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Formilating Dynamic Linear Rational Expectations Models by Means of

Periodic-Coefficient Linear Stochastic Difference Equations

Introduction

The +techniques recently introduced into economics to make
estimation of the parameters of dynamic systems tractable are not well-
suited to most agricultural commodity systems. These techniques involve
the explicit solution of certain time-invariant linear stochastic dif-
ference equations (LSDEs) that arise from the optimization of constant-
coefficient quadratic objective functions subjJect to 1linear con-
straints. The constant-coefficient quadratic objective function 1is
inappropriate for mch of agriculture because, even under the assumption
of a linear production function, a firm's objective function should
include the cubic interaction of market price, the firm's inputs, and a
seasonally varying average productivity. Hence the time-invariant
linear-quadratic framework, though tractable enough for empirical work,
seems to require agricultural analysts interested in sub-annual models
to ignore the effects of variations in either market prices, firms'
inputs, or average productivity on competitive equilibrium. Modeling
agriculture on an annual basis, to avoid seasonal variation in average
productivity, is not an attractive solution either, for the lengths of
most of the bioclogical lags prominent in agriculture are not integer

miltiples of a year. Economists interested in modeling dynamic equilib-
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rium in agricultural systems seem to be faced with choosing between
tractability and adequate realism.

In this paper I propose a compromise solution to the dilemma
facing agricultural modelers. The key element of the compromise is to
model average productivity as a seasonally varying but deterministic
sequence. In addition, a restricted set of quadratic cost-of-adjustment
terms is used.

Modeling average productivity as a periodic (e.g., seasonally
varying) but deterministic sequence achieves at least the same degree of
realism as in the more familiar time-invariant linear-quadratic models
of dynamic economic equilibrium, where average productivity is also
represented as nonstochastic (in fact, as a constant). The assumption
of a periodic, deterministic average productivity can be viewed as the
natural extension of the time-invariant models to agriculture. The
restricted class of quadratic cost-of-adjustment terms used here does
limit the modeler's flexibility in representing dynamic constraints.
However, mich can be done within this class, and it may be possible to
broaden the class in later work.

This strategy also preserves the tractability of the linear-
quadratic model--it allows closed-form expressions for firms' decision
rules and competitive equilibrium laws of motion that are useful for
parameter estimation. Under the assumption of periodiec, deterministic
average productivity, the model's objective functions become quadratic

in stochastic and choice variables but with periodic coefficients rather
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than constant coefficients. Similarly, the LSDEs that arise in optimiz-
ing these periodic-coefficient objective functions subject to linear
constraints also contain periodic coefficients in either their forcing
terms, characteristic polynomials, or both. I shall show that the class
of periodic-coefficient LSDEs that arises from the models proposed here
can be solved explicitly, though the closed-form solutions are somewhat
more complicated than for the corresponding constant-coefficient LSDEs.
In the first section of this paper I analyze a simple but
typical dynamic agricultural model with firms' objective functions that
(a) are quadratic in stochastic and choice variables, (b) contain only
restricted forms of quadratic costs of adjustment, (c) have periodic
coefficients, and (d) are maximized subject to linear constraints. The
first-order necessary conditions (Euler equations) for maximizing the
net present value of a representative firm in the industry are derived
in the first section and turn out to include a forced LSDE with a con-
stant-coefficient characteristic polynomial and peridoic-coefficient
forcing terms. The first-order necessary conditions for maximizing the
welfare criterion of a hypothetical social planner whose optimal deci-
sions replicate competitive equilibrium are also derived in the first
section; they include a forced LSDE with periodic-coefficient character-
istic polynomial and forcing terms. The second section of the paper
presents techniques for computing closed-form solutions to periodic-

coefficient LSDEs of the types derived in the first section.
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Section I. Deriving Linear Stochastic Difference Equations That Charac-

terize Competitive Equilibrium in an Industry with Periodic Average

Productivity

A description of the industry.

Consider a simple industry consisting of m identical firms
each producing a single output from a single input and selling all
output each period to consumers (no inventories are held).

The production function is linear in the input and contains an
additive stochastic term, but the average productivity of the input
varies periodically and deterministically. In particular,

(1) q = fen, + (8,/m),

~

e
where ?it is output per firm, ?lt is input per firm, r_n:E is each firm's

share of the industry-wide production shock, and fe, a strictly periodic
and nonnegative sequence of period p, is the average productivity of the
input. Here, and throughout this paper, variables are dated by time
subscripts.

The firm's cost of production consists of the cost of pur-
chasing the input plus two quadratic terms, one to reflect diseconomies
of scale and another to reflect the cost of adjusting the firm's level
of input use. The quadratic cost-of-adjustment term, which determines

how the endogenous and exogenous variables in the system are linked
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dynamically, has the form of the square of a simple difference of input
levels. T shall use a first difference of input levels for now, but
Appendix A shows that higher order differences, perhaps more appropriate

to agriculture, can also be used. Let the cost of production be

)2

~ o m2 i~ ~
(2) C. = W By + (Y/E)nt + (G/2)(nt =

where W, is the cost of acquiring one unit of input, (7/2)Et2 reflects

diseconomies of scale, and (§/2)(n )2 is the cost-of adjustment

s |
term. The constants y and é are positive.
There are m identical firms in the industry, so we can express

aggregate output as

(3) .@‘t = nﬂt

and aggregate input as

Each period firms sell all their output to consumers. I have
assumed that the consumers' optimization problems do not generate dy-
namic decision rules. Instead, their decisions are summarized in the

aggregate demand curve
(5) ']_‘St = DO - D]_Qts

where Dy and D; are positive constants.
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The exogenous stochastic processes that determine the equil-
ibrium price and quantity sequence in this industry are {'ét} and {Trt}.

