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ECONOMIC STABILIZATION POLICY: A SURVEY

Introduction

This paper reviews selected studies in the theory of macroeconomic
stabilization policy and summarizes their key findings. Although this theory
still is relatively new, much has already been learned. It is the purpose of
this survey, then, to make the existing body of knowledge more accessible to
policymakers and students alike by consolidating it and presenting it in a
unified fashion.~’/

The problem generally posed in stabilization theory is to determine
values of policy variables which maximize an objective function subject to laws
governing the economy's motion. The arguments of the objective function, called
goal variables, are assumed to be certain aggregate variables, such as the
unemployment rate and inflation rate, and the motion of the economy is repre-
sented by a stochastic difference equation. Optimal policy is then derived as a
rule which describes how policy variables should be set based on current informa-
tion.

The validity of this seemingly straightforward approach to the policy-
making problem has been challenged based on recent developments in general equi-
librium theory. Robert E. Lucas, Jr., (1972) has constructed a general equilib-
rium model of the business cycle, and Neil Wallace (1980) has augmented that
model to allow open market operations. These models suggest that economic
stabilization policy may not be desirable.

In general equilibrium models individuals optimize and markets clear.
Policies can be evaluated according to the Pareto criterion, so there is no need
to posit an arbitrary policymaker objective function. And what is damaging is
that active stabilization policies do not in general yield Pareto optimal out-

comes in these models.
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Business cycles emerge in general equilibrium models by assuming the
economy is hit with uncorrelated random shocks which are transformed into serial-
ly correlated movements in output. The transformation can be due to costs of
adjustment, imperfect information, or changes in the capital stock.

While government policies may be able to smooth the cycle, they are
unlikely to make people better off, because people are assumed to be reacting
optimally to the underlying shocks. The role of government then becomes limited
to traditional concerns. Government spending and tax policies become concerned
with public goods and income distribution, and monetary policy becomes concerned
with the provision of fiat money and the structure of financial intermediation.

With this said, why then do this survey? There are at least three
reasons. First, stabiligation policy is being actively conducted today, and as
long as it is, it should be made as well as currgnt knowledge allows. Many issues
are debated still which this theory easily resolves. Second, even in the context
of general equilibrium models, some have speculated that fiat money would be most
useful if its stock were adjusted over time in order to stabilize the price level

around an announced path.g/

Thus, in this case the solution to a stabilization
theoretic model would be Pareto optimal. Finally, the studies in this survey
have applications outside the realm of stabilization policy. Much of the theory

of decision making under uncertainty was developed in the context of stabili-

zation poliecy, but this theory applies just as well to individuals and firms.

Organization of Text

A simple model is constructed which includes all surveyed models as
special cases. The simple model provides a standard framework for analysis and
makes the relationships among the surveyed models straightforward to ascertain.

All solutions are derived and described step by step.
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The text first discusses in general terms the assumptions of the simple
model and the method of solution. The solution next is illustrated in terms of a
certainty model. Selected models then are described and analyzed roughly in

order of their complexity. The models assume the following situations:

I. Random shocks to the economy with
A. As many policy variables as goal variables,
B. Fewer poliey variables than goal variables,
C. Multiple candidates for policy variables, or

D. Information lags.

II. Uncertainty about the effects of policy on goal variables, where the uncer-
tainty is
A, Inherent,
B. Inherent and characterized by long and variable poliecy lags, or

c. Due to estimation.

Summary of Findings

Tinbergen (1952) is usually credited with constructing the first for-
mal policymaking model. Tinbergen showed in a certainty setting how the poliecy-
making problem can be viewed as the reverse of conditional forecasting. 1In
conditional forecasting future time paths of policy variables are first assumed
and then forecasts of goal variables are generated. In the policymaking problem,
desired time paths of goal variables are first specified and then values of
policy variables are found which generate goal variable paths closest (in terms
of utility) to the desired paths. If there are as many policy variables as goal
variables and the economic model's system of equations is invertible, there exist
values of the policy variables which allow all the desired values of the goal

variables to be achieved exactly.
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Simon (1956) and Theil (1965) separately extended Tinbergen's model by
allowing uncertainty to enter in a very simple way. They assumed that the
economic model could be written as a system of equations, where each equation is
composed of a deterministic function plus a random disturbance term. This
implies that there is no uncertainty about the effects of policy variable changes
on goal variables and that the variance of goal variables is independent of
policy choice. They also assumed policymakers seek to maximize the expected
value of a quadratic objective function, which implies that policymakers care
only about the means and variances of goal variables. They found that the
optimal setting of policy variables in the current period can be determined as in
Tinbergen's certainty model with all random terms set at their expected values
conditional on current information.i/ The correspondence between their model
and Tinbergen's has lead to theirs being referred to as the Simon-Theil "cer-
tainty equivalence" model.

When new information becomes available, the whole problem is solved
anew to determine the optimal setting of policy variables in the next period.
Unless new information comes In exactly as expected, conditional means of goal
variables in future periods will change and cause the optimal setting of policy
variables to differ from the values expected on the basis of the previous
period's information. The fact that new information causes policy plans to
change carries a simple message to policymakers: Do not commit yourselves
unnecessarily into the future. If optimal policy requires reacting to new
information, it would be silly to announce time paths for policy variables into
the future and then stick to them regardless of surprises in the data.

The certainty equivalence models contain another important message for
policymakers: you must take into account how the current policy choice restricts

attainable outcomes in the future. In a special case when the number of policy
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and goal variables are the same and the model's system of equations is invert-
ible, policymakers can be myopic; that is, they can proceed one period at a time
and ignore the consequences of their current decisions on future choices. In
this case current decisions do not affect what is attainable in future periods.
Policymakers cannot afford to be myopic, however, when there are more goal
variables than policy variables. This more general case has been examined by
many, including Simon (1956), Theil (1965), and Chow (1972).

Policymakers generally have a choice about which variable to control.
Kareken (1970) and Poole (1970) studied in a one-period model how monetary
authorities should determine whether to control an interest rate or a monetary
aggregate. Their procedure is to determine optimal poliey first under one policy
control variable and then under the other. The decision on which wvariable to
control is made by choosing the one which, when it is set optimally, implies the
greater value of the objective function. The desirability of any policy must be
Judged in terms of how well it allows policy goals to be achieved.

So far we have discerned Just two types of economic variables: goal
variables and poliey control variables. Kareken, Muench, and Wallace (1973)
examined in a certainty equivalance setting the role of the remaining type of
economic variables--variables in a model which are neither goal nor policy con-
trol variables. The authors dubbed this remaining type "information" variables.
In general, differences in observed values of these variables from what was
previously expected provides information on how the estimated relationship be-~
tween goal variables and policy control variables has changed. Optimal policy
requires revising the settings of policy control variables based on the new
information in order to reflect the changed relationship. The important message
is that the discrepancies between the observed values of information variables

from their expected values provide information on which to adjust policy control
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variables. There is a loss associated with attempting to control an information
variable {(make it an intermediate target), because that procedure fails to take
advantage of new information.

Brainard (1967) added a second type of uncertainty to the policymaking
model of the previously mentioned studies. Brainard assumed policymakers are
faced with inherent uncertainty about the effects of poliey on goal variables as
well as with uncertainty due to random, additive shocks. When there is uncer-
tainty about the effects of policy, optimal poliey cannot be made myopically--
even when there are as many policy control variables as goal variables. That is
because the present policy choice restricts the attainable mean-variance com-
binations of goal variables in future periods. Nor can policy be made as in a
certainty equivalence model with all random terms set at their conditional means.
That is because the variances of goal variables now depend on the settings of
policy control variables, and that relationship must be recognized in making
policy. An important implication of Brainard's model is that the more uncertain
are the effects of policy on goal variablés, the less active poliey should be.
That is, policy should respond less to differences in desired values of goal
variables from values expected conditional on the historical average policy.

Some, such as Friedman (1969), have argued that due to long and vari-
able lags the effects of policy are so uncertain that it should not respond at
all to perceived gaps in goal variables from their desired values. Fischer and
Cooper (1973) analyzed the effects of long and variable lags on policymaking in
an extended version of Brainard's model. They found that as long as the variance
of policy lags is finite, some response to perceived gaps is warranted.

Chow (1975), Prescott (1972), and Zellner (1971) haved considered

models in which the uncertainty about the effects of policy is due to estimation
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error. As current values of policy control variables move away from their
historical averages, the variances of current period goal variables grow in their
medels-~just as in the Brainard model. But now the greater dispersion in out-
comes allows the relationship between goal and policy control variables to be
estimated with more accuracy, and this can lead to better policy in the future.
The implication is that it can be useful to conduct policy zllowing some "learn-
ing by doing." While the current economic situation may not be improved, in-
creased knowledge about how policy works could improve economic conditions in the

future.

A Framework for Analysis

Policymaking models are built from three classes of assumptions. The
first class of assumptions concerns the nature of the policymaker's objective
function, the second class concerns the specification of the economic process,
and the third class concerns the availability of economic information.

In all of the models discussed below it is assumed that the policymaker
maximizes expected utility, where utility is a quadratic function of certain
uncontrolled variables. The arguments of the utility function are called goal

variables, and utility at time 0 is given by

(1a) U(X1,X2) = -v1-(x1-§1)2 - VZ'(XZ-§2)2,
where
Xt is the value of the uncontrolled variable X in period t,
ﬁt is the target value of X in period ¢,
Vt is the weight given to the (squared) deviation of the goal var-
iable from its target value in period t, and the b period is

assumed to run from time t-1 to time ¢, t=1,2.5/

For concreteness, we can think of X as real GNP and X as, perhaps, potential real

GNP.
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A quadratic utility function is assumed for mathematical convenience.
In a stochastic setting it permits expected utility to be expressed as a function
of Jjust the first two moments of goal variables, and this is not the case with
more general utility functions. It is legitimate to ask, therefore, if this
assumption severely limits the usefulness of results derived from our policy-
making models. Although a definitive answer cannot be given, it is argued that
this assumption is of secondary importance.

The crucial feature of a quadratic utility function is that it has a
maximum or "bliss" point. If, for the time being, we suppose that V2 =0 in (1a),
utility is a maximum at X1 = %1. In other words, what has been called a target
value of the goal variable is really a bliss point for the utility function.
Utility decreases as X1 moves away from 21 in either direction.

If utility were a function of a variable such as real GNP, it would
seem reasonable to expect that more would always be preferred to less, and
quadratic utility would seem a poor assumption. However, there are at least two
ways out of this problem. First, it may be bliss is not attainable, so that only
the portion of the utility function for values of real GNP less than bliss is
relevant. In this case utility increases as real GNP increases but at a deelin-
ing rate, and the quadratic utility function is able to serve as a reasonable
approximation to more general utility functions. Second, it may be that we can
regard the quadratic utility function in real GNP as an approximation to a
general utility funetion which contains more arguments. Suppose, for instance,
that the policymaker's utility function depends on real GNP, denoted by X, and

the rate of inflation, denoted by m, and we assume only:

U = u(X,-m, where u is defined for X > 0 and 7 » 0, and

2
gy U, > o, Uqqs u22 < 0 and u,l.]u22 - U, > 0.



Now, suppose the policymaker believes there exists a trade-off between real GNP

and inflation given by:
-mT= g(X), where g'(X) < 0.

We can then write U = u(X,g(X)) = v(X). If there exists a real GNP-inflation rate
pair <§5;> which maximizes u(X,-1) subject to -1 = g(X), v(X) will have a bliss
point at § and might reasonably be approximated by a quadratic function.

In all but one of the models to be discussed below there is assumed to

be a single goal variable, so that utility at time zero can be written without

loss of generality as
o \2 S \2 5/
(1b) U(X1,X2) = =(X-X ) - Y(XZ'XZ) , where ye(0,%),=

For most models two cases will be analyzed. In the first case, Y = 0, the
policymaker cares about the effects of policy actions taken today on the outcome
for current real GNP only. In the second case, y # 0, the policymaker is
concerned also with the outcome for future real GNP.

