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1. Introduction

Evaluating the performance of portfolio managers has received wide attention in the
financial economics literature, presumably due to the fact that a substantial part of the savings of
investors is managed by professionals. The principle behind performance evaluation is rather
straightforward. All we have to do is to assign the correct value to the cashflow (net of
management fees) the manager generates from the amount entrusted to him by the investor. The
difference between the assigned value and the amount entrusted to the manager is the value of the
services provided by the manager. If this difference is positive then we designate the manager as
providing “valuable service.”

There are several difficulties in implementing this rather simple principle. One of the
more serious difficulties is due to the fact that financial economists have yet to come up with a
satisfactory valuation model that consistently values arbitrary streams of cashflows sufficiently
close to their market price. Every capital asset pricing model that has been suggested has
performed poorly at least with respect to one subset of the assets examined. Hence, an analyst
who uses a particular valuation model has to be aware of the collection of assets for which the
model performs satisfactorily.

For example, linear beta pricing models like the Capital Asset Pricing Model (CAPM)
that are commonly used in valuing financial assets assign negative prices to some states of nature,
and hence will assign implausible values to some options, even when they assign the correct
value to the primitive set of assets on which the options are written. This was first pointed out
by Dybvig and Ingersoll (1982) who constructed an option on the market portfolio (with an
associated positive cashflow) to which the CAPM assigned a negative price. This observation
cannot be ignored by arguing that few portfolio managers use traded options in their portfolios.

As Merton (1981) and Dybvig and Ross (1985) point out, portfolios managed using superior



information will exhibit option-like features, even when the portfolio manager does not explicitly
trade in options.

Grinblatt and Titman (1989) stress the relevance of these results for portfolio performance
evaluation by pointing out the need to use valuation models with positive state price densities,
since a manager selling a call option on the index will be incorrectly classified as a superior
performer by an investor using Jensen’s alpha [or Treynor-Black’s (1972) appraisal ratio] to
evaluate performance. While these observations provide important insights into the issues
involved, they do not provide operationally useful guidelines. This is because not every model
that uses a positive state price density and values the set of primitive securities correctly will
assign the same value to options on those securities. Also, the numerous candidate state price
densities (or period weighting measures, to use the Grinblatt-Titman terminology) that have
performed poorly in empirical studies of Intertemporal Capital Asset Pricing Models are all
strictly positive. Even the empirical state price density associated with the CAPM and the
Arbitrage Pricing Theory (APT) very rarely take negative values [see Hansen and Jagannathan
(1991b)]. Hence an analyst who chooses a positive state price density to avoid assigning a
negative value to a contingent claim that pays a positive amount may still not assign the correct
value.!

In this paper we address the difficulty that arises from managed portfolios having option-
like features in a different way than Grinblatt and Titman. We assume that options on certain
stock index portfolios are either traded or can be valued using arbitrage methods. We suggest
approximating the payoff on the managed portfolio using payoffs on a limited number of options
on a suitably chosen index portfolio. We can then arrive at an approximate value for the
managed portfolio by finding the value of the options used in approximating its payoff. We

provide some guidelines for choosing the index portfolio and establish conditions under which



our procedure will work reasonably well using theoretical arguments as well as simulation. We
also illustrate its use by empirical examples.

Our approach can be viewed as the nonlinear analogue of the linear beta pricing model of
Connor (1984). We assume, as Connor does, that the equilibrium marginal rate of substitution of
at least one individual who has frictionless access to financial markets is a function of only a
finite number of “factors,” and that the factors are payoffs on portfolios of traded securities.
However, unlike Connor, we do not assume that only that part of asset payoffs that is in the
linear span of the factors is priced. This is because, as already pointed out, while such an
assumption may be reasonable for the primitive set of securities, it will in general not be
appropriate for derivative claims on the primitive assets. Instead, for implementation purposes,
our approach can be viewed as assuming that only that part of an asset’s payoff that is in the
linear span of the factors and certain limited number of options on the factors is priced, where
we allow payoffs to resemble options on the primitive assets. We provide asymptotic
justifications for our approach. These justifications are in the same spirit as those provided by
Ross (1976) and Chamberlain and Rothschild (1983) for linear factor pricing models.

Notice that when the analyst uses only one specific option on an index portfolio (along
with the risk-less payoff) to approximate the managed portfolio payoff, our method resembles the
Henriksson-Merton (1981) method. Howeyver, it is important to stress that the motivation for the
two methods are entirely different. Henriksson and Merton were primarily interested in
classifying the abilities of the portfolioc manager into two dichotomous parts: (i) market timing
ability and (ii) ability to select undervalued securities. We are interested in assigning a value to
the portfolio management services provided by the manager without imposing such a dichotomy.

This is because models that try to classify abilities into two dichotomous parts have to

reckon with the following difficulty. As Admati, Bhattacharya, Pfleiderer, and Ross (1986) point



out, even in theory, it is rather difficult to arrive at rigorous and consistent definitions of timing
and selectivity abilities. This distinction is even more difficult in practice for the following
reason. As Jagannathan and Korajczyk (1986) show, a portfolio manager can show superior
timing ability by following some fairly simple portfolio strategies. For example, a manager who
has no abilities of any sorts and who writes covered calls will show inferior market timing ability
and superior selectivity when evaluated by the Henriksson-Merton procedures. These criticisms
do not apply to our method. In fact, the Henriksson-Merton method is also approximately valid
when used to measure the total value of a portfolio manager’s abilities, even when the manager
does not behave as assumed by Merton in developing his performance evaluation framework.

The rest of the paper is organized as follows: In Section 2 we develop the theoretical
framework for performance evaluation. In Section 3 we examine the ability of the
approximations we suggest to capture the true underlying value of a portfolio strategy. We
demonstrate that, in general, we will need more than one option on the index for our
approximations to work reasonably well.2 In Section 4 we demonstrate the use of our method
by evaluating the performance of 130 mutual funds. The paper ends with a summary of our

results and suggestions for further research.

2. Theoretical Framework

2.1 Economic Environment

We suppose the following scenario. A portfolio manager announces that he can provide
R, dollars at time T for each dollar invested now (time t), net of any management fee. Without
doubting the veracity of the portfolio manager, the question is, should an investor invest in such
a fund. The answer is yes if the gross value, at the margin, of R, is greater than the required

investment of one dollar; that is, if the net present value is positive.



