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Forecasters in economics and other disciplines frequently forecast 

the same event more than once, as time passes and information relevant to 

the event accumulates. As a result, the forecaster generates a sequence of 

forecast revisions and, not infrequently, a series of questions arise about 

exactly why the forecast has changed. Since in general forecasts are 

revised because of revisions in the data or errors in previous forecasts, 

these questions can be viewed as attempts to evaluate both the current 

forecast and the underlying forecasting procedure. 

Although it is common and reasonable for forecasters to provide 

and forecast users to demand explanations of forecast revisions, I am not 

aware of any systematic treatment of how to provide these explanations. 

In this paper I propose a comprehensive procedure for explaining revisions 

in the forecasts of complete (no exogenous variables) linear models. The 

procedure uses the model to decompose its own forecast revisions into 

components corresponding to data revisions and errors of the previous 

forecast. I argue and attempt to illustrate that this procedure can provide 

useful information to both forecasters and forecast users. Section I 

discusses why people analyze forecast revisions and why a comprehensive 

analysis would be useful. Section II then explains and illustrates how the 

suggested procedures attempt to achieve what I regard as the goals of 

forecast revision analysis. 

I. Why Are Comprehensive Analyses of Forecast Revisions Useful? 

It is easy to understand why people care about forecasts. In a 

dynamic world, our current optimal choice depends in part on the 

probability distribution of future events, and forecasts are supposed to tell 

us something (for example, the mean or mode) about that distribution. 



It is less easy to understand why people should care about forecast 

revisions. If we have today's optimal forecast in our hands, why should we 

care about yesterday's optimal forecast? The current optimal forecast is 

sufficient for making current decisions; yesterday's should be of concern 

only to historians. 

In fact, however, forecasters, journalists, and forecast users all pay 

attention to forecast revisions. Apparently in response to the perceived 

desires of their audience, forecasters often provide, in their presentation of 

a new forecast, an explanation of the factors that led them to revise it (for 

example, Litterman 1985; U.S. Congress 1987; Chimerine, Behravesh, and 

Hagens 1987, p. 2; Hagens and Chimerine 1987, pp. 1.9-1.10; Brownstein 

1987; Sprinkel 1987a,1987b). In noteworthy cases, the business press 

amplifies the discussion (Franklin and Cooper 1987; Cooper and Madigan 

1988; Hershey 1987; Wessel 1987).1 

The most likely reason forecast users care about forecast revisions is 

that they don't believe that any of the forecasts available to them are fully 

optimal. There are many competing forecasts, each based on simplified 

models and possibly inaccurate data. Forecast revision analysis can help 

forecasters and forecast users to evaluate competing current forecasts and 

their underlying forecasting models or methods. It also helps forecast 

users to modify the forecast based on personal information or their own 

views. 

Forecast revision analysis generates useful information. Forecast 

revision analysis provides information about the structure and efficiency of 

a forecasting procedure. This information is useful in evaluating and using 

the procedure and its forecasts. 
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By singling out events that have had big impacts on the forecast, 

revision analysis identifies the dynamic and cross-variable linkages in the 

forecasting procedure that were critical in altering its current prediction. 

Since the linkages identified in this way also tend to be among the critical 

linkages in the forecasting procedure itself, revision analysis helps both the 

forecaster and the forecast user to better understand how the procedure 

works. In light of this information the forecaster may decide to change the 

model, and the forecast user may decide to change forecasters (or at least 

pay less attention to forecasters using models whose properties are revealed 

to be implausible to the user). 

In addition to structural2 information, revision analysis also 

provides evidence about the efficiency of the forecasting procedure. Using 

information that was available when the forecast was made, it should be 

impossible to systematically predict an efficient forecasting procedure's 

revision. However, a user may believe that some of the factors that caused 

the revision should have been foreseen at the time of the previous forecast. 

Used in this way, forecast revision analysis can be both a red flag and a 

diagnostic tool for a broad spectrum of forecasting inefficiencies, such as 

failure to take account of systematic bias in data revisions, structural 

change in coefficients, or omitted variables. 

Understanding why forecasts are revised may also help forecast 

users to combine forecasts with their own private information or opinions. 

For example, suppose a forecaster in early October 1987 had cited 

weakness in September in stock prices and hours worked to explain a 

downward revision in predicted 1988 real gross national product (GNP). 

Knowing that the September 1987 hours-worked survey had atypically 

occurred during the week of the Labor Day holiday, a client of this 



forecaster might discount that GNP revision because of a presumption that 

hours worked in September had been underestimated. 

Thereafter, the forecaster might also make further adjustments in 

his or her views based on the data released during the interval leading up 

to the forecaster's next forecast. When the stock market crashed on 

October 19, the user's understanding of how September's stock price 

decline had affected the forecaster's previous revision might help the user 

to guess the forthcoming post-crash forecast revision. Experience with 

previous analyses of forecast revisions thus helps a forecast user modify the 

forecaster's previous predictions during the interval between forecasts.3 

Forecast revision analysis is not redundant. Given that forecast 

revision analysis can provide useful information, the question remains 

whether this information might be obtained more precisely or more easily 

with other techniques. I will argue that forecast revision analysis is a 

nonredundant source of information that builds upon and complements 

other approaches. 

