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1 Introduction

Financial institutions in the United States keep reserve balances at the Federal Reserve Banks
to meet requirements, earn interest, or clear financial transactions. The market for federal funds
is an interbank over-the-counter market for unsecured, mostly overnight loans of dollar reserves
held at Federal Reserve Banks. This market allows institutions with excess reserve balances
to lend reserves to institutions with reserve deficiencies. A particular average measure of the
market interest rate on these loans is commonly referred to as the fed funds rate.

The fed funds market is primarily a mechanism that reallocates reserves among banks. As
such, it is a crucial market from the standpoint of the economics of payments and the branch of
banking theory that studies the role of interbank markets in helping banks manage reserves and
offset liquidity or payment shocks. The fed funds market is the setting where the interest rate on
the shortest maturity, most liquid instrument in the term structure is determined. This makes it
an important market from the standpoint of finance. The fed funds rate affects commercial bank
decisions concerning loans to businesses and individuals, and has important implications for the
loan and investment policies of financial institutions more generally. This makes the fed funds
market critical to macroeconomists. The fed funds market is the epicenter of monetary policy
implementation: The Federal Open Market Committee (FOMC) communicates monetary policy
by choosing the fed funds rate it wishes to prevail in this market and implements monetary
policy by instructing the trading desk at the Federal Reserve Bank of New York to “create
conditions in reserve markets” that will encourage fed funds to trade at the target level. As
such, the fed funds market is of first-order importance for economists interested in monetary
theory and policy. For these reasons, we believe it is crucial to pry into the micro mechanics
of trade in the market for federal funds in order to understand the mechanism by which this
market reallocates liquidity among banks and the determination of the market price for this
liquidity provision—the fed funds rate. To this end, we develop a dynamic equilibrium model
of trade in the fed funds market that explicitly accounts for the two distinctive features of
the over-the-counter structure of the actual fed funds market: search for counterparties and
bilateral negotiations. In the theory, banks randomly contact other banks over time, and once
they meet, they bargain over the loan size and interest rate.

Section 2 offers a brief institutional description of the market for federal funds. Section 3

presents the theoretical model and relates the main ingredients to the main institutional features



of the fed funds market. Section 4 defines and characterizes equilibrium. In Section 5 we use the
theory to identify the determinants of empirical measures of trade volume, trading delays, and
the fed funds rate. We show that the equilibrium exhibits endogenous intermediation: although
all banks have the same trading technology, some borrow reserves from counterparties who are
willing to lend at relatively low rates and later lend those reserves to counterparties who are
willing to borrow at higher rates. We also propose theory-based measures of the importance
of bank-provided intermediation in the process of reallocation of reserves. In Section 6 we
calibrate and simulate a large-scale version of the model to assess the ability of the theory
to capture the salient empirical features of the market for federal funds in the United States,
such as the intraday evolution of the distribution of reserve balances and the dispersion in loan
sizes and fed funds rates. Finally, we use the large-scale calibrated model as a laboratory to
study a key issue in modern central banking, namely, the effectiveness of policies that use the
interest rate on banks’ reserves as a tool to manage the fed funds rate. Appendix A contains
all proofs. Appendix B studies the problem of a social planner who can reallocate reserves
subject to the same bilateral trading technology available to private agents and shows that the
equilibrium implements the efficient reallocation of reserves. Appendix C describes the data
and estimation procedures used in the quantitative implementation of the theory. Appendix D
contains supplementary policy experiments.

Previous research on the fed funds market includes the theoretical work of Poole (1968),
Ho and Saunders (1985), and Coleman, Gilles, and Labadie (1996), and the empirical work of
Hamilton (1996) and Hamilton and Jorda (2002). The over-the-counter nature of the fed funds
market was highlighted by Ashcraft and Duffie (2007) in their empirical investigation and used
by Bech and Klee (2011), Ennis and Weinberg (2009), and Furfine (2003) to try to explain
certain aspects of interbank markets such as apparent limits to arbitrage, stigma, and banks’
decisions to borrow from standing facilities. Relative to the existing literature on the fed funds
market, our contribution is to model the intraday allocation of reserves and pricing of overnight
loans using a dynamic equilibrium search-theoretic framework that captures the salient features
of the decentralized interbank market in which these loans are traded. Our work is related to
an emerging literature that studies search and bargaining frictions in financial markets. To
date, this literature consists of two subfields: one that deals with macro issues and another that
focuses on micro considerations in the market microstructure tradition.

On the macro side, for instance, Lagos (2010a, 2010b, 2011) uses versions of the Lagos and



Wright (2005) search-based model of exchange to study the effect of liquidity and monetary
policy on asset prices. On the micro side, Duffie, Garleanu, and Pedersen (2005) and Lagos and
Rocheteau (2009) employ search-theoretic techniques to model the trading frictions character-
istic of real-world over-the-counter markets.! Relative to this particular micro branch of the
literature, our contribution is twofold. First, our model of the fed funds market provides a the-
oretical framework to interpret and rationalize the findings of existing empirical investigations
of this market, such as Furfine (1999), Ashcraft and Duffie (2007), Bech and Atalay (2008), and
Afonso, Kovner, and Schoar (2011). Our second contribution is methodological: we offer the
first analytically tractable formulation of a search-based model of an over-the-counter market

in which all trade is bilateral and agents can hold essentially unrestricted asset positions.?

2 Institutional features of the market for federal funds

The market for federal funds is a market for unsecured loans of reserve balances at the Federal
Reserve Banks that allows participants with excess reserve balances to lend (or sell funds) to
those with reserve balance shortages. These unsecured loans, commonly referred to as federal
funds (or fed funds) are delivered on the same day, and their duration is typically overnight.?
The interest rate on these loans is known as the fed funds rate. Most fed funds transactions
are settled through Fedwire Funds Services (Fedwire), a large-value real-time gross settlement
system operated by the Federal Reserve Banks. Fedwire operates 21.5 hours each business day,
from 9:00 pm eastern standard time (EST) on the preceding calendar day to 6:30 pm EST.
Participants include commercial banks, thrift institutions, agencies and branches of foreign
banks in the United States, government securities dealers, government agencies such as federal

or state governments, and GSEs (e.g., Freddie Mac, Fannie Mae, and Federal Home Loan

!There is by now a growing search-theoretic literature on financial markets that includes Afonso (2011),
Duffie, Garleanu, and Pedersen (2007), Garleanu (2009), Lagos and Rocheteau (2007), Lagos, Rocheteau, and
Weill (2011), Miao (2006), Rust and Hall (2003), Spulber (1996), Vayanos and Wang (2007), Vayanos and Weill
(2008), and Weill (2007, 2008), to name a few. See Ashcraft and Duffie (2007) for more on the over-the-counter
nature of the fed funds market.

?In contrast, the tractability of the model of Lagos and Rocheteau (2009) (the only other tractable formulation
of a search-based over-the-counter market with unrestricted asset holdings) relies on the assumption that all trade
among investors is intermediated by dealers who have continuous access to a competitive interdealer market.
While there are several examples of such pure dealer markets, the market for federal funds is not one of them.

3There is a term fed funds market where maturities range from a few days to more than a year. This market
has been estimated to be much smaller than the overnight market (Meulendyke, 1998, Kuo et al., 2010).



Banks).* The market for fed funds is an over-the-counter market: in order to trade, a financial
institution must first find a willing counterparty and then bilaterally negotiate the size and rate

of the loan.

3 The model

There is a large population of agents that we refer to as banks, each represented by a point in
the interval [0, 1]. Banks hold integer amounts of an asset that we interpret as reserve balances
and can negotiate these balances during a trading session set in continuous time that starts at
time 0 and ends at time T'. Let 7 denote the time remaining until the end of the trading session,
so 7 =T — t if the current time is ¢ € [0,T]. The reserve balance that a bank holds (e.g., at
its Federal Reserve account) at time 7" — 7 is denoted by k(1) € K, with K = {0,1,..., K},
where K € Z and 1 < K. The measure of banks with balance k at time T — 7 is denoted
ng (7). A bank starts the trading session with some balance k (T") € K. The initial distribution
of balances, {ny (T')},ck. is given. Let u; € R denote the flow payoff to a bank from holding &
balances during the trading session, and let Ux € R be the payoff from holding £ balances at
the end of the trading session. All banks discount payoffs at rate r.

Banks can trade balances with each other in an over-the-counter market where trading
opportunities are bilateral and random and represented by a Poisson process with arrival rate
. We model these bilateral transactions as loans of reserve balances. Once two banks have
made contact, they bargain over the size of the loan and the quantity of reserve balances to be
repaid by the borrower. After the terms of the transaction have been agreed upon, the banks
part ways. We assume that (signed) loan sizes are elements of the set K = KU {-K, ..., —1}
and that every loan gets repaid at time T+ A in the following trading day, where A € R,.. Let
x € R denote the net credit position (of reserves due at 7'+ A) that has resulted from some
history of trades. We assume that the payoff to a bank with a net credit position x that makes
a new loan at time T — 7 with repayment R at time T + A is equal to the post-transaction

discounted net credit position, e "7t (z 4+ R).

“More than 7,000 Fedwire participants can potentially lend and borrow in the fed funds market. In 2008,
the average daily number of borrowers and lenders were estimated to be 164 and 255, respectively (see Afonso,
Kovner, and Schoar, 2011).



Discussion. We use a search-based model to capture the over-the-counter nature of the fed
funds market. In practice there are two ways of trading federal funds. Two participants can
contact each other directly and negotiate the terms of a loan, or they can be matched by a fed
funds broker. Since nonbrokered transactions represent the bulk of the volume, we abstract
from brokers in our baseline model.” Notice that search entails two layers of uncertainty in
this environment. First, the time it takes a bank to contact a counterparty is an exponen-
tially distributed random variable with mean 1/a. Second, conditional on having contacted
a counterparty at time T — 7, the reserve balance k of the counterparty is a random variable
with probability distribution {n (7)},cx. So even if a bank were able to contact counterpar-
ties fairly quickly, the fact that search is random with respect to the counterparties’ reserve
holdings implies that the bank will typically have to engage in several trades with different
counterparties in order to achieve a desired holding of reserve balances.

Fed funds activity is concentrated in the last two hours of the operating day.® Until late
afternoon, transfers of reserves across banks are mostly due to their primary business activities.
For example, a profit center at Bank A may draw down reserve balances in order to pay for an
asset purchase from Bank B, or a client at Bank C may issue a payment to a client at Bank D,
resulting in a transfer of reserves from Bank C to Bank D. By around 4:00 pm, the fed funds
trading desk at each bank has a good estimate of the send and receive transactions pending until
the end of the day and begins actively trading fed funds to push the bank’s reserve balance
in the desired direction. From this point on, the dynamics of the reserve balance is mostly
controlled by the fed funds traders, who expect other profit centers at the bank to avoid large
unscheduled transactions near the end of the day.” Thus, in the theory, we think of ¢ = 0 as

standing in for 4:00 pm and use the initial condition {n (7)},cx to represent the distribution

® Ashcraft and Duffie (2007), for example, estimate that nonbrokered transactions represented 73 percent of
the volume of federal funds traded in 2005. Federal fund brokers do not take positions themselves; they act only
as matchmakers, bringing buyers and sellers together.

5In 2008, for example, Furfine estimates suggest that more than 75 percent of the value of fed funds traded
among banks was traded after 4:00 pm. In line with this observation, Bartolini et al. (2005) and Bech and Atalay
(2008) report very high fed funds loan activity during the latter part of the trading session. (See the illustrations
of intraday loan networks for each half hour in a trading day in their Figure 6.)

" Ashcraft and Duffie (2007) and Duffie (2012) document this kind of institutional knowledge obtained from
fed funds traders. In line with these observations, Bartolini et al. (2005) attribute the late afternoon rise in fed
funds trading activity to the clustering of institutional deadlines, e.g., the settlement of securities transactions
ends at 3:00 pm, causing some institutions to defer much of their money market trading until after that time, once
their security-related balance sheet position becomes certain. Uncertainty about client transactions and other
payment flows diminishes in the hour or two before Fedwire closes, which also contributes to the concentration
of fed funds trading activity late in the day.



of actual reserve balances given to the banks’ fed funds trading desks at this time.

The motives for trading fed funds may vary across participants and their specific circum-
stances on any given day, but there are two main reasons in general. First, some institutions
such as commercial banks use the fed funds market to offset the effects on their reserve bal-
ances of transactions (initiated either by their clients or by profit centers within the banks
themselves) that would otherwise leave them with a reserve position that does not meet Fed-
eral Reserve regulations. Also, some participants regard fed funds as an investment vehicle—an
interest-yielding asset that can be used to “deposit” balances overnight. In our model, all
payoff-relevant policy and regulatory considerations are captured by the intraday and end-of-

day payoffs, {ux, Ur}rex®
4 Equilibrium

Let the function Vi (1) : K x [0, 7] — R denote the maximum attainable payoff that a bank can
obtain from k € K units of reserve balances when the time until the end of the trading session
is 7 € [0, T]. Whenever two banks meet during the trading session, they bargain over the size of
the loan and the size of the repayment. Consider a bank with k£ balances that contacts a bank
with k&’ balances. For any pair of pre-trade reserve balances of the two banks, k, ¥’ € K, the set
I (k, k') = {(¢,¢) e KxK:q+ ¢ =k+k'} contains all feasible pairs of post-trade balances
that could result from the bilateral negotiation. This set embeds the restriction that an increase
in one bank’s balance must correspond to an equal decrease in the other bank’s balance and
that no bank can transfer more balances than it currently holds. For every pair of banks that
hold pre-trade balances (k, k') € K x K, the set II (k, k') induces the set of all feasible (signed)
loan sizes, I' (k, k') = {b€ K: (k- b,k +b) € I (k, k') }. Notice that II (k,k’) = II (k', k) and
I'(k,K') = —-T (K k) for all k,k" € K. The pair (bg (1), Riri (7)) denotes the bilateral terms
of trade between a bank with balance k and a bank with balance ¥’ when the remaining time
until the end of the trading session is 7. That is, bgr (7) is the amount of reserves that the
bank with balance k lends to the bank with balance k', and Ry (7) is the amount of balances
that the latter commits to repay the former at time T+ A. We take these terms of trade to be

the outcome corresponding to the symmetric Nash solution to the bilateral bargaining problem.

8For example, if the Federal Reserve pays no interest on intraday holdings of reserves and interest rate f on
all reserves held at the end of the trading session, then uy = 0 and Uy = (1 +i5) k for all k € K. As another
example, see (15) in Section 6.3. In Section 6.1 we will adopt a general specification that captures the essential
institutional arrangements currently in place in the United States.



Then for any k, k' € K and any 7 € [0,T], (bgr (7), R (7)) is the solution to

—r(t+A)p , _ e TrHA) R v,
bEF(?’giRER {Vkib (T) te RE=Vi (T):| [Vk o (T) ¢ =V (T) .

Thus for any k € K and any 7 € [0, T,

min(7a,7)
Vi (7’) =E {/ e "Pupdz + ]1{7_a>7_}6_7"7—U]C (1)
0
+ Iy ey ™™™ Z i (T = Ta) |Vib, y(r—7a) (T — Ta) + e rTtAT) R (r — Ta)] }
k’eK
where
ber (1) € arg max  [Virop (1) + Vs (1) — Vi (1) — Vi (7)] (2)
bel (k k')
—Tr\T 1 1
e +A)Rk’k (T) = 2 [Vk’-‘rbkk/(T) (7—) — Vi (7_)] + 92 [Vk (7—) o Vk_bkk’(T) (7—)] : (3)

The expectation operator, E, in (1) is with respect to the exponentially distributed random
time until the next trading opportunity, 74, and I, <} is an indicator function that equals 1 if
To < 7 and 0 otherwise. The first term contains the flow payoff to the bank from holding balance
k until the next trade opportunity or the end of the session, whichever arrives first. The second
term says that in the event that the bank gets no trade opportunity before time 7', it ends the
day with k balances and gets the end-of-day payoff Ux. The third term contains the expected
discounted payoff in the event that the bank gets a trade opportunity with another bank before
time T, i.e., at time 7' — (7 — 75). In this event the counterparty is a random draw from the
distribution of balances at time T — (7 — 7,), namely, {ny (7 — 7o) }rex, and the expression
inside the square bracket is the post-trade continuation payoff of the bank we are considering.’
Hereafter, we use V' = [V (7)] ¢ 7}, With V (1) = {V} (7)};ck, to denote the value function.