The net value per period per dollar invested, at the margin, V3, of a payoff R, for an

individual with nominal marginal rate of substitution M is given by:
Vi = E[MR,|F] - 1 1)

where F denotes the date t information set of the investor j. Note that Vi is in the information
set F. This expression will arise from a quite general intertemporal utility maximization

problem. Furthermore, the net value at the margin of any traded return, R, is zero, and hence:

1 = E]MR|H]. )]
Substituting into equation (1), we get

Vi = EMI(R,—R)|F]. 3

A convenient choice of R is the nominally risk-free return R;. Defining X, = R, — Ry,

we get
Vi= E[M5Xp|F3]. 4)

Notice that the value, W, of the payoff X will in general depend on the information set,
H, as well as the preferences of agent j through the marginal rate of substitution M. Since
preferences are not typically observable, equation (2) is not empirically implementable.
However, as long as a sufficient number of securities are traded in the market, all agents whose
marginal rates of substitution M’ depend only on the payoffs from traded claims will agree on the
expectation of the value, E[VJ], of the managed portfolio. Furthermore this value is the value of
a traded contingent claim. Assumption 1, below, is the formal condition that a sufficient number
of securities be traded. Assumption 2, below, allows us to conclude that all marginal rates of

substitution that are functions of the payoffs on traded securities are equal. Assumption 2 can be



derived as a theorem from Assumption 1 and the assumption of no arbitrage opportunities [see

Hansen and Richard (1987)] but in the interest of simplicity we skip the intervening steps.

AsSUMPTION 1. Let F; denote the information set generated by the time T payoffs from
allowable trading strategies, and F the corresponding common knowledge information set at
time t. Assume that if D is in Fy, that is, D is a function of the payoffs of allowable trading

strategies, then D itself is the outcome of some allowable trading strategy.

ASSUMPTION 2. There is a unique Z in Fy, which is strictly positive with probability one, such

that the price of a payoff D in F; is E[ZD|F].

Assumption 1 is similar to, but weaker than, the assumption that markets are complete.
To illustrate Assumption 1, consider the case of one risk-free security with gross return R, and
one risky security with random date T gross return of Y which is generated by a lognormal
diffusion process. The information represented by F; is the specific realization of Y. Hence
D = max(Y—k,0) is in Fy—that is, the realization of D is known once Y is known. However,
when limited to trading only once in the risk-free and the risky assets, it is not possible to create
a portfolio with a date T payoff of D, and Assumption 1 will not be satisfied in this economy.
When continuous trading in the risk-free and the risky assets is possible between dates t and T,
and when the price process of the risky security follows, for example, a lognormal diffusion,
then D as well as any function of Y can be attained as the payoff of a self-financing portfolio
strategy. Thus, Assumption 1 can be viewed as an assumption about either the availability of
traded assets or the continuous arrival of information and the ability to trade continuously without

friction.



2.2 Valuation Methodology

We first consider the valuation by individuals with the common knowledge information
set F, whose marginal rates of substitution are spanned by traded securities and securities created
by allowable dynamic trading strategies. All such individuals will have the same marginal rate of
substitution. This can be seen by noting that if a marginal rate of substitution is spanned by
traded securities, then it is in F and furthermore satisfies 1 = E[MR|F] for all gross returns R
on traded securities. But by Assumption 2, there is a unique Z in Fy such that E[ZR|F] = 1 and
hence the marginal rate of substitution M is equal to Z. Thus, the value, at the margin, of the
portfolio payoff, X, to any investor whose marginal rate of substitution is spanned by traded

securities, based on the common information set F, is given by:

V = EMX,|F] = E[ZX,|Fl. OF

Note that X, can show positive (or negative) value since the managed portfolio is not a
traded asset. This is true even if the payoff X, is in Fy. For example, suppose a portfolio
manager has perfect information about the return on some index Ry, and suppose he invests in the
index if R; exceeds the risk-free return, R, and otherwise invests in the risk-free security. Then,
R, will be given by R, = max(R,Ry) and the excess return will be given by X, =
max(R;—R,0). This return is in Fy, but as long as the manager’s information is not completely
reflected in prices it will not have a zero value. Put aﬂother way, the above excess return can be
generated by any trader (by Assumption 1), but it will require an investment equal to the value of
a call option on the index with exercise price equal to the gross risk-free rate; R¢. The portfolio
manager can supply it with a zero investment (borrow at R, and invest in the managed portfolio).

The relation in (5) could form the basis of a performance evaluation procedure. Notice

that V is the value at the margin of a borrowed dollar invested in the managed portfolio



conditional on the information set F generated by prices of financial claims alone, at date t. The
common information set F may be complicated; hence it is easier to estimate the average value

v = E[V],? given by:

v = E[MX,] = E[ZX,].

The average value is appropriate in the following scenario. The manager accepts a dollar
from the investor and returns R, dollars after one period. This is repeated for several periods.
The evaluator observes only the time series of returns, R,, on the managed portfolio, along with
returns on some index portfolios. We assume that even if the manager’s abilities change over
time, it does so in some systematic stochastic fashion such that average ability is well defined.

Determining Z could be very difficult in general, as it involves finding the marginal
utility of an individual and evaluating it at his or her optimal consumption, or equivalently,
obse;'ving all contingent claim prices. Proposition 1 suggests an evaluation procedure when there
is an individual whose marginal rate of substitution is a function only of the return on some index

portfolio.

PROPOSITION 1. Suppose there is an individual whose marginal rate of substitution, Mi, is a
function solely of the vector of returns, R;, on some index portfolios. Then the average value of

the portfolio, v, is the average price of the traded security with payoff e(R,) = EX,|R] =

E[RP-RflRI].
Proof.
E(V)) = EEMWX,|F)] = EIMX,] = EME[X,|R]] = EMe®R)] = e[ZeR]

where Z is the unique element of F; satisfying E[ZR] = 1. O
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Intuitively, X, can be decomposed into two parts: a payoff that is related to the marginal
rate of substitution which is a function of the vector of returns on some indices, R;, and a payoff
that is uncorrelated with the marginal rate of substitution. This latter payoff has zero mean and a
zero average price. Valuing the managed portfolio then consists of finding the average price of
the contingent claim, e(R). To simplify the analysis, henceforth, we will assume that R; is a
scalar, that is, there is only one index.

We should note that in general every individual’s marginal rate of substitution will not be
spanned by traded securities. An individual’s marginal rate of substitution is a function of real
consumption. In an intertemporal setting, real consumption is a function of nominal income from
financial investments as well as investments in nontraded assets, the proportion of nominal wealth
consumed and of the price level.

According to Proposition 1, we need not find the equilibrium marginal rate of
substitution, Z. All we have to do is find an individual (who actively maximizes) who holds
some portfolio with return R; and whose consumption is determined by the return R;. Fof
example, as Rubinstein (1976) has pointed out, zf all investors have the same information set and
logarithmic utility (or power utility and the growth rate in consumption is i.i.d.) then Ry will be
the return on the market index portfolio. Epstein and Zin (1991) show that when all investors
have logarithmic utility, then the result will obtain even when they are not expected utility
maximizers. The assumption that all investors have the same information set implicitly assumes
that the actively managed portfolio is small relative to the size of the economy.