To explain a forecast revision, a forecaster must identify the 

important information (data revisions and forecast errors) that has 

accumulated since the previous forecast and then estimate how much each 

important bit of news affected the forecast. This can't be done without an 

understanding of the dynamic properties of the forecasting procedure. For 

that reason, forecast revision analysis makes use of familiar characteriza­

tions of model dynamics, such as elasticities, dynamic multipliers, impulse 

responses, and variance decompositions. However, forecast revision 

analysis disciplines the forecaster to use existing tools more frequently and 

in more revealing combinations. In that way it achieves an effect greater 

than the sum of the effects of its parts. 
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For example, forecast revision analysis tends to pick up or focus on 

structural properties of the forecasting procedure that other sources of 

information may miss. Elasticities, dynamic multipliers, impulse 

responses, and variance decompositions are usually presented in a form 

that focuses on the average static or dynamic effects of shocks to 

individual variables. For example, impulse responses are often presented 

as the separate response of each variable in a model to a given variable's 

typical shock (generally a one-standard-deviation increase). A forecast 

revision analysis, by contrast, would show the response of the model to the 

most recent combination of actual shocks to all variables. 

Because they focus on the average effects of individual shocks 

rather than the current effects of multiple shocks, the other techniques 

may fail to reveal some of the forecasting procedure's important dynamic 

properties. For example, even when graphs of a model's impulse responses 

have plausible shapes, a forecast user may find it difficult to judge whether 

their absolute and relative amplitudes are plausible. Decomposition of the 

historical variance of the procedure's forecasting errors might sharpen the 

user's judgment of this issue, but examining the model's implications in a 

practical situation about which the user is fairly well informed—such as 

the analysis of the current forecast's revisions—might do so more 

effectively. Futhermore, the competing sources of structural information 

tend to be computed only occasionally, whereas forecast revision analyses 

are naturally computed every time a forecast is made. Thus, forecast 

revision analysis may discipline the forecaster to more quickly spot defects 

in the model's structure. Finally, it is possible that some combination of 

shocks occurs often, but not often enough to dominate a variance 

decomposition. Because it encourages researchers to track the effects of 

5 



shocks as they occur, forecast revision analysis might reveal such 

subdominant patterns. 

In providing information about the efficiency of a forecasting 

procedure's performance, forecast revision analysis is again likely to 

supplement other approaches. Direct tests of efficiency (Nordhaus 1987) 

and general tests and diagnostics for misspecification tend to signal the 

presence but not the source of inefficiencies in the forecasting procedure. 

By examining the individual contributions of each variable's data revisions 

and forecast errors to the forecast revision, and tracking these 

contributions over time, forecast revision analysis can provide a much 

richer account of why a forecasting procedure has been wrong or 

inefficient. I suspect, for example, that regular forecast revision analysis 

would prompt forecasters to rethink ;he way they treat economic data.4 

A comprehensive approach is most useful. The advantages of 

forecast revision analysis that I have cited are best captured by what I will 

call a comprehensive analysis. This approach processes all new 

information exactly as it was processed by the forecasting procedure. 

Failure to do this has limited the usefulness of current discussions of 

forecast changes. 

A comprehensive forecast revision procedure examines all changes 

in the information used in the forecasting procedure. This includes both 

revisions of the old data (data used in the previous forecast) and releases of 

new data (data on the procedure's variables covering time periods for 

which no data were available at the time of the previous forecast). Many 

of the forecast revision analyses in the scholarly and popular literature are 

selective, focusing on a few parts of the new information judged (often for 

unspecified reasons) to be most important. However, to realize some of 
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the advantages of forecast revision that I have cited, such as sensitivity to 

data revisions and ability to identify important dynamic properties, it is 

important to examine all new information 

Perhaps the greatest advantage of a comprehensive procedure, 

however, is that it processes the new information just as the actual 

forecasting procedure did. For this reason, a comprehensive analysis is 

possible only with an explicitly documented, replicable forecasting 

procedure, such as a complete (no exogenous variables or unmodeled add 

factors) forecasting model. With such a model the incremental effect on 

the forecast of each new bit of information can be quantified. This means 

that competing explanations of the forecast revision can be compared and 

ranked. The results can also be checked for robustness by varying the 

assumptions used to identify each variable's share of the new information 

(see section II). No other technique can do these things so well. 

II. Comprehensive Analyses of Forecast Revisions Can Be Computed 

I have constructed an algorithm that analyzes revisions in the 

forecasts of complete linear models. Depending on the model to which it is 

applied, the algorithm is either exactly or nearly comprehensive, in the 

sense discussed in section I. That is, it processes all new information 

either exactly or almost exactly as the forecasting model does. The 

algorithm then summarizes all this information by presenting a 

decomposition of the forecast revision. The revision in each variable's 

forecast at each horizon is broken down into 2N components, where N is 

the number of variables (all endogenous) in the model. N of the 

components quantify the effects of each variable's data revision, and the 

other N quantify the effects of each variable's newly released data. The 

7 



quantification of these components is somewhat arbitrary, in the sense that 

it depends on identifying assumptions supplied by the user. However, this 

is typical of causal reasoning in economics, and the results can at least be 

checked for sensitivity to the identifying assumptions. 

The algorithm. The algorithm can be thought of as proceeding in 

two stages. In stage one, the model and a set of identifying assumptions 

are used to partition the set of all new information (received since the 

previous forecast was computed) into distinct subsets. In stage two, the 

model and another set of identifying assumptions are used to compute the 

contribution to the forecast revision of each of these subsets. 

