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0. Introduction

The purpose of these notes is to acquaint students with a class of
general equilibrium models that can be used to study various topies in inter-
temporal economics. These notes deal only with "real" {(as opposed to "mone-
tary") topics, but the models studied are useful background for those that are
applicable to "monetary" topies. Here, we will study saving, investment, and
the determination of interest rates and asset prices., We will also study how
these depend on the government policy in effect; for ezample, on the extent to
which the government borrows rather than btaxes, and on the kind of social
security program in effect.

Qur approach is a microeconomic general equilibrium approach. We
begin with a description of an environment--a description of people in terms
of their preferences and what they own or start with prior to engaging in any
activity, and a description of the total resources and the production techno-
logies available. Aside from assuming that the outcome of interaction among
individuals is a competitive equilibrium--a perfect foresight or rational
expectations competitive equilibrium in versions where expectations matter--we
make no other assumptions. This approach has twe important virtues. First,
when we study the effects of a policy, we can easily appraise the credibility
of our assumptions about what in the economy is Invariant to, or independent
of, whether that policy or some other is in effect. 3Second, we can judge the
effects of a policy using the tools of traditional welfare economics. Thus,
for example, our models allow us to study the effects of a social security
system on the utility people realize or the effects of a government deficit on
the utility people realize.

The models we use are called models of overlapping generations or 0G

models. They were invented, independently, by Edmond Malinvaud [1954] and




Paul Samuelson [1958]. 0G models are different from standard microeconomic
models because they contain a double infinity. Since new generations are
always appearing, there is an infinite number of people to be considered, even
though only a finite number are alive at any time. And, since there is an
infinite number of dates stretching into the future and at least one consump-
tion good per date, there is, in addition, an infinite number of goods. This
double infinity is responsible for several special features, one of which is
the failure of Adam Smith's invisible hand proposition to hold in general in
these models; that is, in OG models a competitive equilibrium is not neces-
sarily Pareto optimal. As we will see, some of what we do depends on the

double infinity in an essential way and some does not.




I. 4 model of pure exchange

We start out using a model without production. Such models are
called pure exchange models. In them, the total resources consist of amounts
of goods and the only market activity is trading or exchanging. It turns out
that much of what we say about pure exchange will carry over to other models

we study. In this secticn, we describe the physical aspects of the model.

Discrete time

411 actions and events occur at points in time which we denote by an
index t that takes on integer values. We will always be concerned with how an
economy evolves from some initial or current date on into the indefinite
future. For convenience, we label the initial or current date t = 1. This
does not mean that the economy has no past; the effects of the past determine
initial conditions at t = 1, OQur point of view is, in part, motivated by the
following sort of question: Given the past, how would things evolve from this
time on under different policy rules?

Here are some questions we will return to. Why not ask only about
what happens at t = 1?7 What does "rule" mean? Why ask about rules? Why, for
example, not ask about different policy actions at t = 1 only?

Discrete time is to be contrasted with and is a special case of
continuous time. In chocsing discrete time, we are sacrifiecing generality for

expositional and mathematical simplicity.

The population

Our models, overlapping generations models, get their name from the
way population evolves. We take the time path of population as a given.
At each date t, a new generation appears; we call them generation

t. FEach member of generation t is alive at t and t+1 only. We consider two-



period lived individuals because that is the simplest case of interest. The
size of generation t is denoted N(t). Thus, at any date t, there are members
of two generations present: members of generation t-1 (the old) and members
of generation t (the young). The number of people alive at time t is, there-

fore, N(t-1) + N(t).

Total resources

We assume that there is only one consumption good at each date. We
call the time t consumption good, time t good. (You may want to think of the
goods as being "time t bread," "time t+1 bread," and so on.) For now, we
assume that there is no technology for converting time t good into time t+i
good for i # 0. (Later we will drop that assumption and assume there is a
"storage" technology that permits conversion of time t good into time t+1
good, but not necessarily one-for-one.) We let Y(t) be the total amount of
time t good available to the economy. (We are not concerned with where this

comes from. We are concerned only with how it gets used.)

Feasible consumption allocations

A consumption allocation describes who consumes what. A feasible

consumption allocation--or, more simply, a feasible allocation--is a consump-

tion allocation that is consistent with total resources and the technology.
It is helpful to have some notation.

Let c?(t) be consumption of time t good of member h of generation
i. Thus, c:(t) is consumption of time t good of h in generation t (consump-
tion of h when young) and c:(t+1) is consumption of time t+1 good (consumption
when old) of the same person. Also, let C(t) be total consumption of time t

good. We require that consumption be nonnegative.




Definition. A consumption alloecation is feasible if the implied total con-
sumption path satisfies C(t) < Y(t) for all t = 1.

Here are some exercises.

1. Let N(t) = N > 0 and let Y(t) = yN > 0 for all t. Prove that if 0 < a <
1, then cl(t) = ay, ¢f 1(t) = (1-a)y for all h and t > 1 is feasible.

2. Let N(t+1)/N(t) = n and let Y(t) = yN(t) for all t. Prove that if 0 < a <
1, then cl(t) = ay, cf_,(t) = n(1-a)y for all h and t > 1 is feasible.

3. Let N(t-1) = 2 and Y(t) = 2 for all t 2 1. Prove that the following

allocation is feasible: 03(1) = 1/2 for h = 1, 2; 31(1) 1/, 01(2) y

3/4; c?(1) = 3/4, c?(Z) z 1/43 e:(t) = cz(t+1) = 1/2 for h = 1, 2 and all

£ = 2
4, Let N(t-1) = 1 and ¥Y(t) = 1 for all t 2 1. Show that the following is a
feasible allocation: cp_q(t) = (1/72) - (1/2)t+1, c () = (1/72) +

(172)%1, a11 ¢t = 1.

Efficient consumption allocations

We use the term efficiency in what is a fairly standard way. A
consumption allocation is efficient if there is no alternative feasible allo-
cation which implies more total consumption of some good and no less of any
good.

Here is an exercise.

5. Prove the following. A consumption allocation is efficient if and only if

it satisfies C(t) = ¥Y(t) for all t = 1.

As this exercise shows, in pure exchange models (models without

production), efficiency is not a very interesting concept.




Preferences

We will represent preferences by utility functions and their implied
indifference curve maps. We assume that h in generation t for t > 1 has a
utility function u: which is a function of cz(t) and c:{t+1), and is defined
for all positive values of 1its arguments. We assume that u? is strictly
increasing in each of its arguments and has continuous partial derivatives.

Moreover, preferences are strictly convex in that if e¢' # ¢", u(e') 2 u(e"),

and 1 > a > 0, then uh

t[ac'+(?-~a)c"] > u?(c"). Note that ¢' and c¢" are each

two-element vectors.
We assume that each member of generation 0, who is in the second

period of life at t = 1, prefers more time 1 consumption to less.

Pareto optimal allocations

We begin with a definition of Pareto superiority.

Consumption allocation A is Pareto superior to consumption alloca-

tion B if no one prefers B to A and if at least someone prefers A to B. If A
is not superior to B and B is not superior to A, then we say they are noncom-
parable. (In applying this definition, take into account all members of all
generations including those of generation 0, the current old.)

Here are some exercises.

e, c:(t+‘|)1/2 be the utility function for

h h _h
6. Let u[ct(t),ct(t+1)] % Ct(t)
all members of all generations (except the current old) and consider the
exercise 1 allocations. Describe two, one of which is Pareto superior to

the other. Describe two which are noncomparable to each other.

We can now define Pareto optimality. A consumption allocation is

Pareto optimal is there does not exist a feasible consumption allocation that

is Pareto superior to it.
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1.

Here are some exercises.

Prove the following. If an allocation is Pareto optimal, then it is effi-
cient. {In other words, efficiency is necessary for Pareto optimality.)
Consider the resources, technology, and allocations of exercise 1 and the
preferences of exercise 6. Prove that the allocation determined by o =
3/4 is not Pareto optimal,

Consider the setup and allocations of exercise 2 and the preferences of
exercise 6, Show that if n = 4, then the allocation determined by a = 1/2
is not Pareto optimal.

Consider the setup and allocation of exercise 3. Show that this alloca-
tion is not Pareto coptimal if preferences are those described in exercise
6.