The empirical problem, then, consists of determining the index (which could be multi-
dimensional), estimating the relation between the portfolio excess return, X, and the index
return, R,, and applying contingent claim valuation techniques to arrive at the average value of

eR).
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The assumption that the marginal rate of substitution depends only on the return, R;,
suggests an alternative approach. One could use the time series of returns on all or some subset
of traded assets to estimate the marginal rate of substitution, M = f(R;). Since the function f(.)
is not known, it must be estimated. One approach would be to use splines or polynomials to
approximate the function f(.). If sufficiently long time series of data is available one may also
estimate the functional form f(.) by nonparametric methods [see Gallant and Tauchen (1989)].4
Estimating the value then consists of finding the average of the product of the estimated marginal
rate of substitution and the portfolio excess returns. The advantage of this method is that it
concentrates on the unobservable part of the valuation relation and this is an important direction
for future research in this area. The advantage of our approach is that it provides the
characteristics of the managed portfolio that are useful for valuing it. An investor may agree
with our characterization of the attributes of the payoff generated by the manager but disagree
with the value we assign to it. Our approach will provide useful information even to such an
investor.

Our approach also allows the use of prior information regarding the trading strategy of
the portfolio manager. Specifically, such information could be used to choose the functional
form of the conditional expectation. Furthermore, the shape of the contingent claim (the
conditional expectation) may be of independent interest to investors. Also, as we show later on
in the paper, our procedure is applicable even when the assumption of Proposition 1 is not
satisfied.

In general, the value of X, to an individual whose marginal rate of substitution is not
spanned by traded securities will depend upon the covariance of that part of his marginal rate of
substitution that is due to nontraded assets with the part of the managed return that is nontraded.

However, the value to such an investor will be given by Proposition 1 if: (1) the investor can
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duplicate the payoff from the managed portfolio by trading in marketed securities (possibly at a
higher cost than the manager) or (2) the correlation between the part of the individual’s marginal
rate of substitution due to nontraded assets and the part of the return due to nontraded assets is
zero. Further, if the marginal rate of substitution is close to Z in mean square, then the values

will be close. These results are stated formally and proven in Proposition 2.

PROPOSITION 2. Let v = E[Ze(Z)] denote the average value of the payoff, X, to all investors
whose marginal rate of substitution depend only on the returns on traded claims, where e(Z) =
E[X,|Z]. Let M be an individual’s marginal rate of substitution (not necessarily measurable with
respect to Fr). The average value of the payoff X, to this individual is given by EMX,). Then,

we have the following characterization of |E(MX) — v].
a. If X, is in Fy, then |EIMX,] — v| = 0.
b. If COV(X, — &(Z), M~Z) = 0, then |[EMX.] — v| =0.

c. If {EIM—Z1}°% < e/SD(X, — e(Z)), then |E[MX,] — v| < e.

Proof. First note that for all returns, R, on traded securities,

1 = E[MR] = E[RE[M|Fq]].
Since E[M |F4] is in Fy and since Z is unique, E[M|F;] = Z.

a. If X, is in Fy, then E[MX,] = EIX,EM|F;]] = E[ZX,] = E[Ze(Z)] = v.
b. EMX)) = E[(M-Z+2)X,] = v + E(M-Z)X,]
=v + E(M-2)(X, — e(2) + e(Z)] = v + COVIM-Z, X, — e(2)).
c. |EIMX,] — v| = |[E(M=2)X,| = E(M~2)(X, — @)
= E[|M-2)X, - e@))]] = {EIM-Z}}**SDX, — &(2)).
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by the Cauchy-Schwarz inequality, where SD indicates standard deviation. Under the conditions

of the proposition, the last expression is less than €. [

Before considering issues associated with implementing the procedure, it is appropriate to
consider the generality of our model. Assumption 1 is the crucial assumption and is the one most
likely to be violated. Allowing the possibility of informed trading by the portfolio manager may
restrict the ability of traders to replicate payoffs. For example, in the presence of informed
traders, one would expect there to be a bid-ask spread, and hence trading will not be frictionless.
We are therefore implicitly assuming that the portfolio manager is “small” relative to the market
in order to guarantee the consistency of our methodology. The assumption that the portfolio
manager’s abilities change over time (if at all they do) in a systematic stochastic fashion is likely
to be very restrictive.> We need this assumption to enable the use of time-series methods to
estimate and value the manager’s abilities. This assumption can be relaxed if the analyst has
access to substantial additional information regarding how the manager takes decisions (in
addition to time series data on the return on the managed portfolio).

Given these limitations, the technique described in Proposition 1 is relatively robust and
immune to manipulation by the portfolio manager. Given the assumption that the marginal rate
of substitution of at least one investor is a function of some identifiable index return, and given a
reasonably accurate specification of the form of the function e(Rp) = E[X,|Ry], a portfolio
manager will not be able to show spurious value through continuous trading or creative use of
options and other contingent claims. Use of the wrong functional form for e(.) or use of the
wrong index return, however, could lead to erroneous valuation of the portfolio manager’s

abilities.
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2.3 Choosing the Functional Form

Several parametric as well as nonparametric methods are available for estimating the
function e(.), when the functional form of e(.) is not known. When one takes the parametric
approach, one can choose either polynomials or splines, since it is well known that any function
can be arbitrarily closely approximated by a collection of spline functions or polynomial
functions. Alternatively, one could use a semi parametric method to estimate the joint density of
X, and R; and then compute the conditional expectation function, e(.). Each has its strengths and

weaknesses and we discuss these below.

2.3.1 Paramerric Estimation
If one were to choose the spline approach, then a continuous, piecewise linear fit would

appear to be the easiest to value. Note that a piecewise linear fit will be of the form:

XP = BO + 61RI + E 61 maX(RI—t,,O).

Notice that max(R;—t;,0) is the payoff, at expiration, on an index call option with exercise price
t;, when the current value of the index is one. The value of a dollar for sure, received in one
period is 1/R;. The value of Ry received in one period is 1. Thus, given estimates §; and §;, the

estimated value is

v =@BJ/R) + B, + Y 5

where C; is the average value of a call option with one period to expiration and exercise price t;
on the index with current value equal to one. The strength of this procedure is the ease and
intuitive appeal of the valuation phase of the exercise. To implement such a procedure, one must
specify the number and location of the knots (the t;’s), run the regression and then make some

assumption about the distribution of the return R;. A reasonable bench mark to start with is to
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assume that R; is lognormally distributed, so the C; are Black-Scholes prices. The major
weakness lies in the specification of the location and number of knots. With a large sample, one
could let least squares minimization choose the location of a given number of knots. Such a
large sample size would not typically be available. Thus, one is forced to ad hoc specifications
of the location of the knots.

An alternative procedure is to fit a polynomial relation:
Xp = E 7iR}~

In this case, one need only specify the order of the polynomial and run the regression to obtain

estimates 4;. The value estimate is then given by:

¢ = Y 4E[ZRI.