The second class of assumptions underlying a policymaking model
concerns the specification of the economic process. For the models discussed

below the economic process can be written as a linear difference equation

(2) X = 61(t)°X

. + e>2('c)-Pt + 93(1:) t=1,2

t-1

where Pt is the value of the policy control variable in period t and 8(t) =

(61(t),62(t),63(t)) are values of coefficients in period t.éf Again, for con-
creteness we can think of P as the Fed's portfolio of securities.
The only restriction involved in writing this reduced form equation is

that the lagged value of the goal variable Xt— and the current value of the

1
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policy control variable P_ enter linearly in determining the current value of the

t
goal variable Xt’ Otherwise, the reduced form of any structural model can be
written in this form.

To give economic meaning to (2) it is necessary to place restrictions
on 6. These restrictions normally would be derived from theory and estimation of
the underlying economic structure. For most of the models described below,
however, the economic structure will not even be considered, and 0 will be
specified as a stochastic process with certain assumed properties. Each set of
assumed properties for 86 defines a class of reduced form models, and optimal
policy will be derived for each class. Any class of reduced form models is
consistent with a variety of economic theories. In the random shocks model, for
example, we assume 91 and 62 are known constants and 63 is a serially uncor-
related random variable with mean 53 and variaqce cg. The implied reduced form
model is consistent with versions of both Keynesian and classical economic
theories. Under the adaptive expectations version of Keynesian theory it follows
that 92 > 0, and in this case an activist poliey turns out to be optimal. The
natural rate-rational expectations version of classical theory, meanwhile,
implies 92 = 0, and in this case any deterministic policy is seen to be as good as
any other.

The generality of the reduced form models we consider is both a virtue
and a vice. On the positive side implications from these models have wide
applicability for policymaking. On the negative side none of the implications is
specific enough to provide a policymaker with numerical guides. That requires an
estimated reduced form.

A number of reduced forms can be consistent with observed economic time

series, but not all of them will be invariant to changes in the policy rule. In

the policy models which follow it is assumed that whether we think of 9 as a
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vector of estimated coefficients or a vector of "true" coefficients, the true
coefficients are independent of the choice of poliey rule. This assumption rules
out fully dynamic rational expectations models for which there do not exist
reduced forms having coefficients independent of policy rule.

The final class of assumptions underlying a policymaking model relates
to the kinds of economic data available and the frequency with which they are
observed by the policymaker. This class of assumptions is necessarily related to
the other two. Both the economic process and the policymaker's objective funec-
tion must be expressed in terms of observed variables. Any model of the economic
process estimated from observed variables could be generated by an infinite
number of models having a finer time dimension. That is, without further assump-
tions there is no way to identify even the reduced form of the economic structure
for time intervals smaller than those for which data are observed. Similarly, if
the policymaker's goal were to control the conﬁinuous time path for real GNP, it
would have to be recognized that the best which could be done is to control its
quarterly, observable path. The policymaker's preferences would then have to be
transformed and stated in terms of quarterly real GNP.

For all but the information lags model it is assumed that values of
economic variables for period t are known by the policymaker at the beginning of
period t+l. In the information lags model it is assumed instead that values of
some economic variables are reported more frequently than others.

The policymaking problem in each model we explore is to maximize ex-
pected utility (as of time zero) EOU’ subject to the assumed economic process and
information structure. This formulation of the poliecy choice problem under
uncertainty is motivated by Arrow's (1971) theory of decision making under uncer-
tainty. The maximizers are chosen from the set F of functions which indicate how

the poliey control variable is to be set each period based on information
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ayailable at the beginning of that period. Let It be the information (observed
values of economic variables over time) available at time t. Then the maximizers
to the policymaking problem <E1,§é> are inecluded in the set of paired funections
F = {<f‘l,f2>|f‘l:{IO} +>TR and f2:{11} + MR}, where R = (~»,) and f‘of arbitrary
Io, I1 we identify <P1,P2> = <f1(IO),f2(I1)>. Thus, for arbitrary values of
economic variables observed at time t-1, the optimal tth period policy rule Et
indicates how the policy control variable should be set in period t: Et =
£,.(I,_;) t=1,2.

For the models we explore, IO is a known vector and 51 = 51(10) is a
known quantity at time t:O.Z/ If the economic process is not deterministie, I1
may contain realizations of economic variables which will not be known (observed)
until t=1., In this case I1 contains variables which are random as of t=0. Since
52 = Eé(l1), the optimal setting of the policy‘control variable in the second-
period 52 is not known at t=0, even though the poliecy rule Eé is. Instead 52 is a
random variable at t=0.

Maximizing over the set of paired functions F is more general and thus
allows a wider range of policy choices than does maximizing over the set of
paired scalars {<P1,P2>|P1€IR and P2€IR}° Maximization over this latter set is
equivalent to maximization over the set of paired functions G =
{<g1,g2>|g1:{10} +1R, g2:{IO}-+IR}, and we identify P, = g,(I,) and P, = g,(I,)
for given Io.g/ It is straightforward to show that GC F.g/

A pair of functions <81,85> which does not make use of new information
is called a nonfeedback poliey rule, while a pair <f1,f2> which does is called a

feedback policy rule. The set G contains only nonfeedback rules, while the set F

contains both feedback and nonfeedback rules. Information has value when
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mix EoU = EOY(f1(IO),f2(I1)) > EOY(gl(IO),gZ(IO)) = mgx E,U

where Y(e,e)

U(Xl,XZ) with the substitutions:

tal
"

£ 61(t)'Xt_1 + Gz(t)°Pt + 63(t) t=1,2 and
<P1,P2> = <f1(IO),f2(I1)> or <g1(IO),g2(IO)>.

An interesting question which will be addressed subsequently is under what
conditions will f1 = g1?
The policymaking model can be stated formally as

Objective funection

2 2 2 [ ) - L ] -
(1 gaxP ~Eq [V, *(X,-X,) +EV,*(X,-X,) 7], where E_(*) = E( IIS) s=0,1
1052

subject to

Economic process

(2) Xe = 89()eX,_ +0,(t)eP + 63(t)  t=1,2

where for s=0,1 and t,t'=1,2

Stochastic specification

(2a) ES6(t) = E[e(t)IIs] = e(t)s,
(2b) ES{[e(t)-ESe(t)]'[e(t'))-ESe(t')]} =

E{lo(t)-Eo(©)] " [0(t")-Eo(t I |I_} = J(t,t7),

and 6(t)  and Z(t,t')s are known matrices, and where

Information structure

(3) Iy = <Xy Pg>, I, = <%;,X,,Pg,P >, and

o
|

X, = <X,;,> such that ie{1,...,n} and X;, is observed at t=1.10/
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The nested, conditional expectations formulation of the objective
funetion assures that optimal policy is being selected from the set of feedback
rules Pt = ft(It-1) t=1,2.

The pélieymaking problem in each model is solved using the Bellman
dynamic programming prineiple. This is an iterative technique which involves
solving backwards through time. In our two-period models the first step is to
maximize -E1{V2'(X2-§2)2} with respect to P, in order to obtain 52(11). The
intuitive idea here is that no matter what the economic outcome in the first

period, second~period poliey should be made to yield on average the best possible

second-period outcome. We can write

-E1{V2'(X2-X2)2} VB {(X,-E X 4B XX )]

-VZ'[E1(X2-E ) +(E X ‘Xz) ]

=X

L, 2 = 2.2
-V2°(0X +(X2-X2) ), where E.X e

> 172
Thus, based on information available at t=1, the objective in the first step of

the Bellman technique is to choose P2 in order to minimize a weighted sum of (a)

the variance(s) of the goal variable(s) in the second-period 02 and (b) the

X
2
squared deviation(s) of the mean(s) of the goal variable(s) in the second period

-] .
2-X2) . From the economic process, X, = 61(2) X, + 62(2)-P2

+ 93(2), and the above relationship we have:

from the target(s) (X

—E1{V “(X, X )2} = -v, {0 2+(x 2)2} = U,(P,,1,).

Maximizing U2(P2,I1) with respect to P2 for arbitrary I1 yields

~

P2 = f2(11) and we can write U2(I1) = U2(P2,I1).
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If I1 contains realizations of economic variables observed at t=1 but not at t=0,
UZ(I1) is in general a random variable at t=0.
In the second step of the solution optimal first-period policy is found

by maximizing -EO{V1'(X1-X1)2} + E0U2(11)’ with respect to P1 in order to obtain

P1 = f1(Io). Analogous to the first step, we can write

22 ~ 2 = 0.2 =~
-Eo{v1 (X4-X,) } + E0U2(11) = -V, (oX1+(x1-x1) ) + EOUZ(I1),

where the expectations and variances are conditional on IO'
function indicates, f1 is chosen with two considerations in mind. First, it

determines the first-period mean-variance combination of goal variables from

As the objective

those which are attainable, and this is captured in the term -V1'(c§ +(§1—X1)2).
1

Second, it may restrict the set of mean-variance combinations of goal variables

which are attainable in the second period. This effect is captured in the term

EOUZ(I1) if that term depends on P1. Maximal expected utility as of t=0 is then

. la) 2 ~ ~

the expression -EO{V1 (X4=X,) } o+ EqU,(I,) evaluated at P

1= £4(Tg)e

Certainty Model

In order to illustrate some of the concepts which have been discussed,
let us consider a two-period nonstochastic model with one poliey control variable

and one goal variable (n=1). Whether or not X1 is observed at t=1 is not

important, since knowledge of P, and X0 allows X, to be computed exactly. This

1 1
certainty model can be specified by equations (1)-(3) with

v

2
(v Y = 5

q
(2a) G(t)S = (61,62,63) (s,t)
(2b) Z(t,t')s = 03,3 (s,t,') and
(3) X, =X

1 1°
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By (2a) and (2b) we can write (2) as

Xt = e1xt_1 + 62Pt + 63 t=1,2 where 61, 62, and 63 are known.

The first step in the solution routine is to maximize ~YE1(X2-X2)2 or
equivalently -E1(X2-X2)2 with respect to P2 in order to determine P2 = f2(I1).

Since E.]X2 = X2, we have

2 2 - = - - 2.2
)© o= -E1(X2-E1X2) - (E. X =X.)° = -(e1x1+e P_+6.-X.)".

-E (X=X, 1%-%5 oPo+03-X,

Thus, maximization of -E1(X2-X2)2 with respect to P2 vields as a first-order

condition
The second-order condition for maximization is clearly met. Under f2 we have

~ — — ™ — A 2-
U2(I1) = -YE1(61X1+62P2+63-X2) =0,

indicating that for arbitrary initial conditionms <X1,P1>, £, allows the target

for X2 to be hit exactly and with certainty.

The second step in the solution routine is to maximize -EO(X1-§(1)2 +
EOGZ(I1) = -EO(X1-§1)2 with respect to P1. This is precisely the same maximi-
zation problem as in the first step except the subscripts are moved back one

period. First-period optimal poliecy is given by

X,-0,-0.X. .
3 1 "3 "170 _ =
P1 = —?—— = f'l(IO)’ (92150),
2
and for arbitrary initial conditions <X

O,P0>, f1 allows the target for X, to be

1

hit exactly and with certainty. Thus, maximal expected utility as of t=0,
= =3 = S\2
-E0(61X0+62P1+93-X1) , is zero.
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In the certainty model it follows that as long as §é # 0 the targets

for the goal variable can be hit exactly and with certainty period by period.

Since X1 = X1 with certainty, we can write

- X-'e'-’e'§ -
27737917 _

Py = —=—=—— =g,(I,).

5,

The fact that gZ(IO) = 52(11) for any observed pair <X1,P > is another way of

1

saying that new information has no value, and that is because the policymaker

knows with certainty the outcome for X1 given P1 and XO. Thus, at time =zero

optimal policy in this case can be described equivalently as a feedback rule

<E1,§é> or as a nonfeedback rule

A [ — A —_— —A

~ ~

<8118y = ’ .

In the special case where Eé = 0, one choice of policy rules is as good as any

other.
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I. Random Shocks Model

A, As Many Policy Control Variables as Goal Variables

We will now consider a stochastic model with one goal variable and one
policy control variable. The coefficients of the model are assumed to be known
with certainty, but serially independent random shocks to the economy cause there
to be uncertainty about the intercept of the reduced form. At the beginning of
each period, the policymaker observes the value of the goal variable in the
previous period. This is a simple version of Theil's (1965) first-period cer-

tainty~-equivalence model, and the meaning of Theil's label will soon become

apparent. R,
The random shocks model can be specified by equations (1)-(3) with
vV
2
(1) Y =T
1
(2a) e(t)s = (51,§é,§é) t>s
( 0 t£t' or t<s
3x3 =
i 0
0 i 5
(2b) Z(t,t')s = { _ i 0 , 03 > 0 t=t! > s
P2
\
(3) X, = X,.