According to the bargaining solution (2) and (3), the loan size maximizes the joint gain from

9Notice that aside from the k units of reserves it is holding at time T'— 7, a bank may also have a net credit
position z € R resulting from trades that occurred earlier in the trading session (to be settled after the end of
the trading session, at time T+ A). Thus the total payoff of a bank will typically depend on its total asset
position, s = (k,z) € K x R. In Appendix A (Section A.l) we present the bargaining problem and the Bellman
equation that must be satisfied by Ji (z,7) : K x R x [0,T] — R, i.e., the value function of a bank that at time
T — 7 holds k € K units of reserve balances and whose net credit position is x € R, and the bilateral terms
of trade (bss' (T7),Rss (7)) that result in a meeting at time 7' — 7 between a bank with total asset position
s = (k,x) € K x R and a bank with total asset position s’ = (k¥’,z') € K x R. We also show (Lemma 2) that
Ji (2,7) = Vi (1) + e 7"+ g which means that the Nash bargaining outcome is independent of the net credit
positions of the banks, z and z’. This allows us to simplify the exposition by working with Vj (7).



trade, and the repayment implements a division of this gain between the borrower and the
lender that gives each a fraction equal to their bargaining power (i.e., one half). For example,
if a bank with ¢ € K balances and a bank with j € K balances meet at time T' — 7, they will
negotiate a loan of size b (1) =i — k = s — j, where (k,s) € argmax s ¢)er(,j) Sfj/s/ (1) with
Sfjlsl (1) = Vi (1) + Vg (1) = Vi (1) = V; (7). The implied joint gain from trade corresponding to
this transaction is Sfjs (1), and the individual gain from trade, e.g., of the bank with pre-trade
balance equal to i, is Vi, (1) + e "TTA Ry (1) — Vi (1) = %Sfjs (7).

Consider a bank with ¢ balances that contacts a bank with j balances when the time
until the end of the trading session is 7. Let gbff (1) be the probability that the former and
the latter hold k and s balances after the meeting, respectively, i.e., qbff (1) € [0,1], with

>y ( ) = 1. Feasibility requires that (bfjs (1) =01if (k,s) ¢ I1(4,5). Given any feasible
keK seK
path for the distribution of trading probabilities, ¢ (1) = {gbf]s (7)}i,5,k,sek, the distribution of

balances at time T' — 7, i.e., n (1) = {ny (7) };ck, evolves according to
ng (1) =f[n(r),¢(7)] forall k €K, (4)

where

f[n<7_)7¢< —ank Zzznz

1€K jeK seK

—a) > D mi(r)n (1) (7). (5)

ieK jeK seK

The first term on the right side of (5) contains the total flow of banks that leave state k between
time t =T — 7 and time ¢’ =T — (7 — ¢) for a small € > 0. The second term contains the total
flow of banks into state k& over the same interval of time.

The following proposition provides a sharper representation of the value function and the

distribution of trading probabilities characterized in (1), (2), and (3).
Proposition 1 The value function V' satisfies (1), with (2) and (3), if and only if it satisfies

Vi () +Vi(r) =i+ 5 ZZZnJ T [Vi () + Vi (1) = Vi (1) = Vi ()] (6)

]EK keK seK

for all (i,7) € K x [0,T], with

Vi(0)=U; foralliekK, (7)



and

s >0 if (k,S)EQ” [V(T)]
L0 F g my o, )
for alli,j, k,s € K and all 7 € [0,T], with > . d)fj (1) =1, where
keK seK
Qi [V(r)=arg max [V (1) + Vg (r)=Vi(r) =V, (7)]. 9)

(K',s")€l(,7)

The set Q;; [V (7)] defined in (9) contains all the feasible pairs of post-trade balances that
maximize the joint gain from trade between a bank with ¢ balances and a bank with j bal-
ances that is implied by the value function V (7) at time T'— 7. For any pair of banks with
balances i and 7, (;Sfj (1) defined in (8) is a probability distribution over the feasible pairs of
post-trade balances that maximize the bilateral gain from trade. Thus together, (8) and (9)
describe the pairs of post-trade balances (or equivalently, loan sizes) that may result from the
bilateral bargaining. The Bellman equation described by (6) and (7) has a natural interpre-
tation. The flow value of a bank that holds balance i at time 7' — 7, i.e., rV; (7), consists of
the flow return from holding balance 1, i.e., u;, minus the flow capital loss associated with the
reduction in the remaining time until the end of the trading session, i.e., V; (1), plus the rate at

which the bank meets counterparties, «, times the expected gain from trade to the bank, i.e.,

> X X 0 (7)o (1) 385 (7).

jE€K k€K seK

Definition 1 An equilibrium is a path for the distribution of reserve balances, n (7), a value
function, V', and a path for the distribution of trading probabilities, ¢ (7), such that: (a)
given the value function and the distribution of trading probabilities, the distribution of bal-
ances evolves according to (4); and (b) given the path for the distribution of balances, the value

function satisfies (6) and (7), and the distribution of trading probabilities satisfies (8).

In quantitative implementations of the theory, one can try to compute equilibrium algo-
rithmically, as follows. Guess a path of trading probabilities and use it to solve the system of
differential equations (4) with initial condition {nj (T')},cx to obtain a path for the distribu-
tion of reserve balances. Then substitute the trading probabilities and distribution of reserves
implied by the guess, and solve the system of differential equations (6) and (7) for the implied
value function. Then use this value function and (8) to obtain a new guess for the path of

trading probabilities and continue iterating until the value function has converged. Instead of

10



following this route, here we make a curvature assumption on the vectors {uy },cx and {Ux}cx

that will allow us to provide an analytical characterization of equilibrium.

Assumption A. For any i,j € K, and all (k,s) € II(4,7), the payoff functions satisfy

U"i+j‘| —I—UL%J > Uk + Us (DMC)

2

Upias) +Upsss) 2 Up +Us, <> 7 unless ke { | 142 ], [ 5]}, (DMSC)
where |z] =max{k €Z:k <z} and [z] =min{k € Z: z < k} for any z € R.

In Appendix A (Section A.3, Lemma 3) we show that conditions (DMC) and (DMSC) are
equivalent to requiring that the payoff functions {uy};cx and {Uy}, ok satisfy discrete midpoint
concavity and discrete midpoint strict concavity, respectively.'® These conditions are reasonable
in the context of the fed funds market because central banks typically do not offer payment
schemes that are convex in reserve balances. The following result provides a full characterization

of equilibrium under Assumption A.
Proposition 2 Let the payoff functions satisfy Assumption A. Then:

(2) An equilibrium ezists, and the equilibrium paths for the maximum attainable payoffs, V (1),

and the distribution of reserve balances, n (1), are uniquely determined.

(#2) The equilibrium path for the distribution of trading probabilities, ¢ (1) = {Qﬁff (7)}ijk sek s
is given by

ks (7_){ >0 Zf (k78) S Q:j (10)

T\ =0 i (k) ¢ 9,

for alli,j, k,s € K and all 7 € [0,T], with " )ZQ gbfjs (1) =1, and
,8)E ;‘j

itj itj U
777} if 147 is even

L) (9] L) vise

0These are the natural discrete approximations to the notions of midpoint concavity and midpoint strict
concavity of ordinary functions defined on convex sets. Let X be a convex subset of R", then a function
g : X — Ris said to be concave if g(ex+ (1 —€)y) > eg(z) + (1 —€) g (y) for all z,y € X, and all € € [0,1].
The function g is midpoint concave if 2g (“5%) > g (x) + g (y) for all z,y € X. Clearly, if g is concave then it is
midpoint concave. The converse is true provided g is continuous. The function g : K — R satisfies the discrete
midpoint concavity property if g ([“2”1) +g (L%J) > u; +u; for all i, € K. See Murota (2003) for more on
the midpoint concavity property and the role that it plays in the modern theory of discrete convex analysis.

ko

11



The equilibrium distribution of trading probabilities (10) can be described intuitively as follows.
If at any point during the trading session, a bank with balance ¢ contacts a bank with balance
7, then the post-trade balance is L%J for one of the banks and [%1 for the other. This
property, and the uniqueness of the equilibrium paths for the distribution of reserve balances
and maximum payoffs, hold under Assumption A. In Appendix A (Section A.3, Corollary 1)
we show that if we instead assume that u satisfies discrete midpoint strict concavity and U
satisfies discrete midpoint concavity, then the existence and uniqueness results in Proposition 2
still hold. With the path for ¢ (7) given by (10) in closed form, the equilibrium value function,
V, is the unique bounded real-valued function that satisfies (6) and (7), and the path for the

distribution of balances, n (), is given by (4) with initial condition {ng (T)}, k-

5 Positive implications

The fed funds market is a mechanism that reallocates reserves among banks. Its performance
is typically assessed with empirical measures of the volume of this reallocation and the corre-
sponding interest rates. In this section we derive the theoretical counterparts to these empirical
measures and show that the theory is qualitatively consistent with the elementary features of
the actual fed funds market. We also identify the determinants of the fed funds rate, trade
volume, and trading delays, show that the equilibrium exhibits endogenous intermediation,
and propose theory-based measures of the importance of these bank-provided intermediation

services in the process of reallocation of reserves.

5.1 Trade volume and trading delays

The total volume of fed funds traded during the session is v = fOT U () dr, where

o(r)=ay Y > > ni(r)n; (1)l (r) [k —il.

€K jeK keK seK

Notice that the arrival rate of specific trading opportunities is endogenous, as it depends on the
ks
ij
with balance ¢ trade a loan of size to k — ¢ with agents with balance j at time T"— 7. Thus

equilibrium distribution of balances. For example, an; (1) (7) is the rate at which agents

even though the contact rate, «, is exogenous, the trading delays involved in attaining a certain
target balance of reserves are determined endogenously, e.g., by agents’ trading strategies and

the distribution of reserves.

12



5.2 Fed funds rate

Consider a transaction at time T'— 7 between a bank with ¢ balances and a bank with j balances
such that the former exits the trade with k& balances and the latter with s = ¢+ j — k. In this
case the bank with j balances gives the bank with i balances a loan of size bj; (1) = k—i = j—s,
and the latter repays Rfjs (1) at time 7'+ A. Define the (gross) interest rate on this loan as
RFs (7)
k _ Y

Thus in the theory as in the actual fed funds market, there is no such thing as the fed funds rate;
rather there is a time-varying distribution of rates. In this context, it is natural to construct a
daily average,

1 [ T TSk sk e

€K jeK keK seK

ks
ij

(1) is a weighting function with wfjs (1) > 0 and kz wfjs (1) = 1. For example,
2,7,k,s€K

if wfjs (1) = Ufjs (1) /o (1), then p is a value-weighted daily average fed funds rate akin to the
effective federal funds rate published daily by the Federal Reserve.!!

where w;

5.3 Intermediation and speculative trades

Consider a bank B that starts the day with a zero balance of reserves and has two trade
opportunities during the whole trading session: the first with bank A that holds 20 units
of reserves and the second with bank C that holds 0. Then according to Proposition 2, B
holds 10 units after trading with A and 5 units after trading with C. Notice that B buys
10 units from A early in the trading session and resells 5 of these 10 units to C' later in the
day, i.e., B acted as an intermediary between A and C. The equilibrium exhibits endogenous
intermediation in the sense that banks act as dealers, buying and selling funds on their own
account and channeling them from banks with larger balances to banks with smaller balances.
From an applied standpoint, this kind of intermediation is an important feature of the fed

funds market.!> From a theoretical standpoint, it is interesting that intermediation emerges

"The actual daily effective federal funds rate is a volume-weighted average of rates on trades arranged by
major brokers. The Federal Reserve Bank of New York receives summary reports from the brokers and every
morning publishes the effective federal funds rate for the previous day.

12This theoretical finding is consistent with a striking aspect of the fed funds market that was pointed out by
Ashcraft and Duffie (2007): “A significant number of loans in our data are made by lenders in the lower deciles
by relative balances. Many of these lenders are presumably themselves in relative need of funds but agree to lend
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as an equilibrium phenomenon even though all banks are fundamentally identical (i.e., they
have the same contact rate, the same payoffs, and the bargaining power). Intermediation is
a natural consequence of two elementary forces: random sequencing of meetings among banks
with different holdings and the tendency of banks to want to equate their marginal utilities
from reserve holdings formalized in Proposition 2.3

We propose a theory-based empirical measure of the importance of intermediation in the
process of reallocation of reserves among banks. Consider a bank that starts the day with
balance ko and then gets N € {0,1,2,...} trading opportunities during the whole trading
session. Let k, denote the bank’s post-trade balance after the n'”" trade, for n = 1, ..., N. Define
the bank’s accumulated volume of purchases OP = 27]:7:1 max {k, — kn—1,0}, the accumulated
volume of sales, 0% = — S>°_ min {k,, — k,_1,0}, and the (signed) net trade, OP —O0% = ky —ky.
Then min{OP, O®} measures the volume of funds intermediated by the bank. Alternatively,
OP + O* is the gross volume of funds traded by the bank, and |OP — O®| is the size of the bank’s
net daily trade, so X = OP+0° —|OP — O?| is a bank-level measure of excess funds reallocation,
i.e., the volume of funds traded over and above what is required to accommodate the daily net
trade.!* The statistic X is an index of simultaneous buying and selling at the individual bank
level that suggests X/(OP + Of) as a natural measure of the proportion of the total volume of

funds traded by a bank that the bank intermediated during the trading session.

6 Quantitative analysis

In this section we calibrate and simulate the model and show that it captures the salient features
of the fed funds market in the United States. We then use the model as a laboratory to study
a key issue in contemporary central banking, namely, the effectiveness of policies that use the

interest rate on banks’ reserves as a tool to manage the overnight interbank rate.

at a sufficiently high rate, planning to borrow later in the day at a lower rate. In any OTC market, the borrower
does not generally know the most attractive rates available from other counterparties, or which counterparties
are offering them, and may have an incentive to accept the rate offered by such a lender.”

3In contrast, existing models of financial OTC markets, e.g., Duffie et al. (2005) and Lagos and Rocheteau
(2009), feature intermediation by assuming that there are two types of agents: “investors” who get utility from
holding the asset and “dealers” who have a superior (faster) trading technology and intermediate trade between
investors with different asset valuations.