Let these processes be jointly covariance stationary with laws of motion

given by
Ripw yfe: g s _ i i o

(6) c(L)et = v., with z(L) = 14,L = +eo =T L, and
b e ol o IR w g B _7 14
1;;(L)wt = v, , with V(L) =1 YL - .o '.pqL s

where L is the lag operator defined by Lxy = xi_q1. The white-noise
Ne ~W . 2 2 ~ ~
processes {vt} and {vt} are the innovations of the Jjoint {et, wt} pro-

Ccess.

Deriving the firms' first-order necessary conditions

A representative firm in the industry is assumed to chose
inputs to maximize the conditional expectation of its discounted net

present value, which is given by

T
(7) 1imE § 8 [P . .f . n... +P .. (5 . /m)-%._ .10
Do T 5e0 td Tty 4 t+3 St t+37 4]
~2 ~ o~ 2
(v/2) ng,s = (8/2)(ng, om0 )%},
subject to a given Et-l and equations (1) and (3) - (6). The discount

factor B lies in the interval (0,1). The symbol E. denotes expectation

conditioned on information available to the firm at time t, which

1is QtU{nt_l,nt_z, cee ]', where ‘Qt = {ft’ ft"'l, see 5 Nt, Nt_l, eee 3
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%t’ Vi 15 see et’gt—l’ «es }. Note that the firm knows the entire
future of the {f;} sequence with certainty (because it is deterministic
and periodic). While equation (7) is a direct and natural way to write
the firm's objective function, it turns out that the firm's behavior can
be more conveniently analyzed if we rewrite (7) in an undiscounted form

by transforming the variables. Let

8 / {q-t ’nt ’et > t ’Nt SPt !wt !Vt !vt} =
e w
}s

{qt sn_t !et !Qt ’Nt ’Pt,wt QVt )vt

and

Then we can express the firm's objective as maximizing, over choices of

sequences of inputs Ny,

T
(8) limE_) (P ,.f,..n .+ P (e  ./m)-w__n_
Too t 3=0 t+j b+ T+ t+] " Tt t+]7t+]
- (v/2) ng,, - (8/2)(ng, - Bu,, ()%},

subject to a given ny_4 and

(9) qt = ft”t + (et/m)’

-
'—I
o
o —
P
i
2
ot
-



(12) Py = Dy - D1Q,
and
(13) z(L)e, = Z (BL)e, = vi
and
v(L)w, = $(BL) w, = v}.

In terms of the transformed variables, Et represents expectations condi-

tioned on @y \U{ng_q,n4_5, «o.}, where

Qt = {ft,ft+1, se e Nt, Nt-l’ seey Wt,wt_l, seey e.t, et_l’ ---}-

By the principle of certainty equivalence [Bertsekas, p. 81]
we can solve the firm's problem as though it were deterministic and then
replace any variables outside the relevant information set with their
conditional expectations. Ignoring uncertainty and differentiating (8)
with respect to N yqs J=0,1,...,T, gives the following system of first-

order necessary conditions for the m firms in the industry:

(14) (Euler equation)
(1-aL+LZ)ng . = [1/(88)] (we-£PS),
for s = t, t+1, ..., t+T-1,

where a = {(1/8) + B + [y/(8B)]}, and

(15) (Transversality condition)

lim [GBnT_ -(6+y)nT+fTRT—wT] = 0.

T L
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Note that we can use (9) - (12) to rewrite (14) and (15) as

2

(16) (1-aL+L%)n_, . = [1/(58)](ws-fsns+fsnlqs)
_ 2
= [1/(88)](w_-£ D _+D £N +D.f e )
and
. 2 _
(17) lim [GSnT_l-(5+y)nT + £,Dp = £ DNy - £,D e, - wT] = 0.

To0

The firm's first-order necessary condition (16) is thus a L3DE
with time-invariant characteristic polynomial (l-aZ+Z2) and periodic
coefficients, f; and fg, on some of the exogenous (to the firm) forcing
sequences that appear on the right side of the equal sign. A technique
for solving LSDEs of this form, given a boundary condition such as (17),
will be presented in Section II of this paper. Equation (16) is not yet
in the form of a decision rule, as we shall also see in Section II,
where the techniques for solving LSDEs will be used to explain how to

derive the firm's decision rule.

Deriving the linear stochastic difference equations that describe the

behavior of aggregate endogenous variables in equilibrium.

The most direct route to the LSDEs and boundary conditions
that govern the aggregate behavior of endogenous variables in this
simple model is to multiply both sides of (16) and (17) by m to get the

following expression for the dynamic behavior of Nt:
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2 _ 2
(1-aL+L )Ns+1 = [m/(GB)](ws-stS+lest+D1fseS),
or
W,
(19) [1-(a + —g AL }NS+1 = [m/(88)] (v - D +D,f e ),

for s =t, t+1, ..., t+T=1,
and

; 2 _
(20) %iﬁ [68 Ny, - (8+y+mfy D )N #m(£,Dy~£,D) er—vy,)] = O.

The LSDEs and boundary conditions governing Qt and Pt can be derived
from (19) and (20) by using (9) - (12); +these equations will not be
exhibited here.

Note that, according to (19), the equilibrium LSDE for N, has
a periodic-coefficient characteristic polynomial {l-[a+(63)_llef§]Z +

Zg} and a periodic coefficient, f on some of the exogenous (to the

82
industry) forcing terms. Techniques for solving LSDEs of the form shown
in (19), given boundary conditions as in (20), are also presented in
Section II and then used to explain how to solve Ffor the equilibrium
laws of motion for the aggregate endogenous variables.