Except for (2b) this specification is precisely the same as the certainty model.
Let us examine the solution to the policymaking problem in both the one-period
and two-period cases.

1.  One~-period horizon (y=0).

The problem is

~ 2 2 a2
(1) gax -EO(X1-X1) = -0X1-(E0X1-X1)
1
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subject to

(2) X, = 61XO + 62P1 + 93(1)

where by (2a) and (2b)

- .2
E063(1) = 63 and EO(G3(1)-63) = o3.

We have by (2)

(i) EOX1 = 91X0 + 62P1 + 63.

Substracting (i) from (2) we have

X, = E X1 = 93(1) -6

1 0 3
so that

.. 2 _ 2 _ =2 . 2
(ii) oy = EO(X1-EOX1) = EO(63(1)-63) = 03.

1

Substituting (i) and (ii) into (1) the problem is simply

s 2 - - -
(iii) gax =03 = (61X0+62P1+ 3
1

The first-order condition for maximization yields

5 8\2
"'X1) .

~  X,-6.-0.X
1 1 =
P30 (5 0.
3]
2
Notice optimal policy in the single-period random shocks model is
precisely the same as In the certainty model; the lone exception being that the
expected value of the random disturbance term in the former model replaces the
known value of the intercept in the latter model. That is a reason why the random

shocks model is sometimes called the certainty-equivalence model. More formally,

notice that in the single-period random shocks model the same optimal policy is
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derived whether we maximize with respect to P1, EOU(X1) = -EO(X1-;(1)2 or U(E0X1)
E-(EOX1-§1)2. It is this interchangeability of the expectations operator which
yields the certainty equivalence result; namely, that optimal policy in the
stochastic model is the same as in the certainty model with all stochastic terms
set at their conditional means. Sufficient conditions for the certainty equiva-
lence result to obtain in a one-period, n-goal variable, m-policy control
variable model are:ll/

a. Utility is a quadratic function of goal variables and policy control

variables.
b. The economic process is separable: Xt = R(Xt-1’Xt—2""’ £=1?

t_2,...) + W where R is any well-defined function and W is a random

Pt,P
P
vector conformable to X with finite mean and finite variance-

covariance matrix independent of P.

Maximum utility can be found by substituting P1 into (iii) which yields
EOU = '°§' This result can be interpreted as follows. For arbitrary P1 expected
utility as expressed in (iii) is the negative of the sum of (a) the variance of X1

which in this case is og and (b) the squared deviation of X, from the target X

1 1
which is (§1X0+5éP1+§é-§1)2. Notice the variance of X1 in this case is inde-
pendent of the setting of the policy instrument P1. Thus, the optimal value of
P, is the one which minimizes (b). The optimal value 51 sets the expected value
of X1 equal to its target so that (b) is zero and the negative of expected utility
is equal to the irreducible variance of X1, °§'

Let us now turn to the two-period case.
2. Two-period horizon (y#0).
The problem is

2.2 2,2
(1 le)laxP —Bq [(X,=X )" +yE, (X5-X,)7]
1772
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subject to
(2) X1 = 61X0 + 62P1 + 93(1)
Xy = 81Xy + 0P + 05(2)
where by (2a) and (2b) for s=0,1 and t > s, ESG3(t) = 55 and
0 Tt
E (9 (t)- 9 )(G (t*)- G ) =
3 2 t=t'.

03
By the Bellman prineciple P2 is found by maximizing ayE1(X2-X2)2 with respect to

P2 subject to X2 = ERX + 6 P + 6 (2). But this problem is precisely the same as

the one-period problem with the subsecripts moved up one period. Thus, we have

~ X,-6,-6.X
p,= 2211 (5 40
€
2
and
~ - w2 2 321 _ 2
U2(I1) = -y {OX2+(9 X +9 P +63—X2) } = -YG3.

Note that 52 is a random variable as of t=0 since its value depends on X1, and X1
is a linear function of the random variable 63(1). However, 62(11) is not
random. It is a known constant independent of P1. Thus, in the second step of

the solution, optimal first-period poliey is found by maximizing with respect to

P

or equivalently by maximizing with respect to P1

2 ~
=0y - (E X.-x )2
subject to

X, = 8,X, + 8,P, + e3(1).
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Again this is the same problem as in the one-~period case so that we have

and

~  X,-9.-0.X _
P1 = ‘—1—%——1—9 (62?50)
7

s .\2 ~ 2 2 2
‘EOU = =Eg (X=X )7 + EU,(I,) = -03 - Y03 = —(1+Y)c3.

Note the following:

(a)

(v)

Optimal first-period policy 1s independent of second-period para-
meters. In this ﬁulﬂiperiod random shocks model with as many policy
control variables as goal variables, policy can be set myopically.
That is, optimal policy can be made each periocd by ignoring future
periods. In our example at time t=0, 51 could be found by maximizing
-EO(X1—;(1)2 with respect to P, subject to X, =‘§1X0 + 6éP1 + 93(1). At
time t=1 the optimal value of P2 could be found by maximizing
-E1(X2-;(2)2 with respect to P, subject to X, = §1X1 + §éP2 + 6,(2).
Thus, the policymaker need not consider the consequences in future
periods of the present policy choice.

Optimal first-period policy can be found by the first-period certainty

equivalence method, that is, by maximizing with respect to P, and P

1 2

5 1\ 2 S \2

subject to (2). The maximizers to this problem are

= - X,-6,-6,X
P, = g, (1.) = 1 i 10
1 1'70
6>
. % -8.-5.E X
_ . 2 737170
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In this model we obtain the first-period certainty equivalence result; that is,
optimal first-period policy is the same whether we maximize with respect to P1
and PZ’ EOU(X1,X2) or U(EOX1,EOX2). Hence, in the random shocks model 51(10) =
é1(Io). Sufficient conditions for the first-period certainty equivalence result
to obtain in a T-period, n-goal variable, m-policy control variable model are:lg/

(i) Utility is a quadratic function of dated goal variables and dated

policy control variables.

(ii) The economic process is given by: X = RP + U, where

X X1t P P1e
X =1 X_ kX =1 . P =1 P P, =%t . I;
nTx1 .t t . ’ mTx1 .t t . ’
. nx1 . mx 1
XT Xnt PT Pmt
1 Mg
u:u;u:.;
nTx1 .t t .
. nx1
Up L

U is a vector of random elements with finite mean, finite variance-

covariance matrix, and distribution independent of P;

Ry 0...0

R =| R R.. ..0

nTxmT ?1 22 .
Rpq  RBpp o o Bpp

R is a lower triangular matrix of fixed and known coefficients, and the
Rij submatrix is nxm. The assumed form of R indicates the outcome for
X in any given period is independent of the choice of P in fubure

periods.
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B. More Goal Than Policy Control Variables

This model is a simple variant of the previous one; the only difference
being there are now two goal variables instead of one. With more goal variables
than policy control variables, the policymaker faces contemporaneous trade-offs
among goal variables as well as trade-offs over time. It is no longer optimal to
make policy myopically.

This model can be specified by equations (1)-(3) with

(1) Uy = (g5 Ty = (V45,755)
o 990 843 Bqy ®1R
(2a) e(t)s = (61,62,63) = o _ = _ t>s
O By B3 By \Oop
(2b) Yt = E B (8,5(t")=B5,0,p (1) -0 p)
PSR AN IR WNC R
= t > s
loq (8t g Tppltatt)g
( 0 t#t! or tgs
/0 g 0o i
P2
0 i 0
i o

X

(3) X, = < ”),
X
21

where use has been made of notation in footnotes 4, 6, and 10.
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Let us suppose X1t and X2t are the rates of unemployment and inflation,
respectively, at time t and make the substitutions Xt = X1t and Ty = Xét'

Similarly let r, = V1t and dt =V We can then write our model as:

2t°

(1) gaxP -Eo{r1(X1-X1) +d, (m=T,) +E1{r2(X2—X2) +d, (T,-T,) 1
1772

subject to

(2) X = 899%goq + 0438 + 84y (1)
t=1,2
where by (2a) and (2b) for s=0,1 and t > s
ES ‘ B _
and
E (8,3 (E")=0.4} 90, (E')=0,y)
s - 14 142 Y2l 24
0 t£t!
- O'?u 0 ) t-_-t'
2
0 Ooy

We will again look at solutions to both the one-period and two-period cases.
1. One-period horizon (r2=d2=0).

The problem is to maximize with respect to P1

1) By (r, (%, -E,)ud (1)) =

2 2 o\2 ~
-r1cx1 - d1cﬂ1 - r1(EOX1-X1) - d1(Eoﬂ1-ﬂ1)

2
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subject to

(2) X, = 611x0 + 513P1 + 8y, (1)
Ty = 5é2ﬂo + §é3P1 + 8,5, (1)
where
8y,(1) [ 81y (181 _ _
Eq 6o (D = % and E 6 (15 (81 (1)=8,y5 065, (1)-65y)
2, o
0 o5
Thus, we have
EgXy = B19%p + 843Py + By
0% = By(X,-EjX)% = Ey(0,, (15,02 = o,

1+ Oy

2 | 2 _ = 2
Oq = Eolm=Egm )™ = Eg(6,,(1)-85)

2
Oou»

and our problem is simply to maximize with respect to P1

2 2
“roqy - d1024 -r, (9,.% +e P +914-X ) d (®.

11508134 22“0*923P1+924‘“ ).

The first-order condition for maximization yields

5 . 3(X =811 %=1y )+, 8,55 (M, =85 m=By,)
17 -2 -2 .
1613+d 823
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The terms in parentheses represent deviations of the unemployment rate and infla-
tion rate from their targets which are expected conditional on P1 = 0 (i.e.,
conditional on policy being set according to historical trend). In the random
shocks model, when there are as many policy control wvariables as goal variables,
optimal policy totally closes the gaps between the expected values of goal
variables and their targeted values. When there are more goal variables than
poliecy control variables, all the gaps cannot be closed. The expression above
for 51 indicates that optimal policy is a linear combination of the policy which
totally closes the unemployment gap and the policy which totally closes the

inflation gap, where the linear weights depend on the relative importance to the

policymaker of hitting each target (r1,d1) and on the relative potency of policy

in affecting the goal variables (513,§é3). That is, let
~  X=0441%5-04y
P, =
X 8
13
and
I e
- ?
m E)
23
so that
and
Eg(my|Bp) = mq = BppMg + B3Py + By = 7y = 0.
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Optimal policy 51 can be written as a linear combination of PX and Pﬂ:
P1 = aPX + (1—0L)P'n_,
where
=2
. - r1613
T =2 -2 °
r1843+d4053

Maximum utility is found by substituting P1 into (1) and by noting

B(X,|P,) = B, %, + @13(u§X+(1-a)§ﬂ) + By
= Byq%g + BygPy * Oy + (1-00F (B )
= X, + (1-0)8, 5 (B -Py)
and
Eo(n1l;1) = Eézﬂo + §é3(agx+(1—a);“) + 5é4

~

= 8oy + B3P + Oy + @8y5(Py-P)

A

'ﬂ'-l + a623 (PX-P']T) ?

which yields

ryd,

~ 2 2 = 35 y.w
Bol = =TqOqy = &40y = {5 ——5 | (B3(X4=844%p=8yy)
r.0,,+d

1913%d4853
m B (Ta BB )2
13 M"Y Mg~Voy /7«

Thus, in addition to the loss in expected utility caused by the irreducible
variances of the goal variables, there is a loss caused by not being able to set

the expected values of both goal variables at their target values.
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This model satisfies the conditions for certainty equivalence--note on

page 26 that c; and cﬁ are independent of P1--so that optimal policy also can
1 1
be found by:

' — ~ 2 — N 2 _ — —
1
subject to
(2a) X = 094%, + 913P1 + 84y
(2b) Ty = Byplg + B3Py + By,
where () = EO('). Solving for P1 in (2b) and substituting the expression into

(2a) yields a linear Phillips curve:

9..6 %..06.
T .13 = ry 322 = 13728\ _ Lo
(2") X = 5 M* 911% - 5 o+ | Oy - - = Fmy3Xg,m).
23 23 23

Any point on this Phillips curve can be attained with an appropriate choice of

P1.
For U(f1,F1) = -Ko < 0, an indifference curve is a rectangular ellipse
with center <X1,ﬁ1>. Thus, in the'f1 - i} plane we have the following (assuming

~ A

<X;,m> is southwest of F):

Figure 1
Optimal Poliecy in a One-Peripd_MQQel

X i\

Ko K >Kl>K2>O

F(wl; XO’ ﬂo)

bd
HI!N
o
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Optimal policy can be found by maximizing U(i1 ,-1-1-1) with respect to <.}-(-1 ,F1>

subject to (2') and then by substituting the maximizing value of T,--call it

1

% — -
n1--into (2b). The maximizing values of X1 and T, are located where an indif-

ference curve is tangent to the Phillips curve.