1Our measure of excess funds reallocation is reminiscent of the notion of excess job reallocation used in
empirical studies of job creation and destruction (e.g., Davis, Haltiwanger, and Schuh, 1996).
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6.1 Calibration

The motives for trading fed funds and the payoffs from holding reserve balances are different
for different types of market participants. Since commercial banks account for the bulk of
the trade volume in the fed funds market, we focus on their trading motives and payoffs.'
The Federal Reserve imposes a minimum level of reserves on commercial banks and other

16 End-of-day balances within a maintenance period may vary but

depository institutions.
generally remain positive as overnight overdrafts are considered unauthorized extensions of
credit and penalized. On October 9, 2008, the Federal Reserve began remunerating banks’
positive end-of-day balances. In the theory, all of these policy considerations are represented
by {U},ex- The Fed has traditionally not paid interest on intraday reserve balances, but it
charges interest on uncollateralized daylight overdrafts. In the theory, the flow payoff to a bank
from holding intraday balances is captured by {us}; k-

For the quantitative work, we adopt the following formulation of banks’ end-of-day payoffs:
Uy :efrAf(k:—/;Jo—l-F]g)7 (13)

where

Fio = max {F (k") = if [ = (k= Fo)] } s:6. k= Fo < &

with B B B
k4G (kY — k) if k< kY
F(EY) = k" —iG(k—kv) if0<kY <k
—i%k + 13 kY if k¥ < 0.
This formulation captures the essential institutional arrangements currently in place in the
United States. The parameter Ay € R, represents the length of the period between the end of
the trading session and the beginning of the following trading session, when the bank’s reserves

held overnight at the Federal Reserve become available (in practice, this period consists of

the 2.5 hours between 6:30 pm and 9:00 pm). The parameter ky € {0,..., K — 1} indexes

15 Ashcraft and Duffie (2007) report that commercial banks account for over 80 percent of the volume of federal
funds traded in 2005, while 15 percent involves GSEs, and 5 percent corresponds to special situations involving
nonbanks that hold reserve balances at the Federal Reserve. Their estimates are based on the Furfine algorithm,
from a sample of the top 100 institutions ranked by monthly volume of fed funds sent, including commercial
banks, GSEs, and excluding transactions involving accounts held by central banks, federal or state governments,
or other settlement systems.

16The reserve balance requirement applies to the average level of a bank’s end-of-day balances during a two-
week maintenance period. For an explanation of how these required operating balances are calculated, see
Bennett and Hilton (1997) and Federal Reserve (2009, 2010b).
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translations of the set K, which afford us a more flexible interpretation of the elements of K.
Intuitively, ko can be thought of as the overdraft threshold, which allows us to interpret a bank
with k < kg as having an overdraft in its Fed account.!” Thus according to (13), the end-of-day
payoff of a bank that holds net-of-overdraft-threshold balance k — kg at the end of the trading
session is the discounted value of this balance net of interest payments from or to the Fed,
denoted Fy. Specifically, F}, contemplates that in practice, at the end of the trading day banks
have the option to borrow from the Federal Reserve discount window an amount of reserves
kY — (k — l_co) > 0. The parameter k € {1, e, K — l_ﬂo} represents the reserve requirement
imposed on each bank. The cost of overnight borrowing from the discount window is denoted
i The overnight interest rates that a bank earns on required and excess reserves are denoted
z; and ijc, respectively, with z? < z? The deficiency per-dollar cost of failing to meet the reserve
requirement is denoted ijc, and zj’e is the overnight overdraft penalty rate. The flow payoff to a

bank from holding intraday balances is given by

id _ L.\l—€ : _ L
Uk:{ Z_,_(k ko) 1f0§k k() (14)

—i? (ko — k)I* if k— ko < 0.

The interest rate that a bank earns from the Fed on positive intraday balances is ii, and 7% is

the interest rate it pays the Fed on daylight overdraft. The curvature parameter € € [0,1) will
be set to a negligible positive value.'®

We measure time in days. The model is meant to capture trade dynamics in the last
2.5 hours of the daily trading session, so we set T' = 2.5/24. The parametrization of the
initial distribution of reserve balances, {ny (T)},ck, is guided by identifying ny (T') in the
theory with the empirical proportion of commercial banks whose balances at 4:00 pm are
k/k times their average daily reserve requirement over a typical two-week holding period in
2007. Specifically, {ny (T)}rex was estimated from data using the following procedure. First,
we identified 136 commercial banks that traded fed funds at the end of the second quarter
of 2007 (according to their FR Y9-C regulatory filings) and for which we have been able to

For example, in a parametrization with ko = 0, K can be interpreted as the set of reserve balances that can
be held by an individual bank. More generally, we can instead regard k£ € K as an abstract index and interpret
k' = k— ko as a bank’s actual reserve balance. Under this interpretation, reserve balances (i.e., k') held by banks
are in the set K' = {k’ : k' = k — ko for some k € K}. Then since K' = {—ko, ..., K — ko}, this formulation
allows the payoff functions to accommodate the possibility of negative reserve balances. In line with this more
general interpretation, k represents the reserve requirement imposed on reserve balances, k' = k — ko. (The
reserve requirement stated in terms of the index k would be k -+ ko.)

18 Together with % large enough relative to ii, this will ensure that {ux}, satisfies the discrete midpoint
strict concavity property.
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obtain information on their required operating balance. Second, we obtained the empirical
cross-sectional distribution of closing balances of these 136 banks for each day of a two-week
maintenance period in the same quarter. Third, for every day in the sample, we constructed
a measure of each bank’s imputed reserve balance at 4:00 pm, as follows. Given each bank’s
closing balance on a given day, we subtracted the bank’s net payments activity from 4:00 pm
until Fedwire Funds Service closing time (typically 6:30 pm) as well as the discount window
activity for that day. Fourth, for each bank we calculated the average (over days in the two-
week maintenance period) imputed reserve balance at 4:00 pm and normalized it by dividing
it by the bank’s daily average required operating balance over the same maintenance period.
At this stage we detected two outliers and removed them from the sample to obtain the final
sample, B, of 134 banks.?’ The distribution of average imputed normalized reserve balances
across this sample of 134 banks had a mean equal to 4.5. For our baseline experiments we
translated this distribution so that the mean would match the empirical mean of the ratio of
seasonally adjusted reserves to required reserves of all depository institutions during the second
quarter of 2007, i.e., 1.04 as reported in the H.3 Federal Reserve Statistical Release. Let A’
denote this average imputed normalized translated reserve balance for bank ¢ € B. Finally, we
let K = {0,...,250}, ko = 100, and set ng (T) = 137 > sep Lnich—io h—kor1)} fOr k =0, ..., 249,
and noso (1) =1 — iigo nk (T). We normalize k = 1, so k can be interpreted as a multiple of
the reserve requirement.

Since the results are insensitive to small values of 7, we set r = 0. Most transactions are
settled through Fedwire, and Fedwire does not operate for 2.5 hours between 6:30 pm and 9:00
pm, so the settlement lags A and Ay are set to A = Ay = 2.5/24, which means that banks
regard all loans (to other banks or to the Fed) as being repaid at the beginning of the following
working day. The values of the policy rates i%, iSlr, i;, i?, i;é’, i?, and z?c are chosen to mimic
policies in the United States during the second quarter of 2007. The interest rate charged
on daylight overdrafts, i%, is set to 0.0036/360.2! The interest rate paid on positive intraday

9The information on reserve balances is from Daylight Overdraft Reporting and Pricing System (DORPS)
and two other internal Federal Reserve data sets: Discount window primary credit lending program and Required
operating balances.

29Gee Section C.1 in Appendix C for details on our treatment of outliers.

2In practice, when an institution has insufficient funds in its Federal Reserve account to cover its settlement
obligations during the operating day, it can incur a daylight overdraft up to an individual maximum amount
known as net debit cap. (This cap is equal to zero for some institutions.) On March 24, 2011, the Federal Reserve
Board implemented major revisions to the Payment System Risk policy, which include a zero fee for collateralized
daylight overdrafts and an increased fee for uncollateralized daylight overdrafts to 50 basis points (annual rate)
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balances, ii, is set to 1077/360 (one-thousandth of a basis point, annualized).?? The Federal
Reserve did not pay interest on reserves prior to October 2008, so z? = z? = 0. The total
per-dollar cost of borrowing from the discount window is iy =1+ PY, where ¢ is the window
discount rate and PY represents the pecuniary value of the additional costs associated with
discount window borrowing (such as administrative costs and stigma). The deficiency charge
for failing to meet the reserve requirement is Z‘Ji = i + P¢, where ¢¢ is the overnight interest
rate charged on the shortfall and P¢ represents the pecuniary value of additional penalties that
the bank may suffer for failing to meet reserve requirements. The overnight overdraft penalty
rate is i =i + P°, where 1° is the interest rate on the overdraft and P represents additional
penalties resulting from the use of unauthorized overnight credit. The interest rate on discount
window loans under the Primary Credit Facility was 6.25 percent per annum in the second
quarter of 2007, so we set i = 0.0625/360. The penalty rate charged for reserve deficiencies
is 100 basis points above the Primary Credit Facility discount window lending rate on the first
day of the calendar month in which the deficiency occurred, so we set ¢ = 0.0725/360. The
interest penalty on overnight overdrafts is 400 basis points above the effective fed funds rate.
The average daily effective fed funds rate during the second quarter of 2007 was 5.25 percent
per annum, so we set i° = 0.0925/360. In the baseline we set P¢ = P° = P*.23 We calibrate
PY and «, so that the equilibrium of the model is consistent with the following two targets:
(a) the fed funds rate during the second quarter of 2007, which was 0.0525 per annum, and (b)
the standard deviation of the empirical end-of-day distribution of average normalized reserve
balances (for the two-week holding period used to estimate the initial distribution), which was

1.1. This calibration strategy implies P* = 0.0525/360 and o = 115.24

from the prior level of 36 basis points that we use in our baseline (see Federal Reserve, 2010a).

22The interest that a bank receives for holding positive intraday reserves has actually been zero in the United
States. We set i‘_f_ to a small positive number and € = 107%, a negligible positive number, only to ensure
that {ur} wek Satisfies the discrete midpoint strict concavity property, which significantly simplifies our solution
algorithm. A negligible 7% has only a negligible effect on the equilibrium rates.

2 Corollary 2 (in Appendix A, Section A.4) reports a simple closed-form expression for Uy, for parametrizations
such as this one, which satisfy i¢ < iy < i} and ¥ < i} +4%. None of the quantitative results are sensitive to
the specific values of P¢ or P° provided these inequalities are satisfied.

24With these values the equilibrium value-weighted daily average fed funds rate implied by the model (p as
defined in Section 5.2) is 0.052 per annum, and the standard deviation of the end-of-day distribution of balances
implied by the model is 1.1. The value a@ = 115 implies that banks have an average of about 12 meetings during
the trading session, i.e., a trading opportunity every 12.5 minutes, on average. The implied equilibrium mean
and median numbers of trading partners per bank during the session are 7.7 and 8, respectively. The implied
equilibrium proportion of intermediated funds in the theory (i.e., as defined in Section 5.3) is 0.65.
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6.2 Simulation

With the parameter values reported in Section 6.1, we simulated the equilibrium paths of
one million banks. The results are presented in two figures. Figure 1 displays the behavior
of the distribution of reserve balances and the fed funds rate. The top row describes the
evolution of the distribution of reserves. The left panel shows the opening and the end-of-day
distribution of reserve balances across banks. The middle panel describes the intraday evolution
of the distribution of reserves by depicting box plots of the distribution at 15-minute intervals
throughout the trading session. The distribution of banks’ reserves follows a clear pattern
of convergence.?> The right panel shows that the standard deviation of the cross-sectional
distribution of reserves falls over time—another indication that the market is continuously
reallocating reserves from banks with larger balances to banks with smaller balances. The
bottom row describes the behavior of the (distribution of) fed funds rate(s). The left panel
plots in chronological time, ¢t = T' — 7, at each minute ¢ during the trading session, the value-

weighted average of the cross-sectional distribution of rates, > wfjs (1) pff (7). The middle
i,5,k,s€K

panel shows the histogram of {[pfj (7)]r€j0,7}i,j,k,sex#- The right panel exhibits a box plot every
15 minutes of the spread between the theoretical rates on loans traded at minute t = T — 7,
ie., pff (1), and the value-weighted average of the cross-sectional distribution of rates on all
transactions traded in that minute.

Figure 2 reports several dimensions of trade volume, such as the intraday time path of the
volume of trade, the distribution of loan sizes, the distribution of transactions per bank, and
intermediation. The top left panel shows the proportion of the daily volume (the solid line) and
the proportion of the daily number of loans (the dashed line) traded by time ¢t = T'— 7. Notice
that neither the volume of trade nor the number of trades is distributed uniformly throughout
the day; rather, trading activity tends to be higher earlier in the session. The top middle
panel shows the daily distribution of loan sizes, and the top right panel uses box plots every 15
minutes to describe the evolution of the distribution of loan sizes during the day. In the bottom
row, the left panel shows the distribution of the number of counterparties per bank, and the
middle and right panels show the distribution of excess funds reallocation and the distribution

of the proportion of intermediated funds—the two measures of intermediation introduced in

2’The data display a similar pattern of convergence during the last 2.5 hours of the typical trading day.
Empirical analogues of these box plots of the intraday distributions of reserve balances can be found in Afonso
and Lagos (2014) and Ashcraft and Duffie (2007).
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Section 5.3. The equilibrium exhibits a substantial amount of endogenous intermediation.?®

In order to assess the model fit, Figure 3 shows the box plots (at 15-minute intervals through-
out the trading session) of the distribution of normalized reserves generated by the calibrated
model and the distribution of average imputed normalized translated reserves from the data.
The initial distribution and standard deviation of the end-of-day distribution from the model
match the data by construction (the initial distribution is estimated from data, and « is cali-
brated so that the standard deviation of the end-of-day distribution in the model matches its
empirical counterpart). The figure shows the degree to which the model is able to track the
whole intraday path of the empirical distribution of reserves, i.e., the degree to which the theory
can successfully capture the dynamics of the reallocation of reserves during the last stretch of
a typical trading day. The rate of convergence of reserve balances in the model is uniform over
time, while in the data convergence appears to be faster in the last hour of the trading session
(it speeds up some time between 5:15 pm and 5:30 pm). Thus the model may be better suited
for capturing trade dynamics during the last 60 to 90 minutes of the trading session (rather
than during the last 150 minutes). Focusing on that time frame would significantly improve
the fit. Alternatively, a more general model in which the contact rate is allowed to be time
dependent (either exogenously or if banks could choose search intensity) may have a better
chance at capturing the acceleration in the convergence of reserve balances that we see in the

data.

6.3 Policy evaluation

During the five years prior to the onset of the 2008-2009 financial crisis, total reserve balances
held by depository institutions in the United States fluctuated between $38 billion and $56
billion, and required reserves stood between 80 percent and 99 percent of total reserves. Total
reserves increased dramatically from about $41.5 billion in the months prior to September 2008

to more than $900 billion in January 2009. Most of the increase was accounted for by a sharp

26We have also studied the distributions of fed funds purchased throughout the trading day every 15 minutes
by banks whose adjusted balance, k — ko —k, at the time of the trade are in the top 70 percent of the distribution of
nonnegative adjusted balances, as well as the distributions of fed funds sold throughout the trading day every 15
minute by banks whose adjusted balances at the time of the trade are in the bottom 70 percent of the distribution
of negative adjusted balances. We have found that according to the theory, it is common for banks with relatively
large balances to borrow, as well as for banks with relatively low balances to lend, which has been interpreted
as prima facie evidence of the presence of over-the-counter trading frictions in the fed funds market. Ashcraft
and Duffie (2007) were the first to point out that this type of trading activity is present in the loan estimates
obtained with the Furfine algorithm. Afonso and Lagos (2014) report similar findings.
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rise in excess reserves, which represented more than 93 percent of total reserves in January 2009
(up from less than 3 percent in the months prior to September 2008). This context of large
excess reserves still persists today, six years later. On the policy front, the Emergency Economic
Stabilization Act of 2008 authorized the Federal Reserve to pay interest on reserve balances
held by or on behalf of depository institutions beginning October 1, 2008. With this authority,
the Federal Reserve Board approved a rule to amend its Regulation D, and the Federal Reserve
Banks began paying interest on reserves on October 9, 2008.