While it turns out that (19) and (20) are indeed the LSDE and
a boundary condition that characterize industry equilibrium, and while
it was convenient to introduce them quickly for comparison with the LSDE

and boundary condition from the firm's problem (equations (16) and

(17)), I have not actually established that these equations do charac-
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terize competitive equilibrium in the industry. For that purpose I
shall employ the artifice of a hypothetical social planner whose deci-
sion problem has been shown to generate the LSDEs and boundary condi-
tions characteristic of competitive equilibrium [Sargent (1980), p20].
Let the planner choose aggregate input to maximize the dis-
counted stream of consumer surpluses net of social costs of production,

where consumers surplus at time t is given by

~

O ~ ~ 2
(21) [o° (Dy-Dyx)ax = DQ, - (D /2)Q,

and social costs of production are
2
)

(22)  wi +ly/(2m)]F + [5/(2m)] (§ K,

That is, the planner maximizes, with respect to sequences of N, ,

. J ~ ~
(23) %if: Ey §=OB {Do(ft+th+J+et+j)
2 ~2 ~ o~ ~2
@ (131/2)(:‘t+JNt+j + 2ft+th+jet+j + et+J)

2

oy Npay = Y/ (2m) I

- [8/(2m) I (Fy, -y, )%,

subject to a given N, _; and equations (1) and (3) - (6).
It is convenient to use the same transformation of wvariables
as before to write the planner's problem as maximizing, with respect to

sequences of Nt’

T
(24) lim B ] {D,,.( )
J:

g N +e
Tse o | bHITEHIEH Tt
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2 2 2
-(Dl/2)(f‘t+th+J + 21*1;+J1~11_’+Jet+J + et+J)
2 2

subject to a given Ny _; and equations {9) - (13).

Again ignoring uncertainty, the derivatives of (24) with
respect to Nt+j give equations (19) and (20) as the first-order neces-
sary conditions for the social planner's problem, thus establishing that
this LSDE and boundary condition do characterize competitive equilib-

rium.

Section II. Methods for solving a class of second-order forced linear

stochastic difference equations whose characteristic polynomial and/or

forcing terms have periodic coefficients.

The optimization problems of a representative firm and a
hypothetical social planner in the industry described in the first
section gave rise to LSDEs with periodic coefficients in the character-
istic polynomial and/or in the forecing function. Methods for solving
such difference equations are presented in this section. Tt begins with
a method for solving LSDEs of the same form as those in the first-order
necessary conditions of firms in the industry described in section I.
That is, these difference equations have a time-invariant characteristic
polynomial but periodic-coefficient stochastic forcing functions. The

second part of this section explains a method for solving LSDEs that
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resemble those in the first-order necessary conditions of the social
planner described above. In particular, these difference equations have

a periodic characteristic polynomial.

Time-invariant characteristic polynomials with periodic-coefficient

forcing functions.

Consider the difference equation
2 -

(25) (1-aL+L)ng,q = frep  , t >0,
with n_y given and transversality condition
(26) lim [essnT_1 - (8+y)n, + fTeT] = 0;

Moo
where all the variables and coefficients are defined as in Section I.
In particular, a > (1/8)+8, 0 < B < 1, c(L)et = vi, and f, is a periodic
sequence of period p. Note that since 0 < (1-8}2 = 1-2B+B, we have 2 =
(28/8) < (1+8/B) < a, or a > 2.

The first step toward an explicit solution for ng in terms of
e, that satisfies the transversality condition (26) is to factor the
characteristic polynomial (1-aZ+Z2). We seek coefficients P1 and Po
such that (l-plZ)(l-pQZ) = (1-aZ+Z2). That is, pytpp = @ and pyp, = 1,
so that p, = (1/p2) = [1/(a-p1)]. These relationships imply that we can
choose p; to be between zero and one, for, if we let glx) = x - [1/(a=

x)] and recall a > 2, we see that g(0) < 0 and g(1) > 0. Since g is
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continuous in (-=,2), the intermediate value theorem implies g(x)=0 has
a root in (0,1). Let p; be that root. Then p, = (1/p7) > 1.
We now use the factorization to further the development of an

explicit solution for (25) and (26). For t > O we rewrite (25) as
(27) (1-p L) (1-poL)ng g = fieyq.

As demonstrated by Sargent [1979, Chapter IX], the transversality con-
dition (26) requires solving the unstable root--p,, the root greater
than unity in modulus--forward and the stable root--pl—-backwards. That

is, we invert (1-p,L) to obtain

} e R
(28)  (1-pyLlny,; = (1-p,L) “fiey = =, §=0 Po" Toaje1Ctag+1o

which simplifies to

- v J
=p.n, . =-p, ) pyf
ke - Sl 8 WAL

(29) - t4+3%t+3 "

This completes an explicit solution to the deterministic differential
equation (25) with boundary conditions n_; and (26).

Equation (26) is not, however, in the form of a solution to
the problem that faced the firms in the industry described in Section I,
for the firms do not know future values of {e;} when they must choose
Ny . According to the principle of certainly equivalence, the firms

choose n, not according to (29) but rather to satisfy

[+ <]

J

(30) e s ™ | §=0 07 sl o
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where uncertainty has been reintroduced to the problem by replacing
et+J’ for j=1,2,..., by its conditional (on Rt) expectation,

E, e

t t+J = E(et+J |Rt).

The final form of the representative firm's decision rule is
then determined from (30) by replacing the summation on the right side
by an equivalent expression involving only current and past values of
{e.}, i.e., ey, € _q,+e+ . Hansen and Sargent [1980] have shown how

o
sums of the form Z AJEtet+j can be expressed as a weighted average of
current and past‘:gaues of {et}- By exploiting the strictly periodic
nature of {ft}’ Hansen and Sargent's technique can be generalized to

L= -]
express E ljf E a weighted average of current and past

E e as
+ -
3=0 t+] Tt t+]
values of {et}, where we let A = pq to match up with (30).