The new information that causes forecast revisions includes data 

revisions and newly released data. To make the discussion concrete, 

suppose a forecast of x (an n*l vector) for periods t + l t o t + k + j (k> 

1, j > 1) was made at time t on the basis of data on x up through t. A 

subsequent forecast of periods t + k + l t o t + k + j is made at t 4- k on 

the basis of data up through t + k. The information accumulated between 

t and t + k will almost certainly cause the forecasting model to revise its 

forecasts of x ^ ^ i t 0 ^t+jj+j- This new information consists of revised 

values of x s < t, and newly released data on x . t + 1 < s < t 4- k. 
o s 

The algorithm begins by identifying each variable's data revision 
with itself. That is, we observe revisions r. . . = . ., x, . — .x. . > for ' i,t-h t+k t-h t t-h' 
i = 1, 2, n and h = 1, 2, .... II, where x denotes the data available at 

q s 

q on the value of x at s and H is the maximum number of periods before t 

for which data revisions will be analyzed. (H is bounded by the number of 

observations on x available at t+k.) My method treats the sequence r- . . 
i,i l 

to r t_jj as an independent source of new information attributable to 

variable i only. I thus follow the common practice of neither explicitly 



modeling, nor even simply taking account of the correlations among, data 

revisions.5 This gives me N distinct subsets of new information, one for 

each variable's sequence of data revisions.6 

Having partitioned the data revisions into N subsets, I turn to the 

newly released data. I start by converting the new data into a sequence of 

one-step-ahead forecast error vectors. To do this, I first reestimate the 

model's coefficients using revised data through t. (Since I have already 

identified the data revision part of the new information, I now work only 

with the revised data.) Call these coefficients ^ j ^ - I then use these 

coefficients and revised data through t + h to forecast t+k xt+h+l' ^ o r 

h = 0, 1, k - 1. Subtracting these forecasts from the actual values of 

t+k xt+h+l & v e s m e a s e c l u e n c e t+k^t+h+l °^ o n e _ s t e P ~ a n e a d forecast 
errors. 

I could now use the same simple identification scheme I used for the 

data revisions. That is, I could simply identify the sequence of i* 

components of t + j c f t ^_j 1 + 1 as the part of the forecast error since t 

attributable to variable i. However, I could also use any other scheme for 

attributing the components of the forecast error vectors to the individual 

variables. Devising such schemes is what economists usually have in mind 

when they talk about identifying an econometric model. In my own 

programs, and in the examples presented below, I use the technique of 

orthogonal decomposition (Hakkio and Morris 1984; Doan and Litterman 

1986, pp. 12-24). This gives me N subsets of information derived from the 

newly released data. Subset i is a sequence ^^^.j of error vectors 

that contain the contribution of variable i to each component of 

t+k^t+h+1' ^ = ^' " ' k ~~ because the u sequences add up to the f 

sequence, they can be said to decompose the f sequence. 
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Since the choice of an identification scheme is controversial among 

economists, I want to emphasize that my procedure doesn't depend on any 

particular one. Orthogonal decomposition is simple to program and is 

convenient for illustrating my technique (see below). In other contexts it 

might be appropriate to devise an alternative identification based on 

economic theory and observations. Such alternatives can be substituted 

for my orthogonal decomposition, provided that the N sequences of 

forecast error components they generate also add up to the f sequence. 

Alternative identification schemes for the forecast errors, including 

alternative orthogonalizations (based on different orderings of the 

variables), will change the algorithm's decomposition of the forecast 

revision. In fact, it is not hard to find cases of fairly substantial change, 

and one example is presented below. 

In the second stage of my algorithm, I compute the components of 

the forecast revision attributable to each of the 2N subsets of new 

information. To do this I employ what can be thought of as additional 

identifying assumptions. However, the results do not seem to be very 

sensitive to these additional assumptions. 

Note that in choosing to decompose the forecast revision into N 

additive components, I am generally suppressing some information. A 

more complete decomposition of the forecast revision, for example, might 

include components for all possible multivariate interaction effects. Unless 

the true mapping from the subsets of new information to the components 

of the forecast revision is additive, any N-component decomposition must 

suppress information about interaction effects between the subsets. 

Furthermore, the class of models for which the true mapping is additive is 

fairly restrictive, consisting principally of linear models whose coefficients 
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are not updated between forecasts. (See Appendix A for a demonstration 

that even linear models generate nonadditive mappings if their coefficients 

are updated.) 

As a practical matter, however, I am not too worried about these 

interaction effects. They are likely to be small for linear models whose 

coefficients change only slightly in response to new information. This has 

at least two implications. 

Since the models I generally work with seem to fall into this 

category, one implication is that I can usually ignore the small degree of 

ambiguity caused by interaction effects in stage two of my algorithm. If 

necessary, such as when very surprising new data have caused an unusually 

large change in the coefficients, I can check the sensitivity of my results to 

interaction effects by varying my identifying assumptions. 

Another implication is that for linear models with slowly changing 

coefficients, my complete algorithm can usually be closely approximated 

by a simpler algorithm discussed in Appendix B. The simpler algorithm 

uses a fixed set of coefficients and thereby ignores interaction effects 

altogether. Currently I have programmed it only to analyze the effects of 

newly released data (that is, not data revisions) and use it mainly as a 

check on my complete algorithm. I have found only a few cases where the 

simple and complete algorithms differ to an interesting degree on the 

effects of new information. (The rather mild example presented below is 

the strongest I have found so far.) However, because of these few cases, 

the likelihood that they would be more common in models that allow more 

rapid coefficient change, and the speed with which my complete algorithm 

can be computed when the Kalman filter is used to calculate the coefficient 

updates, I will focus my remarks on the complete algorithm. 

11 



The identifying assumptions I normally use suppress interaction 

effects by, in effect, decomposing each of them into shares attributed to 

the subsets involved in the interaction. First I order the 2N subsets of new 

information (N for data revisions and N for new data). Starting with the 

first subset and proceeding sequentially, I then attribute to each subset its 

incremental contribution to the forecast revision. In abstract terms, let Sj 

be the sequence of new information vectors that defines subset i, i = 1, 2, 

2N. Let Z be a sequence of zero vectors (of conformable dimension). 