The unprecedented scale of excess reserves and the new policy instruments at the disposal
of the Federal Reserve raise important questions regarding the Fed’s ability to adjust its policy
stance. For example, how large an open market operation would be necessary to increase the
fed funds rate by 25 basis points in a context with excess reserves standing above $1 trillion?
Is it possible to uncouple the quantity of reserves from the implementation of the interest rate
target? And if so, what is the elasticity of the fed funds rate to changes in the interest on
reserves? These issues have been receiving much attention in policy circles.?” We perceive a
growing need for quantitative models that can be used to explore the effectiveness of the interest
rate on reserves as a tool to manage the fed funds rate. In this section we take steps toward
meeting this demand.

As in Section 6.1, we think of ny (") as the model counterpart of the empirical proportion
of commercial banks whose balances at the beginning of the trading session are k/k times larger
than their average daily reserve requirement over a two-week holding period. In order to conduct
policy and counterfactual experiments, it is useful to work with a parametric distribution of
balances, so instead of working with the empirical frequency of balances as in Section 6.1, here
we estimate the initial distribution with 2011 data by maximum likelihood using a Gaussian
mixture model with 2 components.?® Let ® denote the cumulative distribution function of the
Gaussian mixture with parameters 1 = 3.19 and pug = 36.2 (the means), op = 3.9 and 09 = 34

(the standard deviations), and p; = 1 — pa = 0.56 (the probability of drawing from the first

27See Ennis and Wolman (2010), Goodfriend (2002), and Keister et al. (2008) for policy discussions. Keister
et al. (2008) conclude, “While the floor system has received a fair amount of attention in policy circles recently,
there are important open questions about how well such a system will work in practice. Going forward, it will
be useful to develop theoretical models of the monetary policy implementation process that can address these
questions.” Ennis and Wolman (2010) stress, “In contrast to the predictions of simple theories, the interest on
reserves (IOR) rate has not acted as a floor on the federal funds rate. It is now well-understood why certain
institutional features of the fed funds market and the IOR program should prevent the IOR rate from acting as
a floor, but the precise determination of the fed funds rate in this environment remains poorly understood.”

28See Appendix C (Section C.2) for a detailed description of our estimation procedure.
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component ), which we use to represent the distribution of average imputed normalized translated
reserve balances at 4:00 pm during the first quarter of 2011. Notice that g = pyp1+popus = 17.6,
which is the empirical mean of the ratio of seasonally adjusted reserves to required reserves of
all depository institutions during the first quarter of 2011 reported in the H.3 Federal Reserve
Statistical Release.? In order to feed this distribution into the model, we let k& = 1 (so k can be
interpreted as a multiple of the reserve requirement), K = {0, ..., 250}, kg = 100, and ny, (T') =
Ok —ko+1) — ®(k — ko) for k =1,...,249, ng (T) = ® (—100), and naso (T) = 1 — & (150). By
construction, Q = 3225 (k — ko)ny (T) = i = 17.6.

For the policy experiments that follow, we recalibrate the model so that the equilibrium is
in line with market conditions on a typical day in 2011.3° The values of the policy rates i?
iqf, i;, i‘]’c, i}, and z;i are all chosen to mimic the policies in place in the United States during
the first quarter of 2011. Specifically, i¢ = 0.0036/360, if = 0.0075/360, i =iy + 0.01/360,
and z? = z; =iy = 0.0025/360. The effective fed funds rate was about 15 basis points, and
the overnight overdraft rate, i‘]’c, was set at 400 basis points above the effective fed funds rate
during 2011, so % = 0.0415/360.

We set P¢ = P° = P¥ =0 and o = 1 so the equilibrium is consistent with: (a) an upper
band of the fed funds rate target of about 0.0025 per annum and (b) the standard deviation of
the empirical end-of-day distribution of average normalized reserve balances (for the two-week
holding period used to estimate the initial distribution), which was 26.9.3! All other parameter
values, i.e., r, T, A, Ay, and ii, are set as in the calibration of Section 6.1. Figures 4 and 5
are the 2011 counterparts of Figures 1 and 2.

The policy experiments consist of varying either iy or iy for different values of ). In the
theory, Q = szo(k — ko)ny (T) is the quantity of reserves held by the banking system as

a whole, while k is the reserve requirement of the consolidated banking system. Hence Q/k

29 As was the case in Section 6.1 for 2007, our sample of banks for 2011 has an average ratio of reserve balances
to required operating balances that is somewhat higher than the ratio for all banks, so we translate the estimated
distribution so that its mean matches the empirical mean of the ratio of seasonally adjusted reserves to required
reserves of all depository institutions during the first quarter of 2011 as reported in the H.3 Federal Reserve
Statistical Release.

30Gection D.1 in Appendix D reports the results of similar counterfactual policy experiments for 2007.

31With this parametrization, the equilibrium of the model delivers a value-weighted daily average fed funds
rate of 0.0029 per annum and a standard deviation of the end-of-day distribution of balances equal to 27. While
PY = 0 allows the model to replicate the much lower fed funds rate prevailing in 2011 relative to 2007, a lower
value of P for 2011 than for 2007 is also in line with recent efforts by the Federal Reserve to make the discount
window more accessible and less stigmatic. The small value of « allows the model to capture a context in which
there is little trade between banks, as has been the case since excess reserves sharply increased in 2009.
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indicates whether total reserve balances are scarce or abundant relative to the total amount of
required reserves on a given day, and we can represent different market conditions by varying
Q.32 For example, a situation with Q/k small may result from an open market sale at the onset
of the trading session. We conduct three types of policy experiments, and for each we consider
seven scenarios depending on the value of Q/k, namely, 0.1, 0.5, 1, 5, 10, 15, and 30.

The first experiment consists of increasing iy by 25 basis points from 0 to 75 basis points
while leaving ¢ fixed at its baseline value (75 basis points). The second experiment consists
of increasing iy by 25 basis points from 25 to 150 basis points while leaving i, at its baseline
value (25 basis points). The implied values of the equilibrium (value-weighted) daily average
fed funds rate, p, for the first and second experiments are summarized in Table 1 and Table 2,
respectively. In both tables, the first scenario, Q/k = 0.1, represents a day in which reserves
are very scarce in the sense that the consolidated banking system holds balances that are only
one-tenth of the required reserves. In the seventh scenario, Q/k = 30, the quantity of reserves
in the system is very large relative to the quantity of required reserves, similar to what is the
case on a typical day nowadays. In this case, the equilibrium fed funds rate essentially varies
one-for-one with the interest on reserves, iy, and is insensitive to the discount window rate, z}é’
The fed funds rate is sensitive to both policy rates when market conditions are less extreme (in
terms of the size of the total reserves relative to required reserves). For example, if the market
is “balanced,” e.g., if Q/k = 1, then an increase of 25 basis points in either policy rate increases
the equilibrium fed funds rate roughly by a half of 25 basis points.?3 Other intermediate market
conditions give different intermediate results; for example, if Q/k = 10, then an increase of 25
basis points in the interest rate paid on reserves increases the fed funds rate by about 20 basis
points, while an increase of 25 basis points in the discount window rate would increase the fed
funds rate by about 5 basis points. The responsiveness of the equilibrium fed funds rate with
respect to iy increases with @/ k, while the opposite is true for z’}”

For a given policy, the equilibrium fed funds rate is decreasing in the overall quantity of

funds in the system, Q/k, as can be seen by following any of the rows in Table 1 or Table 2 from

32Gince for a large enough grid, K, our procedure ensures Q ~ fi, we vary Q by varying fi. The desired value
of @ for each experiment is achieved by using a Gaussian mixture with parameters (u1(Q), u2(Q),01,01,p1),
where p;(Q) = Qu:/n, and cumulative distribution function denoted by ®(-;Q), and then setting the initial
distribution of balances to ny (T) = ®(k — ko + 1;Q) — ®(k — ko; Q) for k = 1,...,249, no (T) = ®(—100; Q), and
mn250 (T) =1- @(150; Q)

33 As we explain below, the “half” results from the fact that in our baseline calibration, the bargaining power
of all banks is equal to one-half.
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left to right. Notice that the equilibrium fed funds rate typically lies in an interval [i ¢+, i +e].
Such an interval is often referred to as a channel or corridor by central bankers.?* In Table
1 the corridor gets narrower as iy increases, and in the limit when iy — 4% = 0.0075 (the
last row), the interval collapses to a point: the equilibrium rate can only equal 0.0075 + ¢ and
therefore becomes insensitive to Q/k. Similarly, the equilibrium rate tends to remain equal to
0.0025 + ¢ for any value of Q/k as i —ip =0.0025 (first row of Table 2).

For the third experiment we set z? = iy + w, where w denotes a number of basis points
per annum, and increase iy by 25 basis points from 0 to 100 basis points. The implied values
of p for w = 0.0025/360 are reported in Table 3. The equilibrium fed funds rate is always
inside a corridor [if +€,if +w + €] (the value of ¢ is slightly above half a basis point). These
experiments amount to shifting the whole corridor, keeping its width, w, constant. As before,
the exact position of the equilibrium fed funds rate within this corridor depends on the amount
of reserves relative to required reserves, Q/k. For example, from the last column of Table 3,
it is clear that if reserves are very abundant, the equilibrium fed funds rate coincides with the
lower limit of the corridor, iy +¢. As the market becomes more balanced, i.e., as Q/ k gets closer
to 1, the equilibrium fed funds rate approaches the middle of the corridor. Finally, notice that
shifting the whole corridor up by x basis points (keeping the corridor width, w, fixed) increases
the equilibrium fed funds rate by x basis points.

Figure 6 illustrates the equilibrium value-weighted daily average fed funds rate, p, as a
function of the ratio of overall reserves to required reserves, @/k. This figure was generated
using the parametrization corresponding to the third row of Table 2 (i.e., the baseline calibration
with the policy rates in place in the first quarter of 2011, iy = 0.0025/360 and iy = 0.0075).
Each panel in Figure 7 shows how p changes with Q/k for a different policy stance defined
by a pair of policy rates iy and iy If one thinks of open-market operations as interventions
that change the marketwide availability of reserves relative to the reserve requirement, the

curves displayed in Figures 6 and 7 show the effect that—all else equal—open market sales or

34The value of ¢ is slightly above half a basis point in our calculations. (It is not exactly zero, because in
the baseline calibration, banks have a small yet positive, concave intraday payoff from holding reserves.) Many
central banks, e.g., the European Central Bank and the central banks of Australia, Canada, and England, use
a channel or corridor system to implement monetary policy. The system consists of a lending facility that
resembles the discount window in the United States, from which banks are allowed to borrow freely (typically
against acceptable collateral) at an interest rate equal to the target rate plus a fixed number of basis points.
There is also a deposit facility that allows banks to earn overnight interest on reserves at a rate equal to the
target rate minus a fixed number of basis points. Hence interest rates at the two standing facilities form a channel
or corridor around the target rate.
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purchases of various sizes would have on the equilibrium fed funds rate when carried out against

the background of different interest-on-reserves or Discount-Window rates.

Discussion Tables 1 and 2 show that if excess reserves are abundant, then iy is a powerful
tool for managing p but 7,1;’ is relatively ineffective, while the opposite is true if total reserves are
small relative to the aggregate reserve requirement. The experiments also show that if either 7
or ¢ is increased by x basis points in a balanced market, then p will increase by about one-half
of x. Table 3 shows that p will be very close to i (the floor of the corridor) if excess reserves
are abundant, that it lies almost exactly in the middle of the corridor if the market is balanced,
and that it tends to get closer to " (the corridor ceiling) as reserves become scarce. This table
also shows that if both iy and ¢*’ are increased by x basis points, then p will increase by exactly
x basis points.

In order to explain these findings and to show explicitly what are the key determinants of
the equilibrium distribution of fed funds rates negotiated between banks throughout the day,
consider the special case of the theory with K = {0, 1,2}. This case is simple because there can
only be mutually beneficial trade between a bank with ¢ = 2 and a bank with j7 = 0 balances, so
the loan size must equal 1 in every trade. Hence, from (12), there is a single bilateral interest
rate, 1 + p(7) = R(7), at each point in time. In this context it is natural to refer to a bank
with ¢ = 2 and a bank with j = 0 as the lender and borrower, respectively, and to let 6 € [0, 1]
be the bargaining power of the borrower. If we let the end-of-day parameters satisfy ko = 0,
E=1,A 5 =Aand z? < 27;’ < z’]l +z’§c (a condition on policy rates that is satisfied in our baseline
calibration), (13) reduces to

—e Ay —i)  ifk=0

Upg=3 e ™(1+i}) if k=1 (15)

A2+ +i%) itk =2
We can interpret a bank with & = 1 as being “on target” (holding the level of required reserves),
a bank with k£ = 2 as being “above target” (holding excess reserves), and a bank with £ = 0 as
being “below target” (unable to meet the reserve requirement). In this setting the quantity of
reserves in the market, @, equals n1 (T') + 2n2 (T'), so Q < 1 if and only if ny (T') < ngy (T), i.e.,
since the total amount of required reserves is k = 1, the consolidated banking system is short

of reserves if ny (T) < ng (T') and holds excess reserves otherwise. If we set uy = 0 (which is
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essentially true in our calibration) the equilibrium interest rate can be solved for explicitly:
p(r) = O (1)if +[1 - O ()]if, (16)

where

9[n2(T)7e—a["2(T)—no(T)](T—T)no(T)]e—af’[nz(T)—no(T)]‘r+[176—a9["2(T)—"0(T)]T]n2 (T)
n2(T)—efa[HQ(T)fn()(TﬂTnO(T) .

O(r) =

Notice that © (1) € [0, 1], with © (0) = 6, and 0O (1) /00 > 0 for all 7. It is possible to show
that if ny (T') < ng (T), then 0 < O (1) < 6 with ©’ (1) < 0, and conversely, if ng (T') < ng (T),
then § < ©(7) < 1 with ©'(7) > 0. Thus O (7) can be thought of as a borrower’s effective
bargaining power at time T'— 7, determined by the borrower’s fundamental bargaining power, 6,
as well as his ability to realize gains from trade in the time remaining until the end of the trading
session, which depends on the evolution of the endogenous distribution of balances across banks.
For example, if ng (T') < na (T), it is relatively difficult for banks with excess balances to find
potential borrowers, and © (7) is larger than 6 throughout the trading session. In this case the
lenders’ effective bargaining power, 1 — © (7), increases toward their fundamental bargaining
power, 1 — 6, as the trading session progresses, reflecting the fact that although borrowers face
a favorable distribution of potential trading partners throughout the session, their chances to
execute the desired trade diminish as the end of the session draws closer. In the special case
where the market is “balanced,” i.e., if ng (T') = na (T'), we have © (7) = 6 for all 7. According

o (16), the fed funds rate is a time-varying weighted average of the lender’s end-of-day return
on the second unit of balances, i?, and the borrower’s end-of-day reservation value for the first
unit of balances, z’}” The weight on the former at time 7' — 7 is © (1), i.e., the borrower’s
effective bargaining power at time 7" — 7. Notice that a 1 percent increase in the overnight
interest rate that the central bank pays on excess reserves, i?, causes a © (7) percent increase
in the fed funds rate at time T"— 7. A 1 percent increase in the overnight cost of a deficient
balance, i’;’, causes a 1 — © (1) percent increase in the fed funds rate at time 7' — 7. It is
possible to show that if ny (T") is very large relative to ng (T') (i.e., if Q/k is very large), then
© (1) is very close to 1 for most of the trading session, which explains why p is very close to
the floor of the corridor in the last column of Table 3 as well as why it moves basis point for
basis point with the floor of the corridor in the last column of Table 1. And clearly, if Q/k = 1
and 6 = 1/2, then p(7) = p = (1/2) (1} + 1}), consistent with the experiments reported in

the middle columns of Tables 1, 2 and 3). Since policy discussion is often organized around
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the competitive static model of Poole (1968), it is interesting to point out that the curves in
Figures 6 and 7 are reminiscent of those that would be traced out by the equilibrium points
resulting from progressively shifting the standard vertical supply of reserves in the popular

“Poole model” (see, e.g., Ennis and Keister, 2008 or Keister et al., 2008).