As in the case of splines, a reasonable bench mark to start with is to assume that R; is
lognormally distributed in identifying Z and evaluating E[ZR]].® The strength of the polynomial
approach, relative to the spline approach is that no ad hoc placement of the knots is required.
The polynomial approach has two weaknesses. First, in small samples, the estimated coefficients
can be very sensitive to outliers. Second, while R} is, in theory, a perfectly reasonable
contingent claim, it is not one that is observed. Consequently, the evaluator may have little
confidence in the pricing of this claim. We discuss the polynomial approximation so that we can
point out the connection to the well known Treynor-Mazuy (1966) and Admati, et al. (1986)
methods.

Many of the measures of performance evaluation that have appeared in the literature
resemble special cases of this general parametric methodology. Remember however that the
theoretical support for our approach is different than the ones on which these approaches were

originally developed. For example, suppose that one specifies R; to be a broad portfolio of
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stocks, and the risk-free rate is a constant, r. In this case, instead of working with E(X, |Ry), we
can work with E(X,|X) = e(X), where X; = R; — r. If there are a priori reasons to specify
eX) = o + BX;, then the estimate of value, E[ZX_] is given by c/R;, a scaling of Jensen’s
alpha. Admati, et al. (1986) suggest estimating e(Xp) = ap + ;X + a,X? and testing the
significance of o, for market timing ability. If selling covered calls is possible, then o, may be
significant, but yet the manager may have no valuable information. We suggest calculating the
value as (o/Rp) + a,V(X3) where V(X3) is the value of a contingent claim which pays X3.
Another example is provided by the analysis of market timing in Henriksson and Merton
(1981). Suppose, as in Henriksson and Merton, the portfolio manager is a market timer, and that

X, = oX,, where a is either one or zero. Further, suppose that:

E[a|Fq] = p, if X, > 0
1 -pifX, <0.
Then,
E[ZX,] = E[ZX,0] = E[ZX.E[a|F;]] = p,EIZX,] + E[Z(p,+p,~1)(-min(X,,,0)]

= (p,+p.— 1PV

where PV is the value of a one period put on the stock index with current value of 1 and exercise
price equal to one plus the risk-free rate.

It is unlikely that the specification of E[a|Fy] is exactly correct, even when the portfolio
manager is a pure market timer. Rather, it may be viewed as a convenient approximation to the
true relation between « and X,. This is brought home by consideration of Henriksson and
Merton’s parametric test 8, + 8, X, + 8,(—min(X_,0)) the value of which is given by (8/Rp +
B,PV. It is important to stress, however, that the manager need not be a market timer as

assumed by Henriksson and Merton. One can view this as a “one-knot spline” approximation to



17

what may be a more complicated relation between X, and X,,. Similarly, Jensen’s alpha
calculation can be seen as a linear approximation to the true relation, and the approach suggested
by Admati, et al. (1986) can be viewed as a quadratic approximation to the true relation. Even
when we choose more than one index and project the portfolio excess returns on the index
returns, as the above analysis suggests, the true projection need not be linear. The Connor and
Korajczyk (1986) approach to performance evaluation can be thought of as a linear approximation
to the true functional relation between managed portfolio excess returns and the set of index

€xcess returns.

2.3.2 Semi Parametric Estimation

On purely statistical grounds, a technique based on Gallant, Rossi and Tauchen (1992)
may well be superior. The primary advantage it offers is the ability to fit a wide range of
stochastic relations between random variables, even with a fairly small set of parameters. As the
following shows, however, the contingent claim that this technique delivers is difficult to interpret
and to value.

Define Y by Y = (Xp,Rp)’. Following Gallant, Rossi, and Tauchen (1992) the density

of Y, f(.), is proportional to:

P,R™I(Y~m))? $(R™(Y —m))/det(R)
where P, is a polynomial of order n, m is the mean vector, m = (mp,m))’, R is such that RR' is
the variance covariance matrix of Y and ¢ is the standard bivariate normal density. Denote by
fp|y and f;, respectively, the conditional density of X, given R; and the marginal density of R,
derived from f(.). We seek the expectation of X, given R; derived from f(.):

[ x fxR) dx
[ fR) dx

e®) = Jx £:(x|Ry) dx =
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Define r(R;) to be the linear regression of X; on R; and a constant, and let SE be the standard

deviation of the residual from this regression. Consider the normalization of Y:

RY(Y-m) = (Xp — tRY)/SE, Ry—mp/op’ = (Zp,Zp'
where ¢; is the standard deviation of R;. Notice that Zp and Z; are orthogonal and have zero
mean and unit variance. Then, e(Ryp) is given by:

‘ j x — (Ry)

e®) = IR) + SE SE
I f(x,R;) dx

f(x,Rp dx

Fix R; at some value t. Then given the normalization above:

(t—m,)

i
(t—m)
0y

E[ZP (Z, Y]

et) = () + SE

E[P.(Z, Yl

where Z is a standard normal random variable. The numerator of the second term will be a
polynomial of degree 2n — 1, while the denominator will be a polynomial of degree 2n. For

example, consider n = 1. In this case, e(R)) is given by:
e(R) = b, + bRy + 2SE(gy+g;,RY/(1 + (go+gR)?

for some constants to be estimated {b;,g;,SE; i = 0,1}.

As with the polynomial case, the second term on the right is, in theory, a reasonable
contingent claim. It is not a contingent claim that we observe and hence valuing with confidence
is difficult. Even if one is willing to make the Black-Scholes assumptions, valuation requires

numerical integration.
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Given current pricing and statistical methodologies, we prefer approximating the function
e(.) by splines. We believe that this approach will be empirically preferable to nonparametric
methods when the analyst is constrained to work with relatively short time series of data. Also,
we prefer splines to polynomials and semi parametric methods since splines can be interpreted as

options and hence are easier for practitioners to understand and value.

3. Ability to Approximate the True Function Using a Limited Number of
Options

3.1 The Portfolio Manager Has No Abilities

Like all other approximations that have been suggested in the literature on asset pricing,
the approximations we have suggested are not uniform. If the manager knows that the analyst is
using a specified number of options to evaluate performance, the manager (if he is allowed to do
so) can show spurious superior performance by engaging in certain trading strategies. This is not
a limitation only of our method. This is true of all performance evaluation methods. This
weakness arises from the fact that every known empirically implementable asset pricing model is
itself an approximation and misprices a certain subset of assets. Hence an important question that
needs to be addressed before choosing the number and type of options used to approximate the
managed portfolio payoff is whether the approximation is adequate.

In this section we show that payoffs from certain option trading strategies (which exhibit
substantial curvature) can be approximated sufficiently well by using only three options. We
suggest using similar methods to evaluate the adequacy of the number and type of options used in
the specific application the practitioner is interested in, taking into consideration the tradeoff
between Type I and Type II errors.