This is a generalization of the last exercise. Suppose u:[ci(t),ct{t+1)]
is the utility function of person h in generation t, t 2 1, Let the

marginal rate of substitution (MRS) for this person be defined by

h - h h h . h h h : h h .
ut1[ct(t),ct(t+1)]/ utz[ct(t),ct(t+1)}, where utj[ct(t),ct(t+1)] is the
partial derivative of ut with respect to {(w.r.t.) its jth argument.

Suppose h and h' are two members of generation t, for some € > 1. Prove
the following: a feasible allocation which implies different values of

the MRS for h and h' is not Pareto optimal.

The last exercise establishes that a necessary condition for Pareto

optimality is that all members of generation t have the same MRS. We will

call this the equality of MRS condition. Another is efficiency (see exercise

7).

12.

Prove the following. These conditions are net sufficient for Pareto

optimality.



Our physical environments are such that it is difficult to derive
conditions which are necessary and sufficient for Pareto optimality. We can,

however, get some appreciation of the nature of the conditions.

13. Consider the setup of exercise 1 and the preferences of exercise 6. Prove
that no allocation in the class described in exercise 1 is Pareto superior
to the allocation given by a = 1/4.

14. Within the same setup, describe all a's for which there does not exist a
Pareto superior allocation among the class of allocations described in
exercise 1.

15. Now consider the exercise 2 setup and the preferences of exercise 6.
Describe all a's for which there does not exist a Pareto-superior alloca-

tion among the class of allocations described in exercise 2.

From these exercises, it seems that another necessary condition for
Pareto optimality is that MRS's as defined in exercise 11 be sufficiently
high. This is the condition that appears because of the double infinity in
the model. There is no analogue of it in finite models.

Although I will not describe in any precise way how high MRS's must
be in order to insure Pareto optimality, I can cite some results and also
explain in a loose way how they are obtained.

To begin, assume the exercise 1 setup and the exercise 6 prefer-
ences. Consider the exercise 1 allocation with a = 3/4. This allocation is
not Pareto optimal. Starting with this allocation, consider how we should
shift goods among people in order to produce a Pareto superior allocation.
Suppose we take a little bit of time t good from each young person at each
date and give it to each old person. Since there is an equal number of young

and old at each date, this is feasible in the sense that it does not use up



more of any good than is available, Moreover, everyone prefers the resulting
allocation to the one we started with. Certainly, the people who are old at
t = 1 prefer it; they get more time 1 good, which is all they care about, To
see that everyone else prefers it, sketch the indifference curve map and the
initial and new allocation. It should be clear that the proposed alternative
allocation puts each young person on a higher indifference curve if the "lit-
tle bit" is not too big. Note that there exists a little bit which is not too
big if the MRS at the initial allocation is smaller than unity. Unity shows
up in this example because of feasibility. Given the setup of exercise 1, if
we take a little bit from each young person, the most we can give to each old
person is the same amount. If we were working with the setup of exercise 4,
then the rcle of unity would be taken by the parameter n.

We can use the example just discussed te point out the crucial role
played by the double infinity; that is, by the absence of a last date. Sup-
pose, instead, that there is a last date. In particular, suppose the setup of
exercise 1 applies only for dates 1, 2, ..., T, and suppose that the young
people at T will not live to be old. Then the natural assumption to make
about their preferences is that they care only about how much time T good they
consume. In this case, then, we cannot produce a Pareto superior alloecation
by taking some time T good away from them.

Next, in the original infinite exercise 1 setup, consider the exer-
cise 1 allocation with a = 1/4. Let us consider the consequences of shifting
some goods hetween young and old, If we take a little bit from each young
person at each date and give that amount to each old person, then, as you
should be able to show, only the old at t = 1 benefit; everyone else is made
worse off. Suppose, instead, that we take a little bit from each old person

and give it to each young person. This makes everyone but the old at t = 1
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better off, but it makes them worse off. Thus, neither kind of shift produces
a Pareto superior allocation. (Note that I cannot propose taking a little bit
from each young person and giving, say, 100 times that little bit to each old

person; that is not feasible in the exercise 1 setup.)
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II. Equilibrium in the pure exchange model

Here we will study exchange in a private ownership version of our
model in which we assume that individuals hehave competitively. Competitive
behavior means that individuals view themselves as being able to buy and sell
any amounts at ruling prices without affecting those prices; that is, they
treat prices parametrically.

Prices as always are market rates of exchange. In the present
version of the model, we are interested in rates of exchange between time t
good and time t+1 good for all t = 1. As is usual, we have to make some deci-
sion about how to express prices. One scheme, perhaps the most commonly used,
is to express all prices in terms of time 1 good; for example, by letting,
say, y{t) be the price of time t good in units of time 1 good with (1) = 1.
We will start out with a different scheme, one that expresses exchange ratios
in terms of cone-period gross interest rates, Thus, we let r{t) be the price
of time t good in units of time t+1 goocd. (The correspondence between the two
ways of expressing prices is r{(t) = y(t)/y{t+1).)

In order to describe competitive behavior and equilibrium, we need a
description of who owns what; i.e., a description of what individuals start
out with prior to trade., We use the word "endowment" to describe this and
let w?(t) be the part of the endowment of member h of generation i that con-
sists of time t good. In general, we assume that any member of generation t
has an endowment consisting of some time t good and some time t+1 good and
nothing of any other good.

Before we describe competitive trade formally, it may help to think
in a general way about what kind of trade can occur in this economy. Consider
the situation at some date t, when there are members of generation t-1 present

(the old) and members of generation t present (the young). First note that
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because théere is only one good at each date, there is no potential for inter-
generation (between generation) trade. No member of generation t-1 (no old
person) has anything to give a member of generation t (a young person) in
exchange for time t good; ne young person has anything to give an old person
in exchange for time t good which is of value to the old person., There may,
however, be potential for intrageneration (within generation) trade among
members of generation t. (4s we will see later in a model with more objects
in it, intergeneration trade is a possibility.)

In general, a competitive equilibrium is a set of prices and quanti-
ties that satisfy two conditions: (a) the guantities that are relevant for a
particular person maximize that person's utility in the set of all quantities
that are affordable given the prices and the person's endowment, and (b) the
quantities clear markets. For the application now being considered the prices
are an r{t) sequence (that is, r(1}, r{2}), r(3), ..., r(t)), while the quanti-
ties are a consumption allocation and, perhaps, quantities of loans granted or
received. Roughly speaking, we will proceed as follows. Condition {a} will
give us relationships between utility maximizing quantities and prices--rela-
tionships that are usually labeled demand or supply functions. And (b) picks
out those prices consistent with the utility maximizing quantities being
market clearing quantities.

Our first task is to find the relationship between utility maximiz-
ing quantities and prices. To do this, we first describe the set of afford-
able lifetime consumption bundles for some member h of generation t, t 2 1,
We suppose that person h faces some positive price r{(t), a gross interest
rate, at which h can borrow or lend. One way to describe the set of afford-

able consumption bundles is as follows:

(t) - 22()

(1) ct(t) < w*g
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(2) cz(t+1) < wi(t+1) + r(t)ef(t)

where nh(t) is the loans that h chooses to grant. It is crucial to bear in
mind that a negative value of Eh{t) means that h borrows.
We also find it convenient to describe the set of affordable con-

sumption bundles for h by
(3) cz(t) . cz(t+1)/r(t) < w:(c) N wt(t+1)/r(t).

As an exercise, prove that the pair of constraints, (1} and (2}, is

equivalent to {3); that is, prove the following two statements:

(i) If (Et(t),at(t+1)) is a consumption bundle that satisfies (3), then
there exists some value of mh(t} for which [Et(t),at(t+1)] satisfies (1)
and (2).

(i1) 1f (ef(),c(t+1),2™(t)) satisfies (1) and (2), then (cf(t),cl(ts1))

satisfies (3).

We now describe the relationship between utility maximizing choices
and w:(t), wz(t+1), and r(t). First, note that since utility is increasing
in c?(t) and in 02(t+1), utility maximizing choices will satisfy (3) at equal-
ity. This implies that we can use (3) at equality and express h's utility as
a function of a single variable. Thus, for example, we can express utility in

terms of c:(t) as

h
£

h- h

ut[ct(t),cz(t+1)] = u [c:(t),wz(t+1)+r(t)[w2(t)-c:(t)]].

We will express utility in terms of a new variable called saving and
denoted 32 for h in generation t. We define SE as wz(t) - c?(t), the amount
by which the endowment when young exceeds consumption when young. Using (3)

at equality, utility as a function of saving is
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(4) u[c:(t),c:(t+1)] = u[wz(t)—sz,w:(t+1)+r(t)s:].