Recall that {fi} has period p and that c(L)et=vte. Let £y pr

= 15, ft+kp+1 = fl’ ceey ft+kp+(p—l) = :p—l’ for any integer k. Then

T
AJ API*hg

=0

(31) ft+JEtet+J = tet+Pj+£,

[

£ 0
g=0 * =0

-
+
and the problem is reduced to one of expressing z APJ P'E as a

J=0
weighted average of current and past values of the {et} process.

tet+p3+£

To begin this next step in the solution write

ARIHg

-1
4 )
=0

= 3% P, =P
(32) = A Et[(l-A L et+£].

cn.lt~18

£St+p]+L

As shown in Appendix A, the expression (1-APLP) can be factored as (1-

APL7P) = (1-Z(AL71) (1-2)AL71) ... (1-2Z,_;AL7Y), where

(33) Zk = ei(gkﬁlp) = cos(2kn/p) + i sin(2kn/p), for k=0,1,ee., p-l.
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Then, by partial fractions,

<
HACEFY Y = E B, (1-Z, AL

(34)
k=0
p-1 7 p-1
_ I Jy _ I
(35) By = =0 “‘”z‘;) = jo (1-e
J#k J#k

Substituting (34) in (32) gives

\PI*eg
=0

(36)

c.0~18

t Ct+pi+e”

The remain step, then, is to reduce Z Zi AJE

1

—1)- , where

i2(j-k)n /p).

J 4 J
Ze M ELe sig”

: tet+£+j to a weighted
average of current and past values of {et}.
: T g3 03 ”
Appendix B shows that §=0 Zk A Etet+£+3 can be written as
(37) [5(1,2 2,0, 0)+[L7% (1,2.0,8,7)] Je, ;
)‘kss l :Jkss +t)
where
. §-1 min(r,j+2) min(2-h+j,r-1) ] ;
(L% A;8,r) = a M8, . L
. j=0  h=j+1 B a0 L sgnitytl
and
~
r-1 iy
9 h- -L
wza)™h ) [ g,lze) EE,
g=%  h=gt+l
-%
[L ul(L,ZkA,R,r)1+ = 4 ) ol 2 ¢ Oy SRS, L [

L 0,

with

for 2=r,r+l,¢e¢.;



1 .

o = —ch, h=1y2: e 3
min (h-1,r)
a, = 1 and a, = E_ ajah—j for h=2,3,¢.. 3
Jj=1
0 _ -1
and
1§ h
uf = -C(Zkl) ) z, (zA)"78, for g=2,3,...,r-1.
1 h'"k
h=g+1
Let
= L
(38) c(L,ZkA,E,r) =0 (L,ZA,8,r) + [L pl(L,zkA,z,r)]+,
so that we have
[ )
(39) §=O Zi A7 By epigay = 0(LsZ A, r)e .

Substituting (39) into (36) and the resulting expression into

(31) gives
(40) E A9 [ If_l ﬁ(f'l ( )]
0 SR = ¥ o(L,Z A,2,r))]e,,
S=0 t+] Tt Ct+j R B Ze 5

where G(L,Zkl,.%,r) comes from equation (38) and the Z) and By come from
equations (33) and (35), respectively. (It is not too difficult to pro-
gram an algorithm that will compute the 7, and By and then express
o(L,ZA,%,r) in terms of A and Z  and the coefficients of z(L). Such an

algorithm can be extended to ca.lcula.tez )L‘j f as a weighted

J=0
average of eg;,e; 1,+e+,€ 41, Where the weights depend explicitly on

435 S+

p,fo,fl,...,fp_l, and A.)
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Letting pq=A and substituting (40) in (30) puts the solution
to (25) in a form that involves only current and past values of the
forcing variable e.. This solution, or

§—l 2 §—1
(41)  ngo=egng geey [ ey (L Bo(Luzekur))ley,

2=0 k=0
is in the form of a decision rule that a firm with first-order necessary
conditions given by (25) and (26) could actually apply to information

available at time t to determine its input n,.

Periodic-coefficient characteristic polynomials.

Consider the following set of periodic-coefficient LSDEs that
have the form of the social planner's Euler equations presented in

Section I:

(42) n Sl Ny = + f e

t+1 G P t-1 t?

where {a.} and {ft} are deterministic sequences of period p and a,>2 for
all t. As before, c(l’..}et = v%. This set of LSDEs must be solved sub-
Ject to a given n_; and a transversality condition, analogous to (20),
given by
(43) %f;f (88 ny_, - 88(ag- B)ny + foe;] = O.

The key to solving this set of LSDEs is to rewrite it in terms

of 2p new parameters, as follows:
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(45) Reap = PR (ng—py g0y ) + fie,

where {pt} and {Tt} are also periodic of period p with

(46) Pp * YL = oy
and

It is possible to choose the (at most) 2p distinct values of the peri-
odic {py} and {y,} sequences to satisfy (46) and (47) as well as
0<p<1<yy<a, (see Appendix a).

