Federal Reserve Bank of Minneapolis
Research Department Working Paper

TRADE USING ASSETS WHICH ARE
DIVISIBLE AT A COST

Ramon Marimon and Neil Wallace¥*
Working Paper 288
Revised March 1986

NOT FOR DISTRIBUTION
WITHOUT AUTHORS' APPROVAL

ABSTRACT

The consequences of costly divisibility of assets are studied
using a model with the following features. The demand for assets
is generated from an overlapping generations model with a continu-
um of agents in each generation and with intra-generation trade
(intermediation) ruled out. There is a once-for-all supply of a
stock of nonnegative-dividend assets in a large size, and there is
a costly technology for dividing them into smaller sizes. Sta-
tionary equilibria are shown to exist. In contrast with similar
models with costless divisibility of assets, competitive equilib-
ria are not necessarily desirable; there can be Pareto-ordered
equilibria,
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There is scarely a Chinaman [one
Furopean said (between 1733 and 1735)] how-
ever wretched he may be, who does not carry
scissors and a precision scale around with
him. The former is wused to cut gold and
silver . . .3 the 1latter . . . is used to
weigh the materials . . . (cited in Braudel,
The Structures of Everyday Life, Vol. 1, p.
hsh} L]

Divisibility has often been noted to be one of the
properties of assets that importantly enhance their tradability.
Consistent with that notion, most financial intermediaries seem to
produce divisibility and some--money market mutual funds, for
example--seem to produce nothing but divisibility (see Klein
[1973]). Also consistent with that notion, some economies at some
times seem to have suffered significantly from shortages of divis-
ible or low value assets (see, for example, Hanson [1979] and
Timberlake [1978], Chapter 9). However, despite the conjectured
importance of divisibility of assets, we know of no general equi-
librium study of the provision of costly divisibility of assets.
Thus, no one has systematically studied whether private provision
of divisibility for assets differs significantly from such provi-
sion for other things, or whether private provision of divisibil-
ity for money-like assets differs significantly from such provi-
sion for other assets.

In this paper, we undertake an analysis that takes a
step toward answering such questions. To do that, we study a
model in which divisibility is scarce in the following sense. The

economy 1is endowed with assets in a large size and with a re-
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source-using technology for dividing the large size into smaller
sizes. As a way of generating a demand for divisible assets, we
use an overlapping generations model of two-period lived agents in
which members of the same generation cannot share assets or in any
way intermediate among themselves. We assume that the environment
is stationary and that each generation consists of a continuum of
agents.

The model we study contains, essentially, two distinct
objects. One object is a single consumption good (actually one
per date) which is perfectly divisible and which cannot be pro-
duced. The economy's endowment of it at each date is exogenous
and can either be consumed or used in a production process to
produce limited divisibility of the other object in the model.
The other object is an asset. (The consumption good cannot be
stored and, hence, cannot itself be an asset.) The economy is
endowed, once-for-all, with some number of units of the asset of a
particular size with smaller sizes producible using the following
technology. At any date, a unit of the asset of any size can be
divided or cut in half any number of times at a given cost per
division or cut in terms of the current consumption good. Con-
stant costs are assumed to make it easy to price assets, while the
cutting-in-half technology is adopted primarily because it limits
in a simple way the variety of sizes that can be produced. We
study two versions of this model which differ regarding whether

assets physically depreciate.



The first version is one in which assets do not depreci-
ate. 1In this version, the asset with which the economy is endowed
("trees" or "land") has an exogenous and constant dividend per
period consisting of some nonnegative amount of that period's
consumption good. Divided units of the asset have dividends
proportional to their size. If the dividend is =zero, then the
asset is something like a fiat money in fixed supply.

The second version is our attempt to model situations in
which coins or units of paper currency wear out so that there is a
replacement problem. In this version, we assume that the dividend
is zero and that units of the asset wear out in a particular
way. For units of a particular size, there is a probability that
units held from t to t + 1 "disintegrate." We assume that a
disintegrated asset cannot be traded at t + 1, but can be con-
verted at the cost implied by our technology into a non-disinte-
grated asset.

All our results are for stationary equilibria. We show
that such equilibria exist and describe some of their characteris-
tics. 0One characteristic of stationary equilibria in the positive
dividend case 1is that different size assets have different rates
of return. Moreover, as we show, it is possible to have equilib-
ria in which assets with different rates of return are held. A
second characteristic is that, hecause of the dindivisibility,
equilibrium marginal rates of substitution do not in general equal
rates of returns. As noted below, this is consistent with one

interpretation of shortages of low value assets.



As regards welfare properties, one general and obvious
characteristic of equilibria in our model, whether stationary or
nonstationary, is that they are nonoptimal if we regard as feas-
ible any consumption allocation that does not more than exhaust
the exogenous (and divisible) endowment of the consumption good.
Since we severely limit trading opportunities by requiring that
all trade be inter-generational and accomplished through purchases
and subsequent sales of imperfectly diwvisible assets, very gener-
ally egquilibrium allocations fail to satisfy two necessary condi-
tions for optimality in that class of feasible allocations:
efficiency--namely, that no resources be devoted to producing
asset divisibility--and intra-generation equality of marginal
rates of substitution. A less obvious characteristic--and, there-
fore, one we describe in some detail below--is that our model has
multiple stationary equilibria, some of which can be ordered by
Pareto-superiority. This multiplicity result and our analysis of
taxes and subsidies--on the divisibility process in the first
version and on asset replacement in the second version--imply that
market provision of costly divisibility of assets can give rise to
suboptimal outcomes even within the class of outcomes consistent
with trade taking place according to the mechanism we have de-
scribed.

The remainder of the paper is organized as follows. 1In
Section I, we describe the nondepreciating asset version and
present the stationary-equilibrium existence result. In Section

II, we describe features of such stationary equilibria. Section



ITITI contains the description and analysis of the version with
disintegrating assets. Section IV contains all the existence

proofs, while Section V contains concluding remarks.



I. Nondepreciating Assets: Structure and Equilibrium

We study a discrete time overlapping generations model
of two-period lived agents defined over integer dates t, t > 1.
Each generation consists of a continuum, the unit interval, of
agents. Formally, each generation is represented by the atomless
measure space ([0,1],B[0,1],)), where B([0,1]) is the Borel o-
field on [0,1] and A is the Lebesgue measure. At each date, two
kinds of objects exist: a single, nonproducible, nonstorable, and
divisible consumption good; and assets which can be costlessly

stored and can at a cost be divided.

1. Assets and the technology

The economy is endowed at t = 1 with some (average)
amount of assets of a uniform size, which is normalized to be
unity. ®ach unit of the asset throws off a dividend of d units of
the consumption good at each date, where d > 0.

There is a technology, an irreversible Leontief technol-
ogy, available to any agent at any time for dividing, possibly
repeatedly, a unit of the asset of any size into two halves. The
constant cost of a division or cut is o units of the current
consumption good, where a > 0. Formally, the economy's production
set at any date t (of final or intermediate outputs at t) consists
of all triplets (31’8‘2’9‘3) satisfying (al,aQ,a3) = (2m,-m,-ma) for
some nonnegative integer m, where a, is output of the asset in
units of size 2—(n+1)’ a5 1s output of the asset in units of size

9'“, as is output of the consumption good, and n is any nonnega-



tive integer. We assume that asset division gives rise to propor-
tional dividend division so that one unit of size 27" has a divi-
dend per period 47 = 2774, Finally, in this version of the model,
assets of any size are costlessly storable from one date to the

next.

2. Agents

We separately describe all two-period lived agents and
the agents who are in the second and last period of life at t = 1,
generation 0., Members of generation t, t »1, who are present at t
and t + 1 have preferences, represented by utility functions, over
their own consumption of time t and time t + 1 consumption good.
They also have endowments of those goods. Members of generation 0
have preferences over time 1 consumption good only and are endowed
with some of that good and with some nonnegative integer amount of
the asset in size unity.

Formally, for all t > 1, generation t is described by a
measurable mapping G: [0,1] =+ C(Rf) X RE, where C(Rf) is the space
of continuous functions on Rf. (R" is n dimensional Fuclidean
space, Ri is the nonnegative orthant, and Rf_'_ is the positive
orthant.) Given i e [0,1], G(i) = {ui(-},wi}, where u, : RE * R is
the utility function of i, w; = (w; ,wg), and w}i{ is i's endowment
of the consumption good in the K Uh period of life or at age k. It
is assumed that mean endowments are finite; i.e., fln,l]w?dl(i) <
+e for k = 1, 2. (From now on, when the context is clear, we

write f[o 1] F(1)dA(1) as [f(i)dA.) Generation 0 is described by a

measurable mapping Ggy: [0,1] > C(R,) x R, x Z,; i.e., Go(i) =
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’wOi’ZOi)‘ where up;: R, * R is i's utility function which

is assumed to be strictly increasing, w is i's endowment of date

0i

1 consumption good, and Zgi is i's endowment of assets of size

unity. (%, denotes the set of nonnegative integers.) Again, we

assume finiteness; for mean endowments, fwgidx < +» and for the

mean exogenous supply of the undivided asset, fzgidk = ;O < 4w,
Tater we will impose additional assumptions on G and

EO. Note that we have imposed stationarity on the environment by

supposing that the technology is unchanging and that the mapping G
describes all generations t for t > 1. Note also that only menm-
bers of generation 0 are endowed with assets. We now turn to

describing competitive equilibrium.