Qur general assumptions about utility imply that there is a unique

value of s: which maximizes the right-hand side (RHS) of (4) and that this

maximum is given by the value of SE at which the first derivative of the RHS

of (4) is zero. Using the chain rule, the first derivative of the RHS of (4)

is —ut1( , )+ r(t)uzz( , ), where, as above, utj is the partial deriva-
tive of uz( i ) WJEE. itE jth argument. Upon equating this derivative to

zero, we have

h

ut2( - 3 3 BlE).

(5) g (R V'

This says that the value of saving which maximizes utility is that which
equates the MRS to r(t), which is the price of time t good in units of time
t+1 good.

Here are two examples for which equation (5) can be easily solved

for saving, sh These examples will be used repeatedly in exercises.

L.
Example 1.  uf(cl(t),el(t+1)) = cf(t)lep(t+1)1®, & > 0.  Then oLy =

h
£

h

h h h
t2 () Mu,( ) = e (t+1)/8e ().

[c:(t+1)]3, ol = Bc:(t)[cz(t+1)]8'1, and u

Using the definition of st and (3) at equality, we can rewrite this

as
h _ruh h h .y _.h
t2( ; )& [wt(t+1)+r(t)st]/s[wt(t) St]
Thus, for this example, equation (5) takes the form

[WZ(t+1)+r(t)sE]/a[w2(t)-s:] = r(t).

Verify that this can be solved for 32 and that the solution is



- 15 -

s: . s~2(t)x(1+s) - w:(t+1)/<1+s)r(t)

1/2

Example 2. ul(cl(t),el(t+1)) = [el(£)1" 2ralel(e+1)1"2, 8 > 0.

Verify that for this example, equation (5) can be solved for s: to

obtain
s - szr(t)NZ(t)/[1+agr(t)1 - W2 (t+1)/r(6) [ 14870 (E) 1.

In general, we will denote the value of sh that maximizes (4) by the

t
function s:[r(t),wh(t),wz(t+1)], which we call a saving function. Sometimes
we will denote the function by 52( ) or even by s:. For example, if h has
the example 1 utility function we write splr(t),wl(t), wh(ts1)] =
BN:(t)/(T+B) - w:(t+1)/(1+s)r(t). (For this case, compute the partial deriva-
tives of s: w.r.b: 2(E); w:(t), and wz(t+1). Interpret what you find in terms
of income and substitution effects on the demand for c:(t) and cz(t+1).

In general, our assumptions about utility functions and the assump-

tion that w:(t) > 0 and wz(t+1) > 0 imply that s:[r(t),w:(t),w:(t+1)] has the

following properties:

(a) It is continuous.
(b) There is a unique value of r(t), say r¥, such that st = 0 and for r(t) >
2 > 0; while for r(t) < r¥, sh < 0.

r¥ s
t
(c) sgfr(t)] < wg(t) for all r(t).

The saving function for h in generation t gives us the relationship
between utility maximizing choices and prices. In order to complete the
description of a competitive equilibrium, we must describe market clearing

conditions.

.
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In the present model, we assume that the total amount of time t good
available is the sum of what individuals start with. Then, the condition that

total consumption of time t good be equal to the goods available is
h h h h
(6) TnCe_q(8) + Ly (t) = Lw, () + L wi(t) for all t = 1,

where summation over h means summation over the members in the relevant gener-
ation.

Next, we use some implications of the individual budget con-
straints. At t = 1, the trivial budget constraint of h in generation 0 is
03(1) < wg(1}, which implies that choices satisfy this at equality or that
zhcg(1) s thg(1). By (6), this implies zhc?(1) = zhw?(1). This equality and
(3) at equality summed over h imply Ehc?(z) = Ehw?(Z). Then, using (6) again,
we get zhcg(2) = zhwg(2). By the obvious induction argument then, we get for

all t > 1,
(7) Trep(e) = ful(e),

which we can write as

(8) N, (ul(t)-cP(t)) = 0, for t 2 1.

Since wt(b) - c:(t) is saving of h in generation t, (8) says that total sav-
ings for the members of generation t must be zero in equilibrium,

We have already expressed the dependence between the choice of
saving and r(t) for h in generation t by the function s:( ). Let us define

the function S [r(t)] by

h
(9) S [r(t)] = Jys ().



s Y =

We call S, the aggregate saving function on the part of generation t. (Note
that we here use a notation that leaves implicit the dependence of aggregate
saving on endowments.) The requirement that utility maximizing choices be

market clearing is, therefore, the requirement that
(10) S [r(t)] = 0; t=1,2
Here are some exercises.
fs Find the St[r(t)] function for the following cases:

(i)  N(t)

100; each h in generation t has the example 1 utility function

with 8 = 1 and wl;(t) 2, wi‘(m) 1.

(ii) N(t) = 100; each h has the example 1 utility function with 8 = 1, and
. " (2,1); A =1,2, ..., 50
[wt(t),wt(t+1)] z
(1,1; h = 51, 52, ..., 100
25 Use some or all of properties (a)-(c) of SE listed above to prove the

following about St[r(t)], the aggregate saving function for generation

t:

(a) St[r(t)l is continuous.

(b1) There exists some value of r(t), say r(t), such that if r(t) =< r(t),
then S[r(t)] < 0.
(b2) There exists some value of r(t), say r(t), such that if r(t) 2 r(t),
then S[r(t)] > 0.
h
(e)  Sglr(t)] < J wi(t).
3. Use properties (a), (b1), (b2) of the St[r(t)] function to prove the

following: For each t, there exists at least one value of r(t) that

satisfies equation (10),



(i)

(ii)

(iii)

(iv)

(v)

(vi)

< 18 =

Describe completely the competitive equilibria for the following econo-

mies:

N(t) = 100 for all t > 0. Each member of generation t, t > 1 has the
example 1 utility function with 8 = 1 and (wi(t),ul_,(t)) = (2,1) for
all hand t 2 1.

Same as (1) except that (ul(t),wy_,(t)) = (1,2) for all hand t > 1.
Same as (i) except that each member of generation t, t > 1, has the
example 2 utility function with 8 = 1.

Same as (i) except that for all t > 1

(2,1); h=1,2, ..., 50

(we(e) iy, (£)) =
(1:1); B = Bly 52y ey 100

Same as (i) except that for all t > 1

" " (2,1); h=1,2, ..., 60
CHORRONE
(1,1); h = 61, 62, ..., 100

Same as (i) except that for all h

1]

(2,1) for t 1, 3, 5,

(W)W (1)) =
t t-1 3, y, 6,

(1,1) for t

(Pareto optimality) Under the assumption that the total amount of time t
good available is the sum of individual endowments; namely, that Y(t) =
z w?(t) + E w:_1(t) for all t > 1. Prove that the competitive equilib-
r?um of eaZh of the following economies of the last exercise is not
Pareto optimal: (i), (iii)-(vi). (You may find it helpful to review
the material on feasible, Pareto superior and Pareto optimal alloca-

tions.)
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At this point, we want to introduce a simple kind of taxation into
our medel--endowment taxation. This kind of taxation is often called "lump-
sum” taxation because the amount to be paid is unaffected by choices that the
individual makes. In our model, such tazes can either be payable when young
(a tax on w:(t) for h in generation t} or payable when cld (a tax on w?(t+1)
for h in generatijon t). Whether payable when young or when old, we assume
(unless we explicitly say otherwise) that people when young know the tax they
must pay when old and take account of it when they decide how much to save.
For a given tax scheme and given endowments, to find saving in the presence of
the tax simply use net-of-tax or after-tax endowments in the saving func-
tion. By the way, taxes can be either positive (the individual makes a pay-

ment} or negative (the individual receives a payment or transfer).

6. {Taxes on young, transfers to old, or "social security" schemes) Here,
we consider only balanced budget schemes, those for which the taxes col-
lected from the young at any date t equal the transfers at that date to
the old. Assume throughout that people when young know and take into

aceount the transfers they will receive when old,

(i) Consider the exercise U4(i} economy and consider a scheme in which each
person when young is taxed one unit and each person when old receives
one unit as a transfer. Describe the competitive equilibrium and show
that it is Pareto superior to that which obtains in the absence of the
scheme,

(ii} Consider the same social security scheme within the context of the exer-
cise 4(iv} economy. Compare the equilibria with and without the scheme.

