ~-.0019 L0011
19 -.0015 | -.0018
20 -.0005 .0004
Estimated standard error of estimated coefficients = .0118

Estimated mean lag of real interest behind inflation = 15 Years



Table 4.8

Regression of Railroad Earnings-price Index on Future and

Lagged Rates of Wholesale Price Inflation (1872-1929)

20
rt‘ = jz-zo hj xt—j
Coefficients on Future Coefficients on Lagged
|j| Rate of Inflation Rates of Inflation
0 .0070
1 .0373 .0309
2 -.0071 -.0082
3 -.0275 | .0059
4 -.0314 : -.0006
5 -.0407 .0227
6 -.0338 L0490
7 -.0041 .0373
8 -.0041 .0232
.9 -.0259 .0384
10 -.0147 ' ' L0341
11 -.0177 .0196
12 -.0062 .0117
13 -.0058 .0048
14 -.0103 .0064
15 -.0108 .0040
16 . 0002 .0034
17 ~.0044 -.0026
18 -.0043 -.0018
19 -.0054 -.0013
20 . 0006 .0004
Estimated standard error of estimated coefficients = .0226
Estimated mean lag of real interest behind inflation = 12 Years
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residual. The estimates were obtained using Hannan's inefficient estimator,
while the estimated mean lags were calculated using the method of equation
(3.12). As measures of the real rate of return we took Cowles' dividend-
price ratio (total index), Cowles' dividend-price ratio for railroads, and
Cowles' earnings—price ratio for railroads. 1In each case, the estimated
distributed lags resemble those reported for nominal yields in section III.
The distributed lags are long and apparently two-sided, with lagged rates of
inflation obtaining predominately positive coefficients while subsequent
rates of inflation pick up negative coefficients.2

These results provide support for the proposition that the rela-
tionship between interest rates and commodity price inflation cannot in
large measure be explained by appealing to hypothesized movements in the
anticipated rate of inflation. The Gibson paradox appears to have characterized
nominal and real interest rates alike. It follows that it is desirable to
have an explanation of the Gibson paradox that focuses on the relationship

between movements in real rates of return and the price level.
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V. Conclusions

Our empirical results imply that to explain the Gibson paradox it is
not adequate to hypothesize a one-way influence directed from inflation to
the interest rate (or, for that matter, from interest to inflation). Instead,
within the context of bivariate models, interest and inflation appear mutually
to influence one another. One implication of this finding is that Irving
Fisher's explanation of the Gibson paradox, which posits a unidirectional
.influence flowing from inflation to interest, is inadequate. Instead, to
explain the paradox, it is necessary to view interest and inflation as being
mutually determined. The model set forth in section IV illustrates a way
apparent feedback emerges in a system in which interest and inflation are
both endogenous variables. Moreover, for "plausible” values of its parameters,
the model generates data characterized by the éibson paradox. Long lags in

forming expectations of inflation play no role in prdducing the paradox

in these artificial data. This suggests that in general there is no reason to
expect a regression of interest against current and lagged rates of inflation
to reveal very much about the expectations of inflation held by the public.

In addition, the data on interest and inflation indicate that the iﬁterest

rate contains information, oﬁer and above that contained in lagged rates

of inflation, that is useful in predicting the rate of inflation. This
implies that it is probably inadequate to hypothesize that expectations

of inflation are simply naive extrapolations of past rates of inflation,

since that involves supposing that readily available information about the

subsequent course of inflation goes unused.
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FOOTNOTES

For example, see Milton Friedman [97, David Meiselman [25], Phillip Cagan
and A. Gandolphie [4], William Gibson [11], W. Yohe and D. Karnosky [ 39]-

Keynes named the paradox after A. H. Gibson, a businessman who had written
several articles about the correlation between interest rates and prices.
See Keynes [20, pp. 198-2101.

See Irving Fisher [6].
In particular, see Yohe and Karnosky [39].

Our procedure here was first to search over A's ranging from .1 to .9
at steps of .1. Having found the value of ), say kO’ that, among these
nine values of ), delivered the smallest residual variance, we then
searched again over [} - .09, ). + .09] at steps of .01 for the )
associated with the minimum residual variance. This value was taken

as our estimate of ). Notice that our search never extended beyond

the limits of }'s of .01 and .99.

See Friedman [9] and Sargent [307.

See Cagan [2]. For a very unsympathetic view of Fisher's work, see
Macaulay [24]. Also, see Keynes [20].

Throughout the rest of this section and also section I1T,we are measuring
the data in deviations from their means.

Nerlove [29] has extensively discussed using this model to implement
Muth's argument. ’

The Fourier transform of the v's of (1) is related to the Fourier trans-

o .. ] . '
form of the ¢'s of (2) by 1 - § v_e—le ={(T c.e in)“l, provided that
. | _n J
3=1 3=0
both exist.

whittle [37] is the fundamental reference on the subject of forecasting
processes like (1).
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For these mixed autoregressive, moving average error processes, 2 simpler
version of equation (8) can be easily obtained. The process can be
written in the alternative forms

x = B(L) |
t ~ A{L} t
or
A(L) B
B “t ot
nere A(L) = 1 L L2 " B(L)—1+bL+bL2+ + b L
where = -2 ay “ee a L, = 1 o cee RO
Let I + G(I) = AL /B . Solving for G(L) yields
A(L) - B(L)
6L) = = BMm
Then the autoregressive form can be written
(b, + a )L + (b, + a )L2 +
x_B(L)—A(L) e su =] 1 2" "2 S
t B (L) t t 2 t

1+ blL + b2L 4 e

The polynomial on the right involves only POWers of L, of degree greater
than or equal to one, and thus egquals V(L) .