2. Two-period horizon (r2¢0 and/or d2£0).

The model is stated on page 25.
by maximizing
S \2 ~ 2

with respect to P, subject to

2

3
1

= 8qqXq + 093P + 8,(2)

and

Ty = OppTy + B3Py + 0,,(2).

By the Bellman principle P2 is found

By our one-period model we know the solution to this problem is:

_ To013(%p=014%, =04y )+0,053(My=0,5m1 05y )

P
2 2 =2 d
r5813%92023
and
r.d
~ 2 2 245 R —
Uy(Iy) = =ryoqy = dyogy - 32 0P (8,5 (X5-041%1=01y)
2713%%Y23

—_ N~ —_— 2
= 0,5(my=8,,m =0, )"

(This is the one-period solution with time subscripts moved up one period.)

Optimal first-period policy is found by maximizing with respect to P

1

-EO{P1(X1-X1) +d (M=) }+ EU,(I)
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subjeet to

X, = 81%g + 613P1 + 91u(1)

and

T = BapTp * Op3Py + O (1)

Notice that E052(11) is a function of P1, so that optimal first-period policy
must take into account effects of P1 on the attainable set of future unemployment
and inflation rates as well as on the trade-off between unemployment and infla-
tion in the current period.

Substituting from the constraints, we can write the objective function

as:

) > 2 = .= . = A2
EOU = -(r1+r2)01u - (d1+d2)02u - P1(911X0+913P1+614—X1)

— — — ~ 2
= 43 (Bpmy+0,P 46,y -T,)

8- _+d. 0. T4

r,d
2% 2. 2,2 w2\ .2, 2 = 2 _
) <r"2 2 ) S IAT4C (T 487 ) +D% (0548, ) 4248
2913+92%3

= = = = = 2,2
+ 2AD62u+2CD61492u]+2B(A+Ce1u+D624)P1+B P1},

where
A= 0,0(X,-62,% 8.,) = Bro(T =027 -8 )
= 03(X5=001X5=04y) = 043(my-055my-0,y
B = 813053(0,5-8¢4)
C = -611923
D=79,8

13722°
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Differentiating EOU with respect to P1 and setting the expression equal to zero

yields:
1 2 s
913+d 623+R-B
where
_ rods
RE == 2 |
Pa013+d50,4

and

E =4+ CGM + Dezu

No attempt is made to evaluate EOU; however, it is instructive to

compare the optimal poliecy P1 to the best myopie policy P?:

m T 913(X -814%, 91u)+d 623(1T BnMy=6,y)

1 - L ]
r'1913"“11923

P

The two policies are the same whenever R or B are zero. R is zero if either of
the second-period discount factors, r, or d2, is zero. But if either of these is
zero, the policymaker has only one goal variable in the second period, and the
choice of first-period policy in no way restricté his ability to hit the second-
period target. B is zero if either 513 or §é3 is zero or if 6}1 is equal to §é2

If 6H3 or 6é3 is zero, poliecy has no effect on one of the goal variables. The
policymaker need only concern himself with the goal variable which he can influ-
ence, and we are back in the situation of having as many poliey control variables

as goal variables. When B is gero because 511 is equal to 5?2, first-period
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poliecy does not affect the attainable pairs of unemployment and inflation rates
in the second period. In all other cases where RZ0 and BZ0 there is a loss in
expected utility caused by neglecting the effect of first-period policy on the
attainable set of unemployment and inflation rate pairs in the second period. In
other words, there is generally a welfare loss in following a myopic policy.
These results are, perhaps, better illustrated under the certainty
equivalence method of solution. Optimal first-period policy can be found by

maximizing with respect to P1 and P2

=z £ .2 T 2.2 - 2
(1) UEO(X1,X2,H1,n2) = -r1(X1-X1) - r2(X2-X2) - d1(ﬂ1-ﬂ1)
— ~ 2
= U(X1,§é,ﬂ1,ﬂ2),

where (*) = EO(') subject to

(2a) X1 = 611X0 + 613P1 + 614
-— _2 — — — — — —
(2b) Xy = 671Xg + 09¢043F¢ + 09409y + 03P, + Oy
(2e) M = B,5Tg + 623P1 + 0,y
(20) Ty = ol * OppBngPq + Bpobpy * paPp * B
5 = OpoMg *+ 855053P¢ + 65505y + 03P, + Oy

Let us write

(1) U(X X5 Mgy My) = U (X, ) + Uy(Xy,m,)

where

.7 2

— ~ 2 — N
-rt(xt—xt) - dt(ﬂt-ﬂt)

is the tth-period utility mapping. Substituting for P1 in 2a and 2¢ and combin-

ing equations, we derive a linear first-period Phillips curve:



?__3_

S5

8198, _ 8,50
11%2 fo _ %13%
= 0 T T

8,5

(3) X

Gﬂ
39

1

w
[<>]

N

w

1_
=F (n1;XO,ﬂ0).

Similarly, by substituting for'.P2 in 2b and 24 and combining equations, we derive

a linear second-period Phillips curve:

) 9,.6..08
= f3- 11913020 93\ - - —
() X5 = 3 T2t ©11% - 3 ot {3 (841-055)m4
23 23 23
_ 13 Sy
853

_ - 13/
=2 (ﬂz, 0’“0’"1) 13

Notice the location of the second-period Phillips curve is affected by the first-

is zero

period policy choice by the term for'ﬁ1. The effect is zero only if 533

or if 511 = @éz
Optimal first-period policy can be found by maximizing

(11) U1(§1 E ) + U (X2,‘ﬂ2)

with respect to X1, w1, X2’ Eé subject to (3) and (4), and then by substituting
-
the maximizing value of ﬂ1——ca11 it ﬂ1--into 2c. (See figure 2.) The maximizing

values of the policy control variable found by this method, P1 = g1(IO) and 52 =
gZ(IO)’ are related to the optimal feedback policies P, = f1(IO) and P, = f2(I1)

~

7 = P1 and P2 = EOP2 That is, the certainty equivalence solution is a

by P
nonfeedback policy which sets the policy control variable in the first period at

the value implied by the optimal feedback policy and in the second period at the
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~

expected value of the optimal feedback policy. Since P2 is a unique maximizer to

~
~

the policy problem, P2 is optimal if, and only if, P, = 52; that is, if and only

2
if

~
~

2 = Py = 0 (Xy-EgXy) + (M -Egmy) = 0, (see page 30)

!

)
[}

where

5, = —2%11%13 _ 5 = 2722%3
15 =% = by 25— 5
r5813+d50,3 r2813+d58,3

~

Thus, 52 is optimal, if and only if, the realized values of the goal variables in
the first period are exactly as exbected or the forecast errors weighted by ¢1
and ¢2 are exactly offsetting. Either of these events has zero probability of
occurring, so in general, the certainty equivalence solution requires tha§
second-period policy be revised based on new information according to the formula
for Eé - ;;. (See figure 3.)
An algorithm for finding the certainty equivalence solution involves

the following steps:

(1) Based on information at time t=0, generate the set of all feasible
1:P5>e
(2) From the set of feasible forecasts, choose the most desirable:

forecasts over the entire horizon conditional on poliecy sequences <P

Y% TE Y% TTE
<X1,ﬂ1,X2,ﬂ2>.

(3) The optimizers in (2) imply values for the policy control variables

~ ~ ~
=~ ~ =~

<P1,P2>. P1 is optimal (=P1).

(4) When the second period comes, information is received on the realized
values of X1 and e Based on this new information, generate the set of all
feasible forecasts in period two conditional on P2.
(5) From this new set of feasible forecasts, éhoose the most desirable:

<i§*,§§*>.
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~
~

(6) The optimizers in (5) imply a value for P --call it Eé. P} is optimal

(=P2)'
This solution method easily generalizes for models with more than two
periods.:
Figure 2
Optimal First-Period Policy in a Two-Period Model
= A\
A N
X N\
AN
Constant levels of Ul \\Constant levels of U2
P*
1
7]
-
~ , > (M5 Xns Ty o)
Xl : X2 2 0 0 1
[ _ y L
! F(']Tl; XO, 'TTO) { (Trz; XO’ "0, 'nl)
! . ~
: —— > —
o S T,
’ﬂ'l l 11'1 'ﬂ'l

Note: Expectations are conditional on IO' Constant levels of utility, defined

by Ut = --K0 > 0 t=1,2, are rectangular ellipses centered at <7

/K K

~ 0 > 0

T, + [=—and X_ + [—.
t dt t re

~ ~

The solution <§1,P2> maximizes U1 + U2, while P? maximizes U1.

t’xt> with poles
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Figure 3
Optimal Second-Period Policy in a Two-Period Model

Note: For F2 expectations are conditional on IO, while for F1 they are condi-
tional on I1.

c. Multiple Candidates for Policy Control Variables

Policymakers generally have a choice of poliecy control variables:
they can choose to control either a quantity or a price. The Federal Reserve,
for instance, can set the quantity of securities in its portfolio and 1let
interest rates be determined by the market, or alternatively it can set the value
of an interest raée and let its portfolio be market determined‘li/

When there are multiple candidates for policy control variables, the
policy problem becomes more complicated. Its solution is still a rule, but one
that specifies for each period both the choice of policy control variable and the
value at which it is to be set--all as a function of information at the beginning
of the period. The solution can be found as before by applying the Bellman
principle, but for each period the economic process now is presented by one of
two reduced forms. If a quantity variable is controlled, the economic process
will be represented by one reduced form. And if a price variable is controlled,

it will be represented by another.

A
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The problem generally can be solved as follows. For the last period of
the policy horizon, expected utility, conditional on information available at
the beginning of the period, is maximized assuming first one choice of policy
control variable and then the other. The solution to each maximization problem
is a rule which describes how a given candidate for policy control variable
should be set based on information available at the beginning of the period.
Under each rule expected utility can be expressed as a function of initial
information. The candidate for policy control variable which implies the
greatest level of expected utility when set according to its rule is the one
which should be chosen. In general, this choice will depend on initial condi-
tions, that is, values of variables in the previous period.

Following the Bellman procedure, the solution routine is repeated for
the period preceding the final period. And so on, until we reach the first
period. In any given period, we solve for the optimal rule for each candidate
for policy control variable. The rule which implies the highest 1level of
expected utility indicates which candidate should be chosen. The choice, in
general, depends on initial conditions.

To illustrate these concepts we will consider a one-period, one-goal
variable, one-policy control variable, random shocks model. In this model the
choice of policy control variable does not depend on initial conditions. This
means that if the horizon were extended, the choice of policy control variable
could be decided once and for all for all periods, and the optimal policy rule
would be as desecribed in IA.

Suppose the economic model in structural form can be writtenli/

- br, + &

(I8) Xy = aky_q - bry + e
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(equilibrium in the goods market where X is income, r is the interest rate, and

the underlying demand schedules for consumption C and investment I are given by

(a) Ct = aXt_1

and

(b) I

-br‘t + €t)
(LM) r, = AXt - BMt + ut

(equilibrium in the money market where M is the stock of money and the underlying

demand schedule for money is given by

A 1 1
Mo = 5% - Bft * BW)-

All coefficients are assumed to be positive. The random disturbance
terms are assumed to have the following first and second moments:

2

' 0’ . € '
E:t_ 1t Ue Geu
ES = ’ ES (et,ut) = ' 2 | b
0
l-lt Ut \ O'su Gu

where oi > 0 and gi >0 for s < t.

