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Introduction

During six of the seven twentieth-century hyperinfla-
tions in Europe, real balances tended to fall over time while
inflation rates tended to rise. Cagan's model of hyperinflation
under rational expectations implies that such a systematic pattern
could not occur, except by chance. (See Sargent and Wallace
| ] and Sargent | ]). According to that model, real bal-
ances and inflation may drift, but are predicted not to move
systematically upward or downward. There is also a long-standing
claim that the European hyperinflations appeared to proceed at
rates that exceeded the rates that would maximize the revenue from
seignorage. (See Cagan | ] or Sargent | ])e This paper
describes a model that aims to account for these possibilities.

We study a linear stochastic dynamic system in the price
level and per capita base money, designed to reflect aspects of
hyperinflations. The dynamic system is a solution of two differ-
ence equations, one each that describe the behavior of the public
and the government. The public's behavior is described by a
linear version of Cagan's demand function for real balances, which

we express as
(a) p(t) = AEp(t+1) + yh(t) + u(t), y >0, 1 >A >0

where p(t) is the price level at t, h(t) is per capita base money
at t, and E(+) is the linear least squares projection of (),
conditional on information available at t, which is assumed to
include at least (h(t),h(t-1),.e.,p(t),p(t-1),ee.)e In (2), u(t)

is a zero mean random process, possibly nonstationary, that re-
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flects disturbances to portfolio balance decisions. The govern-

ment's behavior is described by the budget constraint
_ 1
(v) h(t) = 3= h(t-1) + &p(t) + e(t)

where h(t) is per capita base money, n is the ércwth rate of the
population, £p(t) + €(t) is the nominal government deficit per
capita. In (b), e€(t) is a zero mean, possibly nonstationary
random disturbance to the per capita nominal governmént deficit,
vhile £ > 0 is a constant that measures the average level of the
per capita real deficit. The force of (b) is that the government
prints base money to finance a real per capita deficit that is on
average constant at the rate £. From the interaction of (a) and
(b) there results a closed system that determines the evolution of
p(t) and h(t) as‘stochastic processes.

Sargent and Wallace | | analyzed the deterministic
version of this system that emerges when u(t) and €(t) are each
set identically to zero. They showed that the evolution of that

version of the system is represented by the difference equation
(c) n(t+l) = ¢ - (1/(1+n)r) * 1/n(t)

vhere w(t+1) = p(t+1)/p(t), and ¢ = (A= 1+(1+n)~1-£y/A). Fquation

(c) is graphed in figure 1,



T(t+l) =
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Figure 1

which indicates that there are two stationary points T, and T,
with (1+n)~1 < T < T, < A=l.  These stationary points correspond
to two alternative stationary levels of the gross inflation rate
p(t+1)/p(t) that satisfy portfolio balance and that finance a
constant real per capita deficit §. For an initial w(0) in the
interval (ﬂl,“), the system converges to T, The lower stationary
point ™ is unstable in this sense. Figure 1 reflects that fact
that the deterministic version of the system formed by (a), (b)
possesses a continuum of equilibria within the class of equiiibria
for which p(t) and h(t) are of exponential order strictly less
than A~l. Here equilibria are defined as elements of the space of
sequences of (p(t),h(t),t » 0). Evidently, this mltiplicity of
equilibria is logically distinct from the multiplicity of "specu-
lative bubble" equilibria, which are constructed by using the
freedom of adding transient terms of exponential order A~1 to the
solution for the price process. (See Sargent and Wallace for more

details.)
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The present paper studies a stochastic version of the
system for several reasons in order to try to account for the time
series observations on real balances and inflation cited above.
To accomplish this task, we first have to characterize whether and
how the multiplicity of equilibria of exponentidl order less that
A1 will surface in a stochastic system. A stochastic version of
the system is convenient for studying time series observations,
and for making the model econometrically operational. Some of the
forces captured in this model were alluded to by us in an informal
way in earlier work that attempted to rationalize the pattern of
Granger causality between (logarithms) of base money and prices
that appears throughout a number of hyperinflations. There is a
marked tendency for prices to Granger cause money, but much weaker
evidence that money Granger causes prices. In our earlier work,
we posited a system with extensive feedback from prices to money,
which we argued informally might reflect dynamics coming from the
government budget constraint. The current paper returns to this
issue and presents a formal analysis that is permitted by our
adopting a related but distinct parameterization to the one used
in Sargent and Wallace | ] and Sargent [ |]. A general reason
for studying the current system is that it is a laboratory for
exhibiting what can be learned about the demand for money from
observations on money and prices drawn from a system in which
there are extensive dynamic interactions between money and prices
that reflect the behavior both of private agents and agents for

the government.
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2. Fquilibrium

We consider the system

(1) p(t)

AE;p(t+1) + yh(t) + u(t)

L n(t-1) + gEp(t) + e(t)

h(t) 1+n

where 1 > A >0, Y >0, & >0, n? 0.

We assume thqt the system starts out at time t = 0, and that
(u(t),e(t)) = (0,0) for t < 0. We assume that for t » 0, (u(t),
€(t)) is a vector stochastic process with diagonal noncontempo-

raneous cross-covariance matrices. In particular, we assume that

(2) u(t) = al(L)w(t),
e(t) = ay(L)w(t)
wherq
wl(t)
w(t) = 3
wz(t)

Ew(t) = 0 for t > O.

