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Abstract:

Theory typically does nmot give us reason to believe that economic
models ought to be formulated at the same level of time aggregation at
which data happen to be available. Nevertheless, this is frequently done
when formulating econometric models, with potentially important specification-
error implications. This suggests examining the alternatives, one of
which is to model in continuous time. The primary difficulty in inferring
the parameters of a continuous time model given sampled observations is
the "aliasing identification problem'. This paper shows how the restricticns
implied by rational expectations sometimes do, and sometimes do not,
resolve the problem. This is accomplished very simply in the context
of a hypothesis about the temm structure of interest rates. The paper
confims and extends results obtained for another example by Hansen and Sargent.
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I. Introduction.

Theory typically does not give us reason to believe that econamic
models ought to be formulated at the same level of time aggregation at which
data happen to be available. Nevertheless, this is frequently done when
formulating econametric models. On the other hand, the choice of the level
of time aggregation may have important specification-error implications.

Two examples arising out of the work of Lucas and Sargent and the work of
Sims and Geweke illustrate this point.

The work of Lucas(1976), Sargent(1980), Lucas and Sargent (1978,1980),
and others, implies that the parameters of private agents' decision rules are
functions of the parameters of related processes, including govermment
policy variables, which agents take into account in making decisions. The
implication of this is that if the government is to successfully evaluate a planned
change in policy, then it must first determine how a change in the parameters
that describe the laws of motion of its policies translates into a change
in the narameters of agents' decision rules. Under linearity of the stochastic
processes and the assumption of rational expectations, the functicnal
relationship between the parameters of different equations (‘'cross-equations
restrictions')} can often be derived analytically. If one specifies private
agents to be solving a continugus time optimun problem, then the implied
cross-equations restrictions for the discrete time representation of agents’
decision rules and government policies in general differs from what they
are when the optimum problem is formulated in discrete time. Thus, if a
policy advisor commits a specification error and models agents as maximizing
a discrete time problem, whereas in fact they optimize a continuous time

problem, then the govermment will choose a sub-optimal policy. This is because
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the specification error leads the advisor to use the wrong cross-equations
restrictions when computing private agents' decision rules as functions of
alternative government policies.

Further evidence on the importance of the choice of the level of time
aggregation is supplied by the work of Sims(1971) and Geweke (1978). They

show that if a given pattern of Granger(1969)-causality is specified to exist



at the level of continuous time, then the same pattern of Granger-causality

may not be predicted for sampled data. To illustrate the significance of this

for the way economic time series are interpreted, consider the following

example. Sargent and Wallace(1973) and Sargent (1977} show that a discrete

time version of Cagan's(1956) model of hyperinflation under rational expectations

predicts that inflation Granger-causes money creation with no feedback.

When the same model is reformulated in continuous time, then Sargent and

Wallace's Granger-causality pattern obtains at the level of continuous time.

However, the work of Sims and of Geweke implies that the prediction that money

creation fails to Granger-cause inflation in the sampled data no longer

holds. This example suggests that the predictions of a theory for sampled

data depends, in part, on the specification of the level of time aggregation.
These considerations suggest examining alternatives to the wide-

spread practice of formulating estimable models at the same level of time

aggregation at which data happen to be available. One alternative is model-

ling in continuous time. That this alternative should be taken seriously

is suggested by the fact that when models are formulated witheut an eye to

empirical estimation, they are often formulated in continuous time. Examples

are the work of Lucas(1965,1966,1967), Mortensen(1973),

Treadway (1969,1970) and Gould(1968)}, to name just a few.

There are some practical advantages to modelling in continuous---as opposed
to discrete---time. First, in continuous time the econometrician has greater
flexibility in making optimal use of possible idiosyncrasies in the available
data. Examples are cases where the data sampling interval shifts during the
observation period, when one variable is sampled more frequently than ancther,
and when the available data are period averages rather than point-in-time
observations.l/ Second, modelling in continuous time makes possible optimally

forecasting over time intervals finer than those separating the available data.



This could, for example, be of use to macroeconomic forecasters, for whom
key data are available on a gquarterly basis only. Third, continuous time
modelling permits one to interpolate optimally between published data series.