{iii} Consider the exercise 4{i) economy but with N{(0} = 100 and N(t) =

2N(t-1) for all t = 1. If each person when young is taxed one unit,
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what is the maximum that can be given to every person when o0ld? Compare
the competitive equilibria with and without this scheme.

(iv) Consider the exercise 4(i) economy but with N(0) = 100, N(t) = 2N(t-1)
for t =1, 2, ..., 10 and N(t) = N(10) for t = 10. Describe some alter-
native social security schemes for this economy. Relate the "difficul-

ties" that arise to those that currently plague the U.S. social security

system.

7. (Consumption vs. income taxes) To get started, we write versions of
equations (1) and (2) that include a flat rate consumption tax, z,, and
a flat rate income tax, zy:

; h By _oheey o h
G1%) ct(t)5(1zy)wt(t) 2 (t) -z (t)
h h h h
(2") e, (t+1) < (1-zy)[wt(t+1}+r(t)l (£)] - z e (t+1).

Note that under the income tax, z interest received is taxable and

y!
interest paid is deductible. Show, without making any particular as-
sumptions about preferences or endowments, that all nonnegative pairs

(zc,zy) satisfying (1'Zy)/(1+zc) = g for a given g satisfying 0 < g < 1

are equivalent. As part of your answer, define equivalent.

We now want to introduce government borrowing into the model. It is
easy to show that if government debt consists of sure (safe or certain) titles
to the consumption good in the future, then one period debts or loans of the
government must bear the same rate of return as private loans. We will assume
such safety of government debt and the implied equality of rates of return.
If we do, then we do not have to derive a special demand for government bonds
or debt; individuals are indifferent as to whether their saving takes the form

of debt issued by other members of their generation or debt issued by the
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government., The effect of the presence of government debt is captured by:
{a} the requirement that private saving at date t be equal to the time t value
of outstanding government debt at t, both measured in units of the time t
good, and (b} the requirement that government and private debt earn the same
return. Requirement (a) says that we now equate the function St[r(t)] to the

time t value of outstanding government debt, not te zero.

8. {Endowment tazes vs. government bhorrowing) Consider the economy of
exercise #{i}. Assume there is a government which will raise 25 units
of time 1 good and transfer these units toc members of generation 0.

Compare the following ways of financing this scheme,

(a) The government collects 1/4 of a unit of time 1 good from each member of
generation 1.

(b} The government at t = 1 sells securities which are titles to time 2 good
(one-period bonds), At t = 1 it also announces that the members of
generation 1 will be taxed equally at t = 2 (when they are old) to pay
off bonds. (Hint: Show that the equilibrium under scheme (a} is also
an equilibrium under this scheme.)

{c} The government at t = 1 sells securities which are titles to time 2 good
{one-period bonds). It sells encugh to get 25 units of time 1 good. It
will tax the members of generation 2 equally at t = 2 to pay off the

securities it sells at t = 1.

The result that the equilibrium under 8(a) is also an equilibrium
under 8(b) is a particular instance of a general result that often goes by the
name Ricardian equivalence, named after David Ricardo, an early 19th century

English economist, The general result which we will prove can be stated as

follows.
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Proposition. Given an equilibrium under some pattern of lump-sum taxation and
government borrowing, alternative (intertemporal) patterns of lump-sum taxa-
tion that keep the present value (at the given equilibrium rates of return) of
each individual's total tax liability equal to that in the given equilibrium
are equivalent to the following sense. Corresponding to each such pattern is
a pattern of government borrowing and lending such that the given equilibrium
consumption allocation, including consumption of the government, and the given
equilibrium (rates of return) are an equilibrium under the alternative taxa-

tion pattern.

Proof. We can write the budget set of h in generation t, for t > 1, as:
P h h h h

(1) eg(t) = we(t) - (k) - 7(t)

(11)  el(te1) = wl(ee1) = <DEe1) + r(£)2"(E)

where the t's are lump-sum taxes (the subscript refers to the generation).

Combining these, by eliminating Eh(t), we have
(111) el(e) + elen)/e(e) = ule) + wl(eat)/e(e) - [Re)ecl(eat)/e(e)].

Let us denote the quantities and rates of returns in the given
equilibrium by the respective symbols with a "-" over them. Thus, for all h
and t > 1, E:(t), Ez{tn), (), ?E(t), ?E(tﬂ}, and r(t) satisfy

(i)-(iii) and are such that

(a)  (el(t),cl(t+1)) maximizes h's utility subject to (iii) at r(t) = r(t)
and the "-" taxes.

(b) th(t) = B(t)/r(t), where the summation is over the members of genera-
tion t and where ﬁ(t} is the number of one period bonds at t, each bond

being a title to one unit of time t+1 good.
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Now consider any other tax pattern that for each h satisfies
(1v) )+ Do) /E(e) = TE) + e /e,

the condition that the present value of taxes be the same.

It follows from (iii) that when faced with r(t) = r(t), h has the
same set of affordable consumption bundles as under the "-" taxation pat-
tern. It follows that [Ez(t),at(t+1)] is again a utility maximizing consump-
tion bundle. However, to achieve (E:(t),E:(t+1)] under r(t) = r(t) and the
alternative taxation pattern, h must lend a different amount; in particular,

(i) implies that the new level of lending, £'(t), is related to E: by
) ) = 1) - )T

Summing (v) over h in generation t and using (b), we have
(vi)  JaMe) = B)/r(r) - Jrele)-The)].

Now we must show that this level of total lending by the members of
generation t clears the market in loans. Since the market clearing condition
is that Zah(t} equals government borrowing, we must show that the RHS of (vi)
is the alternative level of government borrowing at t implied by the alterna-
tive taxes and the condition that government consumption is unchanged.

The alternative level of government borrowing at each date t 2 1

must satisfy

(vii) B(t)/r(t) = Gy - [t (E)+r,_,(£)] + B(t-1)

t
where Et is government consumption, rt(t) is total time t taxes on generation
£, and rt_1(t) is total time t taxes on generation t-1. We are given that

(viii) B(t)/r(t) = G - [t (t)+t,_, ()] + B(t-1).

t

-
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Solving (viii) for Et and substituting the result into (vii), we get for all

t 21

(ix)  B(t)/r(t)

1]

B(t)/r(t) - [r (£)-7 (£)] - [r,_,(t)-T _,(t)]
+ [B(t-1)-B(t-1)].

For t 1, B(t-1) = B(t-1) because B(0) is an inherited amount of

debt which is not affected by policies adopted at t = 1. Also, as a conse-
quence of the present value condition on taxes for the people who are old at
€.z 1, 10(1) = ?0(1). (Since it is too late at t = 1 to adjust the taxes mem-
bers of generation 0 paid when they were young, we do not vary the taxes they

must pay when old.) Thus (ix) implies
(x) B(t)/r(t) = B(t)(r/t) - [rt(t)—?t(t)]

for £ £ 1.

We now establish by induction that (x) holds for all t > 1.

For t > 2, (iv) can be lagged once and summed over h to get
Tt-1(t) = rt_1(t) = —[rt_1(t—1)—rt_1(t—1)]r(t). Upon substituting this into

(ix), we get for all t 2 2
(xi)  B(t)/r(t) = B(t)/r(t) - [t (t)-t ()]
+ {7, _;(e=1)-T _,(t=1)]F(t-1)+B(t-1)-B(t+1)}.

Notice that if (x) holds for t-1, then the term in curly brackets, { }, in
(xi) is zero. This, in turn, by (xi) implies that (x) holds for t. This
induction step, together with the previously established result that (x) holds
for t = 1, implies that (x) holds for all t > 1, Since the RHS of (x) is
equal to the RHS of (vi), we have established market clearing for loans at

every date. This completes the proof.
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Notice that the proposition is general in that nothing specific was
assumed about preferences, endowments, or taxes. The crucial hypothesis is
the one concerning the present value of taxes on each individual, condition
(iv) in the proof, You should be able to demonstrate that schemes (a) and (c)
of problem 8 do not satisfy that condition. We now consider still another
financing scheme that when compared to scheme (a) does not satisfy that condi-

tion.

9. (Borrowing forever) As in 8(c), the government sells enough securities
at £t = 1 to get 25 units of time 1 good which it transfers to members of
generation 0. However, instead of taxing the members of generation 2 at
t = 2, it sells enough new securities (new one-period bonds) to pay off
the securities it issued at t = 1. At every subsequent date, it keeps
doing this; it sells enough new securities to pay off the securities
that come due. As completely as you can, describe the competitive
equilibrium under this scheme for the exercise 4(i) economy. Is the
equilibrium under this scheme Pareto superior to the competitive equi-
librium in the absence of any policy? Is it Pareto optimal?