7 Conclusion

The model we have developed is strikingly simple: banks randomly contact other banks over
time and bargain the terms of the loans. Given the wide range of theoretical and quantitative
results that the model delivers, we regard its simplicity as a virtue. We recognize, however, that
there are several aspects of the real-world market for federal funds that our theory abstracts
from, and we think that this opens up several interesting avenues for future work.

Available estimates suggest that the bulk of fed funds trade is direct trade between banks.
But there is a segment of the market intermediated by specialized brokers that are not them-
selves commercial banks, so it would be interesting to incorporate them into the model.

The model is well suited to describe the last 2.5 hours of the typical trading session, when
unexpected payment shocks are rare. In order to model trade dynamics throughout the whole
day, the theory could be extended to allow for random payment shocks that induce exogenous
reallocations of reserves among banks. Also, we have focused on trade dynamics within a typical
day, but the theory could be extended to encompass a sequence of trading sessions like the one
we have modeled.

The baseline model has banks that only differ in their initial holdings of reserves. Our
perusal of available data suggests that it would be a fruitful task to extend the quantitative
work to allow for heterogeneity among banks in terms of their relative bargaining strengths,
the rates at which they can contact potential trading partners, and the payoffs from holding
reserve balances.

We have assumed random search, which may be a reasonable assumption for settings in
which banks are completely uninformed about potential counterparties’ balances before a con-
tact takes place. However, in reality some banks may have some information about which
counterparties are more likely to be long or short on any given day, so for some questions it
may be useful to extend the model to incorporate some degree of directedness in search.

We have abstracted from default risk. This may be an interesting feature to add, e.g.,

to study interbank markets during times of financial stress. Other natural extensions involve
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incorporating private information, e.g., regarding the reserve balances held by each bank or

about the likelihood that a counterparty may fail to repay at the stipulated time.
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A  Proofs
A.1 Value function

Let the function Ji (z,7) : Kx R x [0, 7] — R denote the maximum attainable payoff to a bank
that holds k € K units of reserve balances and whose net credit position is * € R when the
time until the end of the trading session is 7 € [0,T]. Let s = (k,z) € K x R denote the bank’s

individual state. Then,
min(7q4,7) A
Ji (z,7) =E / e Fupdz + L sme” T (U + e 2) (17)
0

+ H{Tagq—}e_m—a /Jk—bSS/(T—Ta) (ZE + Ryrs (T - Ta) y T — Ta) H (dsla T = Ta)} )

where E is an expectation operator over the exponentially distributed random time until the
next trading opportunity, 7,, and I, <y is an indicator function that equals 1 if 7, < 7 and 0
otherwise. For each time 7 € [0, 7] until the end of the trading session, p (-, 7) is a probability
measure (on the Borel o-field of the subsets of K x R) that describes the heterogeneity of poten-
tial trading partners over individual states, s’ = (k’,2’). The pair (bss' (T — 7o), Rers (T — Ta))
denotes the bilateral terms of trade between a bank with state s and a (randomly drawn) bank
with state s’, when the remaining time is 7 —7,. That is, bgs (7 — 7,) is the amount of balances
that the bank with state s lends to the bank with state s’, and Rgs (7 — 7,) is the amount of
balances that the latter commits to repay at time 7'+ A.

For all 7 € [0,T] and any (s,s’) with s,s" € K x R, we take (bsg (7), Rg's (7)) to be the
outcome corresponding to the symmetric Nash solution to a bargaining problem.?> Thus the

bargaining outcome, (bsg (7), Rgs (T)), is the pair (b, R) that solves

N

1
er (B e [Jr—s (x + R, 7) = Ji (2,7)]2 [Jprgp (2" = R,7) — Jir (2, 7)] 2

Below, in Lemma 2, we show that

Ji (2,7) = Vi, (1) + e T8 (18)

35This axiomatic Nash solution can also be obtained from a strategic bargaining game in which, upon contact,
Nature selects one of the banks with probability one-half to make a take-it-or-leave-it offer, which the other bank
must either accept or reject on the spot. It is easy to verify that the expected equilibrium outcome of this game
coincides with the solution to the Nash bargaining problem, subject to the obvious reinterpretation of Ry s (T)
as an ezpected repayment, which is inconsequential. See Appendix C in Lagos and Rocheteau (2009).
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satisfies (17), if and only if V4, (1) : Kx [0, T] — R satisfies (1) for all (k,7) € K x[0,T], with (2)
and (3). Note that in (2) and (3) we use (bgi (7), R (7)) (rather than (bss (7), Rers (7))) to
denote the bargaining outcome between a bank with individual state s € K xR and a bank with
individual state s’ € K x R, in order to stress that this outcome is independent of the banks’
net credit positions, x and z’. Before proving Lemma 2, we establish the following preliminary

result.

Lemma 1 For any (k, k') € K x K and any 7 € [0,T], consider the following problem:

10,

010
t |:Vk:’+b (T) — Vk:’ (T) — 67T(T+A)R} y (19)

_ —r(t+4A)
beI‘(g,llngeR [Vk—b (1) = Vi (1) +e R}

where Oy = 1 — Oy, € [0,1], and Vi (1) : K x [0, T] — R is bounded. The correspondence

(v
* ! N = _ *T(T‘f’A) kk
H* (kK ,7;V) = arg ber(gllngeR { [Vk,b (1) = Vi (1) +e R}

1—-6,./
[Vk’+b (7') - Vk’ (T) — G_T(T+A)R] w }
is nonempty. Moreover, (bgy (7), Rii (1)) € H* (k, k', 7; V) if and only if
brr (T) € arg berlp(%yé,) (Vier o (T) + Vieep (1) = Vi (1) — Vi (7)], and (20)

e T Rk (1) = Ot [Virsn ) (7) = Vi (7)] + (1= Opi) [Vie (7) = Vi) ()] - (21)

Proof of Lemma 1. Define

R = eT(TJrA) belrr‘l(%}i;') {ekk’ [Vk’—i-b (T) — Vi (7’)] + (1 — ekk’) [Vk (T) —Vi_p (7’)]} (22)
E — eT(T-i-A) belg%}cnk/) {ekk’ [Vk’+b (7‘) — Vk’ (T)] + (1 — Hkk./) [Vk (T) — Vk,b (T)]} 5 (23)
and consider
—r(r4A) p] O —r(rtA) ] L0k
max [Viy (r) = Vie () + € 7R (Vi () = Vi (7) = e 7HIR]T (21

(b,R)el (k,k')

where T (k, k') = {(b,R) €T (k,k') x [R,R]}. Since Vj (1) is bounded, —00 < R < R < 00, s0
(24) has at least one solution. Let (b*, R*) denote a solution to (24). If we ignore the constraints

R < R < R, then (b*, R*) must satisfy the following first-order condition:
e TR = O Vi (1) = Vie (7)) + (1= O [Vie (7) = Vi (7)) (25)
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But then (22) and (23) imply R < R* < R, and therefore (b*, R*) solves (24) if and only if it
solves (19). Suppose that (b*, R*) is a solution to (24) such that

o ¢ arg max | [Viess (1) + Vio (7) = Vie (7) = Vi (7)) (26)

Condition (25) implies
Vips (1) = Vi (1) + e TP RS = s (Vi (7) + Vi (1) = Vi (7) = Vi (7)]
Vie e (7) = Vi (7) = e TOFA R = (1= Oke) Vi e (7) + Vi (7) = Vi (7) = Vi (7)),
so the value of (24) achieved by (b*, R*) is
Ok (1= ) O (Vi (1) + Vi (1) = Vo (1) = Vi (7)) = €7,
But (26) implies that there exists b’ € T (k, k') such that
£ < 00 (1= ) " (Vi (7) + Vi (7) — Vie () — Vi (7))
Then since
R =e"™ ) {0 Vg (1) = Vie (1)] + (1= Opar) [Vie (7) = Viw (7)1} € [R, R]

it follows that (b, R’) achieves a higher value than (b*, R*), so (b*, R*) is not a solution to (24),
a contradiction. Hence, a solution (b*, R*) to (24), or equivalently to (19), must satisfy (25)
and

b* € arg max [Vigp (1) + Vi (1) — Vi (1) — Vi (7)] - (27)
bel (k')

To conclude, we show that any (b*, R*) that satisfies (25) and (27) is a solution to (19). To see
this, notice that for all (b, R) € I' (k, k') x R,

[Lk—b (1) = Vi (7) e (™ A)R} t [\/k, b (1) = Vi (1) efr(TJrA)R} Kk
jast T+A Ok il 1-0,,
- Rgfg [Vk b (1) = Vie () + o )R} [Vk’-i-b (1) = Vi (1) — € ( +A)R}

= Okt (1= Oae) ™" Vi, (7) + Vi (7) = Vi (7) = Vi (7)]

(P — / *
< O (1= Oe) e [V () + Viees (7) = Vie (1) = Vi (1) = €7 m

Lemma 2 The function Jy (x,T) given in (18) satisfies (17) if and only if Vi, (T) satisfies (1),
with (2) and (3).
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Proof of Lemma 2. Let B denote the space of bounded real-valued functions defined on
K x [0,T]. Let B’ denote the space of functions obtained by adding e (T2 g for some z € R,
to each element of B. That is,

B = {9 :S—=R|g(k,z,7) :w(k,7)+e_r(T+A)az for some w € B},

where S = K x R x [0,T]. Let s = (k,z) and s’ = (k’,2") denote two elements of K x R. For
any g € B' and any (s,8’,7) e K x R x S, let

H ) /7 ; = { k_ba Rv - ka 3 akk/
(5,8, 759) arg,  max Lo x+R,7)—g (k)

[g(K' +b,2' — R, 7) — g(K',2',7)] 1_9’“”} )

where O = 1 — O € [0,1] for any k, k' € K. Since g € B', H (s,s',7;:9) = H* (k, k', 7;w),
where

0,10
o (kK mw) = k—b,7)—w(k —rr+A) p| M
(kK75 w) argber(?ngeR{[w( ,7) —w(k,T) +e }

1-0,./
[w(k/ +b,7)—wk',T) — e_T(TJ’A)R} * }

for some w € B, as defined in Lemma 1. By Lemma 1, H* (k, k', 7;w) is nonempty, and
(b(k,K',7),R(K',k, 7)) € H* (k, k', 7;w) if and only if
b(k,K',7) € arg, III}(%)E) [wk +b,7)+w(k—0b7)—wk,7)—wk,1)] (28)
c K

and

e_T(T"'A)R(k:', k,T) = Ok {w [k:' + b(k, k‘/,T),T] — w(k’,T)}
+ (1= Op) {w(k,7) —w [k — bk, k', 7),7] } . (29)

The right side of (17) defines a mapping 7 on B’. That is, for any g € B’ and all (k,x,7) € S,
min(7a,7)
(Tg) (kyz,7)=E {/ e Pupdz + I oe” T (Ur + efTAa:)
0

+Lra<ie ™ /g [k: — bk, K7 —710), 2+ R(K kb, 7 —70), 7 — Ta] 1 (ds', T — Ta)

where b(k, k', 7) satisfies (28) and R(K', k,7) satisfies (29) (for the special case O = 1/2 for
all k, k' € K), for w € B defined by w (k,7) = g (k,z,7) — e ""t8)z for all (k,7) € K x [0, T].
Substitute g (k,z,7) = w (k, 7) + e "7tz on the right side of (Tg) (k,,7) to obtain

(Tg) (k,z,7) = (Mw) (k,7) + e 7T+, (30)
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where M is a mapping on B defined by
(Mw) (k,7) =E [/Omin(% ) e Fupdz + iz sye” U
+ Lro<ye ™ /w [k —b(k, k', 7 —70),7 — Ta] 1 (ds', 7 — 70)
+ I <rye” ™ /e_r(T"’A_T“)R(k:/, kT —Ta)lt (ds/, T— Ta) , (31)

for all (k,7) € K x [0,T]. Since the right side of (31) is independent of the net credit position
x, after recognizing that p ({(¥',z) e Kx R: k' =k}, 7) = ni (), (31) can be written as

min(7a,7)
(Mw) (k,7) =E [/ e Fupdz +Iip s ye” Uy
0

+E |:]I{7-a§7.}€r7-‘x Z Ny (T — Ta) w [k — b(k, k/, T — Ta), T — Ta]
k'eK

+Lpacrye ™Y (7 — 7o) e TTTATIRME Ky — TQ)} , (32)

k'eK
for all (k,7) € Kx[0,T]. From (32), it is clear that M is the mapping defined by the right side of
(1). Since w € B, and (b(k,k',7), R(K', k, 7)) satisfy (28) and (29), it follows that M : B — B,
and together with (30), this implies 7 : B’ — B’. Notice that ¢* = w* + e "8z € B’ is a
fixed point of 7 if and only if w* € B is a fixed point of M. In the statement of the lemma
and in the body of the paper, the fixed points ¢* (k,z,7) and w* (k,7) are denoted Jj (x,7)

and Vj (7), respectively. m

A.2 Proposition 1

Proof of Proposition 1. Start with the mapping (32), and notice that after writing out the

expectation explicitly and performing a change of variable, it becomes

(Mw) (k, ) = vy, (T)+a/ Z ng (2) {w [k —b(k, K, 2), 2] + e TR R(K  E, z)} e~ (rte)r=2)g,
0 pek

for all (k,7) € K x [0,T], where

v (1) = E ,

min(74,7)
/ e Fugdz + 1 srye” U
0

which can be integrated to obtain

Uk ey, (33)

vg (1) = [1 - e*(”“)ﬂ o
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Since b(k, k', 7) and R(K, k,T) satisfy (28) and (29), the previous expression for the mapping

M can be written as
(Muw) (k,7) = v (7) + « /0 " (k,z) e (r+)r=2)gq
/ [Z ng (2) O {w [k + b(k, K, 2), 2] + w [k — b(k, K, 2), 2]
k'eK
—w(k', 2) —w(k, z)}} e~ r+a)r=2) g,
In turn, since
w [k +b(k, K, 2), 2] +w [k = bk, K, 2), 2] —w(k,2) —w(k,z)

- K+ b k—b,z) —w(k2) —wlk
berg(%)[w( +0,2) +w(k —b,z) —w(k', z) — w(k, 2)]

=  max w(j, z) +w(i,z) —w(k, z) —wlk,2)|,
e [ 2) (i, 2) = w(k, 2) — (k. 2)]

we have

(Muw) (k,7) = v (1) + a/ w (k,z) e” T2
0

+ o ' Ny’ O max w(t,z) +w(j,z) —w k‘,Z —w I{I/,Z 6—(7‘-%-04)(T—z)dz7
|3 e @0 ma (i, 2) + 0. 2) =k 2) = (i, )]

for all (k,7) € K x [0, T]. With relabeling, this mapping can be rewritten as

(M) (i7) =i () o [ wlis)e s 0
+a/ ZEZRJ 055055 (2) [w(k, z) + w(s, z) — w(i, z) — w(j, 2)] e~ (rte)(T=2) g,
JjeK keK seK

for all (i,7) € K x [0,T], with
ks >0 if (k,s) € Q5w 2)]
o35 (2) { =0 if (k,s) ¢ Qjw(-2)],

for all i,7,k,s € K and all z € [0,T], where > > gbf]‘? (2) =1, and
keK s€K

Qi lw (-, z)] = ar max w(k',2) +w(s', z) —w(i,z) —w(j,2)].
Joea] Zag | max [0,2) +w(s2) = w(i.2) — w(,2)
From (34) (with O = 1/2), it is clear that V' = MV can be written as

Vi(r) = v (7 )—i—a/ Vi (2) e~ r)(r=2) g

/ DD 0 (2) ¢85 (2) Vi(2) + Val(z) = Vi(z) = Vi(2)] e CFOT2)dz, - (35)

JEK k€K seK
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for all (i,7) € K x [0,7]. Notice that (35) implies (7). Differentiate both sides of (35) with

respect to 7, and rearrange terms to obtain

Vi (7)+1Vi (1) = 0 (1) +(r + @) v ( ZZZW ) [Vi(T) + Vi(r) = Vi(r) = V;(7)],

]GIK keK seK

which together with the fact that 0; (7) = u; — (r + ) v; (7) implies (6). m

A.3 Proposition 2

The following lemma establishes the equivalence between property (DMC) and discrete mid-

point concavity.