A problem that the econometrician must solve if he or she is to estimate
the parameters of a continuous time model given sampled data only is the aliasing
identification problem. Hansen and Sargent {1980b) were the first to show that
the cross-equations restrictions implied by rational expectations could resolve
the problem.zf They demonstrate this in the context of a fim's demand for a
factor of production. In this paper the aliasing identification problem is
studied in the context of two term structure models of interest rates under
rational expectations. The term structure examples have the advantage of
illustrating, in a simple way, the following fact: The cross-equations
restrictions implied by the hypothesis of rational expectations sometimes do,
and sametimes do not, resolve the aliasing identification problem. (The
first point was established by Hansen and Sargent(1980b).) The term structure
models studied are versions of the one proposed in Hicks(1946,p.145) and
later studied by Sargent(1972,1979). Both models include two interest rates:

a short rate and long rate. We consider the case where these can be modelled as
a bivariate first order stochastic differential equation. It will be shown
that, in this context, when the short rate is a '"call rate', then the rational
expectations restrictions overcome the aliasing problem., (By a ''call rate"
we mean a rate of interest on an asset with instantanecus maturity period and
with a return which is compounded continuously.) When the short tate has a
nonzerc maturity period, then the cross-equations restrictions are of no use
in resolving the aliasing identification problem, when it exists.
The nlan of the paper is as follows. The nature of the aliasing identification

problem is described in section II. In section III the relation between the

cross-equations restrictions implied by the temm structure hypothesis under rational
expectations and the aliasing problem is discussed. The findings of the paper

are summarized in part IV.



IT1. The Aliasing Identification Problem,

Consider the following first order stochastic differential

equation

(1) By (t) = Ay(t) + u{t), Eu(t) = 0, Eu(t)u(t-t) = s(r)V.

Here, 8(-) is the delta generalized functioni/' the disturbance

k]

process {u{t)} is a continuous time Gaussian white noise with
spectral density V at all frequenciesi/' V is Zx2, symmetric

b

positive definite; and A is 2x2 nonsingular. The operator

D is the time derivative operator %? . Write
= = = -1
V = Vi1 V12 . All Alz A TAT .
Viz Va2 A1 A2
where,
A = oq 0
0 Py

The scalars 0y ané o, are eigenvalues of A and we assume that

Re(pi) < 0 i=1,2. The iEﬁ column of the nonsingular matrix T is the
gigenvector corresponding to pi- Let the covariance function of

the {y(t}} process be R(z) = Ey(t)y(t-t)T, where the superscript

‘T' denotes transposition. Then



{3) R(t) = Wye + Wye > 0,
where,
a a,T
W (QlI e A) V[('OII - A) ]
1 ‘201(01 - 92)("91 - 92)
(0,1 - )MV (-0,1 - &)%)T
WZ =

‘292(92 - pl)(-pz = p].)

Here, the superscript 'a' denotes the adjoint operator.i/

Given the assumptions of normality and a zero mean, the
R{+) function in (3) completely characterizes the distribution of
{y(t)}. Furthermore, it can be shown that the mapping from the seven
parameters of (A,V) to the parameters of R(:) is 0ne—to-one.i/
Consequently, the aliasing identification problem may be described
either with reference to (A,V) or, equivalently, with reference

to the function R(:). Consider first the function R{:).

1. A first approach to the aliasing problem.

Suppose that Py and p, are complex (and, hence, conjugate,
since A is real). Then define

(py*2miv)t (p,-2niv)t
(4) ROy = wpe ! s Wpe 0,

for integer values of v. The graph of the covariance function
R(U)(r) differs from that of R(z) for most values of t when v#0.

(R(D)(t) = R{t) for all f.) Consequently, the points of the



previous paragraph apply, and the parameters (A(U),V[v))
associated with R(U)(r) must differ from (A,V) unless v=0.