10. Analyze the financing scheme of problem 9 for two other economies: the

economy of exercise 4(ii) and the economy of exercise L(iv).
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III. Long-term assets, expectations, and perfect foresight equilibrium

In exercises 8-10 of section II, we considered the consequences of
government borrowing that takes the form of one-period bonds or loans. We now
want to study the consequences of a government sale of longer-term bonds--
bonds which pay off in two periods or in three periods or in k periods. For
example, given the economy of exercise 4(i) of section II and given that the
government at t = 1 sells enough bonds which are titles to time 3 good to
raise 25 units of time 1 good and will tax the members of generation 3 equally
at t = 3 to pay off the bonds, we want to describe what happens at t = 1, 2,
and 3 and thereafter.

Without loss of generality, we will suppose that each bond is a
promise to pay 1 unit of the consumption good at the date when it comes due.
(In the language typically used, these are zero "coupon" bonds or '"pure dis-
count" bonds.) As we did above, we assume that promises are believed and, in
fact, honored.

Now, if at any time t, a young person buys a bond which does not
come due at t+1, then such a person must plan to sell it at t+1, presumably to
some member of generation t+1. We may suppose that at t there is a price of
such bonds, denoted p,(t) for bonds that pay off in k periods, at t+k. How-
ever at t, a potential purchaser of such bonds must guess the price at the
next date. (After all, the purchasers at t+1, the members of generation t+1,
are not yet present in the economy.) We begin our analysis of this situation
by supposing that member h of generation t has a "guess" or a "forecast" about
the price of such bonds at t+1. We denote the guess by pﬁl?(t+1} and assume
it is not negative. (Here the superscript "h,e" stands for h's expectation.

The subscript is k-1 because at t+1, the bonds pay off in k-1 periods.)

Moreover, we treat this guess or forecast as one that h holds with certainty.
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We begin by describing a version of the budget set for member h of

generation t implied by the presence of a market in such bonds and h's fore-

cast.

h h h h
(11) c (t) = w (t) -2 (t) - P ()b, (t)

h _ h h hye(p. b
(12) ct(t+1) g wt(t+1) + r(t)e(t) + pk_1(t 1>bk(t)'

In addition to the consumption bundle, h chooses mh(t), one-period loans
granted by h, and bz(t), the number of k-period bonds h purchases. The "giv-
ens" to individual h are the endowment, the w's; the time t price per bond,
pk(t); the time t gross interest rate on one-period loans, r(t); and the price
at which h expects to be able to sell the bonds at t+1, pE:?(t+1). For the
moment, we do not ask how h arrived at this expectation.

Since Eh(t) is not constrained as to sign, the above two constraints

are equivalent to the single constraint obtained by, say, solving (11) for

Lh(t) and substituting the solution into (12). The result can be written
(13) r(£)el(t) + eP(te1) = r(E)ul(E) + wl(t+1)
t t t t
h h,e
- b (t)[r(t)p, (t)-p, ~J(t+1)].

As an exercise, show that (13) is equivalent to (11) and (12) in the
same way as you showed earlier that (3) is equivalent to (1) and (2).

Given only that utility is increasing in both components of consump-
tion, we can draw some conclusions from (13) about h's demand for bonds, h's
choice of bE(t). If the term in square brackets that multiplies bE(t) is
positive, then h chooses bi(t) = 0 (we do not permit a negative demand for
government bonds); if that term is negative, then h chooses to have an infi-
nite number of bonds; if it is zero, then h is indifferent about the magnitude

of bz(t). These remarks lead us to the following proposition:
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Proposition. If there is unanimity--namely, pE:e(t+1) = pg_,(t+1) for all h
in generation t--and if some k period bonds exist at t, then in any equilib-
rium (in whiech, in particular, desired bond purchases equal the bonds sup-

plied)
_ e
Proof, As an exercise, present a proof,

The conclusion of this proposition says that the price of bonds,
pk(t), the rate of return on loans, r(t), and the expected price of bonds,
pE_1(t+1), satisfy a present value formula, or, equivalently, that the one-

period expected rate of return on bonds, pi_1(t+1)/pk(t), equals the rate of

return on one-period loans, r(t}). From now on, we assume unanimity, namely
h,e _ e . .
pk_1{t+1) = pk_1(t+1) for all h in generation t,

Qur first task is to define what we call a time t temporary equilib-

rium, Given pi_1(t+1), a time t temporary equilibrium is a bond price pk(t),
an r{t), bond purchases, loans granted and received at t, and a pattern of
consumption of time t good which clears the markets for bonds, loans, and the
consumption of good at time t. We want to describe how we go about finding a
temporary equilibrium.

First, note that for prices that satisfy (1), (13) becomes {3). In
other words, for prices that satisfy (14), which are the only kind that are
consistent with equilibrium, the set of affordable consumption bundles depends
only on r(t) {and endowments) in the same way as described by (3). Moreover,
if for a given r(t}), h wants to dissave--i.e., chooses ct(t) > wi(t), then h
borrows., If instead h wants to save--i.e., chooses c:(t) < wE(t), then h
either lends or buys bonds or some of both. Since in equilibrium, the rates

of return on loans and bonds are equal, h cares only about total saving, not
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its composition between loans granted and bonds purchased. Thus, maximization
of utility subject to (13) gives us the same saving function for h as we found
in section II; namely, s:.

bers of generation t, we get the same aggregate saving function on the part of

And by summing these functions over all the mem-

generation t; namely, St[r'(t)].

One equilibrium condition is that saving by the members of genera-
tion t, St[r(t)], equals the time t value of government bonds supplied by both
the members of generation t-1 and the government. If we assume that only
bonds which pay off in k periods are outstanding at t, the number of which we

denote by Bk(t), the equilibrium condition is
(15) s, [r(t)] = p (£)B, (L),

Equation (15) contains two unknowns, r(t) and pk(t). We need at least one
other condition if we are to hope to determine values for pk(t) and r(t). The
other condition is (14). We define a temporary equilibrium in terms of both

conditions.

A temporary equilibrium at t, then, is a pair [r(t),pk(t)] that
satisfies (14) and (15). Note that the "givens" are an S, function, which, in
turn, depends on the preferences and endowments of members of generation t;
the number of bonds, Bk(t); and the anticipated price of bonds at t+1,
p;_1(t+1). Different "givens" will, in general, imply different solutions.

One way to "solve" (14) and (15) is to solve (14) for p(t) and to

substitute the result into (15). This gives us
_ r.€
(16) r(t)S [r(t)] = [p (E+1)]B, (t).

Equation (16) contains only one unknown r(t). If we can solve it for r(t),

then we can use that solution and (14) to solve for pk(t). Do the general
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assumptions made imply that there exists at least one value of r(t) that
satisfies (16)7
As an exercise, describe completely the time t temporary equilibrium

for each of the following economies.

. h h h h h
(i) N(t) = 100, uz[ct(t),ct(tﬂ)] ” c:(t)ct(tn), (Wh(E) Wi(Ee1)) =
(2,1) for all h, B, (t) = 100, and pﬁ_1(t+1) = 1.

(ii) Same as (i) except that pi_1(t+1) = 1/2.

Notice that the temporary equilibrium depends on, among other
things, the price anticipation, pE_1(t+1). Thus, if we do not go beyond this
way of modeling, we must say that what happens depends on, among other things,
what people believe about prices in the future. Economists have generally
been reluctant to leave matters there, mainly because of a suspicion that
beliefs about prices in the future can be explained.

In the context currently under discussion, economists have for a
long time used as a hypothesis about beliefs something called perfect fore-
sight. The hypothesis of perfect foresight is the hypothesis that forecasts
or expectations are correct or that they equal the corresponding realizations.

To introduce this concept most simply, let us first suppose that
k = 2; namely, that all the bonds outstanding at t pay off at t+2. Let us
also suppose that at t+1 only bonds that pay off at t+2 will be outstanding.
In this context, perfect foresight is the hypothesis pE_1(t+?) = pk-1(t+1)’ or
with k = 2, p?(t+1) = p1(t+1). We first show how to apply the hypothesis.
Then we will say why it is an obvious and attractive hypothesis in this con-
text. Finally, we will note some of its implications.