Provided the {et} process goes to zero as t goes to infinity,
the property O<pt<1<Yt<“t of the parameters of the rewritten system
guarantees the existence of a solution that satisfies the transversality

condition (L3). Rewriting (45) for Dg41> Dgaose s+l glves

(48) ( ) + ¢F e,

Dy ~PeBy) = V(g0 qny 4 t

) + 2

(g 4o=PraaBpe1) = Vo1 (Ppar P t+15t+1

(nt+p-1'pt+p-2nt+p-2) = Yt+p-2(“t+p_2-pt+p_3“t+p-3)+ft+p_23t+p-2
(ng4p=Piap-1Ppep-1) = Yt 4p-1 (Dt ap_1Pt4p-20t4p-2) Ttap-18t4p-1°

Repeated substitution gives
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(N 4p=Pap-1Ptap-1) = Yiap-1(Ntap 1 Prap2Ptep-2)*Frap_1®t4p-1-

Repeated substitution gives

(49) (Mg 4p=Prap_1ntap-1) = Alng=py_jng o)+,

where

and

(51) by = f't~l~p—1‘-:"1:431_)--1"’Y‘l:-l-}_)—].ft.+_p—2et+p—-2+Y1:.+p-1Yt+]_:|-2ft+]p-3et+p-3"'

e Mpip 1 Yeap-n oo YeaoVp41felpe

Since pyn 1 = Py_1s equation (49) can be rewritten as

(52) (1-ALP) (0 4p=Poap_10t4p_1) = Py>
or
(53) n,, =p HiAtT %, .

t+p -~ Ptap-1Tt+p-1 t

The property 1<Tt’ for all t, implies 1<A and suggests that an explicit
solution to the system of LSDEs given by (42) and (43) can be found by
applying the forward inverse of (1-ALP), or (1-A=1L"P)=1(-A-11-P), to by

in (53) to get

(l/A)Jb

(54) nt+p = pt+p—1nt+p—l"(llh) §=O t+p+pj.
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(55) Ng=P_10g_1 = Yeo1(ng_1=Py oy o)+fy_qep 4.

According to (54),

} v J
(56) (nt_pt—lnt—l) ™ (-1/A) §=O (l/ﬂ) bt+pj
and
(57) ( yor S 7 amyds, ]
T Y1 P 1 PeoPe2/e1%¢-1 T TR he t-1+pj
L %0t

Subtracting (57) from (56) gives

(58) (ng—py_ny 3 )-¥y o (ny =P ofgp)-fp 18 =

(-1/0)(v )=£

=0

(=1/A) t+pj;Tt—lbt—l+PJ £-1%-1°

cub~1 8

From the definition of by in (51) and Yy 3 = Yy_j4p,

(59)  De=Yg_1beo1 = (Frap-1®t4p-1)~Vt-14pTt-14p-1%t-14p-1)

(Y 4p-1 Ftap-2%t4p=2) = (Yt -14pY t-14p-1Tt -1 4p-28t-14p-2)*
(Yt+p-1Yt+p-2ft+p-3et+p-3)"'"(Tt-1+th-1+p_1°°°Yt+1ftet)
+(Ygapo1Teep—ae * Ye+1fe0t) = (Yo 14pYto1ap-1°* Ve+1YeFo18¢1)
= Toap-1%t4p-1 ~ A4-1%-10

Substituting this result in (58) gives
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(60) (ng=py_yng_q) =Yg 1(ng_1-Py_ony_o)-fy_qe¢

= . (37 (

)-f

ft+pj+p—let+pj+p-1_n ft+pj—let+pj_1 R t_let_l

Cul~8

-1

‘I'[ft+p_1e1-,+p_1‘ﬂ £

1
£-1%4-1" 1) Tt 42p-1%42p-1

1,2 1
= Teap1tp-1TD) Tre3p-1%+3p-1~1) Tea2p-1%t+2p-1

) 1,2
* (07 Tppo1alp1~ ) Frespo1®t43p-1” TR I N
= (ZX)(-Af, e, ) - f, e, . =0
N £-1%¢-1 £-1%=1 = O

which verifies that (54) satisfies (42).
Multiplying both sides of (54) by IP and taking mathematical
expectations conditioned on information available at time t gives the

solution to the equivalent stochastic problem as

; 5 J
(61) ne = pt_lnt_l—(l/A) é:o (1/n) Etbt+pj'
Appendix A shows that we can replace (1/A) by $PJ in the sum on the

th

right side of (61), where o1 is the positive p°® root of A. Then the

sum becomes

8

5 J _ pJ
(62) §=0 (1/8)7 Byo, %:o il €N N —
s D]
' %:o ¢ (Yt+pJ+p-lft+pJ+p-2) Pt Sepjp-2
¢ 4Pl
! §=o g (Yt+pj+p—lYt+pJ+p—2ft+pj+p-3)Etet+pj+p-3
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v D] ;
’ § 7 (gapgap-1Yespysp-2 =" YaupgerTeapy) Beoeapy”

Since the coefficients (ft+pj+p-1)’ (Yt+pj+p—1ft+pj+p—2)’ cee
(Yt+pj+p-1Yt+pJ+p—2 56 Yt+pj+lft+pj) are each periodic of period p,
each of the sums on the right side of (62) is of the form treated in the
first part of this section. Applying the methods explained there to the
sums on the right side of (52) gives a realizable solution to the system
given by (42) and (43).

Such a solution has the form of a decision rule for the social
planner's problem that was described in Section I. Note that the plan-
ner would actually have up to p distinet decision rules, each derived
from equation (54), the (at most) p distinct values of py, and the (at

most) p distinct values of Yo The planner would use the p rules suc-

cessively and then begin again with the first one, etc.



Appendix A: Factoring (1-APL™P), and Related Topics

Factoring (1-APL7P)

Theorem: (l—ApL_p) can be factored as

- % 1 -1 -1
(A1) (1-APL7P) = (1-2AL77)(1-2AL77) ... (1-zp_le 15
where

(A2) 7 = eil2em/p) _ cos(2kn/p) + i sin(2km/p),

k

fOI‘k=0, 1, 2’ l..,P"l.