2ZrivT

Notice, however, that e =] for integer values of 1. Hence,

(5) ROV (o) = R(z) for =0,:1,£2,...

and for arbitrary integer v.iy
Under the assumptions of normality and a zero mean, estimating

the parameters of a time series model amounts to fitting a theoretical

covariance function to the sample covariance function. In this

case the sample covariance function of observations on {y(t)}

exhausts the information in the data concerning the parameters

of (1). If information on {y(t}} 1s restricted to sampled

observations---ie., to sampled observations on the covariance

.function-~~then, as (5) suggests, the data cannot in general be used to

discriminate between theoreticél covariance functions R(U)(T)

with different settings for v.§/ If, on the other hand,.the

sample covariances do not display oscillations, then the method

of maximum likelihood generates a theoretical covariance function

which also does not oscillate, ie., an A matrix with real roots-

In this case, trivially, there is no aliasing identification problem.

Furthermore, if (1) where a scalar process, then there is only

one root (A itself), which must therefore be real. Thus, in the

scalar case the covariance function of (1) also cannot oscillate

and therefore there is no aliasing problem in this case either.

Solving the aliasing identification problem for the general case



when roots are permitted to be complex requires placing enough

a priori restrictions on the parameters of A and V to reduce the set

of admissible v in (5) to the set v=0. When this is the case,

sampled observations on a covariance function restrict the

inter-sample oscillations on a theoretical covariance function.
While the foregoing discussion is useful for providing

intuition into the nature of the aliasing identification problem,

another approach is more practical for the purposes of this

paper. This is the one taken in P.C.B.Phillips(1973) and in

Hansen and Sargent(1980%® and is the one we adopt in the

remainder of the paper.

2. A second approach.

It can be shown that the solution to (1) conditioned on

y{t) = y(tO) at t=st, is

A(t-ty) p AT
(6) y(t) = yitg) + s e (s

0
Suppose we have observations on {y(yh)} for integer values of v, where h (>0)
is the sampling interval. We obtain a representation for the sampled {v(t)}
process by replacing t, in (6) by ‘t-h

yet) = eMy(e-ny o My ar

(7)

It

By (t-h) + v(t),

where,

(8) B = oo efipl ¥/



t Alt-t) A
and v(t) = Ji, e u(ddr = A e u(t-t)dc. The

disturbance v({(t) is a discrete time white noise with covariance
matrix W, where

At ATT
(9) W=,r%e Ve dr

Phillips(1973) has shown that the following relation obtains
between W, V, and A:

T

(10) vec (V) = {eAh(XJeAh

- 101 HA®T + 1@A e (),

where vec(-) denotesthe column-by-column matrix vectorization
operator and '®' denotes the Kronecker product.ig/

As was pointed out previously, the seven parameters of
(A,V) completely characterize the distribution of the continuous
time {y(t)} process. Similarly, well-known results in time
series analysis indicate that the seven parameters of (B,W)
comple tely characterize the distribution of the samled {y(t}}
process (equation (7)). 1In this context, if
there exists only one set of parameters (A,V) corresponding to
(B,W), then (1) is said to be identified in the alliasing sense.

As was pointed out earlier, this is not the case when the roots

of A are complex. Suppose that p. and poare complex, that thev do not
not differ by an integer multiple of Zﬁl_’ and define

- 27l _ -1 _

for k=0,+1,+2,... . Here, P = [é g:} . Following Phillips(1973,p.355),

(11a) implies



i -1
that Ak = A + EE-]-'kTPT and AO = A, AO = A. We shall sometimes refer to

A as a "perturbation on the elements of A". Exploiting properties of the
exponentiation operator,

h

A
= Te K7l o eyl . An_ 5

By
Thus, without restrictions on A, any given B corresponds to a
countable infinity {Ak}m via (8). Corresponding to every
Ak, one can find a Vk th;;wsolves (10) for a given W. In this way
one can think of finding a countable infinity, {Ak,Vk}m‘ , of
solutions to (8} and (10} for given (B,W). However, Ha;;:n and
Sargent (1980b) have shown that, except for singular cases, the
number of values of k for which Vk is positive semidefinite is finite.
This is the message of their theorem 3 (the superscript 'H’
denotes transposition and conjugation):
I)H

Theorem 3. If T'IW(T- has no zero elements, then for

given {(B,W) there is, at most, a finite number of distinct pairs
(Ak,Vk) that satisfy
© Ah

(i) e X =B

T
At At
(i) fg e K Vie K'gr = w

(iii) Vk is positive semidefinite.