Our motivation for examining the ability of the payoff on a portfolio of options to

approximate the payoff on certain arbitrarily chosen call options arises from the following
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observation. One way that a portfolio manager can appear to be providing valuable management
services is through the use of dynamic trading strategies which replicate payoffs from options.
Accofding to the theory developed above, such use of trading strategies based on common
knowledge should not show value. Strictly speaking, this requires knowing the functional form
of the projection. To investigate how well various approximations work, we assume that the
managed portfolio returns are generated in the following way: Each month, the manager
purchases a three-month call option on the market index at the Black-Scholes price, holds it for
one month and sells it at the Black-Scholes price. We assume that monthly continuously
compounded index returns are normally distributed, with a mean of 0.0109 and a standard
deviation of 0.0608, corresponding to the sample moments of the stock index portfolio during
1968 to 1982. The risk-free rate is assumed constant each period at 0.54 percent, corresponding
to the average continuously compounded treasury bill rate during the above period.

We examine S portfolio strategies, ranging from buying a call with an exercise price
equal to 0.95 of the value of the index to buying a call with an exercise price equal to 1.2 of the

value of the index. For each portfolio strategy we look at five specifications of the projection:

L X, =8+ B:(X) +¢

2. X, =B + BX; + B, max(X,0) + e (Henriksson-Merton)

3. X, =By + BiX; + By max(X;—t,0) + ¢

4. X, = By + B X; + B, max(X;—t,,0) + 6; max(X;—t,,0) + e

5. X, = B + B + B max(X;—t,,0) + 53.max(XI-t2,0) + max(X;—13,0) + €

We compute the true parameters (including the location of the knots) by minimizing the

sum of the squared errors of the projections for each of the five models above, using 20,000

simulated observations. Numerical methods were used to calculate the minimizing parameters.
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We calculate the values using Black-Scholes procedures. The value of 1 is 1/R;. The value of
X is 0 and the remaining terms in expressions 2 through 5 are valued using the Black-Scholes
price of the indicated option.

Table 1 presents the result of the simulations. The linear approximation is inadequate
even for calls close to being at the money. The one-knot spline does substantially better than the
Henriksson-Merton approach (that is, a one-knot spline with the knot located at the risk-less
return). Higher order splines with optimally located knots do better than one-knot spline. A
two-knot spline appears to provide a reasonable approximation even for a way out of the money
call (with a strike price to spot index ratio of 1.10 to 1.20). These results suggest that even in
those situations where a one-knot spline may be adequate, the location of the knot will generally
not be at the risk-free return as in tﬁe Henriksson-Merton method. However, the three-knot
value estimates were not critically dependent on the location of the knots. For example, the
values obtained when the expected number of observations between knots was equalized were still
close to zero. For options with exercise prices of 0.9, 1, 1.1, and 1.2 the values were,

respectively (annualized and in percent) —0.29, —0.9, ~2, and 2.25.

3.2 The Manager Has Ability

The next question that arises is that of power, that is, whether our approach is capable of
detecting ability when it does exist. In what follows we examine a situation where the portfolio
manager has superior information of a particular type and uses it in a particular way. Since
power can only be examined against specific alternatives, the practitioner is advised to examine
the power function of the particular approximation he chooses for the specific alternatives of

interest to him or her.
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We suppose that the market index return is lognormally distributed with its historical
mean and standard deviation. Now suppose that there is a manager who sees a signal, S, given
by S = log(R,) + ¢, where ¢ is independent of R, and normally distributed with mean zero and
variance equal to 0*(1—RSQ)/RSQ, where ¢° is the variance of log(R,,) and RSQ is the R-Square
of the regression of log(R,,) on S in the population. Assume, further, that the manager invests in
the market if E[R,,|S] > R; and invests in treasury bills otherwise. We also assume that the
manager is extremely small relative to the “liquidity” of the market and hence does not affect
market prices due to his trading activity. After some tedious but straightforward calculations it
can be shown that the value of the information when used in this way is ®(c,) — ®(c,) where @

is the standard normal cumulative distribution function and ¢, and ¢, are given by:

¢, = {(e—D)[(1-RSQ)I/RSQ] + ¢*/(2RSQ)}/(a(1/RSQ)*?)
¢; = ¢ — ol(1/RSQ)®*

p = EllogR)], ¢ = Var(logRy), r = log(Ry.

We simulated 100 samples of 40 observations each, for values of RSQ ranging from 0.05
to 1. The results for one- and three-knot splines are reported in Table 2. We have insufficient
data to optimally place the knots and hence we placed the knots so that, in expectation, there
would be an equal number of observations between the knots. Thus, for three knots, the knots
were placed at the 25, 50, and 75 percent points of the distribution of R; As can be seen, the '
power function is fairly steep even for 40 observations, and the one-knot spline (knot at the

median of the R; distribution) appears to do a satisfactory job.

3.3 Choosing the Index
Unfortunately, the methodology we have been discussing does not get around the problem

of the correct choice of an index. Fortunately, however, we can show that if the index choice is
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not too bad, and as long as we can correctly value the contingent claim, then the resulting value
estimate will be close to the true value. Formally, suppose that R; is the correct index return and
the average value of the contingent claim, e(Rp) = E[X, |Ry], is the correct average value of the
managed portfolio. Suppose we pick an incorrect index return, R{, and estimate the contingent
claim e'(Ry) = E[X,|R{]. The following proposition shows that if R; explains most of the
variation of Z or if given Ry, R; explains little of the remaining variation in X, then the true

average value E[Ze(Rp] will be close to average value arrived at using the incorrect index Ry,

E[Ze'(Rp].
PROPOSITION 3. If the variance of Z unexplained by R,
E(Z - E[Z|R{)’] = 1 — RSQ(Z;Rpvar(Z)

is small, or the difference between the variance of X, explained by R; and R; and the variance of

X, explained by R},
HERX,|RLR{] — ¢'RD)?] = (RSQX,:RLR) — RSQRX,;Rp)var(X,)
is small, then the squared valuation error,
(E[ZeRp] — E[Ze'RDIP

is small.

Proof.

(E[ZeRp] — E[Ze'RDIf = (E[ZX,,] — E[Ze'RD]f
= (E[ZE|X,IRR{} — e'RMIP
= (E[Z = E[Z|RI)E|RLR]] — e'RD)F
= {E[(Z — E[Z|R’THEIERX, |R,R{l — ¢'RD)*]}
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= var(Z){1 — RSQ(Z;R))

X var(XRSQ(X,;R,R) — RSQE,:RY). O

As with other continuity results of this sort, [Green (1986), for example], the bound is
not uniform over all possible managed portfolios. For example, levering up a managed portfolio
will increase the divergence from the true value. Thus, as Green (1986) points out in the context
of evaluating the performance of managers using Jensen’s alpha, performance ranks evaluated
using one proxy can easily be reversed using another proxy that is close to the original proxy.
Thus, the same problems noted by Roll (1978) with ranking portfolios will appear with the
methodology examined here. The positive aspect of the proposition is that no matter what the
true index is, if the chosen index and the functional form of the projection explain most of the
variation in X, then the valuation error will be small.