O for s# 0and t » 0

cllft) “12(t}
Glz(t) cgg(t)

Ew(t)w(t-s)T =

) for s =0 and t » 0.

In (2), a,(L) and ay(L) are each (1x2) vectors in the lag operator
that are one-sided and square summable in nonnegative powers of the

lag operator L. In this section, we study the serially uncorre-

lated case in which
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We seek solutions of the system of expectational sto-

chastic difference equations (1) of the form

(3) p(t) = a(L)w(t) + wltPl + nthe

h(t) = g(L)w(t) + nltJl + “eth'

Here 7, and 7, are the two zeroes of the same characteristic
polynomial analyzed by Sargent and Wallace | |, and which will
reappear below. The parameters Fi, Fé and dqs J2 are constants
that can be regarded as representing the initial position of the
system at time t = 0. In (3), d(L) and g(L) are each (1x2) vector
square summable polynomials in the lag operator that are one-sided
in nonnegative powers of L. We seek solutions of the form (2) in
which p(t) and h(t) are each of mean exponential order less than
A“l, i.e., solutions for which

lin EAp(t+)) = Lim EAIn(t4)) = O.

Joe Ire
For the base money process h(t), this condition is imposed to

guarantee that the geometric sum

E, | Ah(t+5)
J=0

converges for each t. The price level at t can be represented as
& linear function of this geometric sum of expected future
h(t+j)'s, and an analogous sum of expected future u(t+j)'s, so
that convergence of this sum is a necessary condition for the

existence of a solution of the difference equation system (1).



-

As we note more fully in section 6, the entire class of
solutions of mean exponential order less than A1 cannot be repre-
sented in the form of (3). There are additional solutions depend-
ing on spurious indicators.

The exponential terms in T, and T, represent the deter-
ministic part of the solution, which was solely focused upon by
Sargent and Wallace, and which continues to play a role in the
solution of the stochastic version of the system.

We shall proceed by deducing the restrictions that the
model imposes on d(L) and g(L), and across the F;'s and J;'s. The
restrictions on these stochastic and deterministic parts of the
solution can be deduced separately. Turning first to the deter-

ministic parts, we have that (1), (2), and (3), imply that
(m) 5F 41, 5F) = Al B4R 4 MR, 4y () b em, b,
t t - t-1 t-1 t t
(T #75°0) = 35 (77770405720 + Em PRy +m,0F, ]

Recall from Sargent and Wallace that LB and L) satisfy the charac-

teristic equation

1

1 2)
1l+n

Y&
-A_)L * 1+n)A

(1-(3 + = (1-m,L)(1-m,L).

It then follows that the above pair of equations is solved by

(F;,J4) pairs satisfying

Y
(1) . Gl = }ml'Jl

Y
2T e’
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These equations express the coefficient on "J in the price level
solution as a weighted geometric sum of future values of the
coefficients on “Jt in the solution for the money supply (see
(1)) The restrictions that the model imposes across Fy's and
JJ's thus have a natural interpretation. We shall regard J, and
J2 as free parameters and use (5) to determine Fl and F2.

We now deduce the restrictions that the model imposes on
d(L) and g(L). Using (1), (2), (3), and the Wiener-Kolmogorov
prediction formula, we find the following restrictions on d(L),

g(L):

[= "

x[d(L) 0

a(L) = A[EEL - 20 4 ve(1) + o, (1)

g(L) ='I%H g(L)L + g4(L) + az(L).

Rearranging these in matrix form gives

(1-AL71) - a(L) a, (L)-Aa

0

- (-3 e a,(L)

-

Premultiplying by the inverse of the matrix on the left and sub-

stituting a,(L) = (1 0), ay(L) = (0 1) gives

1
(1 - —:EL)(L—Ad )

a(L) el 1 01’>~*02
(5) ( ) ) (1-7, L) (1-m,L)

g(L)

1
(1 - E:EL)+YL

E(L=Ad

where the determinant of the matrix on the left side of (L) satis-

fies
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(1 - 1) - ve

-1 1 1 Y€ 1 2
-L A(l-(r +m - A—)L.‘Fm L)

[}

XYy 1-m, L) (1-7,L)

where m,, T, = [(l"l+(l+n)'1-ET/l) -

{(l-1+(1+n)-1-51/l)2-h/(1+n).\1/2' and where (1+n)™1 < 7 < m, <

A-l, (This characteristic polynomial is identical with the one
analyzed by Sargent and Wallace | ], who establish the in-
equalities.) We assume that (A~1+(1+4n)=2-£Y/1))2 - L4/(1+n)X > O,
which is a necessary condition for an equilibrium to exist. This
condition places an upper limit on £, the average per capita real
deficit. .‘I'he upper limit is given by l/
£ max = -}r- _li_n + % s 1 Je
A(1+n)

In (5), we have adopted the notation

do = (d01 doe)

vhere djy is the coefficient on L0 in d(L).