Lemma 3 Let g be a real-valued function on K. Then g satisfies

g ([52]) +9(|%]) 29 +a(9) (36)

foranyi,j € K and all (k,s) € 11 (3, j), if and only if it satisfies the discrete midpoint concavity

g ([52]) +9 (%)) 29 +90) (37)

property,

for alli,j € K.

Proof of Lemma 3. Suppose that g satisfies (36). Since the condition holds for all (k,s) €
I1(4,7), and we know that (i,j) € II(7,j), it holds for the special case (k,s) = (i,7), so ¢
satisfies (37). To show the converse, notice that since (37) holds for all i, € K, it also holds
for all 7,5 € K such that (i, j) € II (k, s) for any k, s € K. But for any such (4, j), we know that
i+j=k+s,so (37) implies

g (152D +9 (1%

for any k,s € K and all (i, ) € II (k, s), which is the same as (36) up to a relabeling. m

=) > g (i) + 9 (j)

The following two lemmas are used in the proof of Proposition 2.

Lemma 4 For any given path n (1), there exists a unique w* € B that satisfies w* = Mw*,
and a unique g* € B’ that satisfies g* = Tg*, defined by g* (k,z,7) = w* (k,7) + e "2z for
all (k,x,7) €8S.
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Proof of Lemma 4. Write the mapping M defined in the proof of Proposition 1 (with
Hkk’ = 1/2), as

(Mw) (Z) 7—) = U; (T) + Oé/ w (27 Z) e*(TJrCM)(sz)dZ
0

« T
+ - ni(z2) max [w(k,z)+w(s,z) —w(i,z) —w(j,z)] e TtOT=2) g,
) o) o otk 2) ) =i 2) = ()

for all (i,7) € K x [0,T]. For any w,w’ € B, define the metric D : B x B — R, by
D (w,w') = sup {e_ﬂT ‘w (i,7) —w' (4, 7')” ,

(¢,7)€Kx%[0,T]
where 3 € R satisfies

max {0,200 — 1} < f < 0. (38)
For the case with 5 = 0, D reduces to the standard sup metric, do. The metric space (B, dx)
is complete, and since (B, D) and (B,d) are strongly equivalent, it follows that (B, D) is
also a complete metric space (see Ok, 2007, pp. 136 and 167). For any w,w’ € B, and any
(i,7) e K x [0,T],

eI | (Mw) (i, 7) — (Mw') (i, 7)| =

+ g/o an (Z)( max [w(k,z) +w(s,z) —w(i,z) —w (], 2)] o= (ra)(r=2) g,

cK k,s)€ll(i,j)
N % 0 Z nj (Z) (k,sgré%}%%]) [w/ (k’ Z) + ’LU, (Sa Z) - UJ/ (Z, Z) - 'UJ/ (], Z)] 6_(7'4‘0&)(7'—2)(12

e—(r+a)(7—z) dz

max |w(k,z)+w(s,z) —w(i,z)—w(j,z
o (k,2) 4w (5,2) ~ w0 (5,2) — w (. 2)

— max [w (k,2)+w (s,2) —w (5,2) —w (§,2)][e CTH2) g,
[ (k2) 0! (2) = 1,2) = ' G,2)]

Use (kj; (2), s7; (2)) to denote a solution to the maximization on the right side of Mw, that is,
kﬁ(' ) p € k) ) - .7 - '7 .
(ki ()55 () €, mae [w(ky2) +w(s,2) — (i 2) = w(i.2)

A solution exists because w € B, and II (7, j) is a finite set for all (¢,5) € K x K. Then
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+e

+;‘/07an (z){e—ﬁz

jekK

w (kz*j (2),2) — ' (k::} (2),2)

w (sfj (2),2) —w' (sfj (2),2)

+€—ﬂz w' (1:,2’) —Uj(i,Z) +€_BZ w' (j,Z) —’(U(j,Z)

} (ot B)(r—2) g,

3a
9% g et )T /
Sr—i—a—l—ﬁ[l e }D(w,w)
3o ,
S rragal 0v):

Since this last inequality holds for all (i,7) € Kx [0,T], and w and w’ are arbitrary,

/ 3a / /
D (./\/lw,./\/lw ) < mD (w,w ) , for all w,w € B. (39)

Notice that (38) implies +3aa+ 5 € (0,1), so M is a contraction mapping on the complete metric

space (B, D). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,
1989), for any given path n (7), there exists a unique w* € B that satisfies w* = Mw*, and
therefore, by (30), there exists a unique g* € B’ that satisfies g* = T¢*, and it is defined by
g* (k,z,7) = w* (k,7) + e "Tt2) g for all (k,z,7) €S. m

Lemma 5 Leti,j,q € K, and (k,s) € I1(1,7).
(i) If either i+ j or s+ q is even, then

() ) en(]o) om (2] ) em(2].0)
(1) Ifi+j and s+ q are odd, then

(5] T541) en (o) and (5] 1540) (] )
Proof of Lemma 5. Notice that for any i, j,q € K,

M, ={(+j—yy) eKxK:ye{0,1,...,i+j}},

50
([%]+a-vy) erxriye{or,...,[%]+q}}
(%] +a-vy) exxkiye{on,....[H]+a}}. @)
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For any i, j,q € K, define

m(i,5.a) = { (| 452] [5Y) e KxK: (kys) € TG5) |
6,5, 0) = {(|%54] . [559]) €K xK: (k) € (i) }
and recall that (k,s) € 11 (4,7) implies k + s =i + .

(i) Assume that either i 4+ j or s + ¢ is even. We first show that given any i, j,q € K, (k, s) €
I1 (7, j) implies ([%1 , L%J) ell q%—‘ ,q). Notice that if either i + j or s+ ¢ is even, then

-4
With (42),
G, g.0) = { ([52]. [5] +a— [552]) €K x K (hitj— k) €116,5)}
~{( [ ] ra-v) exxmey e {11 2] [255
=11 (%] .q). (43)
By construction, given any i, j,q € K, (P’”ﬂ ) ] G 5 —‘ q) for all (k,s) € I1(4, 7).
Since 0 < [4], and {ﬁ ﬂw < [ﬂ—‘ + ¢, it follows from (4 ) and (43) that II° ([ W,q) C
I ({%—‘ ,q) for all i,7,q € K, which implies Um—‘ ) ell ({ w ) for all (k,s) €

I1(4,7), and any i, j,q € K.
Next, we show that given any ¢,j,q € K, (k,s) € II(i,5) implies (L%J ) [HT(]D IS
11 (L%J ,q). Notice that if either ¢ + j or s + ¢ is even, then

-

0], |52 ]+ | 50]) e Rx K (it j— k) €T1(0, ) }
[ ]1ma) ko (1,12 [)
(5]) B
By construction, given any i, j,q € K, (L%J , {%q]) e I1¢ (L%J ,q) for all (k,s) € 11 (4,7

)
Since 0 < L%J, and LW%J < [%J + g, it follows from (41) and (45) that I1¢ ([%J ,q) C
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1 (|52] ) for all i,j.q € K, which implies (| 55¢], [23]) € T (| 552 ] ,q) for all (k,s) €
I1(i,7), and any i, j,q € K.

(7i) Suppose that i+j and s+q are odd. We first show that given any ¢, j,q € K, (k, s) € II (4, j)
implies Q%J , {%]) ell ({#—‘ ,q). Notice that if ¢ + j and s + ¢ are odd, then

e[ =[5 @
With (46),
H(i,jq):{([%-‘—i—q—[%] [ DEKXK:(I{: s)EH(z])}
“{([5 ] ra-wy) exxmye {1l [52]..... [ }]
=11 (| %] .q). (47)
By construction, given any i, j,q € K, (VHJ ) q 2]—‘ ) for all (k,s) € 1 (4, 7).
Since 0 < [4], and {‘H ﬂ—‘ < {ﬂ—‘ + ¢, it follows from (40) and (47) that II° ({ W,q) -

) and
H({#—‘ ,q) for all i,7,q € K, which implies (L@J ,[252] ) € H({ w ) for all (k,s) €
I1(i,7), and any i, j,q € K.
Finally, we show that given any i,j,q € K, (k,s) € II(i,7) implies U%-‘ ; LHTqJ) €

1I (L%J ,q). Notice that if i + j and s 4 g are odd, then

-

With (48),

ﬁqi%ﬂ)erK%h@GH@ﬁ}

+ 1%
] +q—y,y)€KXKiy€{L%J’L%J """ {%J}}

By construction, given any 1, 7, q € K, q%-‘ ) LSJ“TQD e I° (L%J ,q) for all (k,s) € 11 (3, 7).
Since 0 < |4], and L%J < L%J + ¢, it follows from (41) and (49) that II° (L J ,q) C
S

QHTJJ ,q) for all 4,7,q € K, which implies U%-‘ ) LSJ“TQD eIl Q%J ,q) for all (k,s)
I1(i,7), and any 4,j,q € K. m
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Proof of Proposition 2. Consider the metric space (B, D) used in the proof of Lemma 4. A
function w € B satisfies the bilateral-trade asset-holding Equalization Property (EP) if for all
(i,j,7) e Kx K x [0,T],

o (k7)o (1) = w (i 7) — w (1)
:UJ(’V#—‘7T>+w([%J,T>—w(iﬂ-)_w(jﬂ_). (EP)

A function w € B satisfies the bilateral-trade asset-holding Strict Equalization Property (SEP)
if for all (i,7,7) € Kx K x [0, 7],

ar max [w(k,7)+w(s,7) —w (i,7) —w (j,7)] = N, SEP
B, [ (k) w0 (5,7) = w(i,7) — w (7)) = (sEP)

where €27, is defined in (11). Let

B" = {w € B : w satisfies (EP)}
B" = {w € B : w satisfies (SEP)}.

Clearly, B” C B” C B.

We first establish that B” is a closed subset of B. Let {wy} -, be a sequence of functions
in B”, with lim,, oo w, = w. If w ¢ B”, then there exists some (k,s) € I1(4,j) and ¢ € R such
that

0<c=w(k,7)+w(s,T)— [w({%} f) “T’(L%J 7)} ’

for some (i,7,7) € K x Kx [0, T]. This implies

) )= [52].) o (2]
—{w (k,7) +w (s,7) — [wy, (k,7) + wy, (s,7)]}

v ([ )+ o ([ r) = fon ([%] )+ ([5)7))
For this particular (7,4, 7) € K x Kx [0, 7], for all n large enough we can ensure that
@ (k7)1 (5,7) = [wa (k,7) + wa (5, 7)]| <

and

40



but then
0<¢/2 <wy(k,7)+wy(s,T)— |:wn G%—‘ ,7') + wn ({#J 77'” )
which contradicts the fact that w, € B”. Thus, we conclude that w € B”, so B” is closed.
The second step is to show that the mapping M defined in (31) preserves property (EP),
i.e., that M (B”) C B”. That is, we wish to show that for any w € B”, w’' = Mw € B”, or
equivalently, that
w U%-‘ ,7'> < HJJ ) >w(k,7)+w(s,7) for all (k,s)elIl(i,j),

for any (i,j,7) € K x K x [0, 7], implies that
w'([Tﬂ, ) Q%J, )—w’(k‘,T)—w'(s,T)ZOfor all (k,s) eIl(i,7), (50)
for any (i,7,7) € K x K x [0,T]. Since w € B”, using (34) (with 0 = 1/2 for all k, k" € K),

(Mw) (i,7) = v; (1 )+a/7w(¢ z) e (rHa)(T=2)q,

/ an w <[l+—q—‘ ,z) +w (LHT(]J ,z> —w(i,2) —w(q,z) e (rta)(r=2)q,
for all (i,7) € K x [O,T]. For any (i,j,7) € KxKx[0,7] and (k, s) € 1L (4,7), let G (i,7,k,s,T)
denote the left side of inequality (50). Then,

G(i,j,k,s,7) = Ulita] (1) + V| it | (1) — vg (1) — vs (1)

+ a/OT [w ([%—‘ ,Z> +w (LZ;JJ ,z) —w(k,2) —w(s, z)} o (rra)(T=2) 1,

SI
m‘-‘r
) <
| I
+
=}
.
vN
v
+
S
/

%—‘ ,z) +w Q%J ,z) —w(k,z) —wl(q, z)} e~ rte)r=2)g,

qeK
_ % / S g (2) [w ([559],2) +w ([ 252] ,2) — w(s,2) —w(g,2)] e FI2)gz,
0 qeK



With (33) and after deleting redundant terms, this expression can be rearranged to yield
1 — e~ (rto)T
G (i, j, k,s,7) = —ra (u(z%q +UL%J —up — us>
e Uiy + U = U = U]

+ g/OT [w ([1?1 ’Z) +w L%J ,z) —w(k,z) —w (5’2)} o () (7=2) g,

5 2| +w 5 , 2 e rte)(r=2)gq,

What needs to be shown is that w € B” implies that for any (i,5,7) € K x K x [0,T],

G (i,j,k,s,7) > 0 for all (k,s) € I1(4,5). The fact that w € B” immediately implies that

the first integral in the last expression is nonnegative. By Lemma 5, w € B” also implies that

the second integral in the last expression is nonnegative. Together with Assumption A, these
observations imply
1 — o—(rta)r

< — (u[

T+«
S G(i,j,k,S,T),

i+j‘| + ULWTJJ — U — u5> + e~ (rte)r |:U|'i+j'| + UL%J - U — Us] (51)

2 2

so we conclude that M (B") C B"” C B”.

The third step is to show that (10) is the equilibrium distribution of trading probabilities.
From Lemma 4, we know that M is a contraction mapping on the complete metric space (B, D),
so it has a unique fixed point w* (k,7) = Vi (7) € B. In addition, we have now established
that B” is a closed subset of B, and that M (B”) C B"” C B”. Therefore, by Corollary 1
in Stokey and Lucas (1989, p. 52), we conclude that Vj (1) € B”’. This implies that the set
Q4 [V (7)] defined in (9) reduces to 2}; for all (4,7, 7) € K x K x [0,77, and consequently, that
(8) reduces to (10) for all (4,4, 7) € K x K x [0,7]. This establishes part (ii) in the statement
of the proposition.