Proof: (See Hansen and Sargent(1980b).}

A way to resolve the aliasing problem is to restrict the
elements of A in such a way that perturbing its eigenvalues by
integer multiples of 2nri forces changes in its eigenvectors.

P.C.B.Phillips{1973) shows how linear restrictions on A can



- 10 -

accomplish this. Hansen and Sargent(1980b) present an example in which
the rational expectations cross-equations restrictions accomplish this.
We shall see that the Hansen-Sargent result obtains in the context of the
tem structure when the short rate is a call rate. The result does not
obtain, however, when the short rate applies to an asset with a nonzero

maturity period. We consider these two cases in the next section.

III. The Term Structure.

In this section we begin by presenting a hypothesis about the term structure of
interest rates. We then generate two examples that are comsistent with
the hypothesis and which illustrate important features of the relation between
the rational expectations cross-equations restrictions and the aliasing

identification problem. Define,

rn(t) - return, per.period of time, on an n
‘(12) period bond (the '"long rate'), n is rational,
rN(t) - return, per period of time, on a %-C§<HJ

period bond (the "short rate"), Nn is an integer.

Let the units in which we measure time, t, be the "period of time' in (12)

and restrict h to be a rational number. For example, when N=4, n=5, the

sampling interval is one month and the period is on?year, then h = %?,

and rN(t) and rn(t) represent return? at an annual rate, on bonds which mature
every quarter and 5 years, respectively. Define a call rate as a rate of interest
on a bond with instantaneous maturity, ie., r(t) = iif rN(t). Following

Hicks {1946,p.145), Sargent(1972,197%) hypothesized ihe following relationship between



rn(t) and rN(t):

N 1
N , o (t+z)
13) (s e = s BHEya e e — 1
I‘N(t"‘%) rN(t_‘_nNI'\'Il)
x(1 + Eg—g— ) »+- (1 + E, X J I

{1}

where Et(-) ﬁ(-)rN(t‘s),rn(t-s); $>0) and E(+) is the linear
least squares projection operator.ll/ Taking the natural
logarithm of (13) and making use of the approximation
In{l+x}=x for small x, we get
nN-1

!
(14) r (t) = g B, I

N i
T {t+3)
i=0 N

If we assume that (rN(t),rn(t)) is linearly regular, has mean

zero and is covariance stationary, then by a continuous time

version of Wold's theorem, the (rN(t),rn(t)) process can be meodelled
as a stationary stochastic differential equation.lg/ For the

sake of the illustration, assume in addition that (rN(t],rn(t))

can be represented as a first order stochastic differential

equation like (1). Accordingly, interpret the process {y(t)!}
studied in the last section y(t)=(rN(t),rn(t)).

Define U = (1,0), so that UEty(t+§) = Eth(t+§) = EtrN(t+§)

Then (14) may be rewritten

1 n
(15) r (1) = UE, E
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A standard result in the theory of linear least squares

projections is

WA
(16) Ety(t+ﬁ) = ¢ y(t) for 1> 0

when {y(t)} is as it is specified in (1). Substituting (16) into

(15}, we get

nN-1 A

(0 = gy et ()
(17) lA
= dpver-eV

u

™y

From (17) we see that, for finite N, rational expectations implies

1
A
N -
(18) viiner-e™ 17t 1-ey = 0,1)
1
Note }hat N(I-eN y = - A - %NAZ - ~l——A3 - ... , so that
A 3IN°
N(I-e' ) +-A as N»» . It follows that when the short rate is

a call rate, the restrictions imply
(19) uiarte®1] = (0,1).

Equations {(18) and (19) are the cross-equations restrictions implied
by the term structure hypothesis, (13).
We proceed to consider first the case of finite N and then

the case of the call rate.
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1. The case where the short rate is a return on an asset with non-zero

maturity period.