Equations (1), (4) and (5) represent the class of form
(3) of solutions of mean exponential order less than A~l and
reveal that there 1is a continuum of solutions within this
cla.ss-g-/ The continuum is multidimensional, and surfaces both in
the deterministic and the moving average part of the solution.
First, given any level of initial per capita nominal balances h(-
1), it is possible to choose the free parameters J, and J, in a

continuum of ways. This is the dimension of the continuum that
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was focused on by Sargent and Wallace | ]« Second, there is
another dimension of the continuum that is conveniently indexed by
the two underdetermined parameters dg1s dpoe For any values of
(d01, d02)’ (5) gives a solution to our system within the admissi-
ble class. Since (1+n)~1 < T, < m,, the form of the representa-
tion (5) reveals that for almost all of the solutions, both p(t)
and h(t) will eventually become processes of mean exponential
order Toe

Within the preceding class of solutions, there is a
unique solution which is of mean exponential order ﬂl—if This
solution requires, first, that J2 = 0. Second, this solution also
requires that d01 and d02 be set at those values that cause each
of the moving average polynomials in the matrix in brackets on the
right side of (5) to have zerces at 32‘1, thereby cancelling the
denominator polynomial (1-n2L). Since there are four moving
average polynomials in the matrix on the right side of (5), and
only two free parameters dp; and dpo, it needs to be shown that
choices of dg; eand dgp, exist that achieve the desired cancella-

tion. Such values do exist, namely,

1
(6) d01 =l—172-
d -Y(1+n)

02 - X(T-n,(1+n]) °

With these values of dy, and dj,, the solution (5) for (4a(L),g(L))

assumes the special form

(1 = ==1)3, —y(1+n)/(1-7_(1+n))
. a(L) -1 i P 2
T =
g(L) t1'“17‘1 a/n2 . A—(EY(1+n))/(l—1r2(1+n)}
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This is the unique special case in which at time t, the price
level and the per capita nominal balances are each expected even-
tually to rise at a gross rate Mye For all other settings of d01,
dpos and J2, price and per capita nominal balances are each ex-
pected eventually to rise at gross rates of m, > m,. In partic-
ular, even if J, = 0, unless dy; and dy, are set to satisfy (6),
the price level and per capita nominal balances will eventually
rise at mean exponential orders approaching 7,

We now offer some observations about interpreting the
multiplicity of equilibria in this model. One way to interpret
the multiplicity of equilibria is as reflecting the incompleteness
of the "feedback law" (b) as a description of the evolution of

h(t). According to (b), namely
(v) h(t) =T,1; h(t-1) + Ep(t) + E(t),

the monetary authority simply prints enough new money to buy
(6+€(t) /p(t)) goods per capita, at the ruling price level p(t).
With this specification of policy, there are many equilibria.

An alternative description of policy is that the author-
ity chooses J;, J, and a kernel g(L) in the moving average repre-

sentation for h(t),
t t
h(t) = S(L)‘Ft + Flnl * Fg“e ’

subject to the condition that the deficit is financed and that
portfolio balance prevails. This is equivalent with the authority
choosing F,, F, and dy. Notice that to formulate policy in this

way, the authority has to know the parameters of the model, and to
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see current and lagged w(t)'s. To execute (b), the authority
needs much less information. It simply prints enough new money to
purchase £ + £(t)/p(t) goods in period t.

From this viewpoint, it 1is understandable that the
equilibrium is not unique with a less complete.specification of
policy, and that uniqueness can be obtained by specifying the
evolution of policy actions in a more restrictive way. In a way,
this example illustrates a general point, namely, the importance
of the specification of strategy spaces in influencing matters of
existence and uniqueness of equilibria.

Table 1 shows values of £ max, T, and W, for various
values of the free parameters. Given A, Y has been selected so
that h/p evalgated at an expected gross inflation rate of unity
and a =zero disturbance to portfolio balance, which we denote
(h/p)(1), assumes the indicated value. The value of Y that
achieves this is y = (1-A)/(h/p)(1). Under this specification,
the maximum sustainable per capita deficit £ max is given by

€ max = (1) --l-f-f[-l-};ril__e/%].

Notice that £ max varies proportionally with h/p(1), which is the
base for the inflation tax, directly with n, and inversely with
A. When n =0, lim £ max = O, as application of l'hospital's rule

A+l
to the above equation shows.
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Table 1

A h/p(1) n £ max 3 Ty
.005 100 0 86.7918 £ max 14,14
o1 100 0 51.940L £ max 3.1624
.3 100 0 29.2221 £ max 1.82579
L | 100 0 22.5148 £ max 1.58
A 100 0 22.5148 15 1.2116
.5 100 0 17.157 £ max 1.h1k
o5 100 .015 17777 £ max 1.4037
5 100 0 17.157 15 1.25
oT 100 0 8.8933 € max 1.195
oT 100 0 8.8933 8 1.129
.8 100 0 5.5728 | £ max 1.118
.9 100 0 2.633% £ max 1.0541
.9 200 0 5.2668 £ max 1.05L1
.95 100 0 1.2823 £ max 1.026
.98 100 0 .50506 £ max 1.010
.98 100 .005 783265 £ max 1.008
.995 100 0 «1253 £ max 1.0025
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3. Simlations and Evidence
Figures 1-2 show simulations of the system with n =

» A = s Y = , end 0q,(t) = ,» and g55(t) = ’

012(t) = 0. In the simulation summarized in figure 1, dO has been
set to satisfy (6) and J, = 0. FHere gross inflation oscillates
around M= while real balances oscillate around the average
that obtains under a gross inflation rate averaging Mye Figure 2
simulates a system with J, = 0, but with dy violating (€). Here
inflation starts out near Ty, then grows toward m,. Real balances
decrease over time, converging toward the average behavior appro-
priate for an average gross inflation rate of Toe

Figure 3 plots the time series of logs of inflation and
real balances during the German hyperinflations. The last two
months of October and November 1923, which are often excluded in
empirical work, are included in these graphs.