In the circumstances being assumed here, we can use the perfect

foresight hypothesis as follows. First, solve for pj(t+1). Second, use that
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solution and perfect foresight to find r(t) from (16), and then po(t) from
(14). Since we have already done the second step, here we will describe only
the first step.

At t+1, the bonds that pay off at t = 2 are one-period bonds.
Suppose the total number of such government bonds is By(t+1). Then p,(t+1)

must satisfy
(17) St+1[r(t+1)] = p1(t+1)B1(t+1).

Again, we have one equation in two unknowns, r(t+1) and p,(t+1). However, a
second equation is implied by the condition that the rate of return on these

bonds at t+1 be r(t+1), or that
(18) 1/p1(t+1) = r(t+1).

Here are two exercises which ask you to apply the perfect foresight

hypothesis.

1. Consider the economy of exercise 4(i) of section II. Suppose the govern-
ment at t = 1 sells 25 bonds, each of which is a title to one unit of
time 3 good--i.e., each bond when issued is a two-period bond. The
proceeds from the bond sale are distributed in equal amounts to the
members of generation 0; while the members of generation 3, the young at
t = 3, are taxed equally to pay off the bonds. Describe the competitive
equilibrium under the perfect foresight hypothesis.

2. Same as Exercise 1 except that instead of selling 25 bonds at t = 1, the
government sells enough two-period bonds to raise 25 units of the time 1
good. Again, describe the competitive equilibrium under the perfect

foresight hypothesis.
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Perfect foresight is an attractive hypothesis because people have an
incentive to form correct forecasts. (We will devote some class discussion to
explaining this incentive.) Given this incentive, if you describe people as
holding views or making forecasts that are not correct, you are probably
giving a faulty description of their behavior. Perfect foresight has long
been used in contexts like the one described above because it is easy to apply
in that context. In the next section, we will be using perfect foresight in
contexts in which it is not so easy to apply.

The following exercises deal with two closely related consequences

of perfect foresight.

3 (Long-term and short-term rates of return) Consider a pure discount bond
which at time t is a promise to one unit of time t+k good. Suppose its
price at t is p,(t). The gross internal rate of return on this bond is

defined to be [1/p (t)](1/K).

(a) Under the perfect foresight hypothesis, prove the following:

1/k

[1/p, ()17% = [e(t)e(tsat) ... r(tek-1)1(17%)

where r(t+j) is the equilibrium one-period return at time t+j, and where
the right side is a product of k terms raised to the power 1/k.
(b) Show, using an example, that the result is not true if perfect foresight

does not hold.
4. (Irrelevance of the maturity composition of government debt)

(a) Same as Problem 2 except that instead of selling two-period bonds at
t = 1, the government sells one-period bonds at t = 1 and at t = 2 sells

enough one-period bonds to pay off those issued at t = 1. Describe the
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equilibrium and compare it with that of problem 2. Comment on the role
of the perfect foresight hypothesis.

(b) Formulate a general proposition concerning irrelevance of the maturity
composition of government debt.

(c) Present a proof of your part (b) proposition.
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IV. The pricing of an infinitely long-lived asset under perfect foresight

Here we suppose that there exists in the economy some amount of
"land," A, where A is measured in acres, say. At each date t, this land
throws off a "crop" consisting of D(t) (for dividend) units of the time t
good. The crop is proportional to the acreage in the sense that xA acres of
land throw off a time t crop equal to xD(t). In our market schemes, we will
assume that A is owned initially by the people who are old at t = 1. 1In a
competitive equilibrium, this land is sold each period; at time t, the (old)
members of generation t-1 sell it to the (young) members of generation t.
Without loss of generality, we assume that land is sold ex-dividend, after the
old at t get the time t crop. We let p(t) be the (ex-dividend) price per acre
of land in units of time t good. Let d(t) denote the crop per acre or
D(t)/A. We are interested in, among other things, how p(t) gets determined
for- k. =1,

The presence of land does not lead us to change what we have been
assuming about preferences or utility. People still "care" only about how
much they consume. What land does is provide an alternative way of converting
endowment of time t good into consumption of time t+1 good.

At any date t, all the land is offered for sale by the old at any
positive price. In other words, the supply of land on the part of the old is
perfectly inelastic at the quantity A. Thus, the price is determined by the
demand for land on the part of the young at t.

We begin by describing one version of the budget set for member h of

generation t, some young person:
(19)  el(e) = wi(e) - 2™(t) - p(t)a"(t)

(20) cl;(tﬂ) = w*;(tm + e (0)a(e) + al(e)d(t+) + al(£)pPC(te1).
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In addition to the consumption bundle, h chooses ih(t), one-period loans
granted by h, and ah(t), acres of land purchased by h. The "givens" to the
individual are the endowment, the w's; the time t land price, p(t); the time t
gross interest rate, r(t); the per acre crop at t+1, d(t+1); and the price
that h expects to be able to sell the land for at t+1, ph’e(t+1). For the
moment, we do not ask how h arrived at this belief.

Since 20(t) is not constrained as to sign, the above two constraints
are equivalent to the single constraint obtained by, say, solving (19) for

Eh(b) and substituting the solution into (20). The result can be written
h h h h
(21) r(t}ct(t) - ct(t+1) = r(t)wt(t) + wt(t+1)
- a(e) [r(E)p(e)-d(t+1)-p7 8 (L4 1) ]

As an exercise, show that (21) is equivalent to (19) and (20) in the
same way as you showed earlier that (3) is equivalent to (1) and (2).

Given only that utility is increasing in both components of con-
sumption, we can draw some conclusions from (21) about h's demand for land,
h's choice of af'(t). If the term in square brackets that multiplies al(t) is
positive, then h chooses all(t) = 0 (we do not permit a negative demand for
land); if that term is negative, then h chooses to have an infinite amount of
land; if it is zero, then h is indifferent about the magnitude of all(t).

These remarks lead us to the following proposition.

Proposition. If there is unanimity--namely ph’e(t+1) = p®(t+1) for all h in
generation t--then in any equilibrium (in which desired land purchases equal

the land supplied)

(22) r(t)p(t) = d(t+1) + pS(t+1).
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Proof. As an exercise, present a proof.

The conclusion of this proposition says that the price of land,
p(t), the rate of return on loans, r(t), and the expected payoff from the
land, d(t+1) + p®(t+1), satisfy a present value formula, or, equivalently,
that the rate of return on land, [d(t+1)+pS®(t+1)]/p(t), equals the rate of
return on loans, r(t).

From now on, we assume unanimity; namely, p™'€(t+1) = pS(t+1) for
all h in generation t.

Again, we first define a time t temporary equilibrium. Given

p®(t+1), a time t temporary equilibrium is a land price p(t), an r(t), land
purchases, loans granted and received at t, and a pattern of consumption of
time t good which clears the markets for land, loans, and the consumption good
at time t.

We want to describe how we go about finding a temporary equilibrium.

First, note that for prices that satisfy (22), (21) becomes (3). In
other words, for prices that satisfy (22), which are the only kind that are
consistent with equilibrium, the set of affordable consumption bundles depends
only on r(t) (and endowments) in the same way as described by (3). Moreover,
if for a given r(t), h wants to dissave--i.e., chooses cg(t) > wt(t}, then h
borrows. If, instead, h wants to save--i.e., chooses c:(t) < wz(t), then h
either lends or buys land or some of both. Since in equilibrium, the rates of
return on loans and land are equal, h cares only about total saving, not its
composition between loans granted and land purchases. Thus, maximization of
utility subject to (21) gives us the same saving function for h as we found in

section II; namely, sh And by summing these functions over all the members

£
of generation t, we get the same aggregate saving function on the part of

generation t; namely, St[r(t)].
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Assuming that there are no government bonds outstanding, the equi-

librium condition now is
(23) S [r(£)] = p(L)A.

We can "derive" {23) in the same way as we derived (10). In place
of (6) we get the new market clearing condition
(24) Ehc:_1(t) + 3 el(e)y = T Wl (6) + § wle) + D(b).

h h h
But total consumption of the old at t now satisfies
(25) [l ey = Ful (t) + D) + p(b)a.
h h
Upon substituting from (25) into (24), we get (23).

Note, by the way, that we now assume that Y{t), the total amount of
time t good available in this economy, is equal to the sum of individual
endowments plus the total crop, the right-side of (24). It is important to
remember this if you are asked questions about feasible or optimal consumption
allocations,

You can interpret equation {23) as saying that net saving on the
part of generation t is equal to net dissaving on the part of generation -1,
all of which is in the form of sales of land.