Suppose A satisfies (18). Note that the product Nh is rational since
N and h are.lé/ Because of this we can write Nh = 23 where b and c are integers
and b is not an integer multiple of c unless c=1. Let k = ychNh, where v
is an arbitrary non-zerc integer, and consider a perturbation of A, A
as defined in (11). (Note that by cons;;;ction k is an integer, as (11)

requires.) It is easy to verify that e = ¢ because aN is an

integer (see (12)). Using this fact and substituting Ak_into {(18), we get

1
NAk)

1
UE[N(I -

17T - RS

%ﬂ
U%{N(I - Ted 5rolyl -

(20) 5

GENGE - TV TTH]THI - &™)

w

1
UE{N(I - e

17T - &M

"

[}

¢, ,

where the last equality holds by hypothesis. The second equality makes use
of the relation %ﬂk = %A + 2niycP and the fact that yc is an integer. Thus,
for finite N, perturbations on the elements of A, Ay have been found that
satisfy the rational expectations restrictions if A does.

Suppose that we have a (B,W) in hand (say these have been consistently
estimated from sampled observétions on y(t) ). Then, by (20}, there

14/

is a countable infinity of admissible solutions, {AycNh}: to (8).=2

Zaw?

Corresponding to each admissible Ak, one can compute a Vk that solves (10) for
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the given W. As Hansen and Sargent(1980b) shaw, outside of singular cases the
number of values of k for which Vi is positive semidefinite is finite.
As an example of a singular case, consider V = TT.. The hypothesis of

theorem 3 is not satisfied since



At AT
T-IW(T-I)H T_lfh o k k

Ve H
0

i

dr (T

%
A

A T
LA g Ko IppH ey H "k gl op 14 H

0
(A +Ap)
T
h'e k' 7k dt
0

T -
(21) T T

[}

= f

%
h e“ﬁh )Td'r
0

= f s
which is diagonal. (Here, the superscript '*' denotes conjugation.)
Equation (21) also shows that, for this case, the Vk that solves
(10) given W and Ak is Vk = V for all k. Since, by construction,

V is positive definite, then (trivially) all the Vk are too.

Thus, in this case there exists a countable infinity of continuous
time models, {‘”.‘chm’vyd&i.};w , corresnonding to the given discrete time
model, (B,W). This is an illustration of Hansen and Sargent's

theorem 1:

Theorem 1. If there exists an Ak # A such that

T
- KT Ak'r
{(i1) s e Ve dt = W,

0
then there is an infinite sequence of distinct matrices
{Ak} that satisfy (i) and (ii).

Proof. (See Hansen and Sargent(1980b).)
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For definiteness, consider the following numerical example.

Example 1 (N=1, n=20, h=1)

a. k = 0. The continuous time parameters were set as

follows:
- : - . - H
Py = -.5 + 1, Py = -.5 ~-1i, Vv =TT
(20)
A=1-1.817 27.921}t, T = 1.0 1.0
-.008 .817 .047+.0361 .047-.0361

1t can be verified that the parameters of (20) satisfy (18).

Here,

(21) B=2¢ = -.345 14.250 , W =11.264 .060
.050 1.0 .060 .004

b. k =1, The roots of A in (20) were perturbed in the

sense of (11) by 2Zwi. Thus,

. 1 . H
pJEl) = 0y + 271, pg ) = Py - 2ri, Vl = TlTl
Al = -10.095 203.353 § , T1 = 11.0 1.0
-.714 9.095 L.047+,0361 L047-.0361

(Again, Al satisfies (18). Note, V1= V.) We have,
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(22) By =e = |-.345 14.250| , W, =|1.264 .060

-.050 1.0 .060 .004

Comparing (21) with (22}, we observe that the two distinct
continuous time parameterizations are observationally equivalent
from the point of view of sampled observations. Moreover, the
conditions of Theorem 1 are satisfied by this example, so.that
we can find a countable infinity of such parameterizations. Consider
the case k = 100.

c. k = 100. The roots of A in (20) were perturbed by

200wxi. Thus,

(100) _ . (100) _ . N H
oy = ey * 20071, o = 0y - 200w, Vi454 = Tyg9T100
Algo = |-829.535 175712 |, T o0 = |1.0 1.0
-61.654 828.535 047+.0361 .047-.036
(Aloo satisfies (18) and VlOO = V.) Here,
A100

(23) Byg = © = | -.345  14.250] Wy yo = |1.264  .060

-.050 1.0 060 .004

Comparing (23) with (22) and (21), we note that we have
found another, distinct, continuous time parameterization

corresponding to one discrete time model.
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In general we do not expect the aliasing problem to be as severe
as it is in example 1, according to theorem 3. (In the extreme case where
the eigenvalues of A are real, then---trivially---there is no aliasing
problem since the system displays no oscillations.)