3. Prices and the consequences of profit maximization
We let the current consumption good serve as a numeraire

and denote by pz the period t price of one unit of the asset of

=1

size 27", We also let p, = (pg,pi,...) and P = (py,Pp,ees)e

Given our constant-returns-to-scale technology, the
condition that profits not be positive, a necessary condition for
competitive equilibrium, is +that for all n and +t, Py <

2"1(n2'1+a). Moreover, if size 2~" assets are produced at t,

n-1
t

starting with units of size one, then pz =2

2, «se, N so that pg = 2‘np2 + (1-2-%)q,

n

then p: = 2_1(p +a). Also, if at t, assets of 271 are produced

_1(pr_1+a) for r = 1,
t



4. Competitive utility maximization

The budget set we specify for an agent i of generation
t, t »1 allows the agent to depart from his or her endowment only
by purchasing and subsequently selling nonnegative integer amounts
of the (outside) asset in the sizes that can be produced., In
particular, agent i cannot borrow and cannot (therefore) jointly
own or share assets with other agents. We also build perfect
foresight into the budget set by having agent i at t face actual
asset prices at t and at t + 1. ¥inally, we do not include pro-
duction possibilities directly, because for prices satisfying the
nonpositive profit condition, production possibilities are redun-
dant given trading opportunities. Thus, given a system of prices
P satisfying p: < 2"1(p2-1+a), we write the budget set of agent i

of generation t, t 2 1, as

2 % oo
B(pt’pt+1;wi) = {c ¢ R,: there is z e Z_ such that

1 1 L nn 2 2 e n n, n
- <
e £ wi En=0 ptz 5 16 wi + Zn=0(pt+1+d )z }

where Z: is the set of sequences (z0,zl,...) with 2" ¢ Z,. The
vector z is the portfolio, consisting of integer amounts of assets
of producible sizes, that supports the consumption bundle c.

In order that demands satisfy the continuity properties
we need for establishing existence of an equilibrium, we define
consumption demand of an agent i in generation t, t > 1, over the

closure of R(p ), denoted c%B( ). That is, this demand is

defined by ¢ti(P) = argmax {ui(c): e € cRB(pt,pt+1;wi)}. Note

that the closure of R( ) contains the 1limit as n + » of the con-
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sumption supported by portfolios which contain assets of size
2", TFor example, for stationary prices for which p" » a as n »

®w, the closure of B( ) contains (Wi-am,wi+am), which is the 1limit

as n *» » of the consumption supported by the portfolio z" = m, 2K

=0, k #n.

Having defined consumption demand over the closure of
B( ), we cannot define the demand for assets in the obvious way as
the set of portfolios that support a given consumption demand.
Instead, we proceed as follows. Given ci; € ¢,;(P), we define the

corresponding demand for assets by w(cti;P,wi) = {z € Z:: there

exist sequences {c(q)} and {z(q)} with c(q) € Rf and z(q) € Z:

such that cla) =+ ci5, 2z(a) » 2z and, for all q, el(q) <

1 ® n.n 2 2 © n n, n
LA En=0 P, 2 (q), and c=(q) < Wi+ En=0 (Pt+1+d )z (q)}, where

z(q) + z means that z(q) converges to z in the product topology
(i.e., z(q) converges to z pointwise (see Robertson and Robertson
[1973])). Note that if cy; € B( ), then this definition picks out
exactly those portfolios that support ci; in the ordinary sense.
For ci; in the closure of B( ) but not in B( ), this definition

does not require that the corresponding portfolio, call it gz,

. 2 2 o ny, n
support ¢, in the sense that c ( +d )z . Thus,

n
-
g1 S Vo1 * Lnmg Py
for example, at stationary prices this definition assigns to Cii

I

i n
(wi

—um,w§+am), the portfolio =z = 0 for all n even though
o)

w? + am > w; for m > 0. (Note that 2" = 0 for all n is the limit

in the product topology as j + « of 2 = m, 2% = 0, k # j.) We

denote elements of ¥ by Zygo
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The budget set of agent 1 of generation 0 is

0 0, _ _ 2 0.0 B
gﬁ(pl’w ,zoi) = {c €eR: ¢ < Vo1 * plz01} and ¢0i(P) = argmax
): i ' .
{uoifc 1 c € B (p Py3Vg4o zO.)} is the agent's demand It follows
. - 0.0
from monotonicity of uy; that ¢p;(P) = Woi * P1Zo; and that agent

i supplies the 1initial asset endowment, zO ,» at any positive

0i
price pg, facts we use below.
5. Definition of competitive equilibrium

2 (e l ?
OS

[0,1] + R, (the mapping describing age k consumption of gener-

A sequence of integrable mappings {c ) } where

ation t) and 7 ! [0,1] » Z: (the mapping describing the assets
held by generation t from t to t + 1, the integrability of which
is defined in the proof of Proposition 1), and a sequence of

prices P is a competitive equilibrium if: (a) for all t > 1,

ps > 0 and p: < 2‘1(p2_1+a) and the latter with equality if

f(zt-zt 1)dl > 03 (b) for all t > 1 and almost all i ¢ [0,1],

1
(egss
for all t > 1

2] 2
cti) € ¢,:(P) and z.; € Wley;3P,w;), and Coy © ¢Oi(P); (e)

(1) f(ct—wt)dl + f(ct+1 t+1)d1 +
« ¥ (T 'r)f(z —zMar - 3% = o
=1 " “r= t+1l ¢
and
(ii) 17 2™ [zR4n = %O,
m=0 t ?
and (4) the sequence {{fzgdx}njb}tjl satisfies the irreversibility

of the production process.
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A competitive equilibrium is stationary if for all t »
o)
: (cl’,c{,zt) = (cl,cg,z) a.s. and py = p. Alternatively, the

2
collection of integrable mappings {cg,cl,c_,z} and the sequence p

0 1 0

= (p°,p1,p?,...) is a stationary equilibrium if: (a') p° > 0 and

P = 2'1(pn"1+a); (b") (ci,c?) € argmax {ui(c): c e cis(p,p,wi)},
2] 0
zy € ¥leysp,wy), and oy € argmax {uoi(c): c € BO(p;wOi,zoi)}

a.8.; and (c')

n 0

- n -
pep 2 Mz dd - X

(i') [(ePw?)ar + [elowh)ar + o I (] d=0
00 n=1

(111)  [fe®’w®)an + [(et-wh)ar - 3% = o

(111) )~ o 27" fz"an = .

Notice that (i) and (ii) and (i')-(iii') are market-
clearing conditions for the consumption good and for the asset.
The third term on the left side in (i) and (i') is the input of
the consumption good into the division process. As implied by
(i') and (ii'), in a stationary equilibrium all asset division
occurs at t = 1. This, in turn, guarantees satisfaction of the

irreversibility of the production process.

h. FExistence of stationary equilibria
We establish the existence of a stationary equilibrium

under the following additional assumptions.

A.1 (Monotonicity and continuity.) For almost all i e [0,1], uy

is strictly monotone and is continuous.
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A.2 (Desirability of consumption when young.) For almost all i e

2

[0,1], there is no ¢“ e R, such that ui(O,cg) > ui(wi).

A.3 (Ability to save.) TFor almost all i € [0,1], a < wi.

A4 (Desire to save,) For almost all 1 e [0,1], u (wi—a,

i
>
wi+a) > ui(wi).

A.5 (Nontriviality.) x° = fzoidl e {0,1].

270

Proposition 1. For an economy {GO,G,a,d} satisfying 4 » 0, a > 0,

and A.1-A.5, there exists a stationary equilibrium with p ¢

[u,ﬁllio], where Wl = fwidx. (See Section IV for a proof.)

Although assumptions A.3-A.5 are fairly special, their
role is straightforward. They guarantee that assets are divided
in most cases. If the nontriviality assumption, A.5, is strength-
ened so that X e (0,1), then in equilibrium there is division of
assets.

While the Section IV proof of Proposition 1 is standard,
two special features of our model play a crucial role in the
argument. First, our choice of technology allows us to parameter-
ize the stationary prices of a portfolio by a scalar, rather than
by an infinite dimensional vector. Second, even though there is
an infinite (countable) number of available assets, for the pur-
pose of equating demand and supply, only the total amount demanded
by an individual (the derived or implied demand for units of size
unity) matters, not its composition. (This follows from (iii')

with the order of summation and integration reversed.) We use
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this fact and our continuum-of-agents hypothesis to obtain the
necessary convexification effect; that is, to eliminate in the
aggregate the possible nonconvexity of individual demand implied

by the fact that individuals choose integer amounts of assets.
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ITI. Nondepreciating Assets: Features of Stationary Equilibria

In this section, we describe some of the characteristics
of stationary equilibria of the model described in the last sec-
tion. Since some of the discussion involves the construction of
examples which depend heavily on the features of rates of return
and budget sets implied by stationary prices, we review those

features first,

1. Stationary rates of return and budget sets
As noted above, purchase of an asset of size 2~ " at the
(ex-dividend) price p” entitles the purchaser to a dividend or
coupon at the next date in the amount (27™)d and to the proceeds
from selling the asset at the next date, which assuming stationary
prices, is p". At stationary prices consistent with positive
production of assets of size 277, p" = (27M)p0 + (1-2"M)a. (Note
that, for a given po, p" > aas n » w,) It follows that the one
period interest rate on an asset of size 270 is d/[pP+(2"-1)q].
Thus, for a given po ? a, the interest rate is decreasing in n and
approaches zero as n > w.!J (In what follows, we again let p
denote p°.)
For an individual i faced with stationary prices, there
is a simple characterization of consumption bundles that are

attainable and that satisfy the Dbudget constraints without

slack, It is easily shown that any consumption bundle that is

n

supported (without slack) by {Zi} with Xg z; =m 1is a weighted

)

average of (w%-mp,W§+m(p+d)) and (w}-ma,wi+ma)——the former being
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the bundle implied by the portfolio {z]} = (m,0,0,...) at the
price p, the latter being the limit as k + = of the bundle implied
by zg = m, zg =0 for n # ks 1In particular, at any price p, the
7] . . n ® n s
consumption  bundle  implied by  {z§}  with Yo 24 =mis
w(wiomp,wPem(p+d)) + (1-p) (wi-ma,w>+ma) where u = (5- 272" )/m ¢
i i i i =0 i
(o] s 3/ Figure 1 shows an example of the closure of the budget
set, It is drawn to scale for p = (3/2)ea, d = a = 1, (wi,w?) =

(4,1). For these parameters, only portfolios withm =1 and m = 2

are affordable.

2. An example in which different return assets are held

We now use the above characterization of budget sets and
the particular example displayed in Figure 1 to show that it is
possible to have an equilibrium in which different size assets
(with different rates of return) are held.