Figures L4, 5, 6, 7, 8, and 9 plot inflation and real
balances during the hyperinflations in Greece, Hungary after World
War II, Austria, Hungary after World War I, Poland and Russia,
respectively. The data are those used by Cagan. Of these seven
countries, only Russia for long seems to have been close to a case
in which the effects of T, have been zeroed out. (See Keynes's
remarks about the ingenuity of the Soviets in extracting seignor-
age. Also, notice Russia's position in the table of Cagan, re-
produced by Sargent | ].) The remaining countries more closely
resemble equilibria of the kind depicted theoretically in figure
2, in which the m, components gradually assume increasing impor-

tance.
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L, TIdentification

We first study identification in the singular case in
which J, = 0 and d, satisfies (6). 1In this case, the bivariate

(p(t),h(t)) process evolves according to

(] s LY o i (L0 1, C140)) w. (t)
cs) p(t) . A“l 1+n TI'? 2 1
T 1-m.L
h(t) 1 E/‘ﬂ2 § l—(EY(1+n))/(1—ﬂ2(1+n)) wg(t)
YJllil-Anl) .
+ 'lTl .
9

We assume that the covariance matrix of w(t) grows geometrically

at the rate nl,Ef i.e.,
Bw(t)w(t)T = m by

where V is a positive definite matrix. Let G-l ve a lower trian-
gular matrix that normalizes and diagonalizes V, i.e., I =

G'1VG'1T. Define the transformed disturbance vector

n(t) = wl‘tfec‘lw(t)-

t

1 I, where H(t) =

Thus, En(t)n(t)T = I, while Bn(t)n(t)T =

. t/2

1 n(t).

Now using w(t) = Gn(t), we can express (8) as



(- Lol sl
1+n ﬂ2' 1—ﬂ2 1+n
p(t) -1
(l-ﬂlL)I = A
h(t) £Y(1+n)
AP v A =3 T
— 2 —
g, © ||{7@] |eyaan)
- -+ 'IT1
8oy Exp| |2t 91
or
p(t)
(9) (1-n1L)
h(t)
“ I+n” A - 1-n2{1+n) E 1-n2(1+ﬁT
<1
= A
. - £Y(1+n) EY(1+n)
€81, /m %85 (A - 1—ﬂ2(1+n]J’ 802 - 1-rr2(1+n}J

TJlf(l—lwl)

+ T, .
Jl 1

In this representation, the three parameters, €11+ 8p1s Bpp repre-
sent the covariance matrix of the original w(t) process. The
n(t) process was constructed by orthonormalizing the w(t) process
with the matrix G. The matrix G thus summarizes all of the infor-
mation in V.

FPquation (9) is a vector autoregressive moving average
representation whose identifiable parameters can be displayed as

follows. Represent (9) as
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0 il ~
p(t) e, .+ci.L, ¢ n, (t) ¢
(11 B R R | Bl T het) )
h(t) oy o Cpp ne(t) Cyq

The identifiable parameters are T, and the ciJ

the formula for Ty, Ty, these parameters are linked to the deep

'ss From (9) and

parameters of the model by the following equations:

0 _ ,-1 €14 T821(1+n)
(10) Cll = A (ﬂa = 1—32(1+n)
1
<)
(11) ol - €11
11 tl+n5u2
-1_1g227(1+n)
(12) 012 = T ﬂ2(1+n)
-1.%61 EY(1+n)
(13) ey = AT e - T )
- AL EY(1+n)
(1k) Cpp = A o0 - TZ?;TT:ET)
(15) Wy Ty W {(l'1+(1+n)'1_gy/k)
+ [N (24n) gy M) 220/ (14000 112} 2
(16) ey3 = YJp/(1-Am;)
(17} C23 = Jl.

The known variables in the nine equations (10)-(17) are T, c?l,
c%l, C12s C21s Cpos €135 Cp3e The unknown variables to be deter-

mined are i, &, ¥, n, T2s 811, €21, 822, Jy. We thus have nine
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equations to be solved for nine unknowns, which is promising from
the viewpoint of identification.

To highlight the role of equations (16) and (17) in
helping to achieve identification, we shall begin by ignoring
them. This amounts to considering identification in the system
from which the deterministic components ﬂlt[Fl) have been removed
prior to estimation. In this case, equations %10)-(15] form seven
equations in the eight unknowns A, £, Y, n, Tos By1s Bops and goo
so that these parameters are in general underidentified. However,
under the special assumption that g,y = 0, local identification
obtains. The assumption that 81 = 0 is equivalent with the
hypothesis that wl(t) and wy(t), the disturbances to portfolio
balance and to the government budget, respectively, are orthogo-
nal.