Then define a function F mapping from the space in which the 2N and Z 

sequences lie to the space of forecast revisions in such a way that 

F(Z,Z,...,Z) = 0 and F(S 1,...,S N) equals the forecast revision. Then I 

attribute F(S1,Z,Z,...,Z) to subset 1 and F(S1,S2,...,S i,Z,Z,...,Z) -

F(S 1,S 2,...,S i_ 1,Z,Z,...,Z) to subset i, i = 2, 3, 2N. This completes the 

algorithm. 

Note that as it computes its decomposition of the forecast revision, 

the algorithm implicitly parcels out interaction effects to each of the 

variables involved, based on their incremental contribution. The 

incremental contributions obviously depend on the ordering of the subsets, 

so the importance of interaction effects can be checked by rerunning the 

algorithm with different orderings. 

The abstract discussion in the previous paragraph highlights how 

interaction effects are handled but does not provide many details of just 

how the algorithm operates. Let me correct this by describing how I order 

the subsets and use the model to implicitly compute the F function. 

The only restrictive feature of the way the algorithm is 

programmed is that I must put the N data revision subsets first. The 

order of the data revision subsets within this group is not usually 
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important, because my models are linear and normally their coefficients 

change only slightly. Typically I use the same order of variables here that 

I used in the orthogonal decomposition of forecast errors in stage one. 

Given an order of the data revision subsets, I construct a series of 

data bases, dp, dp d^. Data base dp is the one actually used in the 

previous forecast. Data set dj is obtained from d-_j by adding to each 

variable in dj_^ the effect of data revisions for variable i, i = 1, 2, N. 

(In the simple identification scheme I use for data revisions, this means 

that variable i changes by the full amount of its revision and the other 

variables are unaffected.) The coefficients and forecast based on , are 
d 0 

already available, of course. Denote the elements of the latter as . x. , . 
a 0 1 + 1 

to ^ xt+k_j_j. I then reestimate the model using dp With the reestimated 

coefficients and data from dp I compute a new forecast, ^ x ^ ^ to 

d t̂+k+J T h e s e ( l u e n c e 

C d 1

 = ttd^t+k+rd^t+k+l)'"--(d^t+k+fd^t+k+p} 

records the contributions of revisions in the data for variable 1 to each 

component of the forecast revision. 

The next step is to reestimate the coefficients based on d 2 and 

compute 

' d 2 " ^d 2

x t+k+l d^+k+l)'" '(d^+k+fd t̂+k+jW-

13 



This records the (incremental) contributions of revisions in the data for 

variable 2 to each component of the forecast revision. Repeating these 

steps for d 3 , d^, d^ , with the obvious modifications, completes the 

analysis of the effects of data revisions. 

To analyze the effects of the newly released data, I parallel the 

analysis of the data revisions. First I order the sequences of forecast error 

vectors that were identified in stage one. (The order here need not match 

either the order used in stage one or the order used in stage two for the 

data revision sequences, but I usually make them all agree.) I also 

construct data base eg by adding to dj^ the forecasts ^ x ^ p • ••> ̂  xt-f ^ 

that would have been computed at the time of the previous forecast if the 

revised data had been available then. Then I construct data bases ep eg, 

e^ by adding in the sequences of forecast error vectors (that is, 

t+k u l , t+h+l'- ' t+k uN,t+h+l' h =°. 1 . - - ,k - l ) in the specified order. In 

particular, the value of the j 1 * 1 variable at time t + h + 1 in ê  equals its 

value in 6J_J plus j ^ u - t+h+1' W N I C N I S T N E P A R T °f * t s t * m e t + h + 1 

forecast error attributed to variable i (i=l,2,...,N). 

With these data bases in hand, I begin a sequence of reestimating 

coefficients through time t + k and reforecasting periods t + k + 1 to 

t + k + j . 7 At each step I take the difference between the forecast based 

on ej and the forecast based on e - , to define the (incremental) 

contribution of new data on variable i to the forecast revision. That is, 

paralleling the notation above, 

Cej ~ Ke/Vk+l ei_1

xt+k+l)'-4i

xt+k+rei_1

xt+k+j)J 
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records the contribution of new data on variable i to each component of 

the forecast revision. 

Some examples. I use this algorithm regularly to analyze the 

forecast revisions of two Bayesian vector autoregressive forecasting models. 

One model forecasts the monthly values of seven key macroeconomic 

variables—the Dallas Federal Reserve Bank's index of the foreign 

exchange value of the U.S. dollar (DOLLAR), Standard and Poor's index 

of 500 stock prices (SP500), the interest rate on three-month U.S. treasury 

bills (TBILL), real gross national product (GNP), the GNP deflator 

(DEFL), the change in business inventories (CBI), and the Federal 

Reserve Board's measure of the monetary base (MB). 8 The model can 

stand alone but also acts as the core sector in a large macroeconomic 

model used regularly to prepare forecasts at the Federal Reserve Bank of 

Minneapolis. [See Litterman (1984) for a description of both the core 

model and the larger model.] The other model consists of a 13-variable 

quarterly macroeconomic sector plus six separate recursive regional 

sectors. [Amirizadeh and Todd (1984) describe the essential features of an 

early version of this model.] Its regional economic forecasts are published 

quarterly in the Minneapolis Fed's District Economic Conditions. 