The example is of an economy with identical agents in
which each agent ends wup holding the portfolio {z?} =
(6,1 1:0,0600a)s (Here and below the term "agents," when not
qualified, refers to members of all generations other than genera-
tion N.) We will work backwards to the specification of an econ-
omy that has such an equilibrium.

First, since z? = z" for all i implies fz?dl = g0,
market clearing requires ) 27Mz" = X oor % = 3/h.

Second, since the corresponding proposed consumption
bundle is point B in Figure 1, we need to have preferences that
imply that this point is preferred to all other points in the

budget set. It is obvious from Figure 1 that there exist well-

behaved indifference curve maps that make B most preferred. §j
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This example and equilibria, in general, are consistent
with shortages of low value assets in the following sense. Very
generally, equilibrium marginal rates of substitution of most two-
period lived agents do not equal the returns on any of the assets
that are traded in equilibrium. Since such agents could achieve
preferred consumption streams if there existed lower wvalue assets
with the same returns as existing assets, the nonexistence of such

assets can be regarded as a shortage.

3. Multiple equilibria ordered by Pareto superiority

We have such multiplicity results both for 4 > 0 and d =
0. For 4 > 0, we produce particular examples with multiple equi-
libria ordered by Pareto superiority. For d = 0, a more general
argument can be given. Below we show that if d = 0, then there is
always an equilibrium with p = a and that any p > a equilibrium is
Pareto superior to the p = a equilibrium. We also show, in part
by appealing to the proof of Proposition 1, that many, if not

most, d = 0 economies have an equilibrium with p > a.

(a) Multiple equilibria ordered by Pareto superiority: 4 > 0.
For d = a = 1 and (wl,w?) = (4,1), Figure 2a shows some
of the attainable consumptions at two prices: p = (3/2)a and p' =
p + a. This relationship between p and p' implies that the port-
folio z = (1,0,0,...) at the price p' supports the same consump-
tion as does the portfolio z = (0,2,0,0,...) at the price p, point
B in Figure 2a. TIf all agents are identical, if B is preferred

under both prices, and if ;O = 1, then we have muiltiple equilibria
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ordered by Pareto superiority. (All agents other than members of
generation 0 are indifferent between the equilibria; generation 0
does better under p' because they receive more for what they own.)

There exist preferences so that B is preferred under
both p and p'. For example, an indifference curve map with an
indifference curve that is tangent at B to the line connecting By
and B and that is above point A1 gives that result (see Figure
2a). Note that point C 1is the consumption implied by 2z =
(0,1,0,0,44.) 2t p' and that no consumption on the line segment
connecting B and C is attainable at p'.

An economy of the sort just described generates a mean
demand for units of size unity 1like that shown in Figure 2b.
Thus, it has other equilibria, ones with prices in a neighborhood
of p' and with an equilibrium portfolio for each person consisting
of one unit of undivided asset. The equilibrium consumptions for
these appear in Figure 2a on a line segment of slope -1 passing
through the equilibrium consumption for the price p'. If an
indifference curve is tangent at the p' consumption to a line with
slope less than -1, it follows that there are equilibria at prices
near to and lower than p' which give equilibria which all two
period lived agents strictly prefer to the price p' equilibrium
and, hence, to the price p equilibrium. Since prices in the
neighborhood of p' exceed p, members of generation 0 also do
better under such prices than under p.

Although the above example is very simple, it is not,

unfortunately, robust to perturbations in the underlying space of
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characteristics. 1In particular, as is clear from Figure 2b, any
perturbation of ;0 from unity eliminates the multiplicity. We
next describe a robust example of Pareto ordered equilibria--
robust in the sense that such multiplicity occurs in an open set
in the space of char-acteristics.i/
Figure 3a, which is drawn to scale for (wl,w?2) = (5,1),
a = 3/2, and 4 = 1/2, shows the consumptions supported by several
portfolios at several prices. The points labelled a(p), b(p) and
c(p) are the consumptions supported at the price p by the port-
folios z = (1,050, «ee)s 2 = (0,1,0,0, +ss) and z = (0,1,1,0,0,
ves), respectively. As we now explain, for these parameters there
exists a distribution of preferences that generates mean demand
for units of size unity like that shown in Figure 3b. This, in
turn, implies that Pareto-ordered equilibria exist for any ;ﬂ in
an interval and for perturbations of all other characteristics.
Suppose the distribution of preferences is such that at
p = 2, the consumption supported by z = (0,1,1,0,0, «e.)--namely
c(2)--is the unique preferred consumption for everyone. One such
indifference curve is shown in Figure 3a and, since c(2) is a
corner, there can be a nondegenerate distribution of preferences
satisfying that condition. Now consider prices slightly higher
than p = 2. As p increases from 2, the portfolio z = (1,0,0, ...)
becomes preferred to z = (0,1,1,0,0, ...) for more and more peo-
ple. This implies mean demand that increases toward unity (see

Figure 3b). As the price increases further toward p = 2 + a =

7/2, the portfolio z = (0,1,0,0, ...) becomes preferred for more
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and more people., This implies a mean demand that decreases toward
1/2 (see Figure 3b).

As shown by Figure 3a, everyone 1is better off at any
price in a neighborhood below p = T/2 than at any price in a
neighborhood above p = 2, Moreover, since there is an equilibrium
in each of these neighborhoods for any ;j in a neighborhood above
3/4, this example gives rise to Pareto-ordered equilibria, Final-
ly, since small perturbations in the distribution of endowments
and preferences and in d and a generate small perturbations in the
mean demand for units of size unity, such multiplicity occurs in
an open set in the space of all characteristics.

The erucial feature of this example (and of the previous
one) is that a is sufficiently large relative to d. If, instead,

a is sufficiently small relative to d, then utility is decreasing

in p for all savers.

(b) Multiple equilibria ordered by Pareto superiority: 4 =0
We begin by showing constructively that when d = 0,

there is always an eguilibrium with p = a.

Proposition 2. Assume A.,1, A.3-A.5. If d = 0, then p = a is an

equilibrium,

Proof. TLet m? be the nonnegative integer wvalue of m; that maxi-

. oo
mizes ui(W%‘ami'“§+“mi)' At p = a, all {z{} such that ZO z? = m¥
support utility maximizing consumption. Therefore, to meet the

demand of the young for assets at p = a, the only requirement is

that Y. [z7dA = [m®dA = m*.
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M ¥* .
Let i be the integer satisfying 231 <m /X < i,
Since assumptions A.3-A.5 imply m* > ;O, we have i1 > 0., With i so
determined, suppose we let the average number of units of size

2'i+1, fzi‘ldl, be 21;0 - m¥, the average number of units of size

21, [rlax, ve 2n* - 2830, and [2%ar = 0 for n ¢ {i-1,i}.

By choice of i, these are nonnegative quantities. Also,
the total average number of units is m¥*¥. The only other equilib-
rium requirement is Z: Q_nfzndl = ;O. This, too, is easily seen
to be satisfied. A

It is tempting to interpret this p = a equilibrium as
one in which the value of fiat money is its cost of production,
At p = a, the average quantity of fiat money supplied not distin-
guished by size is perfectly elastic in that any average quantity
larger than unity can be produced while covering costs and meeting
the constraint on ;ﬁ (see the proof). Since demanders do not
distinguish among sizes at p = a and since, by assumption, demand

is at least one unit on average, it is not surprising that there

is an equilibrium at p = a.

We now show that this p = a equilibrium is inferior to

any p > a equilibrium.

Proposition 3. Assume A.l1. 1If d = 0, then any p > a equilibrium

is Pareto superior to any p = a equilibrium.

Proof. Let ci(a) denote the equilibrium consumption of person i
in generation t, t > 1, when p = a. Since ci(a) £ cﬂB(p,wi) for

any p, it follows that person i weakly prefers her or his consump-



tion under the p > a equilibrium. Since members of generation 0

strictly prefer p > a to p = a, we have Pareto superiority. A

Given these propositions, mltiplicity of equilibria
ordered by Pareto superiority occurs when d = 0 for any economy
for which there exists a p > a equilibrium. (Such a situation is
illustrated in Figure u.) Our general existence proof implies
that such an equilibrium exists if there exists a p > a at which
there is excess demand--namely, zg fzndl > EO. Although assump-
tions A.3-A.5 do not imply that such a p exists, one exists for
many economies, éj There might also be Pareto-ordered equilibria
within the set of equilibria with p > a. 1In fact, the type of
multiplicities studied for 4 > 0 are more likely to occur when d =
0.

Thus, whether 4 > 0 or 4 = 0, versions of our model have
Pareto-ordered stationary equilibria with positive valuation of an
outside asset, The presence of positive divisibility costs is
necessary for such occurrence in the sense that if o is set at
zero, then our model--at least versions in which everyone satis-
fies A.3 and A.4W and hence, is a "saver'"--becomes a standard
stationary, pure exchange overlapping generations model. 1In such
models, it is well known that any stationary equilibrium with a
constant nonnegative interest rate, as is implied by constant and
positive valuation of an outside asset, is Pareto optimal.

Note, however, that setting a = 0 does two things in our
model: it effectively eliminates indivisibilities and it elimi-

nates from the model a production technology. In the case of
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assets without dividends, the mere presence of a production tech-
nology--one having nothing to do with divisibility-- can give rise
to Pareto-ordered stationary equilibria with positive wvaluation of
an ountside asset. For example, suppose an overlapping generations
(or other infinitely 1lived economy) starts with divisible green
money and a constant-returns-to-scale technology for converting it
into divisible red money (by "painting" it), where o is the cost
in current consumption good per unit of money in making the con-
version, Then, if (pg,pr) = (p*,p*+a) are constant values of
green and red money in an (optimal) equilibrium in which no red
money is produced and held and if p¥ > q, it follows that there is
a Pareto-inferior equilibrium with (pg,pr) = (p*-a,p*) in which
only red money is held. The multiplicity we find in our model
when 4 = 0 may be related to this trivial kind of multiplicity but
the multiplicity we find when 4 > 0 is not. It is easy to see
that such trivial multiplicies cannot arise if d > 0; if 4 > 0,
then '"painted" divisible assets are not held because the lower
priced "unpainted" divisible assets have a higher rate of re-
turn. Thus, at least for the case of positive dividend assets,
the indivisibility is playing a crucial role in generating Pareto-

ordered stationary equilibria, 5/

4. A tax on the divisibility process

Suppose a tax T (a subsidy if 1t < 0) is levied on the
divisibility process so that the cost to an individual of making a
division is (14t)a instead of a. We can preserve stationarity

under such a tax by distributing the proceeds of the tax to mem-



bers of generation 0. If we do, then we can simply reinterpret
the no-tax stationary equilibrium as a tax equilibrium by letting
o = (1+1)a', the gross-of-tax cost of dividing, and by appropri-
ately adjusting consumption of generation 0.