The policymaker's objective is to maximize

T \2
(1) EOU = -EO(X1-X1)

subject to (2) the economic process and (3) available information XO' If r is
the policy control variable, (IS) is the reduced form of the model, and we can

write the economic process as
(2) X = 09(8) X 5 + 0,(8)er, + e3(t)

where
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(2a) e(t)s = (61,§é,§é) = (a,-b,0) t > s,
and
(0. . t#t' or t<s
3x3 =
N
4 0 E 2 2
| - 1 - -
(2b) Yt t ds= A .%“9"~- ;03 =0_ >0 t=t' > s.
P2
°© 0o
|

From the results in IA we know that the optimal rule for r is given by

~ X1—63-91XO _ X1-aXo
r = = -b

1 —
95

and expected utility under this rule is given by
EOU(r) = -0§ = -Oi.

If M is the policy control variable, the reduced form of the model can
be derived simply by substituting the expression for ry from (LM) into (IS) to

yield

Bb

:
X = -1+ (TmpMe + (Tamp) (SgPMy)-

a
v = (TappX
Thus, when M is the policy control variable we can write the economic process as

(2) Xp = 01(8) Xy 4 + 05(t) M, + 61(t)

where

- ! Bb 1
8'(t) = (03(£),83(8),05()) = (3o, 130 () (ep-buy)),

( a Bb
1+Ab? 1+4b?

(2a) 87 (t)_ = (6;,65,65) = 0) t > s,

S
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and
. :
03x3 tii or t<s
i1 0
o i
() I, = < i o L0250 tat? 5 s,
P 2
0 0 i 03

\~

The residual variance cg' Es(eé(t)-eé(t))2 = Es(eé(t))2 (s<t) in terms of the

structural disturbances is given by

1 2 _, 1 2.2 22
Es[(T:KE)(et_but)] = (TIKE [08-2b08u+b Gu].

Again, from IA we know that the optimal rule for M is given by

X1— 3-6{X0 _ (1+Ab)X1-aXo

~ 1
M, = =
1 B Bb
and expected utility under this rule is given by

~ 2, _ 1 2.2 22
EqU(M) = ~03" = -(—-—1+Ab) [U€-2b0€u+b Gu]'

Thus, the interest rate should be the policy control variable with value set at

~

r1 if and only if

EOU(r) > EOU(M) <=>

2 1
(*) ‘Ue _>__ "'(1+Ab)

2

2 22
[Ge-ZbUép+b Gu]-

If this inequality is not satisfied, M should be the policy control variable and

its value should be set at M1.
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Notice that the slope of the goods market equilibrium curve

(Ar wrt AX) S1g is - % and that the slope of the money market equilibrium curve

(Ar wrt AX) s A. We then can rewrite the expression (¥) as

LM 1s

EOE(P) > EOG(M) <=>

1 )2

2 2 2 2
oo < ( [s +28..0 +G 1.
€ = 'S;y~S1q 1°7°%1s €l U

Thus, the choice of policy control variable in this example depends only on the

slopes of the market equilibrium curves and the variances and covariances of the

structural disturbance terms; it does not depend on initial conditions XO'
These results can be simply illustrated. Suppose r is the policy

control variable:

Figure 4
'~
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When r is fixed, random shifts in the investment schedule of magnitude g, cause
corresponding shifts in the IS curve and, thus, in equilibrium income. The
expected squared deviation of income from its target given r, is then E(e?) = 02.

Now suppose M is the poliey control variable:
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Figure 5
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rl/\ Y 171
1
~N
~ N
LST) Sl
]
H
N N
4 : } AN
i 1 i IS >
X~ (e, -bu) X X+ (e mbu.)
17 \Tap” (817PY) Xy XH(Egp) (b X

When M is fixed, random shifts in the investment schedule of magnitude €, cause
corresponding shifts in the IS cl;lr've as before. However, a shift in goods
demand, say an increase, now causes money demand to increase and the interest
rate to rise. This interest rate change moderates the effect on income of a
random disturbance to investment demand. On the other hand, when M is fixed the
interest rate can change also because of random disturbances to money demand.
This type of disturbance then results in a change in equilibrium income, whereas
it would have no effect if r were fixed.

As (*) and the diagrams illustrate, with everything else equal, the

2 2
" to cs),the more

larger the variance of the LM curve relative to the IS curve (o
likely r is a better choice of poliey control variable than M. Similarly, the
smaller the slope of the LM curve relative to a given slope of the IS curve, the

more likely r is a better choice than M,

D. Information Lags

The models examined so far assume that at the beginning of each period

policymakers receive a complete set of information on the economic outcome in the
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previous period. Rarely in real life are policymakers so fortunate. The FOMC,
for example, observes goal variables such as real GNP, the consumer price index,
and the unemployment rate less frequently than financial variables such as
interest rates and monetary aggregates.

How then should the FOMC or other agencies set policy when they have an
incomplete set of information? The answer is the same as before. The settings
of policy control variables should be based on the most recent observations of
economic wvariables--no matter how incomplete that set of information is.
Policymakers should not, as some have proposed, set target values for frequently
observed variables which are not goals of policy.lé/

We will consider a two-period, one-goal variable, one-poliey control
variable, random shocks model.xl/ We will assume that the economic structure is
given essentially by the (IS) and (LM) curves in IC and that the interest r-atg
has been shown to be the preferred policy control variable. This model differs
from the two-period model in IA only with respect to the information assumption.
In IA we assumed that the value of the goal variable in the first period X1 is

known by policymakers at the beginning of the second period. In the present

model we assume that policymakers do not observe X1 at that time but do observe

M1.
Our model can be written
(1) U= ~(x,-%)% - y(x,-%,)%,
(2.1) Xp = 01(8)eX, 4 + 0,(8)er, + 85(¢)
(2.2) M o= v ()X, + vy(t)er, v3(t)
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8(t) 01(t) 8,(t) 85(t) 8, 0, 85
(23) E = E = t>s
S S o
v(t) v1(t) vz(t) v3(t) v, Vs v3
(8(t)-E_B(t))"
(2b) E (e(t')-Ese(t'),v(t')-Esv(t'))
(v(£)-E_v(£))"

Lot,t) Lo (e,

m

= 0 tétT or t¢s, and for t>s
Tog(tat™) L (t,8M

ze(t,t) =

o
o

]
o
1
e o o e e
o o

(3) IO = <X0,M0,r0>, I1 = <I ;M ,r.>.
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Under this certainty equivalence, one-goal variable, one-policy
control variable setup, we know from IA that in solving for optimal policy we can
ignore variances and can proceed myopically. Thus, optimal policy is found by

setting EOX1 = X1 and E1X2 = X2. For the first period we have

EOX1 = 91XO + 62P1 + 93 = X1 =>

~ X1-91X0-93
I‘1 =S

62
For the second period we have

E1X2 = 61E1X1 + 62r2 + 63 = X2 =

~ X2-61E1X1-3§

r
2
%

Note that if I1 includes X1 as in IA, then

E,X, = B(X,|I,) = X,

~

and the expression above for r, is the same as before.
In the present model we must forecast X1 conditional on observations of

Xy, ;1, and M,. From (2.1) we have
E\X; = 04Xy + 6,0y + E(63(1)|X0,r1,M1).

Since 63(1) is distributed independently of XO and rq, we need to determine
E(e3(1)|M1). This is the standard prediction problem, and by the orthogonality

principle we have that

eovo(e3(1),M1)

var'oM1

E(65(1)-Ep05(1) [M;-EgM,) = *(M,-EyM,)

where
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and

2
varOM1 = EO(M1'E0M1) .
From (2.2) we have
M1 - E0M1 = v1(X1-E0X1) + (v3(1)-v3),
which from (2.1) can be written
M, - E0M1 = v1(63(1)-93) + (v3(1)-v3).

Thus,

covo(63(1),M1)

= Vv 02 + O
© 7170 v
and

— 2
var'OM1 = EO(M1-EOM1)

- ~ = 12
Bo (¥, (83(1)-83)+(v3(1)=¥3)]

-2 2
V1%

+ 2V10'ev + cv.

We then have

— —_ 2 —_ -—
ViEg(85(1)=8)% + By(85(1)=83) (v5(1)=¥,)

E(83(1) [Xg,ry,M) = B3 + E(05(1)-65[M,-EgM,)
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- 2
V,0a+0
- 170 -0v
= 93 + ;2 5 2 (M1-EOM1)
109 1°9v o'v
= 63 + X(M1—EOM1)

and

E1X1 = [91X0+62r1+ 3] + [X(M1-E0M1)].

The forecast of X1 conditional on I1-—E1X1--is simply the forecast of X1 condi-

tional on IO--e1XO+92r1+e3-—plus an update term--k(M1-EOM1)--whlch is a constant

times the prediction error in M1 (defined as the actual value of M, less the value

1
predicted at the beginning of the period).

We can now substitute our expression for E1X1 into the expression for

r. to obtain

2
~ X4 181Xg+0,r +63+A (M -EgM )1 -5
2 s
2
:f. 0'2+0'
. == = > FA\NAE = 176 “ov
X5=61(0, X+, +83)-05-0, %2 = 5 | (My=EgMy)
_ 199%“V10gv* Oy
7
As long as 61 # 0 (current income is related to past income) and not
both ;1 = 0 and oev = 0 (not both income elasticity of money demand is zero and

disturbances to goods demand and money demand are uncorrelated), the expression
above indicates that the prediction error M1 - E0M1 should be used as information
in setting ;2, and hence, M is referred to as an information variable. Note that

optimal policy is not to set r, so that E.M, = EgMp Or» in other words, to make M

an intermediate target.
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II. Stochastie Coefficients Model

We will turn now to models in which uncertainty about the economic
structure plays an integral part in policy formulation. In the random shocks
model uncertainty could essentially be ignored: optimal poliecy in the current
period could be found by setting all stochastic terms at their means (conditional
on current information) and solving the resulting deterministic maximization
problem. This certainty equivalence result followed from two properties:

1. Expected utility depended only on first- and second-order moments of
goal variables.
2. The second-order moments of goal variables were independent of set-
tings of policy control variables.
Certainty equivalence does not extend to stochastie coefficients models, how-
ever. In these models the second-order moments of policy goal variables do
depend on settings of policy control variables.

A. Inherent Uncertainty About the Effects of Policy on Goal Variables

We will consider a model with one goal variable and one poliey control
variable. As before, serially independent shocks to the economy cause there to
be uncertainty about the intercept of the reduced form. However, we will assume
now that there is also uncertainty about the value of the coefficient on the
policy control variable. The distribution of the coefficient is assumed to be
known and to be invariant over time. The invariance assumption precludes that
the coefficient uncertainty is due to estimation, but instead requires it to be
due to inherent randomness in the economic structure.

The stochastic coefficients model with inherent uncertainty can be

expressed by equations (1)-(3) withl§/
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Vv
2
(1) vy = 5=
v
(2a) G(t)s = (61,62,63) t>s
1 1 t<_s
03X3 t£t! or t=
0 0 0
(2b) NERAPIER. , ) Ops 05 > 0 tet'>s
0 0 0p3
2
|\ %32 T3
(3) X, = X.

This specification differs from the random shocks model in IA only in that the
variance of 62 and the covariance of 62 and 63 now are not assumed to be zero.
Let us examine first the solution to the policymaking problem in the
one-period case.
1. One-period horizon (y=0).
The problem is
(1) max -E,(X,-X)? = -o§1 - (Bx,-X)?

Py

subject to

(2) X, = 6,X

1 1% (1)

+ 62(1)P1 + 63

where by (2a), (2b), and symmetry

and

92(1)-62 _ 3
Ey [ (8(1)=85,085(1)-05) = .
03(1)-8, ‘ O3 O3
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We have by (2)

(i) EOX1 = 91X0 + 92P1 + 63.
Subtracting (i) from (2) we have

X, = EgX, = (0,(1)-6,)P, + (85(1)-85),

S0 that
- 2 _ 2 - = \22
1
2.2 2
= o'2P1 + 2P1c23 + 03.

Substituting (i) and (ii) into (1) the problem is simply

e 2.2 2 - — - 2.2
(iii) gax -02P1 - 20‘23P1 - 03 - (91X0+62P1+93-X1) .