Equation (23) contains two unknowns, r{t) and p{(t). We need at
least one other condition if we are to hope to determine values for p{t) and

r(t). The other condition is (22).

A temporary equilibrium at t, as above, is a pair [r(t),p(t)] that

satisfies (22) and (23). Note that the "givens" are an Sy function, which, in

turn, depends on the preferences and endowments of members of generation t; an

ameunt of land, 4; the per acre dividend at t+1, d(t+1}; and the anticipated
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price of land at t+1, p®(t+1). Different "givens" will, in general, imply
different solutions.
One way to "solve" (22) and (23) is to solve (22) for p(t) and

substitute the result into (23). This gives us
(26) r(£)Sc[r(t)] = [d(t+1)+p®(t+1)]A.

Equation (26) contains only one unknown r(t). If we can solve (26)
for r(t), then we can use that solution and (22) to solve for p(t).

We will use the term "sequence of temporary equilibria" to refer to
a sequence comprised of a time t temporary equilibrium for each t > 1.

As an exercise, describe completely the sequence of temporary equi-

libria for each of the following economies:

h
£

for all hand t > 1. A = 100, d(t) = 1, and p®(t+1) = 1 for all t > 1,

(1) N(t) = 100, ul(cl(t),elean)) = ePe)elibst) and (Wl(t),ul(e)) = (2,1)

(ii) Same as (i) except that pS(t+1) = 1/2 for all t > 1.

(iii) Same as (i) except that d(t) = 1/2 if t is odd and d(t) = 3/2 if t is
even.

(iv) Same as (i) except that for all t 2 1

1 " (2,1) forh =1, 2, ..., 50
(we (€)W _,(£)) =
(1,1) for h = 51, 52, , 100
(v) Same as (i) except that for all h
(2,1) for t =1, 3,5, ...

Whe),w (8)) =
¢ t-1 (1,1) for t =2, U, 6, ...
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Notice that the sequence of temporary equilibria depends on, among
other things, the sequence of price anticipations. Thus, if we do not go
beyond this way of modeling, we must say that what happens depends on, among
other things, what people believe about prices in the future.

One approach to explaining beliefs is to impose hypotheses about the
relationship between beliefs about prices in the future and other variables.
One version of this approach is to hypothesize that beliefs about prices in
the future are formed by extrapolation from current and previous prices. One

particular version is called static expectations; it says that people believe

the price in the future will be the same as the current price. In our nota-
tion, the static expectations hypothesis is expressed as p®(t+1) = p(t) for
all t.

Here is an exercise. In each of the economies of the last exercise,
replace the sequence of price anticipations by the static expectations hy-
pothesis and find the implied sequence of temporary equilibria.

We have now found sequences of temporary equilibria for several
economies. In some, the hypothesized beliefs turn out to be correct, in
others not. Notice, in particular, that a hypothesis like static expectations
is consistent with beliefs being correct in some economies and not in others.

Why, though, should we be concerned about whether hypothesized
beliefs turn out to be correct? We are concerned about this because people
have an incentive to try to be correct, an incentive which is no weaker than
the incentive to maximize profit or utility. That being so, a modeling ap-

proach which ignores that incentive is not likely to give good predictions.

Perfect foresight or rational expectations competitive equilibrium

Instead of describing how people form correct beliefs, we will

insure consistency with the incentive to be correct by again imposing the
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hypothesis that beliefs are correct. Usually this is called making use of a
perfect foresight or rational expectations equilibrium concept.

Here is a definition applicable to this land economy. A perfect
foresight competitive equilibrium consists of sequences for p(t) and r(t) and
the other endogenous (dependent) variables such that the time t values are a
time t temporary equilibrium for p®(t+1) = p(t+1). More generally, a perfect
foresight competitive equilibrium is a sequence of values for the endogenous
variables with the property that the t*N term of the sequence is a time t
temporary equilibrium given that beliefs about prices in the future are given
by the subsequent term(s) in the sequence.

From now on the term "equilibrium" will be used to refer to a com-
petitive, perfect foresight equilibrium.

It is more difficult to apply perfect foresight in this model than
it is to apply it in the setups we studied in section III. There, our exam-
ples were carefully constructed so that we could always find the perfect
foresight forecasts applicable to some future date and then work backwards.
Here, that is not possible.

Let's begin by working in a somewhat formal way with equations (22)
and (23). The definition of an equilibrium (perfect foresight) tells us to

set p®(t+1) = p(t+1). Suppose we do that in (22) and write the result as
(27) r(t)p(t) = d(t+1) + p(t+1).

Next, suppose we solve (27) for r(t) and substitute the result into (23) to

get

(28) S¢[(d(t+1)+p(t+1))/p(t)] = p(t)A.
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If we can find a nonnegative p(t) sequence that satisfies (28) for all t > 1,
we will have found an equilibrium. This is so because given such a p(t) se-
quence, we can easily find a corresponding r(t) sequence (from (27)). Then
these together can easily be shown to satisfy the definition of an equili-
brium.

Here are three economies we will use in several exercises.

Economy 1. N(t) = 100, u:[c:(t),cz(t+1)] = ct(t)c?(t+1), and (”E(t)!”2,1(t)) =
(2,1) for all h and t =2 1. Also, A = 100 and d(t) = 1 for all
t=1.

Economy 2. Same as Economy 1 except that for all t 2 1

(2,1) for h

sy 25 ossy 50
(W(E) w2, (t)) =

(1;1) for h = 51, 52, .., 100
Economy 3. Same as Economy 1 except that d(t) = 1/2 if t is odd and d(t) = 3/2

if t is even.

As an exercise, write the explicit forms of equation (28) for t = 1,
2, 3, and 4 for each of the above economies. Next write in a succinct way the
explicit forms of equation (28) for all t > 1 for each of those economies.

Notice that (28) for t = 1 can be written S5,[(d(2)+p(2))/p(1)] =
p(1)A. Given that we know the form of the function S, (as you do in the last
exercise) and that we know d(2) and A, this equation contains two unknowns
p(1) and p(2). Hence, it is not likely that we can solve for a unique pair
that satisfies it. We can get another equation in p(2) from (28) for t = 2--
namely, S2E(d(3)+p(3))/p(2)] = p(2)A--but this contains another unknown,
p(3). Obviously, if we proceed to t = 3, to t = 4, and so on, we will always
be one equation short. (Notice, by the way, that if we somehow knew p(T) for

some T > 1, then we could use these equations to find p(T-1), p(T-2),

p(1).)
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Sometimes when we have fewer equations than unknowns, there are any
number (an infinite number) of solutions. For example, there are an infinite
number of pairs (x,y) that satisfy the single equation y = 10 + 2x, since for
any x, there is a value of y for which the equation holds. To consider
whether this is necessarily our situation, we proceed as follows. We could
pick arbitrarily a positive value of p(1) and use equation (28) for t = 1 to
get a value of p(2) (or perhaps several). Then, we could use that value of
p(2) in equation (28) for t = 2 to get a value of p(3) and so on. If this
procedure always generates a nonnegative p(t) sequence, then our situation
would be analogous to having one linear equation in two unknowns.

As an exercise, try this procedure for the ezplicit forms of equa-
tion (28) you found in the last exercise. What you should find is that the
procedure eventually implies negative values of p(t) for almost all values of
p(1). This shows that we cannot start with any value of p(1) and find a
corresponding sequence that is an equilibrium because, remember, an equili-
brium consists of nonnegative prices.

Now try to prove that each of eccnomies 1 and 2 has a unique equi-
librium and that that equilibrium has the property that p(t) is a constant for
all £t 2 1. Also, determine in which economy the price of land is higher.
Finally, for each economy, write an equation that the constant price of land
satisfies.

Before we turn to an analysis of economy 3 and then to a final set
of exercises on this model, some general comments on uniqueness of equilibrium
are in order. The above examples show that even though we seem to be "one
equation short," it can happen that there is a unique equilibrium. This does
not mean that uniqueness of equilibrium is the typical situation in our

model. It is well known that multiple equilibria can arise in the standard
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model, one with a finite number of individuals and commodities. That being
so, we should be very surprised if multiple equilibria could not arise in our
model which has an infinite number of individuals and commodities. One lesson
to be learnt from our examples, though, is the following. The mere fact that
our equilibrium conditions are a difference equation system without "enough"
initial conditions is not by itself sufficient to imply the existence of
multiple equilibria.