" This proposition suggests that different indices may be used to evaluate different
portfolios. For example, if a manager switches funds between bills and some index with return
R’, then in the absence of knowledge of the true index, the index being timed may be the most
appropriate index to use. The next proposition provides a condition under which the correct

value can be inferred from the use of an incorrect index.

PROPOSITION 4. Suppose that the portfolio excess return is given by X, = w(R'—Rp = w.X,
where R’ is the return on some portfolio of traded security and R; the risk-less return. The
scalar random variable, w, takes on the value of one or zero, and is a function of a (possibly
multi-dimensioned) signal, S, which in turn is a function of X' and observational noise » which is
independent of X’ and the return, R, on the true index. Then the true average value of the
managed portfolio, E[ZXP], equals the average value of the contingent claim E(Xp X",

E[ZE[X, | X'].
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Proof.

E[ZX ] = E[ZwX'] = E[ZX'E[w|R,X']] = E[ZX'E[w|X']] = E[ZE[X,|X"]]. (I

These results suggest that knowledge of what the manager is doing will most likely help
in choosing the right functional form and the right index to achieve the right mix of Type I and
Type 1I errors.

In the empirical finance literature, it is common practice to use the return on the equally
weighted index portfolio of stocks on the NYSE as the market index portfolio (or the single pre-
specified factor in linear beta pricing models). However, Proposition 4 suggests that if the
portfolio manager behaves as though he allocates the funds between cash and a particular
portfolio of securities, then it may be advisable to use such a portfolio of securities as the index.
There are a priori reasons to believe that while the portfolio of stocks held by some portfolio
managers resembles the value weighted index of stocks traded on the exchange, others resemble
the equally weighted index. Hence in our empirical study of mutual funds to illustrate the
application of our methods we will examine how sensitive our conclusions are to the choice of

the index.

4. Evaluating the Performance of Mutual Funds

Lehmann and Modest (1987) examine the performance of 130 mutual funds over the
period 1968 to 1982. Their primary concern was the sensitivity of performance evaluation to the
choice of the index. They find that a substantial number of fund returns exhibit option-like
features (that is, nonlinearly related to the return on the index, see Tables X and XI, pages
254-55) which provides a priori justification for using our valuation method. They conclude that

(a) the choice of the index matters in the sense that the number of rejections of the hypothesis of
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zero value changes, in some cases substantially, and (b) there is evidence of negative value in the
mutual fund returns. Lehmann and Modest’s analysis was fairly wide ranging, looking at not
only the equally and value weighted indices, but various APT indices as well. Our analysis,
using the Lehmann-Modest data set will be more modest. Our intent is to illustrate our
methodology on actual portfolio returns and examine how the choice of the index and the number
of knots matters. Unlike Lehmann and Modest, who examine the statistical significance of the
Treynor-Black (1972) appraisal ratios and the coefficient on the quadratic term, we examine the
statistical significance of the total value of the fund manager’s abilities.

For the analysis of the mutual funds, we used a slight modification of the spline
estimation discussed above. Specifically, we regressed the excess portfolio return divided by one
plus the interest rate on a spline function of the gross index return divided by the gross interest
rate. That is, defining X}, to be X,/(1+1g) and R}, to be Ry/(1+r1,) where Ry, is the gross (one

plus) rate of return on the index, the one-knot spline estimation is:
Xy = 8 + R}, + 3;MAX[RL—k,0) + e,

This was done for two reasons. First, R}, is more likely than R, to be stationary. Second, the
valuation of the resulting projection of X, conditional on the interest rate, is independent of the

interest rate. This can be seen by multiplying the estimated projection by (1+rg) to get:
e, = 3(1+r1p) + 3R, + a,MAX(R,, — k(1+r1p),0).

The value of the first two terms is a, + a,. Using the Black-Scholes formula, the value of the

third term is:

a,(N(dy) — N(dJk(1+19)/(1+r1g)) = a,(N(dp) — kN(dy))
where

d, = [log(1) — log(k(1+tg)) + 0.5v* + log(1+rx)yv = —log(K)/v + v/2
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and d, = d; — v. In these expressions v is the standard deviation of the continuously
compounded index return, while N(.) is the standard normal distribution function. When the
one-knot spline was estimated, the knot was put at k = 1. When three-knot splines were
estimated, the knots were placed at 1 and at exp(my +/— 0.670]) where mj and o} are
respectively the mean and standard deviation of log(Ry) — log(1+ry) and 0.67 is approximately
the 75 percent point of the standard normal distribution.

Our results agree with both the conclusions of Lehmann and Modest in the sense that
there are substantial differences in the value estimates obtained using the two indices.
Furthermore there is a preponderance of negative values. However, we find that the two value
estimates are highly correlated and the rank correlation is also very high.

Our methods classify some funds as providing “valuable service” independent of whether
we use the equally weighted or the value weighted index. This finding is consistent with that of
Lee and Rahman (1990). In classifying fund managers as having superior ability we cannot use
the standard 5 percent significance level as a cutoff. This is because if none of the funds
managers have any abilities and the estimation errors are uncorrelated then 5 percent of the funds
should indeed show superior performance if the test statistic is right. To take this into account,
we use the Bonforoni p-values. Also, the evidence supports the view that for the mutual fund
portfolios we consider, there is not much gain to be obtained from using more than one option
(in addition to the risk-free asset) along with the index return to approximate the excess return on
mutual funds.

Tables 3 and 4 present the cross-sectional distribution of value estimates with respect to
the value weighted and equally weighted index respectively for the one-knot and three-knot spline
cases. There are two conclusions to be drawn from these tables. First, the one-knot and three-

knot spline specifications produce very similar results, suggesting that use of the one-knot spline
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approximation may be sufficient for this particular application. In fact, the correlation between
the values obtained using the two indices is never less than 0.995. Second, use of the equally
weighted index produces lower values in general. It also appears that the use of the equally
weighted index just shifts the distribution of values to the left by a constant amount, where the
constant approximately equals the value assigned to the value weighted portfolio of stocks in the
NYSE when the equally weighted portfolio of stocks is used as the index. We suspect that this
may be due to the fact that mutual fund portfolios resemble the value weighted index portfolio
and the value weighted index is under-valued by the equally weighted index.