In the case that g,y = 0, identification can be thought

to proceed as follows. Equations (10) and (11) imply that
(1+n) = -cglfcll,

while equations (13) and (10) imply that
£ = <py/ef;e

So n and £ are identified.

After some algebra, (1L4), (12) and (15) imply that
(18) C22/C12 = (l—ﬂlk)/—Y

Given knowledge of n and £, equation (18) together with (15) for

nl,numw,



-19 -

T o= {(A"Le(14n) "2 —-%IJ-J(X-1+ (14n)~1 __%1 )—h/(l+n)A}’
form two equations in Yy and A which possess a locally unique
solution. Given 7,, A, £, and n, T, can be obtained from t15)s
Then g;, can be obtained from (10), end gy, from (12). This com-
pletes the discussion of identification in the special case in
which 81 = 0 and 32 = 0.

With Jl = 0 and g3 an unknown to be identified, the
parameters of the model become underidentified. 1In this case, we
are one restriction short of having an identified system. When Ji
# 0, equations (16) and (17) add two equations but only one un-
known to the system. This leaves us with a system of nine equa-
tions in the nine unknown parameters to be identified.

The preceding analysis shows that in the singular case
in which the root T has been eliminated from the system, identi-
fication is delicate. Identification hinges either on including
the deterministic component (“1t) explicitly in the estimation
process, or by & priori imposing orthogonality between wi(t) and
w2(t).

We now briefly discuss identification in the more gen-

eral case in which Ty has not been zeroed out. 1In this case, we

would assume
Bw(t)w(t)T = V.

We then proceed as above, defining ¢! to be the lower triangular

matrix such that I = G-lvg-1T,
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In this general case, the solution has representation

1 1
(1 -<—:EL)(L—ld ) -kdo2(1 - T:;L)+YL

p(t) - 1 (N
(20) (l-ﬂlL)(l-ﬂE,L) = 2
h(t) E(L-J\dOl) y ..r,xdog-»(z,-x)
, Y, YJ,
g 0 n. (t) 1-AT T-AT
11 ~1 . 1 ﬂlt " 2 "t
8r1 85 neft) Iy I,

This can be represented in terms of identifiable parameters as

p(t)
(21) (1-m,L)(1-m,L) =
h(t)
0 5 2 0 1 ~
ciptey It Iy e o*e L nl(t) Caq . C)q .
+ ™ + 1 .
. 1 2
c0 +cl L cD +cl L . (t) c c
21 2k ? T2 Teo2 2 32 Lo

The identifiable parameters are Ty, Tp, and the CEJ'S' These are
linked to the 11 deep free parameters (A, vy, §, n, dyys dpos 81715
812> Bsps J1» Jp) by the 15 equations created by (15) and by
matching coefficients in (20) and (21). According to these "or-

der" conditions, the model is overidentified.
S5« FEguilibria Depending on Spurious Indicators

We now generalize the preceding solution. We assume
that u(t) = (a;7(L) 0 0)w(t) and e(t) = (0 ayy(L) 0)w(t),
where w(t) is now a (3xl1) vector white noise, and a;;(L) and
a22(L) are each square summeble and invertible polynomials in

nonnegative powers of L. The third component w3(t) of w(t) is
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included to permit a "nonfundamental" or "self-fulfilling" sto-
chastic component to the solution for (p(t),h(t)). We now let
d(L) and g(L) each be (1x3) row vector polynomials in L.

The model restricts the polynomials (d(L),g(L)) to

satisfy
1
(1 —-l"_Tn-L) Y
C(L)) 1
“ A==, L) (17,1
(L) 1 2 . (1071
], = |
11 (L)=Adg 70 Adg L™, -Adg,L

0 5 322(L) s 0

where dg = (d01,d02,d03)- Carrying out the multiplication on the

right side, ‘we have

. L
(22) Q(L;) (17 L {(1-,1)

- 7L (ay, (L)=ag L7h),=(1 - =LA L 1+7322(L)’
E(au(L)-xdmL"l),-EAdOQL'lmze(L)(1-AL‘1) ,
Ao U1 - £
_gAd03L'1

The first two columns agree with our earlier solution for the
special case in which a,,(L) = 1, a55(L) = 1. Equation (*) repre-
sents a solution for any values of (d01,d02,d03) € R3.

Equation (22) indicates that there is an additional

dimension tec the mltiplicity of solutions described earlier.
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This additional dimension is convenieﬁtly indexed by the undeter-
mined parameter dp;. Solutions with dy; are "self-fulfilling" or
"nonfundamental” solutions in which a white noise random process
w3(t) that has no influence directly upon the "fundamental" dis-
turbances u(t) and €(t) nevertheless plays a role in the rational
expectations solution.

The third columns of d(L), g(L), namely,

1
45(1) . dp3(1 = 7351
g, (L) = (1= L) (17 ,L) 4.,

have the property that there is no nontrivial choice of d03 that
"zeroes out" the polynomial (1-r,L). That is, if dgp3 * 0, then
the solution must eventually become of mean exponential order LPE

The reader can convince himself that moving averages in
any number of self-fulfilling white noises can be added to the
solution, provided that they bear polynomials in L that are pro-
portional to those of (d3(L),g3(L)).