Table 1 shows the variables in the monthly core model and the 

standard format I use for reporting decompositions of the model's forecast 

revisions. The initial forecast in this example was made in September 

1987, based on data (official, interpolated, and projected) through July 

1987 for GNP, DEFL, and CBI and through August 1987 for the other 

variables. The subsequent forecast was made in March 1988, based on 

revised and new data through January 1988 for GNP, DEFL, and CBI and 
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through February 1988 for the others. The table analyzes percentage point 

changes in forecasts of the levels of the variables in December 1988, except 

for TBILL (basis point units) and CBI (Sbillion units). 

To decompose the revision in a particular variable's forecast (for 

example, GNP), find the column corresponding to that variable (column 4) 

and read down. The first row shows the variable's total forecast revision 

for December 1988 (-1.09 percentage points). The next three rows give a 

gross decomposition of the total revision into effects attributed to data 

revisions (+1.70 percentage points), newly released data (-2.77 percentage 

points), and miscellaneous factors (-0.02 percentage points). (See end note 

7 for a discussion of the miscellaneous factors.) 

The next block of rows further decomposes the total data revision 

effect into effects attributed to each variable's data revision. The first row 

of column 4 in this block, for example, attributes -0.02 percentage points 

of the total -1.70 percentage point effect of data revisions on the forecast 

of the December 1988 level of GNP to revisions in the data on the 

exchange value of the U.S. dollar. 

The final block decomposes the total newly released data effect into 

effects attributed to each variable's newly released data. The third row of 

column four in this block, for example, says that movements in the GNP 

deflator that were not predicted in a revised (to incorporate data revisions 

but not new data) initial forecast contributed +0.29 of the -2.77 

percentage point effect of new data on the GNP forecast for December 

1988. 

In many ways the results in Table 1 are typical of my experience 

with revisions of this monthly model's forecast. Surprises in the new data 

are usually more important than data revisions, but data revision effects 
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are far from trivial. The omitted information summarized by the 

"miscellaneous factors" row is trivial. In the lower blocks, diagonal 

elements generally dominate. This reflects the fact that a variable's own 

revisions and forecast errors usually cause most of its forecast revisions, at 

least in this model when its errors are identified by means of orthogonal 

decompositions. 

Table 1 shows some less common results too. Most prominent are 

some strong cross-variable effects attributed to new data on SP500. 

Considering that the October 1987 stock market crash intervened between 

the initial and subsequent forecasts, these strong effects are 

understandable. The algorithm says that the stock market crash itself cut 

the forecasts of December 1988 GNP, MB, and TBILL by 2.75 percent, 

0.57 percent, and 57.16 basis points, respectively. 

Table 1 also illustrates some of the benefits of forecast revision 

analysis. The large effect attributed to GNP revisions highlights the 

importance of data revisions in general. In a concerted effort by several 

economists at the Minneapolis Fed to unravel why the forecast of GNP 

had not been depressed more by the stock market crash, this factor had 

not been considered until the algorithm was used to produce Table 1. The 

table also helped rank competing explanations. For example, the fall in 

interest rates in late 1987 had been proposed as an explanation for why the 

model's GNP forecast had changed by only -1.09 percent. However, the 

table shows that new data on interest rates had a trivial effect (+0.04 

percent) on the GNP forecast for December 1988. 

Of course, these conclusions could be sensitive to the orderings used 

to identify the components. To produce Table 1, the algorithm used a 

single ordering—DOLLAR, SP500, TBILL, MB, DEFL, CBI, GNP—for 
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all decompositions. Table 2 shows an analysis of the same forecast revision 

based on an alternative ordering—MB, TBILL, DOLLAR, SP500, GNP, 

DEFL, CBI. The decomposition of the effects of data revisions appears to 

be completely insensitive to the switch, probably because ordering affects 

this decomposition only when the model's coefficients are changed a lot by 

the revisions. The effects of data surprises are sensitive to orderings, but 

in most of the columns the changes are small. Only for TBILL and, to a 

lesser extent, MB do the decompositions appear importantly different.9 

This means that the results in these columns must be interpreted with 

caution, unless the user can supply reasons for preferring a particular 

ordering (or, more generally, a particular identification scheme).10 

Table 3 provides an example where the complete algorithm 

decomposes the effects of new data differently than the simpler 

approximation discussed in Appendix B. The example is taken from the 

Wisconsin sector of the quarterly national-regional model, with forecasts 

of the state's unemployment rate in fourth quarter 1975 based on data 

through fourth quarter 1973 initially and third quarter 1974 subsequently. 

This time period was chosen because the coefficients of the Wisconsin 

unemployment equation shifted relatively sharply then. As a result, 

SP500's share of the total 1.88 percentage point revision in the forecasted 

rate rose from 0.79 percentage points in the simple algorithm to 0.91 in the 

complete algorithm, and the effect ascribed to PR28, an index of 28 

commodity prices, fell from 0.46 to 0.29 percentage points. For other 

variables the differences between the two algorithms are fairly small. 

This example of a discrepancy between the simple and the complete 

algorithms is mild but nonetheless rare, at least in my experience. Even 

by focusing on periods when changes in the models' coefficients were 
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relatively rapid, I have uncovered only a few other nontrivial examples, 

none of them even as strong as the one shown in Table 3. That is the basis 

of my tentative conclusion that the simpler model approximates well when 

rates of coefficient variation are not extreme. 