Tables 5 and 6 report the cross-sectional distribution of the t-statistics (computed allowing
for the presence of conditional heteroscedasticity) for the hypothesis of zero value for the mutual
fund manager’s abilities, for the value weighted and equally weighted indices respectively. An
examination of the minimum and maximum t-statistics with an applicgtion of the Bonforoni bound
suggests that when using the value weighted index there is evidence of both positive and negative
value while there is evidence only of negative value when value is estimated using the equally
weighted index.

Despite the significant differences in value estimates obtained using the two indices and
different number of knots, the value estimates themselves are highly correlated. Table 7 shows
that the correlation between any two value estimates is never less than 0.95.

The top performer by any measure (both one- and three-knot specifications with either
index) was the Templeton Growth fund. One interesting observation is that the shape of the fit
tends to be concave with a positive intercept. See Figure 1. The shape is similar to a fund that
uses written covered calls in its portfolios, but obtains a better than fair value for its written

calls.
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In our analysis we used the Black-Scholes model to evaluate the value of the estimated
options. Hence to some extent our conclusions depend on the validity of the Black-Scholes
model. However, it should not be difficult to modify our procedure to make use of any other
option pricing model that the analyst considers appropriate. If prices on traded options are
available, the arguments in this paper can be extended to justify the use of the Linear Factor
Model analogue of Jensen’s alpha suggested by Connor and Korajczyk (1986), when excess
return on a few bench mark options are used as “factors” in addition to the excess return on the
factors suggested by Connor and Korajczyk.

Our analysis is almost certainly affected by a survivorship bias—we restrict attention to
those funds in operation between 1968 and 1982. Consideration of this bias merely strengthens
our conclusion that there is a preponderance of negative values. It is of course possible that the
positive performers were merely the survivors of an originally large family of competing mutual
funds. It is not clear why the survivor problem should bias our analysis of the index choice,
however. Still, for the evaluation of mutual funds this is an important area of further research

[see Brown, Goetzmann, Ibbotson, and Ross (1992)].

5. Conclusion

The purpose of this paper is to develop a fairly general methodology for valuing the
performance of managed portfolios. The general approach is to decompose the payoff on the
managed portfolio into two components: the first is a function of the return on some index
portfolio (or a set of index portfolios), and the second is the residual that is left out. We assume
that for some choice of the index portfolio the residual has zero value. Hence the value of the
payoff from the managed portfolio is the value of the contingent claim on the index portfolio

defined by the first part of the decomposition.
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In practice, the form of the projection is not known. We suggest approximating the form
of the contingent claim using low order linear splines or polynomials. Our results suggest that a
three-knot linear spline may be adequate to capture some types of nonlinearities—namely, that
may arise due to portfolio insurance and market timing strategies of portfolio managers, so long
as sufficiently long time-series of data is available. While approximating the function using a
one-knot spline is operationally similar to the Henriksson-Merton (1981) method, there are two
differences. First, the theoretical support for our model arises from entirely different arguments.
Second, the knot is not necessarily located at the risk-free rate. Even though it may not be
possible to separate abilities into “timing” and “selectivity,” the total value estimated by the
Henriksson-Merton method may be reasonably close to the true value. Hence our results can be
viewed as supporting the use of the Henriksson-Merton method for detecting superior
performance, but not for identifying the source of this superior performance. Similarly the value
of the portfolio manager’s abilities estimated by the Treynor-Mazuy quadratic regression method
can be viewed as a polynomial approximation. Jensen’s alpha can be viewed as a linear
approximation.

The choice of an index is problematic, since theory does not provide adequate guidance in
this respect. We present results suggesting that if the index chosen is reasonably close to the true
index, or if the managed portfolio return that is not explained as a (nonlinear) function of the
return on some index portfolio is relatively small, then the estimated value will be close to the
true value.

Our procedure gives the value at the margin and hence is sensitive to scaling, in the sense
that scaling up the size of the operations by leverage will increase value. Hence the value
computed according to this procedure cannot in general be used to compare different fund

managers, or to predict the demand for the portfolio. This is a common shortcoming of
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performance evaluation procedures. If a stand can be taken on investor preferences, and the
index the investor will hold in the absence of access to the managed portfolio, Bayesian
extensions to the valuation method described here can be used to arrive at an estimate of the
value of the manager’s abilities.

Our approach also helps in appreciating the major difficulties involved in evaluating
performance. First, the assumption that the ability of the portfolio manager varies over time in a
sufficiently systematic stochastic fashion severely restricts the applicability of our method as well
as the other methods that have been suggested in literature. Second, the form of the contingent
claim has to be estimated. As the figures in Table 1 suggest, no one particular choice for the
functional form of the contingent claim may be able to capture all types of nonlinearities involved
adequately. One possible way out of this difficulty is to choose the functional form after
extensive discussions with the portfolio manager to understand how the manager operates. To
minimize the moral hazard problems involved, it will be necessary to monitor the manager ex
post to ensure that the operations were consistent with what was agreed upon earlier.

We examined the performance of 130 mutual funds during 1968-82 to illustrate the use of
our method. We found that while the value estimates depend on the choice of the index, the
relative rankings were not all that sensitive to the choice of the index. Our analysis using mutual
funds suggest that use of one-knot spline may be adequate. We found that while superior
performance is indeed rare, there still were either a few superior performers or lucky survivors.

Our results can be viewed as supporting the use of the multi-factor analogue of Jensen’s
alpha suggested by Connor and Korajczyk (1986), by modifying their approach to include the
excess returns on certain selected options on stock index portfolios as additional “factor excess

returns.”
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Footnotes

*We are grateful to Bruce Lehman and David Modest for providing us with their mutual
fund data set. We would like to acknowledge helpful comments from William Breen, Michael
Brennan, Mark Grinblatt, Robert Hodrick, Juan Ketterer, Narayana Kocherlakota, Robert
Korajczyk, Krishna Ramaswamy, Haim Reismann, Gordon Sick, Daniel Siegel, and Sheridan
Titman. We wish to thank the Institute for Quantitative Research in Finance for research
support. All errors are our own. The views expressed herein are those of the authors and not
necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

1See Harrison and Kreps (1979) and Green and Srivastava (1985) who show that in every
arbitrage free economy there will in general exist an infinite collection of positive state price
densities which assign the same (correct) value to the primitive securities for which traded prices
are observed. Hansen and Jagannathan (1991a) show how to construct a positive price density
using data on asset prices and payoffs.

2If the analyst knows how the manager takes his/her decisions, it may be possible to
derive a priori restrictions on the functional form of the contingent claim. This will improve the
precision with which the manager’s abilities can be valued.

*Note that we use the term average value to mean expected value.

Bansal and Viswanathan (1991) follow this approach in their empirical examination of
asset prices.