Points inside the (1-q) confidence region satisfy

- k
SSR(9) = SSR(B) (1 + 75t Fie nx (@)

where SSR(G) is the sum of squared residuals associated with the vector
f of parameter values, é is the least-squares vector of parameter values,
k is the number of parameters estimated, N is the number of observations,
and Fk n—k(a) is the value of the F distribution with k, N-k degrees of

¥

freedom. See Jenkins and Watts [18].

~ A 3 - - -
The long confidence region around (al’ bl), which includes distributed

lags with widely different ‘shapes, is reminiscent of the findings of
Griliches and Wallace {147 and Griliches [15], who point out that different
points within the donfidence regions surrounding estimates of the parameters
of rational distributed lag functions are often associated with distributed
lags with very different shapes. Griliches and Wallace were concerned

with the case in which one variable is regressed on current and past

values of another variable, while the point made in the text pertains to
auntoregressions.

The results of this section raise doubts about the promise of Nerlove's
[29] recommendation that the optimal autoregressive forecasting scheme
be imposed in structural equations in which distributed lags arise

from the presence of expectations.
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The Fourier transforms of the matrices appearing in (3) and (4) are
related by
o

—y [~ - _1
-3 —-iw ~iw —i
1 - age ™) - b ™ ate™ ™y g(e W
(a) ' =
- -iw -iw ~iw
—ee™ 1 -deEe ) vy YCHE
R - - -
—iw -iwj .. ) )
where a(e ) =% aje , etc. Taking the inverse Fourier transforms
J

of these matrices permits one to recover the matrices appearing in (3)
-iw -1 . .
and (4). Notice that if c(e ) = 0, then-Y(e lw) = 0, since the inverse

of a triangular matrix is also triangular.

Here is Sims's proof. Suppose that rt can be written as

r, =g(L) X, + W

t t

where wt is a disturbance process.independent of xt for all t and

©® .
i
g(l) = ¥ g, L. Let u, be the Tundamental white noise process in the
i=0
moving-average (Wold) representation of Xt alone, so that xt = k(L) ut;

and let € be the fundamental white noise process in the moving average

representation of Wt’ so that wt = h{L) et. Then we have

= k
L g (L) k(L) u, + h(L) €
=k
X, (L) u
where ut and €t are mutually uncorrelated processes. The above equations

are in the form of (4} with y(L) = 0; but Y(L) will be 0 if and only if
c{l) = 0.
Now suppose c{(L) is zero. From (4) we have
= L .
rt a (L) €, + B(L) u,
From the second egquation of (3) we have
- L =
(1 - a()) X, = wy
which implies
r. = a(f) e + gLy Q- A1) x,
in which r. is expressed as a one-sided distributed lag of xt with x
s

independent of Et for all s.

The spectrum of the white noise u, is

1

T (w)
u t t

S -
2n %u

El S u e-iwt| 2

2 . .
where g, is the variance of ut.
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26.

Angular frequency w is related to the period of oscillation N by

2g
'W—N -

The asymptotic standard errors are estimated by substituting the estimated
coherence in the following formula for the asymptotic standard error:

1/2

s.e. @GW)) = blT [lco;(w) -1
where b is the bandwidth of the spectral window and T is the sample size.
See Jenking and Watts [18] for a discussion of this formula. It should
be noted, however, that coherence will generally be underestimated for
processes that, like interest and inflation, are badly out of phase.
Hence the standard errors reported in the text may be too large.

An estimate of the asymptotic covariance between ﬁﬂ.and hS is
1 B %r(wj) [1-coh (v))]

(enT) " ¥
J=n+l

e T
e1wJ(£ s), w = ’

fx(w) J n

where i is the maximal lag and T is the number of observations. See
Fishman [7, p. 161].

The source of the data is B. Mitchelli[26].

On page 422, Fisher reports: 'Experiment proved that when price changes
were lagged behind the distributed influence of changing interest rates,

the correlation coefficients were too small to have any significance.”
Again, on page 425 he reports: 'Experiments, made with United States
short-term interest rates, to test the alternative hypothesis of distributed
influence of interest rate changes instead of price changes, gave results

of negligible significance.”

Wicksell (387 and Keynes [207] are most closely associated with the view
that to explain the Gibson paradox it is necessary to posit that interest
and inflation are mutually determined. The quotation of Fisher that

we cited in section III reveals that he saw the merits in such an approach.

Notice that the earnings-price ratio for equities equals r - 7.

For fixed y, differentiate the LM curve (13) logarithmically to obtain

MW . K . Ly
M w K M
pK

or

If the expression in brackets is negative, then at each value of y, the
r that maintains portfolio balance increases over time.
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The simulation was carried out for 400 periods, the last 380 periods
being analyzed by cross-spectral methods. A pseudo-random-number
generator was used to produce the random terms. Forty was the maximal
lag in calculating the spectral and cross-spectral statistics from the
estimated covariograms and cross covariograms.

Results similar to those reported in the text were obtained for Cowles'
dividend-price ratio for utilities, total earnings-price ratio index,
and earnings-price ratio for utilities. Cowles' earnings-price ratio
and dividend-price ratio for industrials, however, were not so clearly
characterized by the Gibson paradox.
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