Concluding Remarks 

The technical content of this paper is simple; the algorithms consist 

of accounting conventions (whose practical application happens to be 

tedious to describe and program). Nonetheless, the algorithms have 

already helped me to provide better analyses of the forecasts I publish. I 

have also benefited from them in discussions with my colleagues of the 

forecasts used in an actual policymaking setting. I believe that these 

algorithms, or something like them, should be used routinely to help 

organize the inevitable but often disjointed discussions of forecasts and 

forecast revisions. 
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Footnotes 

'The reactions of forecast users to forecast revisions are not well 

documented, so for the most part I must rely on the reader's own 

observations on this point. However, the records of the Federal Reserve 

System show that at least one important group of forecast users—the 

Federal Open Market Committee—receives an account of why its staff's 

forecasts have been changed and also discusses its members' views of forces 

that have changed the economic outlook [for example, Federal Reserve 

Board of Governors (1988, p. 115)]. 

2I use words like "structure" or "structural" here to refer to the 

characteristics or properties of the forecasting procedure. I do not mean to 

imply that these properties necessarily reflect the true properties of the 

economic (or other) system being forecasted. 
3This function of forecast revision analysis was suggested to me by 

David Runkle. 
4Typical current practice is to treat all available data as though 

they were final and true, and then to replace them as soon as revised data 

are released. Recognition of the important role data revisions sometimes 

have in changing forecasts (see the example in section II) should at least 

cause forecasters to consider widening their forecast confidence bands to 

account for data uncertainties. 
5This trivial identification scheme for data revisions could be 

changed without modifying the rest of the algorithm. For example, I work 

with a model that includes both real gross national product (GNP) and the 

change in business inventories (CBI). Since the latter is a component of 

the former, it is reasonable to suppose that revisions in the CBI data 
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might prompt, and hence be correlated with, revisions in the GNP data. 

The part of the GNP revision that is caused by the CBI revision should 

perhaps be attributed to CBI, not to GNP. This can be done 

systematically for the entire vector time series of data revisions by 

supplying a nontrivial identification scheme. One simple possibility is to 

treat data revisions as correlated contemporaneously but not across time. 

Then an orthogonal decomposition of each period's vector of data revisions 

could be computed, using, for example, Choleski factors from the 

covariance matrix of historical revisions. My algorithm currently doesn't 

do that, but I am cautious about interpreting any results that seem 

sensitive to the exact division of data revisions between CBI and GNP. 

6In principle it would be possible to partition the data revisions as 

well as the newly released data more finely than I do here. For example, 

there could be one subset for each revised or newly released bit of data. 

The steps in my current algorithm would readily generalize to such finer 

partitions. 
7Note that ideally the coefficients estimated through t + k from 

will be identical to those estimated through t from d^, because the data in 

eg for periods t + 1 to t + k are simply forecasts based on d ĵ and hence 

contain no new information to cause an updating of the coefficients. With 

no change in the coefficients and with only forecasted data added to the 

d^ data base, it also follows that the forecast of x ^ ^ ^ to x t + ^ + j based 

on eg is identical to the forecast of these periods that was computed from 

d N . Thus, in principle, ^ k + i - d N * t + k + i = 0, for i = 1, 2, j . 

If this were not true, the part of the forecast revision caused by the 

difference between e^ and would escape my method, not being 
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attributed to any variable. As illustrated below, this component is indeed 

nonzero in the models I typically use, partly because the models use 

data-based "prior" restrictions on their coefficients (Litterman 1986). In 

particular, my algorithm does not account for the impact of data revisions 

and new data on the estimated variances of the equation error terms, 

which enter as known constants in the prior covariance matrix of 

coefficients. I also often ignore minor revisions to data early in the 

sample, such as those caused by recomputing seasonal adjustments. The 

total impact of the neglected factors is typically small, however, as shown 

by the size of the "miscellaneous" category in the examples in section II. 

8Note that some of the variables in the core model, including GNP, 

DEFL, and CBI, are not officially available as monthly series. Amirizadeh 

(1985) explains the interpolation and projection procedures used to 

estimate monthly values for these series. The algorithm treats the official 

and interpolated data identically. Sometimes this can lead to a 

counterintuitive decomposition of the revision. For example, new data on 

GNP can significantly alter the interpolated and projected GNP values for 

recent months. Such changes, though caused by new data, would be 

interpreted by the algorithm as pure data revisions. As a result, the 

algorithm as currently applied to this model can sometimes exaggerate the 

importance of data revisions. 
9The reader may wonder whether statements about the significance 

of the differences between Tables 1 and 2 require that confidence bands be 

computed for the results in the tables. There is a perspective from which 

this might be attempted, but it is a somewhat uncommon perspective 

which I have not tried to exploit. Note that each table analyzes the 

change in a given model's forecast under given identifying assumptions. 
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The given model's initial forecast can be thought of as the mode of the 

distribution of the predicted variables, conditioned upon information 

available when the initial forecast was made. The given model's 

subsequent forecast is the mode conditioned on the information available 

subsequently. Unlike the forecasted variables themselves, these modes are 

exact functions of known data and thus are not random once the 

conditioning information and the model are taken as given. The difference 

between these modes depends only on the difference in the conditioning 

information, which is obviously not random after the fact. And given the 

differences in the conditioning information and the modes, the 

decomposition depends only on the identification scheme. 

The only way to compute a confidence band for the decomposition, 

then, is to find and exploit random elements in the identification scheme. 

There are two possibilities. For a given identification scheme, the 

decomposition depends on the estimated coefficients (because they 

determine the forecast errors) and on the estimated covariance matrix of 

one-step-ahead forecast errors. To compute the uncertainty in the 

decomposition for a given identification requires a procedure that samples 

from the coefficient and covariance matrix distributions while constraining 

the initial and subsequent forecasts to remain fixed at their actual values. 