Proof: Let 7 denote (A/L), so that (1-\PL™P) = (1-zP). The equation

1-ZP = 0 has the p distinct complex roots, ZO, Zl’ sieeis D and Zp-l

ZP
given by equation (A2) [Churchill, Brown, and Verhey, pp. 15-16].
According to the fundamental theorem of algebra and its corollaries

[Shanahan, pp. 204-205], (1-ZP) can be expressed in terms of its roots

as
(A3) (1-2P) = v(Z2-24)(2-2;) ... (z-zp_l),
where b is a complex constant. In this case, b = -1, the coefficient on

ZP in (1-zP). 1In addition, b(-Zy)(-Z;) ... (~ZP_1) = 1, the constant
term in (1-ZP). Hence (-Z4)(-Z) ... (-Zp_l) = -1. Rearranging (A3)

gives

(1-2°) = [b(2y)(-2;) «v. (-2

7),



or
1 5 -1 )
(AL) (1-2°) = (1-z Z)[l-Zp_lZ)(l—Zp_2Z) oo (12772).
Since 1™ = 1 and Zal = Zy = 1, we can rewrite (AkL) as
-1 i°m =1 i2m
(a5) (12P) = (1-2,2)(1-2.7 e 7'7) ... (1277 72).
. c2(k=-p)my ¢ 2km

But Z—l el211 = el[ P J e12“ =e" P ) = Z , so that

p-k k
(a6) (1-2P) = (1-242)(1-292) ... (1-Z;_42)

Recalling that Z = (A/L) gives the desired result, equation (Al).

Factoring (1-ALP)

In the solution of LSDEs of the form (1-atL+L2)nt = fieq, it
is necessary, in effect, to factor (1-AZP), where X > 0. This can be
done in the following way. Let s~! be the positive pth root of A. If

Zy» k=0, 1, 2, ..., p-1, are the roots of (1-zP) defined above, then

sZ£1 are the roots of (1-AZP). That is,

(1 (s7.1)")

i
rm
=

]
5
a1
>

)] =0, ¥oE & =10, L 25 ewny Pl

Thus, (1-AZP)

I
I
=
—
N
w0
3
O |
=
et
—
.3
I
m
=3
1
fu
—
-
.
—
[as ]
I
w
[nS]
]
—

= [(A)(-sz5)(~s27") ... (_sz;)] (1-572,2)(1-87'2,%) ... [1-3'1zp 7).



In effect, we have written (1-AZP) = (1-(p/A Z)P) and factored
as before. By this device, we can express the sums on the right side of
equation (61) in terms of current and past values of the {et}

th oot of A, substitute

sequence. We merely let ¢'1 be the positive p
(6=1)PJ for (1/A)J, and proceed as described above (see equation (31)

and the pages that follow it).

Simple higher-order difference equations

The body of this paper deals with second-order LSDEs derived
from first-order quadratic costs of adjustment, (G/2)(nt-—nt_1)2. The
methods for solving these LSDEs are easily adapted to solving the
higher-order LSDEs derived from quadratic costs of adjustment of the
)2

form [%) (nt"nt-q , where q is any positive integer. Costs of adjust-

ment of this form lead to LSDEs having the form

q,,29 -
(AT) [l-atL +L )nt+q A

where all variables are as previously defined.
First consider the case where ay = a, for all t. Then, with

py and p, defined as before, we can rewrite (A7) as

q q -
(a8) (1-p,L ][1—92L )nt+q = Pien
or, using [l-ngq)'l = -9'2'11:"cl (l-pélL-q] = plL_q[l-plL_q] and applying
the operator algebra formally,
- 7 ol
(49) By % By n =0y £ P1 Tirjq Ct+iq

J=0



In this appendix, we have already seen that by letting pi = [q pl]QJ we
can use methods described in this paper to express the sum in (A9) in
terms of current and past values of the {e.} sequence.

The case where o is periodic of period p is a bit more com-

plicated but entirely analogous to the case presented in the text.

Defining Py and Y SO that T b T T and Ytpt-q = 1, we have that

(A10) Dpgq = @0y = Np_g + Tey

becomes

(A11) Npyq = Pyly + Yt(nt-pt_qnt_q) + fiey
and

Ot+2q = Pt+qlt+q * Yt+q(nt+q“ptnt) + fiiqCt4g

e = ~ -~ + ~ ~ - ~ n ~
t+pg pt+pq—qnt+pq-q Yt+pq-q[nt+pq-q pt+pq~2q t+pq~2qJ

2l T I - 0
t+pg-q t+pg-q’

where 5 is the smallest integer such that Eq is evenly divisible by p.

Then, proceeding as in the text, we get

__NSq ~ ~ o =~
(6) (1-AL )[nt+Pq pt+pq-qnt+pq—q} s



where

(1) A = Veadicy Voipamy v Tiag Ve
and

(8) b, =

t t+pg-q t+pg-q Y‘c+pq—q t+pg-2q t+pg-2q
+ . ot f ~ e g + oo
Yt+Pq—th+pq—2q t+pg-3q t+pg-3q

* Tt+§q-—th+5q—2q e Yt+qftet'

Using [l-Kqu]hl = (-1/8)1.7P2 [1-(1/K)L_pq}—l, we get

- i i %~
(9) ng = 0p Ny g = (1/8) JEO (L/A) by s

Let ¢“1 be the positive Sq th root of A. Then we can substitute ¢qu

for (1/K)Y and proceed as described above.



Appendix B: Extending the Weiner-Kolmogorov Prediction
Formilas Derived by Hansen and Sargent
Larry Christiano developed the results in this appendix in the
summer of 1980 and gave me a photocopy of his manuscript in early
1981. I have only slightly altered the notation and wording of his

manuscript in preparing this appendix.