We can now show that the paths n(7) and V (7) are uniquely determined. Since (by

Lemma 4) the fixed point Vj (7) € B” is unique given any path for the distribution of reserve
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balances, n (), all that has to be shown is that given the initial condition {ng (7')},cx, and
given that the path ¢ (7) satisfies (10), the system of first-order ordinary differential equations,
n(t) = f[n(r),¢(7)], has a unique solution. But since f is continuously differentiable,
this follows from Propositions 6.3 and 7.6 in Amann (1990). This establishes part (i) in the

statement of the proposition. m

Corollary 1 Assume that {Uy}, i satisfies the discrete midpoint concavity property and {ug}cx
satisfies the discrete midpoint strict concavity property. An equilibrium exists, and the equilib-
rium paths for the distribution of reserve balances, n (1), and mazimum attainable payoffs,
V (1), are uniquely determined and identical to those in Proposition 2. The equilibrium distri-

bution of trading probabilities is

oo [ FE) i (k) 95 (7)
”’ (”‘{0 if (k.s) & ) () (52

for all i,j,k,s € K and 7 € [0,T], with g;)f]s (r) > 0 and > (;;f]s (1) = 1, and where
(,5)€Q55(7)

. % . * _ O 0
with Q; given by (11) for all T € (0,71, and 7; (0) = QF; U Q;;, where

0 () = 0

157

Q?j = {(k,S) eIl (i,j): Up + Us =U[1+q +ULi+J‘J}-

2 2

Proof of Corollary 1. The proof proceeds exactly as the proof of Proposition 2 up to (51).
Notice that under Assumption A, (51) holds for all 7 € [0,T]. Instead, under the assumption
that {Uy},cx satisfies discrete midpoint concavity and {uy,}, o satisfies discrete midpoint strict
concavity, the inequality in (51) holds as a strict inequality for all 7 € (0, 7], but only as a weak
inequality for 7 = 0. As before, the unique fixed point Vi (1) € B”, but now V} (1) ¢ B", since
Vi (1) satisfies (SEP) for all (i, ,7) € KxKx (0, 7], rather than for all (i, j,7) € KxKx [0, T].
However, it is clear from (51) that in this case MV (1) = Vi (1) € B{/, where B{ is the
subset of elements of B that satisfy (SEP) for all (¢,7,7) € K x K x (0,7]. This implies that
the set ;5 [V (7)] defined in (9) now reduces to the set 2, (7) defined in the statement of the
corollary for all 7 € [0, 7], and consequently, that (8) reduces to (52) for all 7 € [0,T]. Notice
that despite the potential multiplicity of optimal post-trade portfolios in bilateral meetings at
7 =0 (which is the only difference between this case and the one treated in Proposition 2), as
can be seen from (34) and (52), the mapping M is unaffected by this multiplicity, and hence

so is its fixed point. Therefore, (by Lemma 2) the fixed point V} (7) € By’ is unique given any
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path for n (7). Finally, if we cast (4) in integral equation form,

T
@ =@ =a [ ST w@) @6 —n ek ]z )
T 4ieK jeK seK
for all k € K, then it becomes clear that for all £ € K and all 7 € [0, 7], ng (7) is independent
of gbf’]s (0) (changing the integral at a single point leaves the right side of (53) unaffected).
Therefore, by the same arguments used in the final step of the proof of Proposition 2, there
exists a unique n (7) that solves the system (53), and it is the same solution that obtains under

Assumption A. m

A.4 End-of-day payoffs

The specification of end-of-day payoffs, (13), contemplates the fact that at the end of the trading
day banks have the option to borrow from the Federal Reserve discount window. The following

lemma characterizes the solution to this end-of-day problem.

Lemma 6 Assume z? < z? < . Consider a bank with end-of-day balance k that has the
option to borrow from the discount window right after the end of the trading session, and let

k™ denote the bank’s balance after having borrowed from the window.

(i) Ifk<k—ko, then k¥ =k — ko and the bank’s mazimum terminal payoff is given by (13)
with Fk = Z‘?ZZ-FZ? (k - /;30 - /;Z)

(i) If0<k—ko <k, then

=k if i < i+
kY e%i%ﬂﬂK if i =%+ (54)
=k —ko if i + i <Y,

and the bank’s maximum terminal payoff is given by (13) with

ik — %k — (k — ko)] if % < i + i
Fp=< 10 L0 N S A A 55
F {Z?%—k@—ﬁ“ﬁ%k—%” if i 4 i < Y. (55)

(iii) Ifk—ko <0, then

I
e

if iy < i+
0,k NK if iff =i + 1} (56)
if i+ < i

kv €

—

Il
o
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and the bank’s mazimum terminal payoff is given by (13) with

F, = { Z{Ukk_ ié[k - (k]{ ko)l if i< lfi iy (57)

i (k — ko) — % if i+ <Y

Proof of Lemma 6. Notice that Fj can be written more compactly as
F, = max {27} max [O, min (k:“’, 12:)] + % max (k:“’ —k, 0) (58)

k—ko<kw
— % max [min(k — £, k), 0] — i$ max (=k",0) —i¥ [k — (k — ko)] } .

A bank that ends the trading session with balance k chooses k" by solving (58).
(i) Given k < k — ko, (58) reduces to

Fp= max {(i% — i)k +i¥(k — ko) + (i5 —i¥)k"}.
k—ko<kw

The assumption z? < z? implies the solution is k* = k—ko, and substituting it into the objective
function yields Fj = i}/% + ’L;i (k — ko — /5).
(ii) Given 0 < k — ko < k and part (i), (58) reduces to

Fi= mex {i%(k — ko) — ik + (1% + i} — i%)k"}

which implies that the solution is given by (54), and substituting this solution into the objective
function yields (55).
(iii) Given k — ko < 0 and part (i), (58) becomes

Fy, =i (k — ko) + max {z} max (0, k") — i max [min(k — k", k),0] — i max (—k",0) — ij‘c]k:w}
k—ko<kw<k

=i%(k — ko) — i%k + max max (15 —i¥)kY, max (15 + 1% —i¥)kY
j (k= ko) — 4% {k_ko<kw<0(f FIRY, max (i + ;= i) }
= if (k= ko) — ik + max (if +if — i)k,

where the last equality follows from 21;’ < z?p Thus the solution is given by (56), and this yields

the value given in (57). m

Corollary 2 Assume z? < z}“ < z? and 21; < z? + z} Then

oo k=R k45 (k—Fo—F)]  ifE<k—F
ET ek — ko + ik — ik — (k= Ko)l} ifk—ko <F.
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B Efficiency

In this section we use our theory to characterize the optimal process of reallocation of reserve
balances in the fed funds market. The spirit of the exercise is to take as given the market
structure, including the contact rate o and the regulatory variables {ug, Ui} e, and to ask
whether decentralized trade in the over-the-counter market structure reallocates reserve bal-
ances efficiently, given these institutions. To this end, we study the problem of a social planner

who solves

T
max [/ Z my, () uge "tdt + e Z my, (T) Uy,

X®lizo |0 jex k€K
st g () = —f[m (1), x (t)], (59)
X7 (t) € 10,1], with X7 (t) = 0if (k,s) ¢ IL(4,5),
XiF (@) =X (1), and Yy X () =1,

keK seK

forallt € [0, 7], and all 7, j, k, s € K. We have formulated the planner’s problem in chronological
time, so my, () denotes the measure of banks with balance k at time ¢. Since 7 =T — ¢, we
have my, (t) = my (T — 7) = ny (1), and therefore ry, (t) = —ng (7). Hence the flow constraint
is the real-time law of motion for the distribution of balances implied by the bilateral stochastic
trading process. The control variable, x (t) = {Xff (t)}i,jk,sek, represents the planner’s choice
of reallocation of balances between any pair of banks that have contacted each other at time
t. The first, second, and fourth constraints on x (¢) ensure that {ijs (t) }k,sek is a probability
distribution for each i, j € K, and that the planner only chooses among feasible reallocations of
balances between a pair of banks. We look for a solution that does not depend on the identities
or “names” of banks, so the third constraint on x (¢) recognizes the fact that ijs (t) and X;f (t)
represent the same decision for the planner. That is, ijs (t) and xjf (t) both represent the
probability that a pair of banks with balances ¢ and j who contact each other at time ¢ exit the

meeting with balances k£ and s, respectively.

Proposition 3 A solution to the planner’s problem is a path for the distribution of balances,
n (7), a path for the vector of co-states associated with the law of motion for the distribution of

balances, A (1) = { A\ (T)} e, and a path for the distribution of trading probabilities, v (1) =
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{wfjs (7)}ijksex. The necessary conditions for optimality are

PAi () AN (P = ad D) Tn () () e (7) + Al (7) = X (7) = A ()]

€K keK seK

for all (i,7) € K x [0, T], with
Xi(0)=U; forallieK,
with the path for n (1) given by n (1) = fn (1), (7)], and with

¢Z[cjs (7_) _ { Q;Zs (T) if (k7 8) S Qij [)‘ (T)]

0 if (kys) & Qi [A(T)],
foralli,j,k,s € K and all T € [0,T], where &Z (1) >0and > > w’“( ) =
keK sek

Proof of Proposition 3. The planner’s current-value Hamiltonian can be written as

L= " mpOue+aY > > > mi () my () x5 (&) [ () — i (1)],

keK 1€K jeK k€K seK

(60)

(62)

where p (t) = {u (t)},ex is the vector of co-states associated with the law of motion for the

distribution of banks across reserve balances. In an optimum, the co-states and the controls

must satisfy % =ru; (t) — f; (t), and

=1 if — 9oL >0
ks
X5 O |k =xba
ks 1] if -2L =0
xF ) { € [0,1] 1 5Fs
1] Xij (t) XJZ (t) X” (t)
0 if 9L <0.
dXij ( ) X;f(t):)(?;(t)

Notice that

oL

o (1) = am; (t) my (t) [k (1) + ps (8) — i (8) — 5 (D]

XEF()=x]7 (1)

and that given Xjf (t) = Xff (1),

——ul+a222m] ng (t)+,us(t)*/‘i(t)7:uj(t)]'

JjeEK keK seK
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Thus the necessary conditions for optimality are

Nks .
ks Xip (t) if (K, s) € Qij [p (t)]
ks 3y = ¢ X () 63
wo-{37 5k zakh, (63
for all 7,7,k,s € K and all ¢t € [0,T], where )fo (t) > 0and > > )fo (t) = 1, the Euler

keK seK
equations,

v () = i (8) = i+ Y > > g () x5 () [k (8) + pas (8) = i (t) = g (1)) (64)

JEK keK seK

for all 7 € K, with the path for m (t) given by (59), and
4 (T)=U;  for alli € K. (65)

In summary, the necessary conditions are (59), (63), (64), and (65). Next, we use the fact
that 7 = T — t to define my (t) = mp (T —7) = ny (1), Xff (t) = X%"’ (T—-71) = Q/ijs (1),
and p; (t) = p; (T —7) = X (7). With these new variables, (64) leads to (60), (59) leads to
n (1) = fn(r),v(7)], (65) leads to (61), and (63) leads to (62). m

The following result provides a full characterization of the solution to the planner’s problem

under Assumption A.
Proposition 4 Let the payoff functions satisfy Assumption A. Then:

(2) The optimal path for the distribution of trading probabilities, 1 (1) = {Q/ijs (T) }ijk,seks 18

given by
~kS - *
ks _ | i (T) i (kys) €
so={07" Tk ol o
s 1ks 1ks —
for alli,j,k,s € K and all 7 € [0,T], where ;7 (1) >0 and > ;7 (1) = 1.

(k,5)€Q;
(¢t) Along the optimal path, the shadow value of a bank with i reserve balances is given by
(60) and (61), with the path for ¥ (t) given by (66), and the path for n (1) given by
n(r)=f[n(r),¥ ()

Notice the similarity between the equilibrium conditions and the planner’s optimality con-
ditions. First, from (8) and (62), we see that the equilibrium loan sizes are privately efficient.

That is, given the value function V', the equilibrium distribution of trading probabilities is the
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one that would be chosen by the planner. Second, the path for the equilibrium values, V' (1),
satisfies (6) and (7), while the path for the planner’s shadow prices satisfies (60) and (61).
These pairs of conditions would be identical were it not for the fact that the planner imputes
to each agent gains from trade with frequency 2q, rather «, which is the frequency with which
the agent generates gains from trade for himself in the equilibrium. This reflects a composition
externality typical of random matching environments. The planner’s calculation of the value
of a marginal agent in state ¢ includes not only the expected gains from trade to this agent,
but also the expected gains from trade that having this marginal agent in state ¢ generates for
all other agents by increasing their contact rates with agents in state . In the equilibrium, the
individual agent in state i internalizes the former, but not the latter.?6

Under Assumption A, however, condition (10) is identical to (66), so the equilibrium paths
for the distribution of balances and trading probabilities coincide with the optimal paths. This

observation is summarized in the following proposition.

Proposition 5 Let the payoff functions satisfy Assumption A. Then, the equilibrium supports

an efficient allocation of reserve balances.

Proof of Proposition 4. The function XA = [A(7)], o 7y satisfies (60) and (61) if and only if

it satisfies
i (T) =i (1) + a/ \i (z) e~ ) (T=2) g
0

o [0S Sy ) () D )+ A (2) = () =y ()

jEK keK seK

The right side of this functional equation defines a mapping P : B — B; that is, for any w € B,
T
(Pw) (i,7) = v; (1) + a/ w (i, 2) e~ rHIT=2) g
0

" a/oT SN S i ()l () fw (ke 2) +w (5,2) = w (i, 2) —w (G, 2)] e THOT gz,

jeEK keK seK

36In a labor market context, a similar composition externality arises in the competitive matching equilibrium
of Kiyotaki and Lagos (2007).
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for all (i,7) € K x [0,T]. Hence a function A satisfies (60) and (61) if and only if it satisfies
A = PA. Rewrite the mapping P as

(Pw) (i,7) =v; (T) + /OT w (i, z) e THIT=2) g, (67)

/ Z n; (z max [w(k,2) +w(s,z) —w(i,z) —w(j,2)] e THOT=2)qz,

(k,s)€lL(
oK ,s)€Il(4,5)

and for any w,w’ € B, define the metric D* : B x B — R by
D* (w,w') = sup [e_”” }w (i,7) —w' (Z,T)H ,
(4,7)€Kx[0,T]
where k € R satisfies

max{0,5a — 1} < K < 0. (68)

The metric space (B, D*) is complete (by the same argument used to argue that (B, D) is
complete, in the proof of Lemma 4). For any w,w’ € B, and any (i,7) € K x [0,T], the same
steps that led to (39) now lead to

Sa

D* (Pw, Puw') < — 22
r+a+kK

D* (w,w') , forall w,v’ € B.

Notice that (68) implies

- +a s € (0,1), so P is a contraction mapping on the complete metric

space (B,D*). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,
1989), for any given path n (7), there exists a unique A € B that satisfies A = PA.

Consider the sets B” and B"’ defined in the proof of Proposition 2. By following the same
steps as in the first part of that proof, it can be shown that B” is closed under D*. Next we
show that the mapping P defined in (67) preserves property (EP), i.e., that P (B") C B”.
That is, we wish to show that for any w € B”, w’ = Pw € B”, or equivalently, that

w ({%W ) tw ([”JJ ,T) > w (k,7) +w (s,7) for all (k,s) € (4,5),
for any (i, j,7) € K x K x [0, 7], implies that
w' ([%} : ) o (Vﬂj ,T) —w (k1) —w (s,7) > 0 for all (k,s)€Il(i,5),  (69)
for any (i,7,7) € K x K x [0, T]. Since w € B,

(Pw) (i,7) = v; (1) + a/ w (i, 2) e rHE=2) g
0

/ Song () [w ([52]2) +w (| 52] %) = w(i2) — w(g,2)] e+,

qgekK
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for any (i,7) € Kx[0,T]. For any (¢,j,7) € KxKx[0,T] and (k, s) € I1(i,5), let G’ (i, 4, k, s, 7)
denote the left side of inequality (69). Then,

G (i,j,k,s,7) =

1— 6—(r+a)7-
T+« ( f

—l—oz/OTan(z) w(“zij 2w ngﬂ V2
geK
~w([4].2) w (L2 2
([42]2)
MCISETEE
+w( VJQF]QJH 2| Fw VZ;:JH , 2 e (rte)(r=2)gq,

What needs to be shown is that w € B” implies that for any (i,7,7) € K x K x [0,T],
G (i,j,k,s,7) > 0 for all (k,s) € I1(i,5). By Lemma 5, w € B” implies that the integral
in the last expression is nonnegative. Together with Assumption A, this implies
1— e—(r—i—a)r
o< —— (U(%‘I + ULiJer — U — us> + 67(T+Q)T |:U|'i+j" + ULiJer — U, —Us

r+ o 2 2 2
S G,(i’j’k?s’T)?

so M (B")C B" C B”.