The preceding findings are consistent with slightly
reinterpreted versions of the results of Charles Whiteman. Vork-
ing in a stationary context, Whiteman pointed out quite generally
that in cases in which there exist multiple linear rational expec-
tations equilibria in a Hilbert space of lagged fundamental pro-
cesses, there exist many additional equilibria that can be formed
by adding to those solutions moving averages of a "spurious" white

noise.zf
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6. Granger Causality

First consider the special case of the model in which
a11(L) - ays(L) = O, w3 = 0. Also assume that (6) and Jp = 0
hold, so that the Ty mode of the system has been deactivated. In

this special case, the solution for p(t), h(t) has the representa-

tion
(1 =) 2 5 F(198)7 <z, (21%0)
(%) 3 +n™" m, 2 wl(t)
pe)) T e, as(ev(em))/Geny(uen)) | wyt0)

7J1/(1-xn1) £

T, .
Jl 1

+

Note that in the representation for h(t), the polynomials in L on
wy(t) and wy(t) are proportional to one another, while in the
representation for p(t), the polynomials in wy(t) and wy(t) are
not proportional. This implies that h(t) Granger causes p(t),
while p(t) fails to Granger cause h(t).é—/

This structure of Granger causality is a special feature
of the singular case in which (1-1121.) has been cancelled out. In
the general case, p(t) and h(t) Granger cause each other, which
can be proved by studying the structure of the solution (5) or
(22). We now seek special cases in which p(t) Granger causes
h(t), with no Granger causality extending from h(t) to p(t).

We first consider a case in which there is no spurious
indicator impinging on the solution, so that in (22) dp3 = 0.

Suppose that a,,(L) and a,,(L) satisfy the restriction



d
_ 02 1
322(L) = ?E;I {1 - E:HL)all(L).

The reader can verify that under the above restriction, the poly-
nomials on wy(t) and wy(t) in d(L) are proportional to one an-
other, while the polynomials in g(L) are not proportional to one
another. Under this special condition, it follows that p(t)
Granger causes h(t), but that h(t) fails to Granger cause p(t).

To motivete the next special case, notice that real
balances demanded at a constant expected gross return on money of
unity are given by (1-1)/Y. Let us reparameterize the system by
setting Y = (1-1)8, where 6 = (p/h)(1), the inverse of real bal-
ances at a gross inflation rate of unity. To achieve the fol-
lowing special case, we shall think of holding © fixed as we vary
A, so that as A »+ 1, Y + O. In the limiting case with A =1, v =

0, (22) implies

-L d

d d

01 02 03
a(x) - 1-L : 1-L d 1-L
g(L £(dy,-L) Ed02+(1-L} £d

03
1 : 1 2 1
(1-1)(1 - 721)" (-0 - 521 (-0 - Wy

where we are using the fact that when vy = 0, LE (1+n)_1. Ty =
1. In the special case that Wiy = 0, so that the portfolio bal-
ance schedule is exact, d(L) is such that py is a martingale, so
that p(t) is not Granger—caused by h(t). However, p(t) Granger
causes h(t) so long as the spurious indicator is present. (The
martingale characterization of p(t) under these conditions can

also be deduced directly from equation (a).)
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These examples constitute singular cases in which h(t)
fails to Granger cause p(t). They indicate the presence of a
range of examples close to these in which 0 ranges causality
extends from h(t) to p(t), but is difficult to detect in short
samples. The model thus appears to be potentially capable of
accommodating Granger causality patterns such as those detected in

earlier work (Sargent and Wallace [ [Ye

T. Identification in Equilibrie with Spurious Indicators

Suppose that a solution of the class (22) is guiding the
system. In particular, we have that (p(t),h(t)) is evolving

according to

(23) ( ) ( ) g
23 l-m.L)(l=m_.L
& € (t)
1 -1 1 el
(1 - T:EL)(&llfL)-ld01L ),-(1 - T;;L)AQDQL +Ya
= a1
E(a. . (L)-Ad..L~1) -Ead_ L1
11 01 ’ 02
-1 1
—;\d03L (1 —"1-:51:)
wl
_EkdOBL
e I, I,
1 l-nll + 1-n2A
we(t) + nlt + T,
wo(t) J J

3 1 2

550105

+322(L)(1-AL'1) ,
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We assume that

93 %p 9
Tt
Ew(t)w(t) = T, LT o |,
0 0
°33

so that the spurious white noise is orthogonal to the "fundamen-

tals." We represent w(t) as

gy O 0 21¢

_ . t/2
w(t) = 12 g21 g22 0 th
0 0 333 231'.

where Eztth = I and where 1121"'/2 G is a matrix that orthonormal-
izes the w(t) vector. The parameters w, and gyy represent the
covariance structure of the w(t) process.

To begin, assume as above that a,;(L) = as,(L) = 1. The
moving average part of the solution now has as free parameters (A,
Y, &, N, 81, 815 8225 8335 dp1» do2» d03) while the determin-
istic part has (Jl, J2), for a total of 13 parameters to be iden-
tified.