For £ = 0, 1, 2, .., let

% _ 3
(Bl) yt = Et E A et+£+3’

where g(L)ey = T(L)vy, g(L) = 1 + gqL + ... + g L', I(L) =Ty + 'L +
ves Fqu, v, is fundamental for e,, and X < 1. The operator E

indicates linear least squares projection on the set {et’et—l""}'

Hansen and Sargent showed that

(B2) yg = E jzo ljet+3 = ul(L,A)et + ue(L,l)vt,
where
(83)  wymd) =g o e T g MR
k=1 h=k+l
= ug + uiL Foaee + ui"lLr_l,

and



Q-1 9 R
(B)  wy ) = e T [ r k]
k=0 h=k+1
_ .0 1 q-1 .g-1
= ¥, + Hy L+ .40 + My L .

The strategy for extending their formulas to yi, £ = 1,2,e4+, is to use

E after sub-

the law of iterated projections to calculate yi & yi+2

; ; 0 .
stituting ul(L,k)et+£ + uo(L,A)vy,, for Yisge Applying the law of
iterated projections and the Weiner-Kolmogorov prediction formula

to yg+£ gives

2 0
(85) Yo = By Yeup = Bl (Torde 4 u2(L’R)Vt+£}’
or
(86) v =B B (L\)e, o+ [LM (L)), e+ LR )], v
t £t ~1? t+L i St + t pr=2 + 't
02 _ .0 1 e n "
where ul(L,A) = g # Wil + <o + L7 and n = min(2-1,r-1).

If we let a(L) = a; + apl + .o0 + “rLr-l 2 (g + Lols ¥ wue

1

+ ;rLr‘lj, then

ey = a(L)et + P(L)vt+l
Bl gn ™ {ala(L} + [L-IG(L)]+}et + [alL + 1]T(L)vt+2
Ct43 T {[“§+“2)“(L) + al[L-la(L)]+ + [L—eu(L)]+}et



g ath—l}r(L)Vt+J,

(BT) Cey = { % ah[Lh_‘ja(L)]_l_}et +
1

h=1 h

min(h-1,r)
where a = 1 and ay = ng ajah-j’ for h = 2, 3 eses
Applying the linear projection operator E; to (BT) and substituting the

result into the first term of (B6) gives

i - O LR ] n
E. u (L,A)et+ = u E. e + u

1
v M1 g = WS YRGB g T 1 PtCt+g-n

L =1 L=2
= {uo ) a, [thia(L)] +ul ) a [Lh+l_£u(L)] + 2 )l a
1h=l i + 1 h=1 h + 1 h=1 h

£-n
[Lh+2-£G(L)]+ F e + p;-l hgla_h[Lh'l'n—-za(L)]q.}et

L -1

-2 h-1 1r.1-% h-1
(L P(L)hzlahL ] o * ul[L P(L)hé a,L ]

0]
+ {ul

2=2
+ pf[Lg‘zr(L)hzlath‘l]+ was § urll[Ln‘E

or
(B8) Etul(L,A)e

where



n L=k
~ _ k h+k-%
(B9) o (L,A) = Juy ) &L a(n)],
k=0 h=1
and
n L=k
~ _ kr k- N h-1
(B10) o (L,A) = ] ul[L r(t) J el l,-
k=0 h=1
We can simplify EICL,A) by noting that
r-1-+h+k
(B11) % e he1 % e pgol e + 0L "
[Lh+k_£a(L)}+ = for (r-1) > (m-h-k);
0, for (r-1) < (m-h-k).
Then
~ D f-k  r-l-f+hek
(B12) o (LA) = Ju Ja 1 &
k=0  h=1 520 %g-k-h+1+j ° °

where the final summation is defined to be zero when r-l-L+h+k < O.

Rearrangement of (Bl2) gives
y r—l[min(r,J+£) min(%-h+j,r-1) K | 3
(B13) o.(L;A) = ) o ) u.a Lo,
1 A o 1%¢—k-h+j+1

To simplify 32 (L,A), note that



5

-k
h-1 _ 2 2-k-1
P(L)h£1 hL = [al + a2L + a3L * cee + az_kL )

q
(FO +TL+ e #T L )

= 2
=a,To+ (a;T; + a )L + (af, + &, + a3r0)L + e
q+2-k-1
¥ az-quL "
or
L=k gq+L-k-1
(B1L) r(r) J a, p=l .7y bi L,
h=1 h=
min(h,2-k-1)
where b, = a,..I'' .. From (Bl4) we get
h +1" h-
j=max(h-q,0) 9 J
k-4 %k g k k k q-1
(B15)  [L F(L)hllahL Jo = bg g * By peaql * ove * By oL
- qfl bi k+th,
=0 "

for k = 0, 1, «ee, £=1. Finally, substituting (B15) into (B10) we get

- Xk Kk h _ q{ v k. k h
(B16) o,(L,A) = ) hzg Beaean? = L [ 1 wyby o p]D

k=0 h=0 k=0

g-1 min(f2-1,r-1) , 2-k-1
) TR A ]
1 J+1 f-k+h-j
J=max(f-k+h-q,0)

th,

h=0 k=0
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Now substitute (B16) and (B13) into (B8) and use the resulting

expression in (B6) to get

L_
(B1T) ¥ = cl(L,k)e + oe(L,A)vt,

t

where

(B18) o, (L,1) EI(L,A) + 1™

"

NGRS

(B19)  o,(L,A) = Ty(r,n) + (L7

MRV

Equation (B17) is the solution we sought. To summarize our

results, note that we have shown

T 3d _
E, Jéok Coagey cl(L,A)et + 02(1,A)vt,
where
{rJ.Mnhhﬂ£) min(f-h+j,r-1) . | ﬂ
o.(L,A) = o u.a L
1 j20°  hejel h .. 178 -k-h+j+1
-2
and
q-1 min(2-1,r-1) , 2-k-1
k h
9, (L:A) = L) aj+1r£-k+h-j]L }
= =0 j=max(%-k+h-q,0)
+ [L_£u2(L,A)]+,
with