Three points can be made about such a tax schene,
First, the scheme is nonneutral in the sense that T # 0 generates
equilibrium allocations which, 1in general, are different from
those implied by T = 0. Second, there is no obvious sense in
which the presence of such a tax is distorting. Since there is no
straightforward relationship between (the gross of tax) o and
marginal rates of substitution in equilibrium, the usual "wedge-
type" arguments for taxes on production do not apply to our
model, Third, if one were to posit a social welfare function as a
weighted average of utilities of the members of generation 0 and
of the utilities of all two-period lived agents, then there would
generally be some equilibrium for some T # 0 that implied a higher
value for this function than is attained under any equilibrium
with 1 = 0. This is an implication of the nonneutrality of the
tax.

These implications of a tax or subsidy on the divisibil-
ity process, like the existence of Pareto-ordered equilibria, sug-
gest that laissez-faire provision of costly divisibility of assets

is not necessarily desirable.
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ITTI. DNisintegrating Assets

Here we maintain the model of Section I except that we
assume that assets depreciate in a particular way. We also assume
that there are no dividends (d = 0), so that we are focussing on
the consequences of currency wearing out. We use this model to
compare what happens if agents face directly the implied replace-
ment costs, a regime we label laissez-faire, with what happens if
replacement is subsidized, financed by taxation. Historically,
both kinds of situations have been experienced. A version of
laissez-faire reigned during the nineteenth century, at least in
the Tnited States and in Fngland, when holders of gold coins bore
directly the consequences of wear of such coins. l/ The subsidy
situation is the common one in place today; in most countries,
sufficiently worn units of paper currency are replaced by new
units at government expense. ﬁj

We assume that depreciation of assets occurs as fol-
lows. A unit of an asset of size 2™ held from t to t + 1 has a
probability of "disintegrating'" at the beginning of or just prior
to t + 1. At £t + 1, a disintegrated unit continues to be the
fraction 27" of an undivided unit except that it takes a form that
cannot be stored. It can only be combined with other disinte-
grated units to produce assets of size unity, which can then be
divided into storable units of various sizes using the same costly
division technology assumed in Section I. The combining of disin-

tegrated units into units of size unity is assumed to be costless.
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One can interpret the above assumptions in terms of gold
coins., TFor a gold coin of size 2‘“, there is a probability that
the coin turns into powdered gold (disintegrates) which cannot be
used as a coin (stored). However, the powder can costlessly be
combined with other powder to produce units of size unity. Alter-
natively, a disintegrated coin can only be "melted down" in com-
bination with other such coins to produce units of size unity.

This way of modeling the depreciation process is simple
in several respects. First, the process does not itself produce
additional sizes of assets. Second, it is consistent under lais-
sez-faire with the existence of stationary equilibria (in which,
however, consumption in the second period of 1life is in general a
random variable). Third, under some additional assumptions, it is
consistent with an absence of aggregate risk. This, in turn,
makes it relatively easy to describe the consequences of tax
schemes that finance replacement of disintegrated units. EJ

We study two tax-scheme alternatives to 1laissez-

faire. lgf

The first scheme has lump-sum taxes payable in the
second period of life which finance all replacement. The taxes
are lump-sum in that they are not viewed by agents as dependent on
their portfolio decisions,. Since the tax finances all replace-
ment, taxes aside, the situation facing agents is the same as that
when assets do not disintegrate. The second scheme has insurance
taxes. Under it, an agent pays a tax in the second period of life

equal to the expected replacement cost of the agent's portfolio.

(This scheme can also be thought of as the result of the operation
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of a private insurance market.) We are interested primarily in
comparing laissez-faire with lump-sum taxation, the latter being

the system that resembles current policy in most countries.

1. The model and stationary equilibrium

The model is identical to that described in Section I
except that here a unit of the asset of size 27" held from t to t
+ 1 disintegrates with constant probability 6,. Thus, if zﬁi de-
notes the integer number of units of assets of size 2°7 held by
agent i from t to t + 1 and y:i denotes the number of these that
disintegrate, then YZi is a binomial random variable with param-
eters zn. and 6 _.

ti n

In this section, we define demands only for stationary
prices that satisfy p" = 2% + (1-27M)aq. Moreover, we simplify
the description of the decision problem by assuming, as implied by
strict monotonicity of preferences, that budget constraints are
satisfied as equalities.

We begin by introducing some notation which allows us to
describe the distribution of disintegration losses implied by a
portfolio., Let M(R+) denote the space of probability measures on
(R;,B(R,)) where B(R,) is the Borel sigma field on R,. Then we
define w( e;p,w,z) € M(R+) by m(x;p,w,z) = prob {x = we hpz -
a(I-A)y: y? has the binomial distribution with parameters (z",en)
for all n > 0}, where T = (1,1,...), A = (270,271 2=2 | ) and A,
= pA + af(I-A), p being the price of a unit of size unity. Note
that w(e;p,w,z) is the distribution of second-period income (con-

sumption under monotonicity) under laissez-faire.
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Given a measure m € PA(H+) with countable support and a
utility function u: RE + R, we can define the following utility
functions on  R,xM(R,): vie,n) = Ex n(x)ulc,x) and v(c,n) =
u(c,?x n(x)x), the summations being over the support of m. The
function v 1is expected utility under laissez-faire while the
function v is utility under insurance taxation. Note that for
given (p,w,z), second-period consumption under insurance taxation
is simply the expected value of second-period consumption under
laissez-faire. We also define the budget constraint E(p,w) =
{(e,m) e R, x M(R,): there exists z ¢ Z: such that ¢ = w- - Az
and m = w(e;p,w,z)}.

Under laissez-faire, the demand for consumption of agent

i of generation t, t > 1 (facing stationary prices satisfying p" =
27 + (1-27Ma) is 'si(p) = argmax [vi(c,w): (c,m) € cﬁﬂ(Pwi)},
where the closure of B8(+) is taken with respect to the product
topology induced by the Fuclidean topology and the topology of
convergence in measure. Similarly, under insurance taxation, the
demand of agent i is given hy Ei(p) = argmax {?i(c,u): {e,x) &
c28(p,w.)}.
i
The set of portfolios supporting a choice (c,m) €
ckﬁ(p,wi) is w((c,ﬂ);p,wi) = {z ¢ Z_e:: there exist sequences
{c(q)} and {z(q)} such that, for all q, c(q) € R,, z(q) € Z:, claq)
=w1 = Apz(q), n( sp,wi,z(q)) + w( ), c(a) + ¢, and z(q) » z},
where convergence for 7 is convergence in measure. Therefore,
asset demand is given by '@i(p) = {‘JJ{(C:TT);P,‘TI)? (e,m) € zi(p)}
and Tpi(p) = {w((c,n);p,wi): (e,m) € Tpi(p)} under laissez-faire and

insurance taxation, respectively.




With lump-sum taxation, demands differ from those of the
nondepreciating asset model only in that they depend on nonrandom
lump-sum taxes, T, payable in the second period of life. Thus,

the budget constraint of agent i of generation t, t > 1, is

B(p,t,w;) = {c ¢ R2- there exists z e % such that cl = wh o= A z
et et +' + i p

o)
and c? = w{ + !Lpz - 1}« The demand for consumption is then
3;(p,T) = argmax [ui(c): c ec%ﬂ(p,‘r,wi)} and the demand for
assets is Y;(p,7) = {tp(c;p,r,wi): c € ¢i(p,-r)}, where Y(c3p,T,vy)

= {z € Z:: there exist sequences {c(q)} and {z(q)} such that for

1

o 1 _ 2
2(q) €2, ¢ (a) = vy

- Apzla), oB(a) =f +

all q ecl(q) € R2 1

+S
hpz(q) - 7, c(q) *+c, and z(q) » z}.

All of the above pertain to agents of generation t, t >
1, two-period lived agents. Agents of generation 0 behave exactly
as in the no-depreciation model; they supply all their assets at
any positive price and consume the proceeds and their endowment.

. 2 1}
Therefore, a collection (co,(c ,T),2,p) —-where

(cg,cl,z) are integrable maps; for all i, w; 1is a probability

measure, and p is a scalar--is a stationary equilibrium under

laissez-faire 1if: (a) p > 03 (b1) cgi = w? + pz(i) a.s.; (b2)

~ ~ 1 2 2
(ci,wi) e ¢(p) and z; e Lpi{(ci,wi);p,wi} aese; (1) ﬂco-wo)d}t +

f(elwl)ar + fa(I-Mzdr = 0; (e2) [(c?w2)an + [(clowDlar +

fu(I-!\)de\ = 0; where ci and y; are the random variables induced
by z;3 and (e3) [Azd = .
_— . 2 1 .
Similarly, a collection (co,(c ,m)4Z,P), with the above

properties, is a stationary equilibrium under insurance taxation

if 1t satisfies (a), (b1), (v2') (cf,m) ¢ 3,(p) and 2y e

ﬁi((cl,w );p,wi) a.S., and (c1)-(e3).



Finally, a collection (cg,(cl,c2),z,r,p), where

(cg,(cl,ce),z,r) are integrable maps and p is a scalar, is a sta-

tionary equilibrium under lump-sum taxation if (a), (v1), (b2")

(ci,cf) e ¢;(p,1y) and z ¢ wi((ci,cf);p,ti,wi) a+8., (c1)-(e3),
and (d) [a(I-A)ydx = [td), where y; is the random variable induced
by Zie

Under either taxation scheme, these definitions can be
satisfied only 1if there is no aggregate risk. (If there were
aggregate risk, condition (c2) would imply random consumption,
which violates the conditions underlying demands in the taxation
cases.)