When all(L) = a.22(L) = 1, the identifiable parameters of
(23) continue to be displayed in (21). Let the moving average
part of (23) be represented as ¢(L)G'Et and let the moving average
part of (21) be c(L)'r‘l't, where ;t =32t/2zt. Then by using the
same steps used to obtain a Wold representation by factoring =a
spectral density matrix, C(L) can be determined by solving
c()e(t=1)T = (1) 6Te(r1)T. These equations supply a total of

nine equations. Four more equations are given by matching the
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deterministic parts of (21) and (23), while two more equations are
given by (15). Thus we have a total of 15 restrictions on 12 free
parameters. According to such order considerations, the model
seems overidentified even with a;;(L) = a55(L) = 1 in the presence
of a spurious noise.

In general, richer specifications for all(L) and a,,(L)
will lead to stronger overidentification. As inspection of (+)
shows, the higher is the order of EJJ(L)’ the more cross;equation
restrictions are there on the moving average representation of the

(p(t),h(t)) process.
8. Estimation

We describe how to estimate the system (22), in which a
spurious indicator w3(t) is included among the noises driving the
system. We let w(t)T = (wl(t), wy(t), w3(t)). Let us represent

the system as
(24) (1-111L)(1-112L)y(t) = (D0+D1L+D2L)v(t) + lelt + H21:2t

5 t
= D(L)V(t} + Hlﬂl + H27|'2

TJl
a(L) p(t) I-m X
where D(L) = , where y(t) = , and where H; R

(L) (t) Iy
TJ2
" 1-32A

2 = J *
2

As in the preceding section, we suppose that

Ev(t)w(t)T = uby,
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where V is a positive semi-definite matrix, and where we shall set

M= T We define the transformed variables

-t/2

y(t) = u y(t)

-t/2

w(t) = u wit).

In terms of these transformed variables, (24) becomes

-1/2 u-1/2

(25) (1=m,1~Y/20) (1m = /20)5(¢) = p(u~t2L)u(e)

1 2

tu-tfe - tu—t/2_

+EY

In (25), D(w~1/2L) = Dy + Du=1/2L + pu=2/2r2,

By

The moving average component D(u=1/2L)w(t) is covariance

stationary, and has covariance generating function
p(u=1/2z) v p(u=1/2,-1)T,

where recall that D is a 2x3 matrix and V is a (3x3) matrix.
We obtain a fundamental Wold representation for
D(u'lng);(t) by factoring the above covariance generating equa-

tion; that is, by solving
(26) D(u=1/2z) v p(u=1/22-1)T = F(z)aF(z"1)T

vhere @ is a 2x2 positive semi-definite matrix, where F(z) = I +
Fiz + nga, vhere the F, are (2x2) matrices, and where the zeroes
of det F(z) lie outside the unit circle. With these side condi-
tions, there is a unique F(z) that solves (26). The matrix 2 is

the covariance matrix of a

£ the vector of one-step ahead errors
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in predicting ;t from 1its own infinite past: a =; -
wt lyt“"l ’Ytne y % B & A

Given the solution to (2€), we have that

u-lf?

(27) D( L)w(t) = F(L)Et.

Equation (27) expresses the moving average D(u=1/2)w(t) in W(t),
which is possibly unobservable to the econometrician possessing
only observations on y(t), in terms of a moving average of the
(2x1) vector of noises z.t that are fundamental for 3;1'.'

Substituting (27) into (25) gives

-1/2 -1/2 ~ ~
(28) fl-wlu L)(l-ﬂeu L)y(t) = a, + P8, . +Fa
t -t/2 t -t/2
+ Hl'!'r1 u + 1-{21t2 .
Solving for 'it gives
: & o ) t -t/2 t ~t/2 =~
(29) a, == Fl&t—l - F2at-2 - Hl“l o - H2112 M + y(t)
- (wl+n2)u‘1/2§(t-1) + ulngu"1§(t-2).

This equation expresses innovations E‘t in ?t in terms of values of
the free parameters of the model. Given a sample on y(t) running
over t = 1, ..., T and assuming that the w(t)'s are distributed
according to the multivariate normal distribution, maximum likeli-

hood estimates can be obtained by maximizing

logL=-T—1/2logdet9—1/2';T-1

t 8

over the free parameters subject to (26), and the restriction that

W = T,, This minimization is to bte accomplished by using a hill
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climbing procedure. For & given set of values in the space of
free parameters, (26) is to be solved for F(L), then (29) is to be
used to calculate the Et's implied by those parameters, and (30)
is to be computed.

We now consider in the special case in which there is no
spurious indicator, so that the model is (20). In this case, (2L)
is to be reinterpreted with w(t)T now being the (éxl) vector
(Vlft),weft))- The estimation procedure described above then
remains appropriate. Notice that in this case, the step of fac-
toring the spectral density matrix of the moving average part vias
equation (2€) pleys a role even though w(t) is now (2x1). 1In
particular, it is possible that det D(u'lfzz) has zeroes inside
the unit circle. The step of using (26) insures that det F(z) has
all of its zeroes outside the unit circle. This condition is
required for (29) to be a valid way of recovering the a,'s that
appear in the likelihood function (30).