- b 4
C(L)et = (1 + gL+ e +C L )et



-

- q = .
(P, +T.L + eoo + qu )vt = T (L)v,;

0 ¥ £
ah = —;h, h=1, 2, siey F}
min(h-1,r)
a, = 1 and a, = E ajah—j’ for h = 2, 3, «es}
J=1
r-1 &
-1 =1 h-kq.k
u (L,A) = e e L[ L g AT
k=1 h=k+l
q-1 q
= h-ki. k
no(LoA) =)™ § [ ) TATTIL
k=0 h=k+1
0 _ -1
u; = c(A)7s
k 1 & h-k
uy = <(\)™ ) g A, for k=2, 3, «uu, r-l.
h=k+1
Thus,
o
r-1 r
"k o h-ki_ k-2
k=2 h=k+l
[L_EHI(L,J\)]_'_ =4 for & + 0, 1, 2, sss, r=1;
8, for £ = r, r+l, «se;
and
r q-1 q
=13 h-kqi. k-2
goF T [ T nalE,
k=1 h=k+1

-%
[L UQ(L,A)]+ = for % =1, 2, vesy Q=13

P, for % g, qtl, «e.



i Bl

To match the results of this appendix with the formula given
in equation (36), note that in the body of this paper we have

F(L)vi = z, or q=0. Hence 0,(L,A) = 0 for that prediction problem.
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Appendix C: Properties of the Parameters Used to Rewrite
the System of LSDEs with Periodic-Coefficient
Characteristic Equations

The results in the second part of Section IT depend upon being
able to rewrite (42) as (45), where the 2p new parameters of the peri-
odic (of period p) {pt} and {Yt} sequences satisfy (46), (47), and 0 <
Py < 1 <y <1 for all t. Here we shall show that (46) and (47)
uniquely determine these 2p new parameters.

Represent the system (L42) as

(c1) Mgy = %l = Be g * Tieps

where t = kp+&, k = =1,0,1,2, ..., and £ € (0,1,2, +es, pP-1).

Then we seek to rewrite the system as

(c2) Neap = Peiy + Y (ngpy gny g) + e,
where

(c3) Py + Yy = @

and

with p_; = Ppai when & = 0. Equation (C2) corresponds to equation
(45). In addition, we need to show that Pos Pps soes Ppqs Yo» Y1 oes
'YP__l can be uniquely chosen to satisfy 0 < Py < 1 < Yg < g, for £ =
0,1,2’ ..', p—l.

To begin, use (C3) and (C4) to express p, as an implicit

function of Gys Oy sees ap—l’ or



Define FR(x) z (a

L o S
p_'l ao_po

g_x)"']-, fOI‘ 2 = 0, 1, 2, "oy P-l, al’ld

P(x) = x - Fl(FQ(FB("'(Fp-l(FO(x)))"')))' Then (C5) can be written as

(c6)

‘P(Po) = DO ] Fl(F2(F3(oo.(Fo(pO))ooo)))=0-

We can now state

Theorem 1: The function y defined above has a unique root in (0,1).

Proof: Since ap > 2, F£ is continuous on the domain (—,2],
for £ = 0,1,2, .., p-1. Furthermore, 0 < Fy(x) < 1 for x1
and £ = 0,1,2, ..., p-1. Thus if K1, 0 < Fy(x) < 1; 0 <

Fpo1
0 < Fy p(Fy_1(Fp(x))) < 1 and F

((Fy(x))) < 1 and F,_10F is continuous on (==,1]3
p_20F _19Fy is continuous on (-
@, 1]; etc. Continuing in this fashion shows that X1 implies
that 0 < Fl(Fg(FB(...(Fp_l(FO(x}))...))} < 1 and that Y is
continuous on (-~, 1]. Hence ¥(0) < 0 and ¥(1) > 0. By the

continuity of ¢ on (—, 1] and the intermediate value theorem,

p has a root in (0,1).



8w

To see that the root is unique, note that

0 < %; Fg(x) <1l for x< 1and £ = 0, 1, 2, ess, p-1. Using

this property and the chain rule of differentiation gives

d .
(cT) 0 <3 (Flono oFP_loFO)(x) <1 for x< 1.
Hence
0 <L (x) =1 . (F,OF.0 «es oF )(x) <1 for x< 1, so ¢
dx i o 0 ?

is monotone in (0,1) and thus has only one root in that inter-

val. Q.E.D.

According to the theorem, there is one and only value of pg,
between 0 and 1 that satisfies equation (C5). Given this value, select

P1s Pps sees pp__1 according to

(CB) Ppnl = ao—po = Fb(po) < 1.
Pp-2 =————=F 1(Foleg)) <1
P- np-l-pp-l P~
-1
PL = oy = FalFylees (B (R (Fy(2))))--20) < 1.
Finally, set
(09) YO = l/pp_l

YR = 1/02_1, L = l, 2, e, P—'lo
Choosing according to (C9) guarantees that (CL) will be satisfied. To

see that equation (C3) also holds, note that



=h <

0~ po + (lfpp_l) = pO + Il/[(ao_po) —l)] -

and

1}
©
+
=]

I
©

Py * Yy =0, + (1o, 1) =0, + [1/((a,-p,) -1)]

for 2=1,2, «.., p-1l. This shows how to select parameters POs P1s +ees
Pp1» Pp1» Yo» Y1» +++s Yp_3 that satisfy (c3) and (C4) as well as

0 <pp <1¢K Yg < g, for £ =0, 1, 2, «ss, p-1. To see that only this
set of parameters can satisfy the conditions, recall that Pg was unique

and note that (C3) and (CL4) imply that (C8) and (C9) mist be satisfied.

O)
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