1

The first-order condition for maximization yields:

o\ A o
i > . = 23
12\ 2.2 (X1-6,%5=63) - |3 =
Ox+Vy 0,9

A

It is instructive to compare this expression with the analogous

expression in TA (p. 19). Both are of the form

The term in parentheses is the gap between the target value of the goal variable
and its expected value conditional on P1 = 0. The coefficient A determines by
how much the policy control variable should be adjusted in response to a unit
inerease in the gap. The intercept B determines the adjustment to P1 which

should be made regardless of the gap when there is nonzero covariance between 92

d .
an 93
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The important point to note is that the absolute value of the coeffi-
cient A& in the stochastic coefficients model is unambiguously smaller than the
absolute value of the coefficient A in the random shocks model., More generally,
the absolute value of A decreases continuously as the variance of 62 increases.
This means that policymakers should become more cautious in responding to fore-
casted gaps in goal variables from their targets the larger is the uncertainty
about the effects of policy.

The solution to the policymaking problem can be shown graphically in
the mean-variance plane of X1. Constant levels of expected utility (indifference
curves) according to (1) are given by

EJU = C = _0}2(1 - (X,x,)%,
where §1 = E0X1. To derive the frontier to the policymakers' opportunity set in

the mean-~variance plane of X1, we solve first for P, in (i) to get

1

_ ] (€1X0¥§ )
P, =aX, + 8, where 9 = — and B = - ————.
0, 0,

We then substitute this expression for P1 into (ii) to get
2

g
X,

(azcg)'if + 2a(80§+023)-§1 + (S%U§+23023+G§)

2
K1X1 + K2X1 + K

in

3¢

¥) is located
1
where the opportunity set frontier is tangent to an indifference curve. Given

The expected utility maximizing mean-variance pair (iﬁ,ci

~

the maximizing value of §1, P1 can be determined from (i).
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Figure 6
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In the random shocks model(yg and 0p3 are zero so that the frontier to

the mean-variance opportunity set is simply the horizontal line 0; = cg. The
1

17 X1. As the

variance of 62 grows, the frontier becomes steeper and the tangency point moves

tangency of the frontier and indifference curve is then at X

further away from X1.

Maximum utility is found by substituting the expression for P1 into

(iii) which yields

2 ——
~ o ~ 0,0 ~
_ 2 - =2 2023 - =
EOU = - ) (X1-91X0-93) -2 - (X1-91X0—93)
05+9; 0540,
2

+ 023 - O'2

2+52 3)°

G279

When 02 = 0, the expression indicates that Eoﬁ = -cg, which is the negative of the
irreducible variance of X1. When(Jg > 0 and 023 = 0, EOU is the sum of the first

term and -cg, where the first term measures the expected loss from not closing

the goal variable gap entirely.
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Let us now turn to the two-period case.
2. Two-period horizon (y#0).

The problem is

(1) max -EO[(X1-X1)2+YE1(XZ-XZ)Z]
P.,P
1272
subject to
(2) Xy = 9%, + 0,(1)+P, + 63(1)

X2 61X1 + 62(2)'P2 + 63(2)
where by (2a) and (2b) for s=0, 1 and t>s
Es[ez(t)se3(t)] = (62793)

and

?
03x3 t£t
2
- 02 023 t=t'
2
O23 93

and (3) X, = X

By the Bellman principle 52 is found by maximizing dyE1(X2-§2)2 with
respect to P2 subject to X2 = 61X1 + 92(2)P2 + 63(2). As was the case in the
random shocks model, this problem is precisely the same as the one-period problem

with the subscripts moved up one period. Thus, it follows
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N ) A o
_ 2. = = 23
2* (2.2 (X,-8,X=63) - (3 =
0o, Ootp
and with ci and E1X2 conditional on P2,

2
o - 2 2 12
U(1)) = —ylog +(BXp-%,)"]

= -y[(1-H)(x2-e1x1-e3) +2HK(X2-61X1-93)+(G3-HK )1,

where

—2
55

Q
N
(SN]

H K

[<>]

2 =2’
02+62

Optimal first-period policy is found by maximizing with respect to P1

A 2 ~
EOU = -EO(X1-X1) + EOU2(11)

subject to
X, = 04X+ 0,(1)P, + 63(1)

and

~

_ - = 5,2 . T - 2 .2
U2(I1) = -Y[(1-H)(X2—61X1-63) +2HK(X2-G1X1-63)+(03—HK ).
As we found in the one-period case (expression (iii))
S\2 _ 2.2 2 = - = 542
After some calculations and manipulations we find

- 2
E)U,(I,) = -y(ay+2a, P, +a,P))

where
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A _2 —_
2y = B, {(1-H) [6 (0,548,185 )-8, (X,-87%-8, )] -HKE, }
a, = (1-H)6§(a§+§§).

Differentiating EOU with respect to P1 and setting the resulting expression equal

to zero yields

5 ) 62 X1+Y(1-H)91(X2-63) < -
1" 2 =2 =2 T 1% T V3
05+05 1+Y(1-H)e1
Co(Le3 \ |, L Y
2 =2 =2 1°
0,+0, 1+Y(1-H)61

It is interesting to compare the expression above with the expression
for optimal policy in the one-period case. In general they are not the same.
Thus, even with as many policy control variables as goal variables, policy cannot
be made myopically when there is uncertainty about the effects of policy.

In our example optimal policy can be made myopically if %2 = §1§1 + 53
and 023 = 0. There is no apparent reason why either of these equalities should
hold. Suppose, however, that 023 = 0. It then follows with éé > 0 that the best
myopic policy PT is related to the best overall policy by P? % ;1 as %2 E §1§1 +

Thus, the best myopic poliey impliecitly assumes that the dynamie structure

93.
of the economy is optimal: once the goal variable is on its target path, it
assumes the economic process will keep it there. If the target for the goal
variable in the future period is above (below) what the economic process could be

expected to produce, the myopic policy will be too restrictive (expansionary) in

the current period.
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In general, policy cannot be made myopically because what is attain-
able in the second period depends on the value of the policy control variable in
the first period. To ignore this dependence results in a loss in expected
utility. From the one-period case we know that the mean-variance frontier in the

second period conditional on X1 can be written

ci = (azog)-ig + 2a(Bc§+o23)-ié + (Bzo§+28023+0§),

2
where
2 = 2
ox, = B (X-%;)
2
X5 = 64Xy + 0,F, + 63
-1
Q=
)
and
(5,X,+6,)
11
B = -'-f:-—jiﬂ

62
The location of the frontier in the mean-variance plane depends on the level of
X1 as is seen in the expressions for ié and 8. The 1level of X1, meanwhile,
depends on P1, although this dependence is random as of time zero. That is, the
precise relationship which obtains between X1 and P1 depends on the realizations
of 62(1) and 93(1). It is clear, however, that the location of the mean-variance
frontier for X2 which is expected conditional on IO depends on P1. In order to
maximize expected utility conditional on IO’ it is necessary, therefore, to

recognize how the choice of P1 restricts future policy choices.

B. Long and Variable Policy Lags

Milton Friedman (1969) argued that feedback policies are likely to be

destabilizing when there are long and variable policy lags. There are at least
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two interpretations of his argument. One is that he is referring to the likeli-
hood of a poliey drawn at random being destabilizing, while a second is that he
is referring to an optimal policy.

Under the first interpretation, the argument is that because of insuf-
ficient knowledge or institutional constraints, feedback policies in practice
are likely to deviate substantially from optimal policies.lg/ Since long and
variable lags add variability to the economic structure, they then increase the
likelihood that policies in practice will be destabilizing. If this is Fried-
man's argument, he is undoubtedly correct: the more variable the economic
structure, the more likely a policy chosen at random will be destabilizing.

Under the second interpretation, the argument is that with sufficient
variability in the economic structure even the best feedback policy will be
destabilizing. The optimal poliey then must be a nonfeedback rule, such as a
constant growth rate for the Fed's portfolio. In this section we will examine
the validity of this argument in a simple two-period version of a model by
Fischer and Cooper (1973).

Fischer and Cooper first defined in the context of a particular model
the notions "length of lag" and "variability of lag." They then used numerical
solution techniques to evaluate different policies. They concluded that as long
as the variances of lag weights are finite, feedback rules still dominate non-
feedback rules. However, the greater the variances in lag weights, the less
policymakers should respond to new information.

Fischer and Cooper assumed an infinite horizon problem with lag
weights on poliey from a specifie family of lag distributions:

©

max E .U = max E, Z

P PsPyyees  ta
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subject to

X, = 8% _, + iZowi(t)-Pt_i + U(t)

where B is a known scalar and U is a random residual.

They then defined the

length of lag and the variability of lag with respect to the assumed family of

20/

lag distributions.~ While the model could be solved explicitly in the known

lag case, it could not in the variable lag case.

The problems of definition and solution faced by Fischer and Cooper are

not encountered in our two-period treatment of their model.

model as:
(1) max E.U = -E.[(X X )2E, (X X )21
0" - o 1™ 122
P,,P
172
subjecet to
X, = 91(1)Xo + 92(1)191 + 93(1)
(2)
X2 = 91(2)X1 + 62(2)P2 + XP1 + 63(2)
where
(2a) e(t)s = (61,62,93) t>s
03x3 t£L?
0 0 .0 5
(2b) T(,61)_ = , 02, 62 > 0 tetrss,
s 5 2 3
0 02 0
2
0 0 03

We can express the

A has mean X, variance oi, and is uncorrelated with the 6's, and

(3 X = X,
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In order to make this model comparable to the one in IIA, we must
substitute for P1 in the second equation of (2) using the expression in the first
equation of (2):

(X1-6,(1)Xy-85(1))
8,(1)

>
"

61(2)X1 + 62(2)P2 + X\ + 63(2)

or

(91(1)X0+63(1))1
6,(1) !

o]
fl

A

= e;(z)x1 + eé(z)P2 + eé(z).

When we now compare this model to the one in IIA, we find two important differ-
02

A
(i) There is serial correlation in the residuals, E093(1)eé(2) # 0 and

ences. In general with \ # 0 and >0
(ii) The system lag 9;(2) becomes random even if 91(1) and 92(1) are known.
We are interested primarily in how the poliey rule for P1 changes as A
and oi change. We could solve the model in a general form allowing for serial
correlation in residuals and a random system lag and then substitute specific
terms for means and covariances using (2), (2a), and (2b). It is much simpler,
however, to solve the model (1)-(3) directly.
. 5 s . 2 \2 .
We first solve for P2 by maximizing -yE1(X2-X2) with respect to P2

subject to

P2 must then minimize the sum c§ + (ié-xz)z. From (2a) it follows
2

X, - ié = <92(2)-65)P2 + (xJX)P1 + (93(2)-65),
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and

s 2p2, 2p2 , 2
9%, T 0272 *O\"1 * O3
Minimizing 0§ + (ié-xz) with respect to P, then yields:
2
~ 5é A~ _ _
Py = 2 =2 (Xy=0,X,-AP,-6,)
2 72
and
o_2
- _ S 52 2 V(3 Fw 3p 3 2,22 2
U, (1) = YE, [X,(P,)-X,17 = v 5 (xz-e1x1-x1>1-e3) +03Pi+o3].
v02+62

We can now write

A 2 ~
E.U -EO(X1-X1) + E0U2(11)

(=)
n

2 T 5 42 o
= -0X1 - (X1-X1) + EOUZ(I1)

= -gP; - 0F - (8,X+8,P, 4B, )7
Y E e Tp N2 .22 2
-Y[(1-H)E0(x2-e1x1-xp1-e3) +03P1+03]

where the expression for EO(X1-X1)2 is derived as in IIA and

=2
e2
H

2 =2°
02+62

Substituting for X, from (2), taking expected values in the expression for

1
EOUZ(I1)’ and then maximizing the resulting expression for EOU with respect to P1

yields:

_ N — —_— = 2

2 =2 =2, 2 =2, === =2 2
02+62+y(1-H)[61(02+62)+2k9162+k ]+Y0x

P1 =
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We can write the rule for P1 as

P1 = AG1 + BG2

where

is the first-period gap between the desired value of goal variable and its

expected value with P1 = 0,

- e Ty T =T
G, = (xz-e1xo-e3-e1e3)

is the second-period gap between the desired value of the goal variable and its

expected value with P1 = P2 = 0,

is the coefficient of policy response to the gap in X1,

) Y(1—H)(516é¥X)