Less conventionally, it would also be possible to posit a probability 

distribution over all possible identification schemes of the variables. 

Random samples of identifications from this distribution could then be 

used to compute the uncertainty in the decomposition that flows from 

uncertainty over identification schemes. I have not pursued either of these 

possibilities. 
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10I don't want to imply that the other columns can be interpreted 

without caution. Tables 1 and 2 are meant to illustrate rather than 

exhaust the issue of robustness with respect to ordering. A more complete 

robustness check with respect to all possible orderings could be done, given 

enough computer time. 
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Appendix A 

The Nonadditivity of Mappings from New Information to 

Forecast Revisions When Model Coefficients Are Reestimated 

Consider a multivariate model that expresses the vector y t = 
T 

[y l t,y2 t,.--,y nJ as a time-varying linear function of the components of its 
2 

own first lag plus an error term. Let the function M: R -» R n x R n be 

given by 

0 0 ... 0 

0 0 ... 0 

y l t y 2t ••• ynt_ 

Then we can write this model at time t as 

y t = M ( y t - i h + s t V 

where 

T 

a t = ^ l l t ^ ^ t ' - ' ^ l n t ' ^ l t ' ^ t ' - ' - ' ^ n t ' - ^ n l t ' ^ t ' - ' ^ n n J ' 

The coefficient vector c*t also evolves, according to 

Qt - V t - i + R t \ 

M(y t) = 

y l t y2t - ynt 0 0 - 0 

0 0 ... 0 y u y 2 l ... y n t 

0 0 ... 0 0 0 ... 0 

2'> 



To apply the Kalman filter, we take as the unobserved state vector; 
2 2 

y t_^ as the observation vector; and M(y t_ 1), the (n*p) S t , the (n *n ) T t , 
o 

and the (n xr) R t as known fixed matrices. We also model (p*l) and 

(rxl) 7? t as mean zero, serially uncorrected processes with 

contemporaneous covariance matrices H t and Q t , respectively. 

Components of are uncorrected with components of ij^ 

The forecast of y t + 1 at time t, or y t + ^ t , is given by 

M ( y t ) T t ^ a t , where a t is the current estimate of a^. The error in this 

forecast, y t _^ - y t + ^ t > is denoted u

t + ^ t . which is an n * 1 vector. The 

sequence of estimates, {a^}, evolves according to the updating formula 

a t+ l ~ T t + l a t + G t+ l u t+ l / t ' 

where G _̂j_̂  is the Kalman gain matrix. 

To analyze a forecast revision, consider both y^ij^ and ŷ _j_̂ ŷ ._̂ . 

The latter is given by 

(A.i) y t + i / t - i = M ^ t / t - i ] T t + i a t / t - i 

= M [ M ( y t - i ) T t a t - J T t + i T t a t - r 

Since M is a linear function, y^ jy^ can be rewritten as 

<A-2) Jt+i/% =
 M(y t)Tt+iat 

= M [ M ( y t _ 1 ) T t a t _ 1 + u t / t _ 1 ] T t + 1 ( T t a t _ 1 + G t u t / t _ 1 ) 
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= M l M C y ^ J T ^ j T ^ ^ . ! + M ^ ^ T ^ T ^ 

4- M W J ^ I T ^ ^ 

+ M K / t - i ) T t + i G t u t / t - r 

Subtracting (A.l) from (A.2) gives the forecast revision as 

(A-3) y t + 1 / t - y t + 1 / w = M ( " t / t - i ) T t + i T t a t - i 

+ M [ M ( y t 4 ) T t a t 4 ] T t + 1 G t u t / t _ 1 

The final term on the right side of equation (A.3) shows that the forecast 

revision is a quadratic, nonadditive function of the forecast errors. The 

situation doesn't change if the forecast errors are replaced by 

orthogonalized innovations or structural equation error terms. These 

substitutions would simply replace u.^_j in (A.3) by D v ^ _ p for some 

matrix D. 
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Appendix B 

A Simpler Algorithm 

New data affect a model's initial forecast in two ways. Most 

obviously, they update the variables in the model's equations. Unless the 

new data conform exactly to the previous forecast of their values, this will 

revise the forecasts covering the balance of the initial forecast horizon. 

When the model's coefficient estimates are also updated with new 

data, changes in the coefficients also contribute to the forecast revision. 

(See Appendix A.) This second effect is usually much smaller than the 

first, however. 

The simpler algorithm ignores the second, smaller effect. It 

proceeds exactly as the complete algorithm does, except that the model's 

coefficients are held fixed at the values they assumed in either the initial 

or the subsequent forecast. 

For analyzing the effects of just new data (not data revisions), the 

simpler algorithm is very simple to program in the RATS statistical 

package (Doan and Litterman 1986). RATS contains a command, 

HISTORY, which uses a fixed set of coefficients to decompose the 

differences between a baseline forecast and the subsequently revealed 

actual data. To use HISTORY for forecast revision analysis, make the 

initial forecast (made at time t) be the base forecast, covering periods 

t + 1 to t + k + j . For the series that HISTORY regards as actual data, 

let time periods t + 1 to t + k equal the actual data and time periods 

t + k + 1 to t + k + j equal the values predicted in the subsequent 

forecast (made at time t+k). Applying HISTORY over the period t + 1 

to t + k + j then produces a fixed-coefficient decomposition of a) the 
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initial forecast's errors in periods t + 1 to t 4- k, and b) the revisions of the 

initial forecast for periods t + k + 1 to t + k + j . 
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Table 1 

One Explanation of the 
Monthly Core Model's Revised Forecast for December 1988* 

Forecast Variables 

DOLLAR SP500 DEFL GNP MB TBILL 
(pctg. (pctg. (pctg. (pctg. (pctg. (basis CBI 
pts.) pts.) pts.) pts.) pts.) pts.) ($ bils.) 