In order to assure no aggregate risk, the taxation
schemes are studied only under the assumption of homogeneous
consumers, although the results are easily extended to a model
with a finite number of distinect consumer types. (The technicali-
ties of assuming no-aggregate-risk in our model are discussed at
the end of Section IV.) Under laissez-faire, aggregate risk is
not troublesome bhecause any aggregate variation in the total cost
of replacing disintegrated assets is '"financed" by exactly offset-
ting randomness in aggregate consumption in the second period of

life. A formal statement of homogeneity of consumers is as fol-

lows.

5
A.6. (Homogeneous consumers.) G: [0,1] + C(R;) X Rf is constant

almost surely.
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We then have the following existence proposition for

laissez-faire and insurance taxation.

Proposition L.

(a) Assume A.1-A.5. Under laissez-faire, there exists a station-

ary equilibrium with p € [u,ﬁlffol.

(b) Assume A.1-A.A. Under insurance taxation, there exists a

stationary equilibrium with p € [a,ﬁllfo].

(The proof is given in Section IV.)

We have two existence results under lump-sum taxation,
which, however, are less general than the Proposition 4 results.
The first result gives sufficient conditions for existence of a
stationary equilibrium with p > a; the second gives sufficient
conditions for one with p = a.

Both results depend on the following strengthened ver-

sions of A.2 and A.3, respectively:

A.2'. (Desirability of consumption.) For almost all i e [0,1],

(el,e?)) > u;(c*,0) and n(el,e?) >

2
*
for all ¢ ¢ R++ and c* € Ry, uy

u; (0,c*).

4.3'. (Bounds on endowment.) There exists a positive integer m

such that for almost all i e [0,1], “'1 > ma and wf - "’]iL + me > 0.

The first result also assumes that the following condi-

tion holds.



= 39 =

Condition B. There exists a continuous function p: [0,51] > (a,®)

such that if x € [(p(7),T)dA, then x > X .

This condition asserts that there is a continuous lower bound on

equilibrium prices. Unfortunately, it is difficult to describe

11/

other than quite special economies which satisfy it.
The second result does not rely on Condition B, but uses

as additional assumptions the following.

A.T. (Common probabilities of disintegration.) For all n, Q5 =

e.

A.8. (A version of normal goods.) For almost all i, if ui(cl,cg)
> ui(c1+5,c2—6) for some § > 0, then ui(cl,c2-y) > ui(cl+6,c2—6-y)

for all v > 0.

Assumption A.8 is satisfied if u is twice differentiable and its
second derivatives satisfy Ups = Ugp < 0.
The propositions, proofs of which are given in Section

IV, are as follows.

Proposition 5. Assume A.l, A.2', A.3', A.Af, and Condition B.

Under lump-sum taxation, there exists a stationary equilibrium

with p e (a,71/7°).

Propostion 6. Assume A.1, A.2', A.3', and A.4-A.8. Under lump-

sum taxation, there exists an equilibrium with p = a.



- 33 -

The proof of Proposition 5 uses a fixed point argument, while that
of Proposition 6 is, in part, constructive along the lines of the
proof of Proposition 2.

If the assumptions of both Propositions 5 and 6 hold,
then there are multiple equilibria under lump-sum taxation, at
least one with p > a and at least one with p = a. In contrast to
the situation in the no-depreciation version (Proposition 3), we
cannot immediately conclude that a p > a equilibrium is Pareto
superior to one with p = a. Such a conclusion follows, according
to an argument exactly like that used for Proposition 3, if taxes
in the p > a equilibrium do not exceed taxes in the p = a equilib-

rium.

2. Asset returns and stationary equilibrium budget sets

Before we compare equilibria under different policies,
we describe features of the stationary return distributions on
assets of various sizes under the different policies and the
related features of budget sets.

Table 1 lists the expected value of the interest rate on
an asset of size 271, B(r"), and its variance V(rP). Notice that
under laissez-faire, the mean is decreasing and the variance is
increasing in n if 8, = 6 for all n. Under insurance taxation,
the (mean) return is the mean return under laissez-faire, while
under lump-sum taxation all returns are zero. This gives some
indication that in a stationary equilibrium, the incentive to
avoid small-sized assets is greatest under laissez-faire and
weakest under lump-sum taxation (provided that the sequence {an}

is nondecreasing).
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Figure 5 displays some features of the budget sets under
the different policies. It is drawn to scale for (wl,wg) =
(15,3). o = 5, 6, = 6 =1/k and p = T.

Under insurance taxation, if 6, = 06, all consumptions
supportable by a portfolio with Iz = m are convex combinations of
the consumption implied by the portfolio (m,0,0,...) and the limit
as k + = of the consumption implied by zk =mand z" = 0 for n #

ks The former is (wl-mp,w"+mp) while the latter is

(wl—ma,w2+m(1—8)a). These consumptions are shown in Figure 3 for

m =1 and m = 2. As above, a convex combination of these with

weights u and 1 - yu, respectively, is attainable if and only
o0

if w= (Az)/(Iz) for some z € z, and (Iz) = m. Point A in Figure

5 is the consumption implied by the portfolio z = (0,2,0,0,.44)
under insurance taxation.

Under laissez-faire, different distributions of consump-
tion correspond to different portfolios. For portfolios with m =
2, these are in general lL-point distributions, but the distribu-
tion collapses for some m = 2 portfolios. Thus, for the portfolio
z = (2,0,0,...), the distribution collapses to (w:-2p,w>+2p)
because disintegration of undivided assets does not imply a
loss. For the portfolio z = (0,2,0,0,...), the distribution
collapses to 3 points: 8 (corresponding to yl = 0) with proba-
vility (3/4)2, a; (corresponding to y' = 1) with probability

2(3/4)(1/4), and a, (corresponding to y! = 2) with probability

(1/4)2,
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Under lump-sum taxation, the set of attainable consump-
tion depends on the tax t.« If 1= 0, then the attainable consump-
tions are the same as those in the nondepreciating asset model
with d = 0., They are on the line with slope -1 passing through
the endowment. If t > 0, they are similar except that the 1line

with slope -1 passes through the after-tax endowment (w2,wo-t).

3. Iaissez-faire can Pareto dominate Ilump-sum taxation and vice
versa
We now discuss examples that show that laissez-faire can

be either Pareto superior or Pareto inferior to lump-sum taxation.

(a) Iaissez-faire can be Pareto superior to lump-sum taxation
This example is one of homogeneous consumers with

(Wl,wg) = (15,3), 8, = 8 = 1/4, a = 5, and io = 1. We will show,

n
using Figure 6, that there are preferences such that: (i) under
lump-sum taxation, there is an equilibrium with (p,t) = (7,5/4)
and z; = (0,2,0,0,...) for all i; and (ii) under laissez-faire,
there is a Pareto superior equilibrium with p = 7 and zy =

(1,0,0,s04) for all i, Note that both portfolios satisfy market
clearing.

Since 1t = 5/4 = a/k is the amount that finances replace-
ment for a common portfolio z = (0,2,0,0,...), it follows that the
consumption implied by that portfolio and tax under lump-sum
taxation is the one implied by the same portfolio under insurance
taxation--point A in Figure 6. Let preferences be such that the
indifference curve through point A has slope -1 at A. This guar-

antees that claim (i) holds.
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Assume also that the indifference curve through point B
is higher than that through point A and is also above all bundles
implied by portfolios with m = 2 under insurance taxation. Then p
= 7 and the portfolio z; = (1,0,0,...) for all i is an equilibrium
under insurance taxation. It follows that this is also an equi-
librium under laissez-faire, because point B is affordable under
laissez-faire and is preferred to all other affordable consumption
distributions at p = T so long as the agent is risk averse or neu-
tral., This last fact is true because for any affordable laissez-—
faire consumption distribution at a given price p, there is an
affordable consumption under insurance taxation at that price
which 1is weakly preferred. Since B is by construction preferred
to A, claim (ii) is established. (Note that (p,t) = (7,0) is not
an equilibrium under 1laissez-faire taxation because there are
affordable consumptions under (p,t) = (7,0) that are preferred to
B and because the portfolio supporting any such consumption is not
consistent with market clearing. This follows Dbecause
(wl-2a,w?+2a) is preferred to B, which, in turn, implies that
there are m = 2 portfolios that support consumption preferred to

B.)

(b) ILump-sum taxation can be Pareto-superior to laissez-faire

In this example, consumers are homogeneous with (vl,w2)
= (20,3) and u(cl,e?) = (3/4)1og(cl+1) + (1/4)10g(c?+1) - log((cl-
c?)?%+1), 6, = 6 = 1/4 for all n, a =k and o 3/2. There is a

lump-sum taxation equilibrium with (p,t) = (9/2,1/2) and z; =

(1,1,0,0,...) which supports consumption (el,e?) = (L5/L,L5/L)
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with u(L4s5/4,45/4) = 1.088., 1In partieular, at (p,t) = (9/2,1/2),
the portfolio z = (2,0,0,...) supports ¢ = (11,11.5), while the
portfolio z = (1,0,1,0,0,...) supports (91/8,89/8), both of which
yield lower utility. WNotice that p = 9/2 and z = (1,1,0,0,.0.) is
also an equilibrium under insurance taxation. TIn particular, u(c)
= u(bs/4,45/4) is tangent at (45/L4,45/4) to the line segment
containing all m = 2 attainable consumptions under insurance
taxation.

Under laissez-faire, the portfolio z = (1,1,0,e4.)
supports ¢ = (L5/4,47/L) with probability 3/4 and ¢ = (45/4,39/k4)
with probability 1/4 and, hence, implies expected utility equal to
.ABT. It is easily shown that this portfolio is preferred to any
other portfolio with m = 2. 1In particular, z = (2,0,0,...) Sup-
ports ¢ = (11,12) and u(11,12) = .787. It is also the case that
nom=1orm> 2 portfolio is preferred under laissez-faire. 1In
particular, z = (1,0,0,...) supports c¢ = (31/2,15/2) and
u(31/2,15/2) = -.66T7.