B

Den

is the coefficient of policy response to the gap in X2, and
_ 2 =2 =2, 22 == =2 2
Den = g, + 6, + y(1-H)[0,(05+8,)+2X0,0,+1 1 + YOy -

We observe first that A and B in general are not zero if 02 < «, That

A
is, as long as the variance of the policy lag is finite, a feedback rule domin-

ates a nonfeedback rule.gl/
We can now examine how the lag parameters ) and ci affect the policy

response coefficients A and B. Note that Den can be written

2

_ 2 =2 =2 2 == T2
Den = g, + 6, + Y(1-H)[e102+(6162+l) 1+ YOy
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3o that clearly Den > 0. It follows immediately that

ﬂ%]_ < 0 and é-%]- < 0.

aox aox
This indicates that policy should respond less vigorously to perceived gaps in
goal variables as the variance of the policy lag increases.gg/

We next compute how A and B change as ) changes. We find first that
i -2Y8,(1-H) (8, 8,+1)

94
PN Den®

It follows then that

sgn(g—‘%l-) = -Sgn(-é'ﬁz«ﬁ) .
ax

The last term in parentheses is simply the effect of P1 on the expected value of

X2:
E X, = 82X + 0,P, + (8,6,+0)P, + 6,0, + 8
0%2 ~ 7170 2°2 172 1 173 3

so that

Our result is then that

3|Al{>0} <=> 3E0X2{<0}
ai =0 - 8P1 =0-’"*

We next find

Y(1=B) (0548502 4y (1) [8505-(8,8,+0) ]
5 :

3B _
X Den

(s3]

Depending on parameter values, Eﬂéél can be positive or negative, but the economie

X
interpretation is not as apparent as for géfl.
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Our results would seem to generalize to multiperiod models as follows:

1. A given change in the shape of the poliey lag (represented in our model
as a change in A) can either increase or decrease the responsiveness of
optimal policy to new information. The outcome depends on values of
parameters of the economic structure as well as on values of parameters
of the objective function.

2. An increase in the variability of the policy lag unambiguously reduces
the responsiveness of optimal policy to new information. Unless the
variance of the policy lag is infinite, however, some responsiveness
is better than none.

cC. Estimation Uncertainty About the Effects of Policy on Goal Variables

An important consideration in dynamic decision making under uncer-
23/

tainty is the opportunity to learn by doing, that is, to experiment. In some
situations it is possible for the polioymaker‘to learn more about the economic
structure by taking an extreme action and then observing the outcome for the goal
variable. This opportunity is present, for example, when uncertainty about
coefficients is due to estimation. In these situations it may be beneficial to
experiment early in the policy horizon, thereby sacrificing on near-term policy
goals, in order to gain knowledge about the economic structure, thereby improving
the ability to attain policy goals in the future. In this section we will
analyze a simple learning-by-doing model and compare the optimal policy which
obtains to that which obtains in the inherent uncertainty model.

Before turning to the learning-by-doing model, it is useful to con-
trast the inherent uncertainty and estimation uncertainty assumptions. Under
either assumption the policymaker is assumed to know the distribution of the 2

process. In two-period models this means the policymaker initially knows Eoe(t),

t=1, 2 and Eoe(t)'e(t'), t,t'=1, 2. With inherent uncertainty it is assumed that
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information from the first period <X1,P1> does not alter the distribution of

second-period coefficients 9(2):

EOG(Z) = E.] 6(2)
and

Ey8(2)'8(2) = E,6(2)'6(2).

In Bayesian terms this says that the posterior distribution of 6(2) (the distri-
bution of ©(2) conditional on 11) is the same as the prior distribution of 6(2)
(the distribution of 8(2) conditional on Tp). With estimation uncertainty these
equalities do not hold, so that the prior and posterior distributions of 6(2) are
different. Learning by doing, thus, involves setting P1 to favorably alter the
posterior distribution of 92.

As an example, suppose that uncertainty about & is due to estimation
and that the policymaker approaches the first period with ordinary least squares
estimators of 6(1) based on T prior observations of X and P. At the beginning of
the second period the OLS estimators of 6(2) will be based on the prior T
observations of X and P and on X1 and P1. Thus, the choice of P1 affects the
estimated distribution of €(2). By choosing an extreme value of Py the policy-~
maker can generate an extreme observation which will improve the precision of the
estimate of 6(2).35/ Thus, there is an incentive to deviate from historical
policy, which is not present when there is inherent uncertainty.

Our model of learning by doing captures the essence of this estimation
example, but simplifies the problem to allow an explicit solution.gi/ We will
assume that 91 is known, that 92 takes on one of the two values, 1 and 2, with
priors p and 1-p, respectively, and that 93 is distributed uniformly on [-1,1]
and independently over time. We will choose specific targets for the goal

A

variable, X, = §;%; + 1 and X5 = 64X, in order to facilitate computation of

26/

optimal policy under both types of uncertainty.~—
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The nature of learning in this model is straightforward. Let P1 be

given. If 62 = 1, then X1 will be uniformly distributed on the interval

[éHXO+P1'1’§HXO+P1+1]‘ Similarly, if 62 = 2, then X1 will be uniformly distri-

buted on the interval [§1X0+2P -1,8,X +2P1+1]. Thus, for given P1, X1 will fall

1 170

in one of three intervals:

— < —

A = {y: 8,X +P,~13y<0, X +2P -1},
— <—-

B = {y: 61X0+P1+1<y=61X0+2P1+1}, and

.7 1585
C = {y: 8,Xy+2P ~13y38,X+P +1},

see (Figure 7).

Figure T

X1 is unirormly distributed on specified interval

conditional on

9211 62=2

+P1+1 61X0+2P1+1

If we observe X1sA, we know that 62 = 1, because points in the set A have a zero
probability of occurring when 62 = 2. Similarly, if we observe X1€B, we know

that 62 = 2. If we observe, however, X.eC, there is no information upon which to

1
change our priors, because points in C have an equal probability of occurring
whether 61 =1or 61 = 2 is true. Thus, if X1 falls in C, we would still attach

the probabilities p and 1-p to 62 = 1 and 62 = 2, respectively.
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Learning, in this case, amounts to reducing the probability that X1
falls in C. In order to compute how the probabilities of X1 falling in partiec-
ular regions depend on P1, we first determine the lengths of the subintervals A,

B, and C:

2(8) = (9 X +2P -1) - (9 X +P -1) =

!
g

1,

2(B) = (§1x +2P,+1) - (8, Xq+Py+1) = P, and

2(C) = (9 X +P +1) - (9 X +2P -1) =2 -P

For 0 S P < 2, we have

prob(X1€A|62=1) = 1/2%(4) = P,/2,
prob(X1€CI62=1) = 1/28(C) = 1 - P, /2,
prob(X1€Bl62=2) = 1/2%(B) = P,/2, and
prob(X,eC|6,=2) = 1/28(C) = 1 - P, /2.
Thus,
prob(X,eh) = prob(8,=1)-prob(X,ea|8,=1) = pP,/2,
prob(X,eB) = prob(62:2)-prob(X1€B|92=2) = (1-p)P,/2, and
prob(X,eC) = prob(62=1)°prob(X1eC[62=1) + prob(62=2)-prob(X1€C|62=2)
= p(1-P,72) + (1-p)(1-P,/2) = 1 - P /2.
When P, = 0, X, will fall in C with probability 1, so that there will be no

1 M
learning. For P1 2 2, the distributions of X1 conditional on 62 have no overlap,

so that X1 has a zero probability of falling in C. Since optimal poliey {[when

there is inherent uncertainty] P? is between 0 and 1 (to be shown), optimal
policy P1 when there is learning must be between O and 2. The lower bound comes

~

~ ~ ~
from P1 > Py. The upper bound comes from the fact that as P, exceeds P{, first-
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period loss increases while learning increases. However, there is no learning
after P1 reaches 2; that is, C = ¢ is the most that can be learned and that occurs
at P1 = 2.

Our simple model of estimation uncertainty can be expressed by equa-

tions (1) - (3) with

v2 A Pa A
(1) Yy = V;’ Xy = 8%, + 1, X, = 0.%,
(2a) E0(61(1),62(1),63(1)) = E0(61(2),9 (2),63(2)) = (81,2—p,0)
1 if X,eh
E1e1(2) = 11 E162(2) = 2 if X1€B E193(2) = 0,
2-p if X.eC

1

where use has been made of--
(i) The mean of a Bernoulli random variable taking on the values o and B
with probabilities p and 1-p, respectively, is p*a + (1-p)+B8, and for
62, B =2and o = 1.
(ii) The mean of a random variable which is uniformly distributed on the
1

. R b
interval [a,b] is o[ tdt =

a+b

> b=1and a = -1.

, and for 83,

(2b) Ey(8(1)-B(1)) (6 (1)-8(1)) = Ey(9(2)-8(2))'(8(2)-8(2))
0 0 0
= 0 p(1-p) o |,
0 0 1/3

Eo(8(1)-8(1))1(8(2)-8(2))

1]
o
o]
—~
ey
1

o
[
o

where use has been made of--
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(i) The variance of a Bernoulli random variable taking on the values ¢ and

B8 with probabilities p and 1-p, respectively, is

E(+)2 - (E(+))? = po® + (1-p)B° - (pa+(1-p)B)2

p(1-p)0® - 2p(1-p)aB + (1-p)(1-(1-p)) g

P(1—p)(u-8)2,

and for 62, B=z2and a = 1.
(ii) The variance of a random variable which is uniformly distributed on the

interval [a,b] is

2 2 _ 1 b2, ,a+b.2
E(+) = (B(e))® = g=[0t7at - (3)
_ 1 pPad  aPspabeb®
“ b-a’ 3 y

B(a®rabsb®)  3(aZ+2absb?) _ a®-2absb _ 1

2
12 12 = 2 = 12 (b

and for 63, b=1and a = -1,

(iii) 62 and 93 are independently distributed, implying

Eoez(t)63(t') - Eoez(t)EOGB(t') = 0, for t,t'=1, 2.
(iv) 93 is independently distributed over time, implying

(v) 92 is a fixed, but unknown, variate, implying

EgB2(1)8,(2) - Eghy(1)ES,(2) =
paz + (1-p)B2 - (pa+(1-p)8)2 = p(1-p)(a—8)2,

since prob[62(2)=u|92(1)=u] = 1 and prob[92(2)=8|62(1)=5] = 1, and for

) B=2and a = 1.

2’
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We also have

0 0 0
0 0 0 if X1€NJB
B, (8(2)-8(2) " (6(2)B(2)) = § ° 0 13
0 0 0
0 p(i-p) O if X eC
L \0 0 1/3
and
(3) X, = X.

ol

Since learning is possible only when there is more than one period, we

~

~ "N 2
shall assume Yy > 0 and solve for UZ(I1)' Recall U2(P2,I1) = -YE1(X2-X2) , P2

maximizes U2(P2,I1), and U2(I1) = U2(P2,I1). We now compute P2 and U2(I1)

depending on the outcome for X1.

if X1eA, P2 is found by maximizing with respect to PZ:
S 42

-E1(X2-X2)

subjeet to X2 = §1X1 + P2 + 63(2). We know from the certainty equivalence model

IA (p. 21) that the solution to this problem is
P, = X2 - 61X1

and

If X1€B, 52 is found by maximizing with respect to P2:

S \2
E1(X2-X2)

sub ject to X2 = 61X1 + 2P2 + 93(2). Again we know from the certainty equivalence

model IA (p. 21) that the solution to this problem is
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and

- 2
U2(I1) = "'YG3.

Finally, if X.eC, E is found by maximizing with respect to P2:

1 2

2.2
-E1 (X2—X2)

. —= - 2 . .
subject to X2 = 91X1 + 62(2)P2 + 63(2) where 92(2) and o, are given in (2a) and
(2b). We know from the inherent uncertainty model IIA (p. 55) that the solution

to this problem is

~ 8 A _
Py = (3 (X-0.Xy)
O+
g 22
an 02
= 2 2 S o= 2
Uy (1) = ~ylog+(—Z—5)(X,-0,X ) I
02+62

which in our case is

- o n =
P, = (3055 (X,-8,X;)

and

e _ 2 p(1-D)y, 37 & 2
Up(Iy) = ~y[og+(5T505) (X8, )T

p(1-p), D(p) = 4-3p, and ¥(p) = JBL. Since

Define N(p)

~

EgU,(I,) = prob(X,eA)Ey[U,(I,)|X eAl +
prob(X,eB)Ey[U,(I,)|XeB] +
prob(X,eC)E, [U,(I,)]XeC]

we have

EOUZ(I.]) = -(—-é—)yo3 - (—T——)Yo3 - (-—2-—)Y[03+‘I’(p)EO(X2-e1X1) 1

2 i~
= =o3 - Y¥(p)(1 - 57)Eq(X-04%X4) "



- 72 -

Optimal first-period policy is found by maximizing with respect to P1

~ 2 ~
22 2 = =_ 2.2 2 Pl o = 2
where use has been made of the inherent uncertainty model IIA (p. 55).