Change in Forecast -4.57 -30.04 -2.01 -1.09 -1.24 -101.88 -9.61 

Breakdown by Reason 
for Change 

Revisions in Old Data -0.55 0.27 -0.49 1.70 -0.59 2.86 -1.97 
Surprises in New Data -3.81 -29.98 -1.50 -2.77 -0.58 -105.72 -7.33 
Miscellaneous Factors -0.21 -0.33 -0.02 -0.02 -0.07 0.98 -0.31 

Breakdown by Variable 
Changed for Each Reason 

Revisions in Old Data 

DOLLAR -0.65 -0.09 0.01 -0.02 0.03 4.19 0.06 
SP500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DEFL 0.03 0.27 -0.37 0.05 -0.01 -1.58 0.11 
GNP -0.02 -0.13 -0.01 1.71 0.08 3.69 0.49 
MB 0.09 0.25 -0.12 -0.04 -0.68 -3.64 -0.88 
TBILL 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
CBI 0.00 -0.02 0.00 0.00 -0.01 0.18 -1.76 

Surprises in New Data 

DOLLAR -3.61 0.87 -0.04 0.01 0.12 3.16 0.45 
SP500 -0.30 -32.16 0.12 -2.75 -0.57 -57.16 -5.68 
DEFL 0.07 0.80 -1.50 0.29 0.00 -6.85 0.67 
GNP 0.00 0.02 0.00 -0.15 -0.01 -0.42 -0.04 
MB 0.00 0.00 0.00 -0.01 -0.06 -0.01 -0.06 
TBILL 0.02 0.48 -0.08 0.04 -0.05 -44.08 -0.24 
CBI 0.00 0.00 0.00 -0.19 0.00 -0.37 -2.43 

*The following order of variables was used to identify the model: DOLLAR, SP500, TBILL, MB, DEFL, 
CBI, and GNP. 



Table 2 

An Alternative Explanation of the 
Monthly Core Model's Revised Forecast for December 1988* 

Forecast Variables 

DOLLAR SP500 DEFL GNP MB TBILL 
(pctg. (pctg. (pctg. (pctg. (pctg. (basis CBI 
pts.) pts.) pts.) pts.) pts.) pts.) ($ bils.) 

Change in Forecast 

Breakdown by Reason 
for Change 

Revisions in Old Data 
Surprises in New Data 
Miscellaneous Factors 

-4.57 -30.04 -2.01 

-0.55 
-3.81 
-0.21 

0.27 
-29.98 
-0.33 

-0.49 
-1.50 
-0.02 

-1.09 

1.70 
-2.77 
-0.02 

•1.24 -101.88 

-0.59 
-0.58 
-0.07 

2.86 
•105.72 

0.98 

-9.61 

-1.97 
-7.33 
-0.31 

Breakdown by Variable 
Changed for Each Reason 

Revisions in Old Data 

DOLLAR -0.65 -0.09 0.01 -0.02 0.03 4.19 0.06 
SP500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DEFL 0.03 0.27 -0.37 0.05 -0.01 -1.58 0.11 
GNP -0.02 -0.13 -0.01 1.71 0.08 3.69 0.49 
MB 0.09 0.25 -0.12 -0.04 -0.68 -3.64 -0.88 
TBILL 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
CBI 0.00 -0.02 0.00 0.00 -0.01 0.18 -1.76 

Surprises in New Data 

DOLLAR -3.44 0.39 0.02 -0.02 0.14 22.44 0.50 
SP500 -0.31 -31.66 0.09 -2.67 -0.31 -101.64 -5.45 
DEFL 0.08 0.82 -1.51 0.16 -0.01 -7.18 0.61 
GNP 0.00 0.01 0.01 -0.22 -0.01 -0.43 -0.23 
MB 0.00 0.06 -0.08 -0.06 -0.40 -3.93 -0.59 
TBILL -0.14 0.39 -0.03 0.04 0.01 -14.95 0.01 
CBI 0.00 0.00 0.00 0.00 0.00 -0.03 -2.18 

*The following order of variables was used to identify the model: MB, TBILL, DOLLAR, SP500, GNP, 
DEFL, and CBI. 



Table 3 

Two Explanations of the Effects of New Data on 
the Wisconsin Model's Revised Unemployment Forecast for 75:4 

Complete 
Algorithm 

Simple 
Algorithm 

Change in Forecast 192.38 192.38 
(hundredths of a 
percentage point) 

Breakdown by Variable 
U.S. Variables 

GNP Deflator 18.96 18.54 
Business Fixed Investment 7.15 5.55 
GNP 143.56 140.06 
Monetary Base -2.40 -4.85 
3-Month T-Bill Rate -1.93 -3.11 
Unemployment -6.41 -4.70 
Exchange Value of the Dollar 3.09 5.29 
Standard & Poors 500 91.08 79.31 
PR28 28.54 46.42 
Nonfarm Employment 6.33 5.53 
Nonfarm Earned Income 0.25 0.50 
Other Personal Income -4.69 -5.08 
Retail Sales -0.15 -0.09 

Wisconsin Variables 
Nonfarm Employment -25.34 -25.19 
Retail Sales -1.47 -1.13 
Unemployment -67.60 -66.48 
Nonfarm Earned Income -0.38 0.16 
Other Personal Income -0.45 -2.61 

Miscellaneous Factors 4.26 4.26 