An example of this sort produces the intended result in
part because demands are sufficiently unresponsive that the "dis-
tortion" implied by agents not facing replacement costs under
lump-sum taxation does not operate. What remains is the gain from
eliminating risk.

The above examples show that any general case for either
laissez-faire or lump-sum taxation must somehow cope with counter

examples.
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IV. Existence Proofs

1. Proof of Proposition 1

We prove Proposition 1 by applying a simple generaliza-
tion of the Intermediate Value Theorem. However, this final
argument 1is based on properties of the budget constraint and
demand correspondences that we establish first in a series of
lemmas.

We simplify our notation by wusing the following sym-
bols: A= (1,271,272 0002 00a)y T 2 (1,1 0meslyens), A, = pA +
a(I-A) and A(p+d) = (p+d)A + a(I-A), where p, o, and d are real
numbers., Finally, if 2z = (zo,zl,...} then Az = E:=O 272" and
similarly for Apz and A(p+d)z'

We now proceed to study the properties of the budget
constraint and demand correspondences for sequences of stationary
prices of the form P = (Ap,hp,...) (that is, stationary prices
satisfying p™*1 = 2=1(p"+a) for all n > 0, where p = p°).

Let B(p,w) = 8(A ,A ,w) = {c ¢ R®: there exists z e Z°

p’p + +

2

such that el < wt - A,p and c® < vl o+ Mp+q)z}s and let

x(p,w) = {z ¢ Z:: wl-Apz > 0 and w2+A( z > 0}, so that x(p,w)

p+d)
is the set of portfolios that support 8(p,w).

Lemma 1: If p € [a,®) and z € x(p,w), then Iz < Wt/ o

Proof., If z e xlp,w), then wloo> Apz = [pA+u(I-A)]z >

[uh+a(I-ﬁ)]z = alz. A
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Let B+(p,w) = {c e B(p,w): St 0}, where x >> 0 means
that there exists an € > 0 such that x > ¢, (B+(p,w) is the set
of consumptions in the budget set with consumption at age 1

bounded away from 0,)

Lemma 2: The correspondence B+(-,w) is continuous at every p ¢

[a,»).

Proof. We first show that B+(-,w) is upper hemi-continuous. Fix
p e [a,®). By assumption A.3, B,(P,w) is not empty. We show that
for every open subset U of R® such that B,(p,w) is contained in U,
there is a relatively open subset V of R such that for all p e V,
B.(p,w) is contained in U.

Without 1loss of generality, consider open sets of the
form Uy = {c e R%: [-¢| < e and e B,(F,w)} and let V_ =
(max(u,ﬁ—ea/2w1)’§+ga/2wl). Also note that B8 (p,w) = {c € Rf:
there exists z ¢ Z: such that 0 << ¢l < wt - (pAz+a(I-A)z) = wt -
(PAz+a(I-A)z) + (P-p)Az and 0 < c? < w® + ((p+d)Az + a(I-A)z) = w2
+ ((p+d)Md + a(I-AN)z - (p-p)Az}.

Now given ¢ e B8, (p,w), let g = gax (e/2,ct-(P-p)Az)
and 8% = max (0,c”+(p-p)Az). Then & = (51,52) e B,(p,w) and |c-c|
< max {e/2,|p-p|Az}. But |p-p|Az < |p-p|wl/a by lemma 1. There-
fore, if p € V_, then |o-p|Az < €/2. Thus, if p ¢ V. and ¢ ¢
B.(p,w), then |c-c| < €/2 so that B,(p,w) is contained in Ugs

We now show that the correspondence g (+,w) is lower
hemi-continuous. Fix p € [0,%) and let {p(q)} be an arbitrary

sequence converging to p. For any c ¢ B+(p,w), there is a z ¢ Zr



= ko =

suchthatO<<cl+'~fl=w1-—Apzand0<c2+Y2=w2+A(p

+d)%>

where yl > 0 and 72 2 0 are slack variables. Define the sequence

{e(@)} by el(q) = vt - Ao(q)? - v} and ¢?(q) = w° + A(p(q)+d)z =
Y.  Then for g large enough, c(q) € B+(p(q),w) for all q > q,

which establishes the lower hemi-continuity of B+(°,W) at p. A

Recall that the individual demand for consumption for a
two-period 1lived agent 1 is ¢;(p) = argmax {ui(c): c €

cﬂB(p,wi}}.

Lemma 3: Assume A.1-A.3. For almost all i e [0,1], ¢; is non-

empty and upper hemi-continuous at every p e [a,®).

Proof. Let ¢;(p) = argmax {ui(c): c € c£8+(p,wi)}, where
c%8,(p,w;) 1is the closure of 8+(p,wi). We first note that ¢;(p)
is nonempty. This follows from continuity of preferences (assump-
tion A.1), boundedness of B{p,wi) and nonemptiness of B+(p,wi)
(assumption A.3). We next note that ¢;(p) = :pi(p). This follows
from assumptions A.1 and A.2, which imply that if ¢ ¢ ¢i(p), then
el >> 0 and, hence, ¢ ¢ c£8+(p,wi).

By lemma 2, c2f3+(-,wi) is a continuous correspondence.
(The closure of a continuous correspondence is continuous.) It is
also compact valued. The conclusion of the lemma is, then, a

consequence of the Maximum Principle (see, for example,

Hildenbrand [197L4], p. 29). A

Next, recall that wi(p) = {¢(c;p,wi): c € ¢i(p)}. By

monotonicity, assumption A.1, it follows that wi(p} ={z ¢ Z::
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there exists c € ¢i(p) satisfying Apz = w} - ¢! and h(p+d)z = ¢°

- Wi}.

Lemma 4: Assume A.1-A.3. For almost all i e [0,1], ¥; (which

maps R, to subsets of Zr) is upper hemi-continuous at every

p e [a,°).

Proof. By lemma 1, if a sequence {z(q)} is in x(p,w), then Iz =
[|z(q)|]l < wi/a. Therefore, there is a subsequence [z(qi)} for
which lim |[z(qq)||; exists. Given this fact and the monotonicity

assumption, A.l, it is easy to see that ¥;(p) = {z ¢ Z:: there

o

exists ¢ ¢ ¢i(p) and a sequence {z(q)} satisfying z(q) € 2 , z(q)

+?

+ 2, ¢t =yt - (p-a)Az - alim ||z(q)]|1, and ¢® = w* + -(p+d-a)Az

+ o 1im |]z(q)||1}.

m

Fix p € [a,») and let plq) + p, z(q) + z and z(q)

Y; (p(q)) for all q. Given z(q) ¢ Y;(pla)), there is a c(q) ¢

n

¢1(D(Q)) and a sequence {Z(q)r} such that z(q)r + z(qg) and cl(q)
wl = (p(q)-a)Az(q) - & lim ||z(a),.||; and analogously for ¢?(q).
Let {zq} be a subsequence of the sequence {z(q)q} for which 1lim

||zq[|1 exists. Then cl(q) > wl

. e
- (p-a)Az - a lim |Izq||1 =c
and analogously for c2(q). By upper hemi-continuity of ¢i( ) at
p, it follows that c e ¢;(p). Finally, since zf is a closed

subset of R” in the product topology, we can conclude that z e

lbi(p)c 6

Now let ¥(p) = fhwi(p)dl where fﬂwi(p)dh = {fﬁzidkr zZ; €
s (p) a.s.}. That is, ¥(p) is the implied or derived mean demand

for units of size unity at p.
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Lemma 5:  Assume A.1-A.3. The correspondence ¥ is upper hemi-

continuous and convex valued at every p € [a,m).

Ezgng For almost all i ¢ [0,1], it follows from lemma 4 and the
fact that A is a continuous linear map that Awi is an upper hemi-
continuous correspondence. Furthermore, by lemma 1, for any p €
[a,), Azi < wi/a for all z; e wi(p). Then, since f(wi/a)dh < o,
the upper hemi-continuity of ¥(+) follows from Proposition 8 in
Hildenbrand [1974], page 73. The convexity of ¥(+) follows from
Theorem 3 in Hildenbrand [1974], page 62. A

The next lemma simply shows that over the range of
prices [u,ﬁlliol, there is positive and nonnegative excess supply

of assets.

Lemma /. Assume A.,1-A.S. (i) (Positive excess supply.) For
all p » 51/20, where wL = fwidk, x % 7 vhensver ik & ¥(p). (ii)
(Nonnegative excess supply.) (a) if d > 0 and if x € ¥(a), then x

> 70, (b) If d = 0, then there exists x €& ¥(a) such that x > .

Proof ., (i) Fix p > /2%, IExe ¥(p), then there exists

z; € wi(p) a.s. such that x = fAzidl and Apzi = phz; + a(I—A)zi

= wr - ¢! for some ¢, € ¢.(p). Since for almost all i, elso
i i i i 1

and u(I—A)zi 0, p!\zi < wi. Therefore, X = IAsz < Glfp <

;1/(51 ;0 _ ;O

(iia) If p = a, then p" = a for all n. It follows by
monotonicity of preference and 4 > 0, that if z; is any portfolio

with Iz; = m and z? > 0 for some n > 0, then z; ¢ wi(u). That is,

only portfolios of the form z; = (mi,0,0,...) are demanded at p =
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a. Since assumption A.4 implies that m; > 1 for almost all i,

[Azicn = fmidk 51 5%,

(iib) If p = a, so that p" = a, and d = 0, it follows
that if some portfolio Z, € tbi(u) and Izi = mi, then zy =
(mg,0,0,.0.) € tbi(c:). And since A.4 implies that m; > 1 for
almost i, it follows as in (iia) that there exists x e ¥(a) such

thatx>1>§°. A

Proof of the Proposition

By monotonicity of preferences, all budget constraints
are satisfied without slack. Then (iii') and the integrals of
these budget constraints (at equality) imply (i') and (ii')
(Walras' Law), where (i')-(iii') are the market clearing condi-
tions in the definition of a stationary equilibrium. In other
words, in order to prove existence of a stationary equilibrium, it
is enough to show that there exists p* ¢ [a,illfol such that

O¢ ¥(p*).