SFor example, consider a portfolio manager wﬁo specializes by watching what happens in
the Middle East. Such a person might have been able to predict the war in the Middle East and
moved the money in and out of oil stocks at appropriate times during the recent Irag-Kuwait
crisis and earned “abnormal” returns for his clients. It is not clear when the manager will be

able to repeat such a performance in the future.
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®See Dybvig (1988) for examples showing how to compute Z under alternative stochastic

Process assumptions.
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Appendix

We used monthly returns on 130 mutual funds during the period January 1968 through
Decémber 1982. This data set was originally compiled by Roy Henriksson and updated by Bruce
Lehmann and David Modest. We are grateful to Bruce Lehmann and David Modest for letting
us use their data set. A detailed description of this data set appears in Lehmann and Modest
(1987).

We also used monthly returns on the value weighted index and equally weighted index of
stocks in the American and New York Stock Exchanges from the CRSP monthly tapes available
from the Center for Research in Security Prices, University of Chicago.

All computations were done using GAUSS version 1.49b and RATS version 2.0.
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Table 1

Various approximations to e®) = E[X|R]. R is lognormally distributed with E[log(R)] =
0.010891 SD(log(R)) = 0.060799. The excess return, X, over the risk-free rate (logRp) =
0.005419) on the managed portfolio is generated by buying a 3 month call on the index and
holding it for one month. The estimated values of Xp are annualized in percent and based on
20,000 simulated observations.

Estimated Value

Number of Knots in the Spline

Exercise

Price H-M Zero One Two Three
0.95 -0.35 -3.34 -0.21 -0.05 0.13

1.00 -0.40 -7.55 -0.17 -0.12 -0.11
1.05 -1.54 -8.73 -0.40 -0.39 -0.44
1.10 -6.06 -21.19 -3.05 -0.46 -0.38
1.15 -10.75 -28.01 -2.01 -1.69 -0.36
1.20 -17.68 -66.16 -13.92 -1.17 -1.26

Note that the true value of X, the excess return is zero, since we assume frictionless trading.



Various approximations to e(R) = E[X|R], where R is lognormally distributed; E[log(R)] =
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Table 2

0.010891, SD(log(R)) = 0.060799. The excess return, X, is given by X = I(R—Rf) where Rf
is the risk-free rate (0.54159%), 1is 1 if E[R|S] > Rf and zero otherwise, where S =
log(R) + € and ¢ is normally distributed, independent of R with mean zero and variance equal to
(1-RSQ)/RSQ times the variance of log(R). That is, RSQ is the asymptotic R-Square from the
regression of log(R) on S. Each model was estimated 100 times with 40 simulated observations
each. True values and average estimated values are annualized, in percent. The column titled

“number of rejections” shows the number of times, out of 100, that the estimated value was

significantly larger than zero at the indicated levels. The knots were placed so as to equalize the
expected number of observations between the knots.

One-Knot Spline Three-Knot Spline
Average Number of Average Number of
True Estimated Rejections Estimated Rejections

RSQ Value Value 0.05 0.01 Value 0.05 0.01
1.00 29.10 29.10 100 100 29.10 100 100
0.90 27.61 27.53 100 100 27.61 100 100
0.80 26.02 26.14 100 100 26.21 100 100
0.70 24.33 24.25 100 100 24.04 100 100
0.60 22.50 22.80 100 100 22.49 100 100
0.50 20.51 19.95 98 97 21.00 100 100
0.40 18.29 16.97 96 87 18.73 100 100
0.30 15.75 15.20 92 77 15.25 90 78
0.20 12.72 12.80 82 59 12.11 76 56
0.10 8.68 8.37 50 35 9.42 56 40
0.05 5.71 5.79 34 16 4.92 31 15
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Table 3
Mutual Fund Performance
Cross-sectional distribution of the value estimates for 130 mutual funds using

various specifications. Value is calculated with respect to the NYSE value
weighted index. Values are annualized and in percent.

One-Knot Spline  Three-Knot Spline

Mean -0.091 -0.171
Standard Deviation 2.692 2.703
Deciles Min —38.645 —8.704
1 -3.036 -3.291
2 -2.144 -2.182
3 —-1.195 -1.297
4 -0.905 —0.984
5 —0.334 —0.400
6 0.340 0.360
7 1.098 1.088
8 2.029 1.987
9 3.233 3.112
Max

10.097 10.094
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Table 4
Mutual Fund Performance
Cross-sectional distribution of value estimates for 130 mutual funds using various

specifications. Value is calculated with respect to the AMEX and NYSE equally
weighted index. Values are annualized and in percent.

One-Knot Spline  Three-Knot Spline

Mean —3.055 -2.678
Standard Deviation 2.752 2.723
Deciles Min —12.065 —-11.421
1 —-6.100 =5.756
2 -5.336 —4.973
3 —4.535 —4.204
4 —-3.763 -3.321
5 —2.849 —2.666
6 —2.140 -1.922
7 —-1.712 -1.361
8 -0.825 —-0.480
9 0.166 0.567
Max 7.585 7.775
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Table 5
Mutual Fund Performance

Cross-sectional distribution of 130 t-statistics. Each t-statistic is for the hypothesis
that the associated fund is providing zero net value returns. Value is calculated
with respect to the NYSE value-weighted index. The “Bonforoni p” is the p-
value of the associated t-statistic multiplied by 130.

One-Knot Spline  Three-Knot Spline

Min t —4.01 -4.05
Bonforoni p 0.008 0.007
Average t -0.09 -0.13
Max t 4.21 4.18
Bonforoni p 0.003 0.004
Number with t-statistics

< —2.326

-2326 <t < —-1.96 4

—-1.96 <t < —1.645

-1.645<t<0 52 51

0 <t< 1.645 41 : 41

1.645 <t < 1.96
196 <t < 2.326
2.326 < t
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Table 6
Mutual Fund Performance

Cross-sectional distribution of 130 t-statistics. Each t-statistic is for the hypothesis
that the associated fund is providing zero net value returns. Value is calculated
with respect to the AMEX and NYSE equally-weighted index. The “Bonforoni p”
is the p-value of the associated t-statistic multiplied by 130.

One-Knot Spline  Three-Knot Spline

Min t —4.16 —4.32
Bonforoni p 0.004 0.002
Average t | ~1.19 -1.11
Max t ' 2.94 2.98
Bonforoni p 0.427 0.375
Number with t-statistics

< —2.326 15 15
-2326 <t < —1.96 12 12
-196 <t < —1.645 15 14
-1645 <t< 0 72 70
0<t<1.645 14 17
1.645 <t < 1.96 1 0
1.96 < t < 2.326 0 1

2326 <t 1 1
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Table 7
Mutual Fund Performance

Correlations and rank correlations of 130 value estimates obtained from the NYSE
value weighted index and the AMEX and NYSE equally weighted index for
various specifications of the relations between the portfolio excess return and the
index excess return.

Correlation Rank Correlation

One-Knot Spline 0.964 0.958
Three-Knot Spline 0.978 0.971

]
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