In applying the above method, it would be fortunate if
F(L) were independent of the parameters of V = ﬁ;(t);(t)T, depend-
ing only on the parameters of D(L). (There seems to be a chance
for this in the no-spurious indicator case, but little chance when
w(t) is of dimension 3xl.) In this special case, maximum likeli-

hood estimates can be obtained by minimizing

NNT
a. a

det
1 ) s -

ne=—:3

t
over the free parameters that determine D(L), Ty, T, subject to u

= Toe Then the covariance matrix {1 can be estimated by

Q=11 ZtEtT,
t=1

LR |



=31 =

where the Et are evaluated at the maximum likelihood values of the
parameters determining D(L), m, and 5. This procedure has the
advantage of a reduced number of parameters over which the search
for an optimum is conducted, the parameters in V not being

searched over.

Procedures for Starting Fstimates
To obtain initial estimates of some of the parameters
with which to pursue maximization of the likelihood function, we
could proceed as follows. First, set n = 0. Second, estimate £

from the sample average of
(h(t)-h(t-1))/p(t) = &

Third, estimate the variance of €(t) by computing the variance of
e(t) = (n(t)-h(t-1) - Ep(t).

Fourth, estimate y=1(1-1) as (h/p)l, the mean of h(t)/p(t) during
~a preinflationary period over which the gross inflation rate

averaged about unity. Fifth, estimate A from

(®), = va-)
h -1 X ﬁ
®, - -3,

where [h/p)2 is the mean (h/p) near the end of the hyperinflation
and (p+17p)2 is the gross inflation rate over the same period.
Sixth, estimate the variance of u by using the preceding estimates

of A and Y together with the "variance bonds" inequality

cue < var [p(t)-Ap(t+1)=yh(t)].
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Q. A System with Bonds

We now describe how to compute the solution of an ex-
panded and reinterpreted system, a version of which was studied by
Sargent and Wallace | ]« The method is related to the one used
by Novales to study nonlinear rational expectations models.

The system is now

() Py = AEgDyyy + Yhe +
_ 1
(v) by =33 a0 * 5P e
1 %8,
(e) bt nTn__bt-l + dt - (E+€t/pt)
() Ry = R(py_1bg_1/ht_1) + Py BL 2 O.

Equations (a) and (b) are identical with those studied
above, only now (Ept+€t) has an interpretation as the amount of
the nominal deficit per capite that is to be financed by printing
high-povered money. In (c), By _; is the real rate of return on
one-period interest bearing government bonds, while dy 1s the real
per capita deficit, net of interest payments. We think of d, as e
stochastic process that is exogenous with respect to P¢s hge In
(%), Py is an exogenous, possibly stochastic process, while R(*)
is a nondecreasing function, designed to reflect & dependence of
the interest rate on government debt on the ratio of bonds to base
money that is outstanding.

This system has a recursive structure. Equations (a)
and (b) can be solved for stochastic processes for (pi,hy). Then

(c) and (d) can be solved for stochastic processes for b, Ry.
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This system could be used to create simlations of more
complicated and stochastic versions of the unpleasant arithmetic
examples studied by Sargent and Wallace. Various iterative de-
vices could be used to incorporate the idea that there is an upper
bound on bt that can create a tradeoff between tight money today
and loose money tomorrow. For example, for a given dt process, we
could study an €; process with a moving average representation of
the form €y = ayy(L)wyy = c(L)wpy, Wy = €4 = By g€, With ¢y = -1
for J = 0, 1, eee, M; ¢y = +1 for § =M+ 1, eee, 2M. A large
negative innovation in €y generates a string of M large money
supply decreases, which are followed by M money supply increases.

Simlations could also be generated roughly to match
data by working backwards from observed time series for Pgs Bys
dgs bys Ry g t-,o processes for €,, u,, Py, the function R(+), and

the free parameters A, £, A.
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Footnotes

i/For settings of §& > § max, solutions of the expecta-
tional difference equation system (1) still exist, and are of
exactly the form given in the text. FHowever, when { > £ max, the
roots LE] and T, are complex conjugates, and the deterministic part

of the system

can be shown to oscillate among positive and negative values of
both p(t) and h(t). The system only makes economic sense when
p(t) and h(t) are restricted to remain positive, which is the
reason that we require £ < £ max. (The reader is invited to
construct the complete version of figure 1, filling in the remain-
ing quadrants, and to use it to analyze the movements of the
deterministic part of the system when £ > £ max.)

-E-/As for the moving average part of the solution, the
existence of a continuum of solutions of mean exponential order
less than A~1 is predicted by a modified version of Whiteman's
theorem [p. 91]. Modifications of the conditions of the statement
of Whiteman's theorem are needed to allow for (a) the fact that in
our system, Whiteman's F, is singular, and (b) the fact that we
are seeking a solution of mean exponential order less than A'l,
while Vhiteman sought & solution of mean exponential order less
than unity.

llThe solution is unique only up to the choice of Jl’
vhich can be regarded as reflecting a choice of units in which to

express money and price.
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EJOur assumption is that the covariance matrix of the
w(t) process grows geometrically at the same rate as the maximal
root, which is generally m,, but is 7, in the special case now
under analysis. This assumption delivers a kind of eventual
homoskedasticity for gross inflation and money creation rates.

jjBy "adjusting" our solutions by multiplying the solu-
tions by a factor gt where 6 > My, We could transform our system
to one to which Whiteman's results would apply.

EyFbr a proof, see exercise __ of Sargent [ ,» Chap-

ter XIJ.
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