<
+ =1 ,= :
Let P = {p e la,w /xOI: there exists x € ¥(p) satisfy-
=0 - -1,-0 .

ing x » X } and P~ = {p e [a,w /X ]: there exists x ¢ ¥(p) satis-
fying x < ':EO]. By the upper hemi-continuity of ¥(e), lemma 5, P~
and P"' are closed subsets of [{:,ﬁ]‘/)_(o]. By definition, their
union is [a,i'rl /io] and, by lemma 6, both subsets are nonempty. It
follows that the intersection of P* and P~ is nonempty, because
emptiness would imply that [x,\?ll)?ol is the union of two nonempty

disjoint closed sets, a contradiction. Finally, if p* ¢ P+ and

p*¥ € P°, then by the convexity of ¥(p), lemma 5, 2 e ¥Y(p*). A
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2. Proof of Proposition L

We prove this proposition by suitably modifying the
argument used to prove Proposition 1. Basically, we have to show
that individual demands satisfy the required continuity proper-
ties. The rest of the argument is the same and will not be re-
peated.
Lemma T. The correspondence c£é+(-,w) is continuous and compact

valued at every p e [a,®).

Proof. Fix P € [a,®)e Since for any (c,n) = c9.§+(1-3,w), c e
[0,w}] and w(x) = 0 for any x > wi + w2, c!.§+(§,w) is compact.
(Formally, the set {m € M(R,): there exists ¢ e R, and (c,m)
€ §+(§,w)} is "tight" and therefore compact (theorem 6, p. 240 in
Billingsley [1968]).)

Now let U, = {(e,m) e R, x M(R,): max (|e=C|,p(w,T)) < ¢
and (c,n) € é+(ﬁ,w)} and let V_ = (max (a,ﬁ—sa/?wl), P + eca/owl),
where p is the Prohorov metric.-l—%./ Then, proceeding as in lemma
2, it follows that if p € Ve’ then é+(p,w) is contained in Tle.
This establishes upper hemi-continuity of §+(-,w) at .

Finally, lower hemi-continuity of é(-,w) is proved as in

lemma 2., A

Lemma 8. The functions vi( , ) and Fi(-,-) are continuous on R, x

M(R,).

Proof. The result is a direct application of Theorem 5.5 in

Billingsley [1968].
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The rest of the proof proceeds using arguments similar

to those used in the proof of Proposition 1. A

3. Proof of Proposition 5.

This proof differs from that of Proposition 1 mainly in
that it uses a fixed point argument on prices and taxes. Again,
some lemmas are required to support the final argument.

Recall that B ( ) = | 2 . th i *

eca at B, \PaToW) = {c € R++. there exists z ¢ Z+
such that ¢l < wl - Apz, c? < w° + Apz - t}. An argument similar

to that in the proof of lemma 2 establishes the following results.

Lemma 9. The correspondence B++(-,-,w) is continuous at every

(p,1) € [a,®) x [0,w}].

The individual demand for consumption for a two-period
lived agent 1 is defined by ¢i(p,1) =  argmax {ui{c): c €
cﬂs(n,r,wi)}. A straightforward modification of the proof of

lemma 3 gives the following result.

Lemma 10, Assume A.1, A.2', and A.3'. For almost all i ¢ [0,1],
¢; is nonempty and upper hemi-continuous at every (p,t) ¢ [a,®) x

[0,wl].

Instead of proving upper hemi-continuity of the demand
correspondence for assets, we study the continuity properties of
the correspondence A;( , ) defined by A;(p,t) = {(x,y) ¢ RE: there
exists ¢ ¢ ¢i(p,'r) and a sequence {z(q)} such that, for all q,
z(q) € Z:, wl - ﬂpz(q) >> 0 and w° + Apz(q) -1 » 0, z(q) + =, el

= vl - (p-a)Az - a lim ||z(q}]|l, ¢? = w2 + (p-a)Az + & lim
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|lz(a)|]; - 7, x = Az, and y = a[lim ||62(q)||; - A6z]}, where 6z
€ R” with typical element Bizi. Notice that if (x,y) € A (p, 1),
then x corresponds to the derived demand for units of size unity
implied by the demanded portfolio z and y corresponds to the

expected replacement cost of z.

Lemma 11. Assume A.1l, A.2', and A.3'. For almost all i e [0,1],

A; is upper hemi-continuous at every (p,t) € [a,®) x [0,w}].

Proof. By compactness of the range, it is enough to show that
50, ) is closed. Let (p(a),t(q),x(a),y(q)) + (p,T,x,y) where
(x(a),y(a)) e 4(p(q),t(q)) for all g. Then for every q, there
exists c(q) e ¢;(p(q),t(q)) and a sequence z(q), such that z(q),. *+
z(q) and c¢l(q) = w! - (p(q)-a)Az(q)-a 1lim [1z(a).] ] c?(q) = w° +
(pla)-a)Az(a) + a Vim [|z(a).||;- Let {zq} be a subsequence of
{z(q}q} for which lim ||zq]|1 and lim ||ezq|[1 exist and let z =
lim z . Then cl(q) » w! - (p-a)Az - a 1im]|zq|]1 = ¢! and c?(q) »
we + (p-o)Az + o lim ||zq|]l = ¢?, By upper hemi-continuity of
¢i(-,-), (cl,6?) ¢ ¢;(p,T)s Furthermore, x = Az and y = a[lim
||6zq||1—haz]. Finally, since the interior conditions in the

definition of ai are also satisfied, it follows that (x,y) ¢

Ai{n,’t). ﬂ

Let ¥(p,t) = [ proj, ﬂi(p,r)dx, where '"proj," means the

first component projection.

Lemma 12. Assume A.l, A.2', A.3', and A.6. TFor all (p,1) ¢

[wlfio,w) X [0,w11, if x ¢ ¥(p,t), then x < EO.
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Proof. See the proof of lemma 6, part (i).

Proof of the Proposition

As in the proof of Proposition 1, by Walras' law, it is
enough to show that there exists (p*,7t*) e (a,®) x [0,w!] such
that (EO,T*) £ fAi(p*,T*)dl.

Define the correspondence u(e+,+) by u(x,t) = argmax
{p(x-io): P € [S(T),wlffol], where p(+), by condition B, is a
continuous function such that p(1) > o and x > L if x e
¥p(1),1). Next, define the correspondence y(p,x,t) = ulx,t) x
Alp,t), where Alp,t) = fAi(D,T)dA. By lemma 11 and the argument
used in lemma 5, A(e+,+) is upper hemi-continuous and convex val-
ned. Furthermore, the same is true for u(e,+). Then, since
Y(p,x,T) maps [u,wl/')EO] x [0,w}/a] x [0,w!] into subsets of it-
self, a standard generalization of Kakutani's fixed point theorem
shows that y has a fixed point. That is, there exists (p*,x¥*,t*)
such that (p*,x*,1*) = y(p*,x*, %),

Notice that since t* e proj, A(p*,t*), taxes finance
replacement as required by condition (d) in the definition of
equilibrium under lump-sum taxes. Notice also that since p¥* =
u(x*,7t*), p* > a. It only remains to show that x* = EO.

Suppose that x¥* > :7(0. Then, by the definition of u, p*
= wllio. However, by lemma 12, this implies x¥* < EO, a contradic-
tion. Suppose, alternatively, that x* < EO. Then p implies that

0

p* = p(1*), which, by hypothesis (condition B), implies x* > X°, a

contradiction. A
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4, Proof of Proposition 6

We show that there exists a monotone function g that
maps [O,w]-] into [ﬂ,wll and is such that a fixed point of it is
the required equilibrium. (We take for granted the obvious fact
that such a monotone function has a fixed point.)

The function g is defined as follows. Fix p = a. Then,
for each 1 € [0,wl], we use the argument in the proof of Proposi-
tion 2 to find an integrable function z, a portfolio, such that Z3
e ¢;(a,7) almost surely and such that [Azdx = )_(0. Then we let
g(1) = 8af(I-A)zdr, the cost of expected disintegration of the
portfolio z. It follows that if ¥ is a fixed point of g, then
(p,t) = (0,t™) is a stationary equilibrium under lump-sum taxa-
tion.

We now establish the existence and required properties

of g. For a fixed T, let m*i"('r) be the largest nonnegative integer

1
i

AL, and A.8, m?(r) ¥ T (Note that A.3' and A.4 imply that

m; that maximizes ui(w ~ami,w§+ami-r). By assumptions A.2', A.3',
m?(O) > 1. Then assumption A.8, along with A.3', implies that
mi(r) > 1 for all T.)

At p = a, all z; such that Iz; = m{(T) support utility
maximizing consumption. Therefore, to support such consumption,
we require only that z satisfy [Izd) = fm:(T)dx = m*¥(1).

Let i be the integer satisfying 211 < m*(1)/%X° < 2i.
It follows from A.5 that 1 > 0. As in the proof of Proposition 2,
we let fzi_ldA = 2150 | mw(q), fzidk =om*(1) - 2130, and 1et

[z"ax = 0 for n £ {i-1,i}. It follows that [1z"dx = m*(1), that
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“4x = 20 and  that g(1) = 8af(I-A)zdA = 6al [Tzdr-[AzdA] =
Bu[m*(T)-EO]. Note that although the integer i depends on 1, gl 1)
depends on T only by way of m*(1), a result that uses assumption
A.T.
With g(t) = 8a[m*(1)-x"], it follows that g(1) e [0,w}],
since am*(t) < wl, Finally, assumption A.8 implies that m*(7) is

nondecreasing in t1, which implies that g is nondecreasing. (0Ob-

viously, g(t) is a nondecreasing step function.) A

5. The absence of aggregate risk.

As we have said, equilibria with taxation schemes are
well defined provided there is no aggregate risk. It is well
known that in models where individuals bear some risk and those
risks are independent, the existence of a continuum of agents is
not sufficient to rule out aggregate risk. 1In our model there is
an additional complication in that the distributions of the indi-
vidual random wvariables are endogenous. However, as we now
briefly explain, there is no aggregate risk at equilibrium if the
numbers of types is finite (in fact, we assume only one type).