Now we will study economy 3. Economies 1 and 2 are easy to analyze
because for those economies an equilibrium p(t) sequence is one that satisfies
an equation of the form p(t+1) = f[p(t)] for all t > 1, where f is some func-
tion that does not depend on t. We cannot quite do this for economy 3. For
economy 3, we can, however, find two functions, call them f1 and fg, such that
an equilibrium p(t) sequence is one that satisfies:

f1[p(t)) if t is odd
(29) p(t+1) =

fe(p(t)] if t is even
(As an exercise, write explicit expressions for fy and f, for economy 3.
Also, sketch those functions in the [p(t),p(t+1)] plane and try to analyze
solutions graphically.)

Notice that equation (29) says that any equilibrium satisfies p(2) =
f;[p(1)}! p(3) = f2(9(2)J, p(4) = £,(p(3)), p(5) = fz(p(ﬂ)], and so on. It
follows by substitution that any equilibrium p(1), p(3), and p(5) must satisfy
p(3) = £,[f4(p(1))], p(5) = fg[f1(p{3)]] and, more generally, that for any

equilibrium:

(30) p(t+2) = £5[f,(p(t))] = g4(p(t)) if t is odd.
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As an exercise, write an explicit expression for the composite
function, g4, for economy 3.

Equation (30) is useful because it says that the odd dated terms of
an equilibrium p(t) sequence satisfy p(t+2) = g1[p(t)] where g, is a function
that does not depend on time. As an exercise, treat p(t+2) = g1[p(t)] as a
first-order difference equation and analyze its solutions. In particular,
prove that there is one and only one nonnegative sequence which satisfies
p(t+2) = g4(p(t)) and that this is a constant sequence. Denote this constant
51 and show that 51 > 0. Next let 52 = f1(51) and prove the following: the

sequence p(t) = p, if t is odd and p(t) = 52 if t is even satisfies (29) and

1
is the only sequence that satisfies (29). Also determine whether 52 > 51 or
vice versa. For this last question, it may be helpful to note that by substi-
tution, the even dated terms of an equilibrium for economy 3 must satisfy the
composite function p(t+2) = f1[f2[p(t)]].

Now, here are some exercises that require applying the model of this

section.

1. (Land prices and the size of the crop) Consider economy 1 but with d(t) =
d > 0 for all t. Show that the only equilibrium land price sequence is a
constant sequence and that the value of the constant, p, say, depends on

d. Does p = 0 as d » 0?7 Explain.

Next answer this same question for an economy exactly like economy 1

but with (wl(t),ul_,(£)) = (1,2).

2. (Time-series vs. cross-section observations) Suppose you have time-series
data for economy 3, data which consist of observations on the pairs
(d(t),p(t)) for different dates. Plot these pairs on a chart with d(t) on

the horizontal axis and p(t) on the vertical axis. Now consider the
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following questions. What are the equilibrium prices of land in two other
economies that are identical to economy 3 except that in one d(t) is
always 1/2, while in the other d(t) is always 3/2? Is there any simple
way to use the time-series observations for economy 3 to answer these
questions? Why?

3. (An "estimation" problem) You are an economist living in economy 3. You
are asked what the equilibrium land price would be in economies that are
identical except that they have different time patterns of crops--for
example, crops that do not vary over time. Here is what you know. You
have data on A and on (d(t),p(t)) for your economy. You also know that
the aggregate saving function for every generation has the form S[r(t)] =
ag - a1/r(t). However, you do not start out knowing the pair of parame-
ters (ag,aq). Outline in detail a procedure for answering the question.

4, (International "capital" flows and controls on "capital" flows) Consider a
world economy that consists of two countries, country V and country W.
Country V has the characteristics of economy 1 while country W has the
same characteristics except that it contains twice as much land--200
acres, each acre of which has a crop of one unit of the consumption good
at each date. Assume that neither people nor land can physically move
between countries, but that the consumption good can be transported with-

out cost between countries.

Here are elements of some alternative government policy rules: (a)
laissez-faire (LF) at t--At time t, any member of generation t can buy land
located anywhere. Also, there can be borrowing and lending between residents
of different countries. (b) portfolio autarky (PA) at t--A member of genera-
tion t of a particular country can buy land located in that country only and

can lend to or borrow from residents of that country only.



(1)

(ii)
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Describe and compare equilibria under PA for all t 2 1 and under LF for
all t > 1. Describe who is better off under which policy. Prove that
the equilibrium under PA is not Pareto optimal.

Describe the equilibria under PA for t = 1, LF for t = 2. Assume that
the entire policy (path or rule) is known at t = 1. (Hint: First
solve for what happens for t > 2 and then use the t = 2 outcome to

solve for what happens at t = 1.)

(iii) Does what happens at t = 1 depend on whether LF or PA will be in effect

for t > 2?7 What does this suggest about why we analyze policy rules or

paths rather than different actions at t = 17

(Consumption vs. income taxes) For economies with land, formulate and
prove an equivalence result between consumption and income taxes along the
lines of the proposition in exercise 7 of section II.

(A tax on land rents) Read a little about Henry George, a 19th century
American who advocated a single tax, a tax on land rents. Describe how
you would use the model of this section to analyze the effects of the kind

of tax system George favored.
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V. Intertemporal production

We begin with a very simple production technology which you can
think of as a storage technology. We assume that for all t > 1, k units of
time t good can be converted into xk units of time t+1 good, where k is any
nonnegative number and x is some given nonnegative number (which does not

depend on time or k).

Feasible allocations

We let K(t) denote the total amount of time t good stored at time t
or used as input for the storage technology. A path of total consumption
c(1), Cc(2), ..., C(t) is feasible if given K(0), there exists a nonnegative

K(t) sequence for t > 1 that satisfies:

(31) C(t) + K(t) < ¥(t) + xK(t-1); all t > 1.

Note that we say "given K(0)" because at t = 1, our starting date, the amount
of time 0 good placed into storage at time 0 is already determined. (The
symbols other than K(t) and x have the same meaning they had in section I.)

The right side of (31) represents the total amount of time t good
available to the economy. The left side represents total usage of that good,
consumption, C(t), plus investment, K(t). Thus, (31) says that total use of
time t good cannot exceed the amount available.

Here are two exercises.

1. Suppose N(t) = 1 and Y(t) = 1 for all t > 0 and x = 2 and K(0) = 0. Also,

h
5

that the following allocation is feasible but not Pareto optimal:

suppose that u [cz(t),cz(t+1)] - c:(t)c:(t+1) for all h and t 2 1. Show

(cPct),e?_,(t)) = (1/2,1/2) for all h and t 2 0.
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Prove the following. Any feasible allocation that is such that
h ( h h h ( h h
ut1[ct(t),ct(t+1)]/ut2(ct(t),ct(t+1)] <X

for some h and some t > 1 is not Pareto optimal.

Competitive equilibrium

and

(32)

(33)

We begin by writing a revised budget set, revised versions of (19)

(20). These are:
c:(t) g w:(t) - Be) - p(v)ale) - K(e)

c:(t+1) - w?(t+1) + r(6)a(E) + a(E)[d(t+1)+pS(t+1)] + xKkP(t)

where kh(t), the only new symbol, stands for the amount of time t good that

member h in generation t places into storage. Here are several exercises,

3

Prove the following. In any competitive equilibrium, perfect foresight or
not, r(t) =2 x for all t. (Use an argument similar to that used to get
equation (22) in section IV.)

Describe a no-land economy with an equilibrium that satisfies r(t) > x for
all £t =2 1.

Describe a no-land economy with an equilibrium that satisfies r(t) = x for
all t =2 1,

Describe an economy with land and with an equilibrium (perfect foresight,
here and below) with r(t) > x for all t = 1.

Describe an economy with land and with an equilibrium with r(t) = x for
all t 2 1.

(Taxes on land rents again) Study the effects of substituting a tax on

land rents for a flat rate tax on endowments.
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(Consumption vs. income taxes again) Consider a no-land model in which the
equilibrium is such that storage occurs at every date and in which
¥ > 1. Show that consumption and income taxes are not in general equiva-
lent in the sense of the proposition listed in exercise 7 of section II,
Assume here that the income tax is levied on the endowment, on gross
interest as in (2') and on the gross return from storage; namely, xkh(t-1)
at t. Also, show that in general an equilibrium with zy > 0 is not Pareto

optimal. Discuss whether the same is true for Zo 0.