What we have shown in this section (recall equation (20}) is the
following: When the short rate applies to an asset with nonzero maturity
period, then the rational expectations restrictions are of no use in resolving
the aliasing identification problem, when it exists. When the roots
of A are complex, then perturbing them by integer multiples of N times Z2Zric

generally produces a new continuous time system that is observaticnally
equivalent to the first one. The fact that admissible perturbations must
be integer multiples of 2micN is suggestive of the result obtained in the
next section. There it is shown that in the case of the call rate (No=),

the rational expectations restrictions resolve the aliasing problem.

2. The case where the short rate 1is a call rate.

Suppose A satisfies (19}. Consider a perturbation of

Ar Ay = A +k_2{;_i.TPT'1, k # 0. Then,

nA

1o, -1, ™%
EUAk [e -1}
(24) - %—UTA{(lT—l[enAkJ]
# fomatlrhe™e1) = 0,1

unless k=0nl§(The first equality makes use of (11) and (12).)
By (24), the fact that A satisfies the restrictions (19) implies that
Ak does not, unless x=0. That is, Ak is not an admissibile
perturbation under the rational expectations restrictions. The

reason for this is that---in contrast with the finite N case----

when the short rate is a call rate, rational expectations implies
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restrictions across the eigenvalues and eigenvectors of A.
In fact, given a set of eigenvalues for A, (19) uniquely

determines A. This is easily shown.
1

Substituting A = TAT ~ into (19),
%UTA‘lT“l[Te“AT‘l-I]
= 2ur 27 eyt
= (0,1).
Postmultiplying by T,
(2s)  2uTa”tre™-11 = (o, 1)T.
. T11 Ty :
Write T =|p T . Substituting this into (25) we get,
21 T2
p.In
e!'-n | la
npq T11
(26)
Al
e 2 -1) _ 22
o, T12

A well-known result in linear algebra states that if Xy is an
eigenvector of A corresponding to the eigenvalue X, then &x,
is also an eigenvector corresponding to Xy for any scalar §#0.

This fact, coupled with the restriction Re[pi)<0, i=1,2 implies
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that we may, without loss of generality, set T11=T12=1 in (26).

Thus, if Py and p, are eigenvectors of A, then cross equations

restrictions (19) imply that

(27) T = 1. 1. ,

and that A=TAT !,

The following numerical example illustrates the ideas

of this section.

Example 2 (N=+wo, n=20, h=1)

1.0

a. k = 0. Let Py - -3 + .5i, o, = -3 - .5i. This implies,
via (27),
(28) A= [-6.0 185.0 , T = [1.0
-.05§ 0.0 .016-.0031

(It can be shown that A satisfies (19).) Then,

(29) e

-.010 8.832
-.002 .187

.016-.0031

Next, consider a perturbation on the roots of A in (28).



-

b. k =1. Let p§1)

oy *+ 2ni, p{l=p, - 2ei. By (27),

this implies,

L}

(30) Al -6.0 1100.23 |, T, = 1.0 1.0

1
-.05 0.0 .003+.0061 .003-.0061

(Again, it can be verified that A; satisfies (19).) Then,

Ap
31 e L= [.033 3.872] ,

-.0002 .054

which differs from (29). This example is not presented as a
suggestion for an alternative to a rigorous proof that a given model is
identified in the aliasing sense. To establish that a given model is
restricted in the right way to overcome the aliasing problem, it is not
enough to show that a given finite perturbation is inadmissible. This
is one of the messages of the finite N case, where a perturbation has to
be an integer multiple of 27iNc to be admissible. If N were large enough,
"tests" of the kind in example 2 might indicate a model is identified,
whereas we know that in the finite N case itmay not be.