At this point, we have shown that P is a contraction mapping on the complete metric space
(B, D*), so it has a unique fixed point A € B. We have also established that B” is a closed
subset of B and that M (B"”) C B"” C B”. Therefore, by Corollary 1 in Stokey and Lucas
(1989, p. 52), A = PX € B, that is, the unique fixed point X satisfies (SEP). This implies
that the set Q;; [A (7)] in (62) reduces to €2j; (as defined in (11)) for all (4, j, 7) € Kx K x [0, T7,
and consequently, that (62) reduces to (66). This establishes part (i) in the statement of the
proposition.

Given the initial condition {ny (T')},ck, and given that the path ) (7) satisfies (66), the
system of first-order ordinary differential equations, 7 (7) = f [n (1), (7)] is identical to the
one in part (%) of Proposition 2 and therefore also has a unique solution. Given the resulting
path n (1), according to Proposition 3, the path for the vector of co-states must satisfy the
necessary condition A = PA, or equivalently, (60) and (61), which establishes part (i) in the

statement of the proposition. m
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C Data
C.1 Treatment of outliers

From the histogram of the variable of interest (i.e., the 4:00 pm imputed balances over required
operating balances, averaged over the two-week maintenance period), we identified observations
that deviate markedly from the other members of the sample. In the 2007 sample, there
are two such observations: the smallest and the largest. In order to assess whether these
observations are inconsistent with the remainder of the data, we revisited the identity of both
of these institutions. The smallest value corresponds to a commercial bank classified as a Federal
Reserve nonmember bank that is regulated by the FDIC and that engages in depositary credit
intermediation. The largest value corresponds to a state member bank supervised by the Federal
Reserve in conjunction with the state chartering authority. Even though these institutions are
commercial banks according to the regulatory definition, this definition is broad enough to
include institutions such as these two, whose lines of business do not conform to that of a
typical commercial bank that participates in the fed funds market. In the 2011 sample there
are three observations that deviate markedly from the rest of the sample: the smallest and the
two largest. The smallest observation is the same Federal Reserve nonmember bank that we
identified as the smallest outlier in the 2007 sample. The two largest observations correspond
to national banks supervised by the Office of the Comptroller of the Currency. Thus, as in the
2007 sample, the outliers correspond to institutions that are technically labeled “commercial
banks” but whose business activities are different from those of the typical commercial bank
and are therefore supervised by authorities other than the Federal Reserve.

We have also implemented a modified version of Grubbs’ test that assumes the data can be
fitted by a mixture of Gaussians and detects outliers with respect to the Gaussian distribution
with the largest variance. This procedure identifies the same two outliers in 2007 and the same
three outliers in 2011 that we identified by plotting the histogram as described in the previous
paragraph. To summarize, for 2007 we started with an initial sample of 136 banks, eliminated
2 outliers, and then worked with a sample composed of the remaining 134 banks. For 2011
we started with an initial sample of 103 banks, eliminated 3 outliers, and then worked with a

sample composed of the remaining 100 banks.
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C.2 Estimation of initial distribution of balances

In Section 6.1 we described the procedure to estimate the initial distribution of balances that
we used in the 2007 calibration to run the baseline simulations presented in Section 6.2. This
procedure is straightforward: it essentially consists of using the data to construct the histogram
that we employ as the initial condition for the distribution of reserve balances in the model. In
order to conduct policy experiments such as those in Section 6.3 or counterfactual experiments
such as those in Appendix D, however, it is convenient to work with a parametric initial
distribution of balances rather than an empirical histogram, as this allows one to easily change
the mean or the standard deviation of the initial distribution of balances. For this reason, the
initial distributions used for the exercises in Section 6.3 and Appendix D were estimated using

the following procedure.

C.2.1 Estimation procedure for 2011 policy experiments

As mentioned in the body of the paper, we think of ny (T") as the model counterpart of the
empirical proportion of commercial banks whose balances at the beginning of the trading session
are k/k times larger than their average daily reserve requirement over a two-week holding period.
In order to conduct the policy experiments reported in Section 6.3, we estimate {ny (T')}rek
from data using the following procedure.

First, we identified 103 commercial banks that traded fed funds during the first quarter
of 2011 (according to their FR Y9-C regulatory filings) and for which we have been able to
obtain information on their required operating balance. Second, we obtained the empirical
cross-sectional distribution of closing balances of these 103 banks for each day of a two-week
maintenance period in the same quarter. Third, for every day in the sample, we constructed
a measure of each bank’s imputed reserve balance at 4:00 pm, as follows. Given each bank’s
closing balance on a given day, we subtracted the bank’s net payments activity from 4:00 pm
until Fedwire Funds Service closing time (typically 6:30 pm) as well as the discount window
activity for that day. Fourth, for each bank we calculated the average (over days in the two-
week maintenance period) imputed reserve balance at 4:00 pm and normalized it by dividing it
by the bank’s daily average required operating balance over the same maintenance period. At
this stage we detected three outliers (as described in Section C.1) and removed them from the
sample to obtain the final sample of 100 banks. We then used this sample to compute maximum

likelihood estimates of the parameters of a Gaussian mixture model with two components. The
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estimated parameters are iy = 3.55 and jio = 40.23 (the means), oy = 3.9 and o9 = 34
(the standard deviations), and p; = 1 — py = 0.56 (the probability of drawing from the first
component).3” We discuss the goodness of fit in Section C.2.3 below.

Notice that the mean of the estimated distribution of average normalized imputed reserve
balances for the 100 banks in the sample is py i1 +p2jiec = 19.6. In order for the calibrated model
to capture typical overall market conditions during the first quarter of 2011, we translate the
estimated Gaussian mixture by choosing its mean to match the empirical mean of the ratio of
total seasonally adjusted reserves of depository institutions to total required reserves reported
in the H.3 Federal Reserve Statistical Release during the first quarter of 2011, which equals
17.6. This is done by considering a Gaussian mixture with the same pi, p2, o1, and o2 that
were estimated from the sample of 100 banks, but replacing the estimated means, ji; and o,
with p; = 0.97,, for i = 1,2, i.e., u; = 3.19 and pp = 36.2.3% This leads to the Gaussian
mixture, ®, with parameters p; = 3.19, pus = 36.2, o1 = 3.9, o9 = 34, and p; = 0.56 used in
Section 6.3.

C.2.2 Estimation procedure for 2007 counterfactuals

In order to conduct the counterfactual policy experiments for 2007 reported in Appendix D
(Section D.1), we estimate {ng (T') }rex from data using the same procedure used for the policy
experiments reported in Section 6.3. Below we describe the full procedure for completeness.
First, we identified 136 commercial banks that traded fed funds at the end of the second
quarter of 2007 (according to their FR Y9-C regulatory filings) and for which we have been able
to obtain information on their required operating balance. Second, we obtained the empirical
cross-sectional distribution of closing balances of these 136 banks for each day of a two-week
maintenance period in the same quarter. Third, for every day in the sample, we constructed
a measure of each bank’s imputed reserve balance at 4:00 pm, as follows. Given each bank’s
closing balance on a given day, we subtracted the bank’s net payments activity from 4:00 pm
until Fedwire Funds Service closing time (typically 6:30 pm) as well as the discount window
activity for that day. Fourth, for each bank we calculated the average (over days in the two-

week maintenance period) imputed reserve balance at 4:00 pm and normalized it by dividing it

3"The corresponding standard errors (bootstrap, based on 10,000 iterations) for fi1, fi2, o1, 02, and p1 are 0.99,
6.68, 1.02, 4.53, and 0.074, respectively.

38The standard deviation of the Gaussian mixture is a function of the means of the two components, so changes
in pp affect the variance of the mixture. As a robustness check, we have also conducted experiments changing
o1 along with uq so as to keep the variance constant and found no significant difference in our results.

54



by the bank’s daily average required operating balance over the same maintenance period. At
this stage we detected two outliers (as described in Section C.1) and removed them from the
sample to obtain the final sample of 134 banks. We then used this sample to compute maximum
likelihood estimates of the parameters of a Gaussian mixture model with two components. The
estimated parameters are i1 = 0.38 and fiy = 14.53 (the means), o7 = 3.4 and oy = 32
(the standard deviations), and p; = 1 — py = 0.71 (the probability of drawing from the first
component).?* We discuss the goodness of fit in Section C.2.3 below. The mean of the estimated
distribution of average normalized imputed reserve balances for the 134 banks in the sample is
p1i1+p2jie = 4.47. In order for the calibrated model to capture typical overall market conditions
during the second quarter of 2007, we translate the estimated Gaussian mixture by choosing its
mean to match the empirical mean of the ratio of total seasonally adjusted reserves of depository
institutions to total required reserves reported in the H.3 Federal Reserve Statistical Release
during the second quarter of 2007, which equals 1.04. This is done by considering a Gaussian
mixture with the same pi, ps, 01, and oo that were estimated from the sample of 134 banks,
but replacing the estimated means, {11 and fio, with p; = 0.234;, for ¢ = 1,2. This leads to
the Gaussian mixture, ®, with parameters (u1, p2, 01,092, p1). In order to feed this distribution
into the model we let & = 1 (so k can be interpreted as a multiple of the reserve requirement),
K = {0,...,250}, ko = 100, and ny (T) = ®(k — ko + 1) — ®(k — ko) for k = 1,...,249, ng (T) =
@ (—100), and naso (T) = 1 — ® (150). By construction, Q = 320 (k — ko)n, (T) ~ 1.04.

C.2.3 Goodness of fit

As described above, for our policy experiments and counterfactual exercises, we use a Gaussian
mixture with parameters estimated by maximum likelihood. In this section we describe the
process that led us to choose a Gaussian mixture. We estimated four parametric distributions
as well as a mixture of two Gaussians to our initial distribution of balances and used several

methods to assess goodness of fit.

The 2007 initial distribution of balances The Kolmogorov-Smirnov goodness-of-fit test
does not reject the null hypothesis that the 2007 sample has been drawn from the Gaussian
mixture with two components at the 90 percent confidence level. We have also fit a Gaussian,

a Logistic, and a Generalized Extreme Value distribution, but the null hypothesis is rejected

39The corresponding standard errors (boostrap, based on 10,000 iterations) for fi1, fi2, 01, o2, and p1 are: 0.45,
8.24, 0.99, 7.84, and 0.08 respectively.
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by the Kolmogorov-Smirnov goodness-of-fit test at the 1 percent significance level. At the 90
percent confidence level, the test does not reject the null hypothesis that the data have been
drawn from a t-Location Scale distribution.

The Chi-square goodness-of-fit test does not reject the null hypothesis that the 2007 sample
has been drawn from a Gaussian mixture with two components at the 99 percent confidence
level. However, it rejects, at the 10 percent significance level, the null hypothesis that the data
have been drawn from a Gaussian, a Logistic, a Generalized Extreme Value or a t-Location
Scale distribution.

We also contructed quantile-quantile plots of the sample quantiles of our distribution of
initial balances versus theoretical quantiles from a Gaussian, a Logistic, a Generalized Extreme
Value, a t-Location Scale distribution, and Gaussian mixture with two components. Visually,
the Q-Q plot of the Gaussian mixture with two components closely follows a linear trend line,

suggesting that the mixture of two Gaussians is a reasonably good fit to the data.

The 2011 initial distribution of balances The Kolmogorov-Smirnov goodness-of-fit test
does not reject the null hypothesis that the 2011 sample has been drawn from the Gaussian mix-
ture with two components at the 90 percent confidence level. We have fit a Gaussian, a Logistic,
and a t-Location Scale distribution, but the null hypothesis is rejected by the Kolmogorov-
Smirnov goodness-of-fit test at the 99 percent confidence level. The test does not reject the
null hypothesis that the data have been drawn from a Generalized Extreme Value distribution
at the significance level 0.01.

The Chi-square goodness-of-fit test rejects the null hypothesis that the data have been
drawn from the Gaussian mixture with two components, a Gaussian, a Logistic, a Generalized
Extreme Value, or a t-Location Scale distribution at the 99 percent confidence level.

The Q-Q plot of the Gaussian mixture with two components is relatively close to linear,

suggesting that the mixture of two Gaussians is a relatively good fit to the data.

D Quantitative exercises

D.1 Policy counterfactual for 2007

In this section we use the model calibrated to mimic the salient features of a typical day in
2007 to conduct the types of policy experiments conducted in Section 6.3. Table 4 reports the

equilibrium values of p that result from varying iy from 0 to 6 percent in 1 percent increments
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(as before, each column corresponds to a different value of Q/k). All other parameter values
are as in Section 6.1. Table 5 reports the equilibrium values of p that result from varying z}ﬁ’
from 575 basis points to 700 basis points in 25 basis point increments, while keeping all other

parameter values as in Section 6.1.

D.2 Sensitivity analysis

In this section we carry out additional quantitative experiments to assess the sensitivity of the
model predictions to changes in the contact rate, o, and the standard deviation of the initial
distribution of reserve balances. These exercises show how the results of our policy experiments
vary with the values of the key calibrated parameters (notice that Tables 1-5 already show how

the equilibrium fed funds rate varies with the mean of the initial distribution of balances).

D.2.1 Changes in the contact rate

The top row of Figure 8 corresponds to the 2007 calibration with the initial distribution of
reserves estimated by a Gaussian mixture as described in Section C.2.2. The top left panel plots
the equilibrium value weighted fed funds rate, p, as a function of the aggregate normalized level
of reserves, Q/k, corresponding to five values of . Notice that for any given level of Q/k, the
equilibrium rate p increases with a if Q/k < 1 and decreases with « if Q/k > 1. The interest
rate is independent of « in the “balanced market” with Q/k = 1. The top right panel plots p
as a function of a keeping all other parameters (including Q/k) at their baseline values for the
2007 calibration. These results are in line with the discussion at the end of Section 6.3. The

bottom row of Figure 8 does the same exercise for the 2011 calibration.

D.2.2 Mean-preserving spreads of the initial distribution of balances

Consider a Gaussian mixture with parameters (uq, pi2, 01,02, p1). We parametrize a family of
mean-preserving spreads of this distribution as follows. For any & € R, define fi1 = puy + dpo,
fia = p2 — dp1, and &; = oo; for i = 1,2, with § = (1 — &) (u2 — p1). Then it is easy to see
that ¢ indexes a family of Gaussian mixtures with parameters (fi1, fi2, &1, 02, p1), where each
member of the family has the same mean, pipu; + papo, and a standard deviation proportional
to o. Thus by varying ¢ we can generate mean-preserving spreads of the original Gaussian

mixture. Clearly, the special case @ = 1 corresponds to the original distribution with parameters

(M17M27017027P1)-
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Figure 9 shows the effects of a mean-preserving spread of the initial distribution of balances.
The top row corresponds to the 2007 calibration, with the initial distribution of reserves given by
Gaussian mixture with parameters (u1, 2, 01,092,p1) estimated as described in Section C.2.2.
The top left panel plots the equilibrium value weighted fed funds rate, p, as a function of
the aggregate normalized level of reserves, Q/k, corresponding to five values of 7. Again, we
confirm that the distribution is neutral if the market is balanced, i.e., if Q/k = 1 (notice that
p is invariant to & when @Q/k = 1). The top right panel plots p as a function of & keeping all
other parameters (including Q/k) at their baseline values for the 2007 calibration. The bottom

row of Figure 9 does the same exercise for the 2011 calibration.
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