The first-order condition for P1 to be a maximizer is a quadratic

expression in 51, which yields the two solutions:

. 2yB0U(p) (3-2p)4D(P) 4| YPU(p) 2B (B-15p47p7 )+y¥(p)D(D) B2 (6-5p)+D(p)?
P, =
1

(3/2)y5N(p)

We now want to analyze this solution and compare it to the one under
inherent uncertainty. First, we can show that for-yé% < 18, the larger of the two
roots is greater than 2 and can be ruled out (see pp. 67-68). Note that for the

larger root

1

~, 2y§?‘1’(p) (3-2p)+D(p)+ \/[72(1-p)Y§f‘P(p)+D(p)] 2
P, >
! ENAIE

1 1

_ 20(6472)=(4472)p]

Sgpy o+ 3Rl

3Y85p(1-p)

The first term is greater than 4/3 for p < 1, while the second term is greater
than 2/3 for Yﬁf < 18. Since normally we would expect both vy anda1 to be less
than 1, we can restrict our attention to the smaller root.

Second, note that with 22 = 51%1 the optimal first-period policy when
there is inherent uncertainty is given by

6

b A~ __
(—5—25)(X1-91X0) (see p. 56)
02+92

gl
P1

2~ . - -
H:%E (recalling X, = 91X0+1).
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Third, note that the optimal first-period policy when there is estima-

tion uncertainty can be expressed as

. 2ye 2y(p) (3-2p)+D(p)- \/[YS ¥(p)(3 - —P-)+D(p>] ~°8 w(p> (—9— 1)

P
1 .
(372)v8 p(1—p)
Finally, it is straightforward to show that if we arbitrarily set
2
24 2,3p . g < ps 5 _ 2-p .
Y e1w(p) (~ﬁ—-— 1) to zero, the expression for P1 simplifies to P1 = To3p which

is the inherent uncertainty solution. Thus, returning to the actual expression

for 51, we see that the term under the radical sign,

2
e,

represents the adjustment for learning to the inherent uncertainty solution.
Since ig— - 1< 0, the rest of the terms are squared and thus positive, and the
radical is preceded by a negative sign, it follows that the adjustment for
learning adds a positive amount to the inherent uncertainty solution, 51 > P%
By inspection it is clear that the adjustment for learning increases

when vy or 8, increases. When y increases, the future is more important to the
policymaker, that is, E 0 2(I ) has a greater weight in the policymaker's objec-
tive function. Thus, learning is more important, since it allows a higher value
of E U (I } to be attained.

When 91 increases, the expected value of EZ conditional on P1 = 0

increases whether X1€A, B, or C:

" o~ _2 —
X2 - 61X0 = 61 X1€A
it -2 —
~ X, - 84X
_ 2 120 04
EO(PZIP'I_O)< -3 =35 X1€B
2- 2- —
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But a larger value of 52 implies greater variance of the goal variable X2 if
X1eC. This variance can be avoided if X1--that is, if there is learning. To

summarize, a greater value of E implies a greater expected value of P2, which

1
implies more variance in X,, unless there is certainty about 92(2). Thus, an
increase in 51 increases the value of learning.

We would expect also that the greater the initial uncertainty about 92,
the greater would be the value of learning. But given our assumed probability
distribution of 92, it is not possible to inerease the variance of 92, p(1-p),
without also changing the mean of 62, 2-p. Thus, we can not determine how 51
changes when Gg changes because §é also changes. Since p(1-p) does appear with a
positive sign in the adjustment for learning term, though, it at least suggests
that the expected result would obtain with more general probability distribu-
tions of 62.

Finally, the question arises whether learning by doing can overturn
our earlier policy implication that uncertainty requires caution. Earlier we
found that optimal policy should respond less to perceived gaps in goal variables
from their targets the greater is the uncertainty about poliecy. Optimal poliey
with inherent uncertainty must always be less, in absolute value, than the
optimal policy when the policy coefficient is known, the certainty equivalence
policy. So can the optimal poliey under estimation uncertainty ever be greater,
in absolute value, than the optimal certainty equivalence policy? The anwser is

yes.

The optimal first-period policy when 62 is known is

~K _ l ~ _ _ 1 A _
F1 = 2 (X4=84%g) = z5(Xq=81%0).
62
If we stick to the assumption that X1 - 91X0 = 1, it appears that the optimal
learning policy P1 can never exceed Pf. Although 51 increases with vy, the limit

~ . ~K
of P, as y+ »is Py,
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A

If, however, we set X1 = 61XO, then both the certainty equivalence

~

solution Pf and the inherent uncertainty solution Pf are zero. The optimal

solution under estimation uncertainty P1 in this case is positive, because the

~

adjustment for learning to the inherent uncertainty solution is still positive.

~

Since all sclutions change continuously with the gap X1 - 0.X., there is a small

170?
I < PK < P,. Learning, then, can overturn the

gap X1 - 91XO > 0 for which P1 1 1

implication that uncertainty requires caution.



Footnotes

J/The survey is not intended to be exhaustive; it includes only a

sample of prominent papers on a few key issues.

g/See, for example, Wallace (1976) and Lucas (1978).

3/

=" The solution can also be expressed as a feedback rule which states

how policy variables should be set each period based on available information.

E-/In the case of n > 1 goal variables, the terms Vi and (Xi—Xi)2 are

1xn and nx1 matrices, respectively. The quadratic objective function assumed
here is not general in that it does not allow cross-product terms either over
time or between variables at a point in time.

5/

=" The variable vy is T%F’ where r > 0 is the policymakers' rate of time

preference.
g/In the information lags and multiple goal variable models Xt can be
thought of as an n-dimensional vector, and the process becomes
n
X;¢ = jz1eij(t)xjt_1 + 85 1 q(E)Py + 8y o o(t) d=1,...,m.
In more compact notation the process can be written as before:
Xt = 91(t)Xt_1 + 62(t)Pt + 93(t)
for all t, where now
Xy 8,,(8) « . . B, (t) e
Xt = . 3 91(t) = . . [ ez(t) = . b}
Xt B (E) « o o0 (F) n,net(H)
‘1,n+2(t)
63(t) = .
9 (t)



lguppose, however, we search initially for the optimal first-period

~

rule f‘1 over all functions mapping an arbitrary IO into P1. Applying f1 to the

-~ ~

known vector IO yields optimal first-period policy P1 as a scalar, P, = f1(IO)'

§-/Footncte T applies in this case to g, and gse

1

Q/Let N denote the vector of realizations of economic variables ob-
served at t=1 but not at t=0 (i.e., N=new information), so that for each I0 and
I1, N is defined by: N = I1 ~ IO. 1 = Io U N, For arbitrary <g1,g2>eG we
can extend g5 to {11} by Eé(I1) = Eé(IdJN) = gZ(IO) for all N. Then it is clear

Thus, I

that each pair of functions <g1,§é> contained in G is also contained in F,
However, as long as the economic process is not deterministic and there are new
observations at t=1, there exists a pair <f1,f2>€F such that fZ(IOUN) £ fZ(IdJN')

for NAN'. The pair <f1,f > is contained in F but not in G,

2
lg/For' one-period problems V2 is set equal to zero and EOU is maximized

with respect to P1. X can be considered a vector with n components as in footnote
6 or a scalar (n=1). When n > 1, however, z must be defined differently. As in

footnote 6,

Bq(t) o« 8,(8) By L (6) B, o(8)

1,n+2

e(t) = (91(t),82(t),63(t)) = . L3 . .

o . (t) .. enn(t) B (t) 9

ni n,n+1 n,n+2(t)

B, (t)

O r(E)

. .th . . . .
where eiR is the i "~ row vector of A, The variance-~covariance matrix of 8 is

defined by



(8,p(£)=E_B,p(t))"
(t,t')_ = E (0,5(t")=E_08,.(t"),eee, B o(E")-E_B __(t"))
3 5 1R s 1R nR s nR

(8 L(t)=E 6 . (t))! 1xn{n+2)
nR s nR n{n+2)x1

PPECR L JEPE X1n(t,t')s

. .
. . ?

Xn1(t,t')s .. Xnn(t,t')s

. . . . th
where zij(t,t')s is the covariance of tth period, 1th row coefficients with ¢!
period jth row coefficients based on information at time s.

1/ Theil (1965), pp. 40i-h2l,

l—Z-V/Theil (1965), pp. 508-510. Our two-period model with one goal

variable and one policy control variable can be written in the form

x1 92(1) 0 P, 61(1)XO+93(1)
= +
X, 61(2)92(1) 62(2) P, 91(2)91(1)X0+91(2)63(1)+93(2)
R11 0
= P+u
Ry Roo
13/

It has implicitly been assumed that §é3 > 0, but this is not an
important restriection. If both §H3 and §é3 were zero, there would be no effect
of policy on either goal variable and one choice of poliey would be as good as any
other. So we want to assume that at least one of these coefficients is not zero.
Since the model is symmetric with respect to X and T, it could just as easily have
been assumed that @13 > 0.

lE-/The economic process may not be stable under both choices, however.

In rational expectations-natural rate models attempts to fix a nominal interest

rate make the price level indeterminate.



li/This is essentially the model found in Poole (1970).

16
——/For a more complete exposition of these points see Kareken-Miller

(1976).

1 . . .
;l/The two-period model described here is a special case of the general

model found in Kareken-Muench-Wallace (1973).

18

——/This model can be found in Brainard (1967).

lg/Friedman seemed to make this type of argument in his 1953 article.
20/

—"For the bulk of the paper Fischer and Cooper assume that the lag

weights can be expressed as:

i-1
Wi(t) = (1-8)(1-Xt_i)_ﬁ xt-j
J=0
-1
where Il (¢) = 1 and for all s
J=0
}\Sz)\+gs,0<)\<1

Under known lags oi = 0 and the w's are from a Koyck lag distribution
W, = (1-8)(1-0A%.

The length of lag is defined by the mean lag

8

) w,(t)ei
i=0 T
o0

Zowi(t)

’
i

and the variance of the lag is defined in terms of the parameter Ui.

The mean lag increases in the known lag case as X increases. This

implies that w,, the known coefficient on current policy, decreases as the length

o’
of lag increases. The model in the known lag case is simply a version of our

known coefficients model in IA with



A, = 8,

] (1-8)(1-1A), and

2

T i
05(t) = (1-s)<1-x)i§1x Py_y +U(L).

Optimal policy in model IA is given by

s
1

1,5 =
= @;(xt-e1xt_1-93(t))

T ,i
_th_1-(1-3)(1-x)iz1x P, i)

1 A
om0 K¢

The deviation of P from zero needed to close the gap grows as 92 declines. Since
62 declines with an increase in the mean lag, it is not surprising then that
Fischer and Cooper find the longer the lag the more vigorously stabilization

policy should be used.

gl/New information is represented by the variable XO. The response of

~

P, to new information is then -§1A - §?B. As long as not both A and B are zero,
which will be the case in general with oi < », a feedback rule adjusting P1 to new

information is seen to dominate a nonfeedback rule.

gg/This proposition could be restated in terms of the previous footnote

to say that policy should respond less vigorously to new information as the

variance of the policy lag increases.

gi/For "learning by doing" models, see Chow [1975], Prescott, and

Zellner.,
24/

The result that extreme observations improve the precision of OLS

estimates can be found in Johnston.

gi-/The estimation problem referred to in the example above cannot be

solved explicitly for optimal policy--even in the two-period case.



g-6-/By assuming a positive gap between X1 and §1X0, we have assured that

the optimal poliecy Pf when 92 is inherently uncertain is less than the optimal

poliey PK when 92 is known (see page 51).

1
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