We have shown that, in the case of the call rate, the cross-equations
restrictions are such that a perturbation on the eigenvalues of A implies
a perturbation of its eigenvectors, producing a different discrete time
model. The consequence of this is that the inverse mapping from (B,W}
to (A,V)} is wique. It is precisely because the cross-equations restrictions
fail to have this effect when N<» that we obtained such different results in

that case.
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IV. Conclusiom.

The primary result of this paper has been to show that the cross-equations
restrictions implied by rational expectations do not necessarily make
it possible to identify the parameters of a continuous time model from
sampled observations.lg/ Some reasons for this result were discussed, and
a mumerical example ("example 1'') was presented for concreteness.

The term structure examples considered are useful not only because of their
simplicity. We characterized a family of term structure models, each indexed
by the scalar N. It was established that corresponding to every finite value
of N, a continuous time model parameterization can be found for which there
is an aliasing problem, inspite of the presence of rational expectations
cross-equations restrictions. In the limit as N+, however, the restrictions
take on precisely the right form to overcome the aliasing problem. This
characteristic of the family of models studied makes it ideal for isolating

the features that rational expectations restrictions must have to resolve the

aliasing problem.
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Footnotes

Some of these points are taken up in'Hansen andSargent(lQSOc).

Hansen and Sargent(1980 § draw on work by P.C.B.Phillips(1973).
Phillips showed that the aliasing identification problem can
be overcome using linear restrictions of the kind used

to identify the equations of the general linear model

in econometrics (see, eg., Dhrymes(1978)). As Hansen

and Sargent(1980b), Lucas and Sargent(1978,1980) and

Lucas (1976) point out, linear rational expectations

models are usually characterized by highly non-linear
cross-equations restrictions. These replace, for
identification purposes, the kinds of restrictions

usually used in econometric models.

For a discussion of the delta generalized function, see
Papoulis (1962).

It is well known that a continuous time white noise
{u(t)?} is not an "ordinary random process," but a
"generalized random process'" (GRP). For an introduction
to the concept of a GRP, see Hannan{1970).

Expression (3) 1is obtained as follows. The bilateral
Laplace transform of R(t) is

+co

(1) S(s) = f R(r)e *Tdr ,
for s complex, in an annulus where the integral converges.
It can be shown (see, eg., Kwakernaak and Sivan(1972})
that
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1 1.T

(2) S(s) (sI-A) "V[(~-sI-A) ]

(s1-A)3V[(-s1-A)%]7
(5-97) (5-p,) (~5-91) (=59 )

The partial fractions expansion of (2) is,

T T

W W W W
(3) S(s) = —2- +—f + L+ 2
(S‘pl) (5'92) ("S‘pl) ('5'92)

where Wl and WZ are given in the text. Applying the inverse
Laplace transform to (3), we get,
pl't OZT
{43 R{(t) = Wle + er , 120,
To verify that (4) is indeed a solution to the inverse
Laplace transform of (3) simply substitute (4) into (1)
and evaluate the integral. It may be shown that (4)
is the unique solution given that {y(t)} is a stationary
process---a fact which is assured by our assumptions on
Py and Py

Clearly, by equation (3), the mapping from A,V to R{-)

is unique. Now consider the inverse mapping. This is ac-
complished by first taking the bilateral Laplace transform
of R(:), as in (1), footnote 4. One obtains A, V by factoring
the matrix polynomial S(s). That this factorization is
unique is guaranteed by two assumptions. First is the
specification that the coefficient matrix on y(t) in (1)
is the identity matrix. Second is the assumption that

the {u(t)} process in (1) be "fundamental' for y(t), which
we assume. To see why these assumptions guarantee that
S(s) can be uniquely factorized, see Rozanov({1967).
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To clarify this, write Py = a+if , Py = o-1ig with a, B real.