For any p ela,=), @(p) = f@(p)dl (alternatively, for any
(p,1) ela,® x [o,wr], Alp,t)) is a closed convex subset of R (of
R?). By the Krein-Milman Theorem (Rudin [1973] p. 70), ¥(p)
(Alp,t)) is the convex hull of the set of its extreme points. Due
to the structure of the budget constraints and the finiteness of
the number of types, the set of extreme points is a finite set and
corresponding to each extreme point there is a, possibly limiting,

portfolio supporting such a point.
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Therefore, if x € ¥p) ((x,y) ¢ Alp,t)), then there
exist (U ,Up,eea,ty) such that . > 0,Jm = 1 and x = [ (Az))
((x,y) = Xkuk(l\zk, aliqusz(q)Hl - AB Zk)' where zk(q) > zk).
Since each u, can be identified with a segment on [0,1] on which
there is a single distribution of y, that induced by the sup-
porting portfolio Zi, We can apply proposition 2 of Feldman and
Gilles [1985] to obtain the absence of aggregate risk.

The Feldman-Gilles construction orders agents and real-
izations so that the distribution of realizations over agents 1is
the population distribution of the random variable. (This assures
that the expectation over agents is the population expectation.)
Strictly speaking, such an ordering of agents and realizations
contradicts independence of realizations across agents. That ,
however, is of no concern in our context because we do not permit

intra-generation trade of any sort.
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V. Conecluding Remarks

We began by posing two questions. Is private provision
of divisibility for assets different from such provision for other
things? And 1is such provision for money-like assets different
from its provision for other assets?

We approached these questions using a model with the
following crucial ingredients. We modelled the supply of asset
divisibility by assuming that the costs of producing divisibility
for assets resembles the costs of splitting logs or candy bars.
In other words, we modelled the costly provision of divisibility
for assets in much the same way as one would model the costly
provision of divisibility for consumption goods. We modelled the
demand for divisible assets by assuming that the only way to
provide for future consumption in excess of future income is
through spot purchases and subsequent spot sales of outside as-
sets, (In the context of the overlapping generations model we
used, we did not permit members of a generation to form coalitions
to share assets.)

These assumptions imply that the feasible trades in our
model depend on both the extent to which assets are made divisible
and on prices, In contrast, in models where the consumption goods
themselves are costly to divide, feasible trades depend only on
the extent to which consumption is made divisible. This differ-
ence between indivisibilities for consumption goods and for assets
accounts for a corresponding difference in welfare consequences,

In models with costly divisibility of consumption goods, any
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competitive equilibrium is Pareto optimal.lﬁf In that sense,
there is nothing special about private provision of divisibility
for consumption goods. In our model, there is something special
about private provision of divisibility for assets 1n that the
welfare properties of competitive equilibria depend significantly
on whether asset divisibility is costly or costless. With costly
divisibility, in the non-depreciating asset version, there are
multiple equilibria ordered by Pareto superiority. Also, both for
that version and for the depreciating asset wversion, equilibria
with taxes or subsidies on the divisibility process or on replace-
ment are not in any obvious way worse than laissez-faire equilib-
ria.

In our model, market oprovision of divisibility for
money-like assets and for other assets have similar conse-
quences, We did, however, find that the occurrence of multiple
equilibria ordered by Pareto superiority 1is more general for
money-like assets,

Since the conclusion that no obviously desirable proper-
ties follow from laissez-faire provision of costly divisibility
for assets is rather startling, one would like to know how robust
it is. In particular, one would like to know how robust it is
with regard to the way we have modelled the demand for assets.
Unfortunately, we cannot say. We settled on our way of modelling
asset demand because we surmised that relatively simple stationary

equilibria would exist for that specification.
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Footnotes

ljof course, if d = 0, then the stationary rate of

interest is zero for all sizes. However, for nonstationary prices

1

+ -
satisfying p: = 2 1(pn

t+a) for all n and t, assets have returns

that vary with size even if 4 = 0.

EjThe boundary of the stationary budget set can be

written ci = w} = [ph+u(I—h)]z, c? = wf + [(p+d)A+a(I-A)]z, where
A= (20,271 ...,27",...) and T = (1,1,...). Tt follows that Cil "

wi = [(Az)/(lz)](Iz)p - (1-Az/1z)(Iz)a = w% - [(Az)/m]mp - (1-

Az /m)ma uw]i' - ump + (l—u)wi -(1-p)ma = u(%-mp) + (1-u) (wi-—ma),

where y = Az/m = Az/Iz € (0,1]; and similarly for cf.

2!0ur model and, in particular, examples like this one
are consistent with the assertion made in Wallace [1983] that if
the government and the private sector have access to the same
constant-returns-to-scale technology for producing a property like
divisibility, then government asset exchanges accomplished at
market prices leave wunchanged the set of equilibria.

EjNotice that it is enough to consider small perturba-

tions of (u,d,;ﬁ) and of the distribution of preferences and
endowments among agents of generation t, t > 1. Fach distribution
is given by a measure v on C(Rf) X RE defined by v(A) = a{iel0,1]:
(ui,wi)sA} where A{ } denotes the Lebesque measure of { }. Two
sets of characteristics, (x,d,;ﬂ,v) and (a',d',x ',v'), are close
if (a,d,?o) and (a’,d',?nf) are close in PBuclidean distance, if

the supports of v and v' are close, and if v and v' are close in
pp >

the topology of weak convergence of measures.
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-B-/For example, one exists for all identical agent econo-
mies satisfying ;0 < 1 and vi(w}-a, w12+a) < 1, where v3 = u11/u12
is the marginal rate of substitution of agent i. (The inequality
on v; implies that there exists p > a such that v-l(w]i'-p, w%p) =
1. At this price, demand is {z?} = (1,0,0,se.), which implies
excess demand.)

i/The existence of competitive allocations which are
dominated within the class of equilibrium allocations is a stan-
dard result in models with incomplete markets (see Hart [1975] for
an example and Geanakopolos and Pelemarchakis [1985] for generic
results) and in models of overlapping generations. As we have
indicated, at least when d > 0, the costly provision of divisible
assets is a critical ingredient for the result in our model.

1/gee Tevons ([1875], Chapter 10) for a description and
analysis of Fngland's gold coinage system. In the preface, Jevons
listed among "currency gquestions which press for solution" the
following: '"How long shall we in Fngland allow our gold coinage
to degenerate in weight? Shall we recoin it at the expense of the
state or of the unlucky individuals who happen to hold 1light
sovereigns?" (p. viii). His answer was that "the only thorough
remedy is for the government to bear the loss occasioned by the
wear of the gold, ..." (p. 111).

i/See Supel and Todd [1984] for a discussion of the

problem facing the U.S. government under such a replacement pol-

icy.
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QjThere are other depreciation schemes which are simple
in these respects and which we could also analyze. For example,
one could assume that disintegration implies total loss of the
asset, but that the government is able to costlessly produce new
units of size unity. A policy under which the government sells
enough assets to replace disintegrated units and transfers its
profits in a lump-sum fashion to the old at each date is consis-
tent with stationarity.

lngn the case of paper currency, one may want to think
of laissez-faire as a government policy under which the government
stands ready to exchange new units of currency for disintegrated
units plus the cost of producing new units.

lljFor homogeneous consumers, the following situation

gives a p function. Let s(t) maximize u(c) subject to ¢l = wt - s

2

and ¢® = w2 - T + s by choice of s ¢ R 1f (i) s(t) is continu-

+
ous on [0,w'] and (ii) there exists an integer m > 0 such that
(m+1)a > s(1) > ma for all T ¢ [O,W]‘], then p(t) = s(t)/m satis-
fies condition B. This p( 1) implies excess demand because at p =
p(1), only the portfolio z = (m,0,0,...) supports s(t) and this
portfolio implies excess demand. The stringent assumption is
(ii), an almost vertical Engel curve assumption. We need it for
this construction because if ;(T) = ma for some integer m, then at
any price p, z = (0,0,.4.) € Ylp,T) and this z implies excess
supply.

lngere we use two facts. First, convergence in measure

is equivalent to convergence in the weak-star topology on M(R)
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(also called the topology of weak convergence in probability
theory). Second, since R, is separable, the weak-star topology is
metrizable., This metric, known as the Prohorov metric, is defined
as follows. If P and Q are elements of M(R,), then p(P,Q) =
inf {p(a) < Q(A.) + € and Q(A) < P(Ae) + €, for all A € B(R,)},
where A. = {x e R,: dist (x,A) < e} (Billingsley [1968], pp.
236-238) .

léjFor an analysis of models with indivisible consump-

tion and a continuum of agents, see Mas-Colell [197T].
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Table 1. Expected Returns, E(r"),

and Variances, V(r"), of Size 2~P Assets

(v, = (1-2"")a/[27"p+(1-27")a])

n
E(r?) v(r?)

Laissez-Faire -0, Yy 0,(1-8,) (v,)?

Insurance Taxation -0 Yn 0

Lump-Sum Taxation 0 ; 0
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Figure 1

An Example of a Budget Set
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Figure 2a

Budget Sets Consistent With Multiple Equilibria

Ordered by Pareto Superiority (p =p+a)
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Figure 2b

Mean Demand for Units of Size Unity
Implied by the Figure 2a Economy
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Figure 3a

A Robust Example of Pareto-Ordered Equilibria

[ ,w2) = (5,1), a = 3/2, d = 1/2]
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Figure 3b

Mean Demand for Units of Size Unity
Implied by the Figure 3a Economy
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Figure 4

Illustrative Mean Demand for Units of Size Unity

[d = 0]
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Figure 5

Some Affordable Consumption Realizations

in the Disintegrating Asset Model
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Figure 6

A Laissez-Faire Equilibrium (Point B) Pareto Superior to
a Lump-Sum Taxation Equilibrium (Point A)

[(w],wz) = (15,3), o = 5, Bn =0 =1/4, p = 7]
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