Note that Wf = WZ’ where the superscript '*' denotes

complex conjugation. Write W=Re(wl). Then from (4)
in the text,

W e(p1+2wiv)1 + W e(pZ-Zniu)r

R(v) (T) 1 2

]

1]

WleaT[COS(B+2ﬂv)T+i sin{B+27wv) 1]

+ WE e%Tlcos(g+2rv)Tt-1 sin(B+2nv)t]
1

2We®Tcos (g+2nv) T

{(For the second equality see, eg., Sargent(1979), p.395.)
Evidently, R(v](r) is a damped (because a<0) cosine wave
with frequency of oscillation| (8/2r) + v|. Alternate
settings of v have the effect of changing the between-sample
behavior of a theoretical covariance function in just the
the right way to leave the value of R{“)(r) sampled at the
integers unchanged.

Hensen and Sargent(1980b) show that, singular cases excepted,
the number of values of v for which (5) holds and for which
the spectral density of (1) is positive semidefinite, is
finite. Thus, the aliasing problem is not so dramatic

as {5) suggests. We return to this peint in section III.

This relation follows from the definition of the exponentiation
operator:

eAh =1 +-%€
2--1,2 1

=T + TaT 1h + ]7'1’!\ 7142 &+ ,;.—Q-TPT‘lh"’ A

h2 + 1 Sh; + ..,



10.

11.
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I + ah + %’ + 200+ L ar

TeMpl

Formula (10) is obtained as follows. Write
W(t) = Ev(t)v(t)L. Then

t t T
wee) = (s A Dundn g e EV)haw
t-h t-h

T
= f Aty A (t-T) g,
t-h

Differentiating W(t) with respect to t, using Leibniz's
rule,

T.
Wee) = Ance) + w()aT + v - Ay R

T
But, W(t) = leATyeh T

0
T
Myt D sy v waT v,

dtr = W, so that W(t) = 0. Hence,

Equation (10) follows by applying well-known results on
Kronecker products and matrix vectorization. (See, eg.,
Dhrymes (1978), proposition 86, page 519.)

The fact that the information set includes only current
and past rN(t) and rn(t) is not a limitation on the analysis.
I could have specified the information set to include more
information and then applied the law of iterated projections
to get (13}, given that I plan to model only the bivariate
process (rN(t),rn(t)) in this paper. See Sargent(1%79a)

and Hansen and Sargent (1980c), . where this point 1s discussed
in more detail.



12.

13.

14.

15.
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Rozanov(1967), Theorem 3.1, page 118. A process y(t} is said

to be linearly regular if lim E(y(t+ ) y(t-s),s_0) = Ey(t), where E( )

is the mathematical expectgfions operator. In addition to the assumptions
stated in the text, we assum that (IN(t),rn(t)) has a rational spectral
density that is nonsingular at all but a finite number of frequencies.

N is rational because, by (12), n is and nN is an integer. The scalar
h is rational by hypothesis (see the comment after equation (12)).

By "admissible" we mean (following the usual econometric convention) that
the a priori restrictions are satisfied.

Sufficiency of k=0 is obvious. We obtain necessity using proof by contradiction.

Accordingly, suppose that an equality is satisfied instead of the
inequality for same k#0. That is,
-1.-1, DA Lo-
1) 1 S PR g T T S Pl §

and k#0. We show that this leads to a contradiction. (This is a stronger
result than is necessary.)

Later in the text it is shown that we may, without loss of generality,
set the elements of the first row of T to one. Doing seo, the two
equations of (1) can be written

(k
enpl : -1 enpl ~ 1
1 °1
()
Tip np
r3) e 2 l _e 2. 1
°2(k) P2

where p£k) = * gﬁ;k, ng) =Py - gﬁik. Using the fact that

n"%k) ey nik .
e = e e ,» (2} can be rewritten



(4) bple (e - l)

Ti
h . n—H—k
Suppose k = =6, where & is a non-zero integer. Then e = 1 and
(4) implies k=0, a contradiction. Hence,

(5 k # % § & a non-zero integer.

letting &=ycnN, we see that the kinds of perturbations admissible
in the finite N case are not admissible when Now.
{{t remains to show that k in (4) cannot
take on non-zero values distinct from the ones
excludéd in (5). This part of the "proof" remains
a conjecture. )

Hence, the reader is advised to take seriously the word 'can' when

Hansen and Sargent (1980b) state: 'This paper shows how the cross-
equations restrictions delivered by the hypothesis of rational expectations
can serve to solve the aliasing identification problem." (My emphasis.)
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