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1. Introduction

Econometrics is the discipline of using data to revise beliefs about economic issues.
In Bayesian econometrics the revision is conducted in accordance with the laws of
probability, conditional on what has been observed. The normative appeal of Bayesian
econometrics is the same as that of expected utility maximization and Bayesian learning,
the dominant paradigms in economic theory. The qguestions that econometrics uitimately
addresses are similar to those faced by economic agents in models, as well. Given the
observed data, what decisions should be made? After bringing data to bear on two
alternative models, how is their relative plausibility changed? Or more narrowly, having
updated a data set should portfolio composition be changed? Any survey of the
introductory and concluding sections of papers in the academic literature should provide
more examples and illustrate the process of formally or informally updating beliefs.

Until guite recently applied Bayesian econometrics was undertaken largely by those
primarily concerned with contributing to the theory, and the proportion of applied work
that was formally Bayesian was rather small (Poirier, 1989, 1992). There are several
reasons for this. First, Bayesian econometrics demands both a likelihood function and a
prior distribution, whereas non-Bayesian methods do not. Second, the subjective prior
distribution has to be defended, and if the reader {(or worse, the editor) does not agree
then the work may be ignored. Third, most posterior moments can’t be obtained anyway
because the requisite integrals can’t be evaluated.

The development of posterior simulators in the last decade has revised beliefs about
the foregoing three propositions held by many econometricians who have followed these
developments closely. The purpose of this chapter is to convey these innovations and
their significance for applied econometrics, to econometricians who have not followed
the relevant mathematical and applied literature. There are four substantive sections.
The next section reviews aspects of Bayesian inference essential to understanding the
implications of posterior simulators for Bayesian econometrics. Section 3 describes these
simulators and provides the essential convergence results. Implications of these
procedures for some selected econometric models are drawn in Section 4. This is done
to indicate the range of tasks to which posterior simulators are well suited, rather than
provide a representative survey of the recent Bayesian econometric literature. [The
surveys of Koop (1994), Chib and Greenberg (1994), and Geweke (1995b) take up
additional models.] Finailly, the chapter turns to some implications for model

comparison, and for communication between those who do applied work and their




audiences, that are beginning to emerge from the use of posterior simulators in Bayesian
econometrics.

2. Bayesian Inference

This section provides a quick review of the principles of Bayesian inference. The
purpose is three-fold: to set up notation for the chapter; to provide an introduction for
econometricians unfamiliar with Bayesian methods; and to set forth the technical
challenges that posterior simulators largely overcome. Much of the notation is standard
for econometric models, but differs in some important respects from that used in non-
Bayesian approaches because those approaches do not condition on observables.

The introduction here is very concise and provides only the analytic essentials for the
subsequent development of posterior simulators. There are few examples and at a
number of points the exposition touches lightly on concepts of great depth. Those versed
in Bayesian methods at the level of Berger (1985) or Bernardo and Smith (1994) can
easily skip to Section 3 and use this section as a reference. Those seeking a complete
introduction can consult these references, perhaps supplemented by DeGroot (1970) and
Berger and Wolpert (1988) on the distinction between Bayesian and non-Bayesian
methods. On Bayesian econometrics in particular, see Zellner (1971) and Poirier (1995).

The results presented in this section are not operational. In particular they all involve
integrals that rarely can be evaluated analytically, and the dimensions of integration are
typically greater than the four or five for which quadrature methods are practical. The
balance of the chapter shows how the theory developed in this section can be
implemented in applied econometrics using posterior simulators.

2.1 Basics

Inference takes place in the context of one or more models. A model describes the
behavior of a px1 vector of observables y, over a sequence of discrete time units
t=1,2,.... The history of the sequence {y,} at time ¢ is given by Y, = {y,};l. A model
is a corresponding sequence of probability density functions
2.1.1) £.(y|Y,..6)
in which @ is a k%1 vector of unknown parameters, & € ® — R*. The function p(-)”
will be used to denote a generic probability density function (p.d.f.). The p.d.f. of Y,

conditional on the model and parameter vector &, is
T
(2.1.2) p(Y,180)=TT_f. (v ..6)




The likelihood function is any function L{6;Y) e p(¥[6).
[If the model specifies that the y, are independent and identically distributed then
f,(y|Y,.6)=",(y,0) and p(Y,|6)= H;f .(v,18). More generally, the index “¢” may

pertain to cross sections, to time series, or both, but time series models and language are
used here for specificity, Likewise it is assumed that y, is continuously distributed for
specificity and brevity.]
The objective of Bayesian inference can in general be expressed

(2.1.3) E[g(0)]Y,),

in which g(8) is a function of interest. There are several broad categories of functions of
interest that between them encompass most applied econometric work. Clearly the
function of interest can be a parameter or a function of parameters. Another category is
g(6) =L{a,,8)~1L(a,,6) in which L(a,8) is the loss function pertaining to action &,
parameter vector 8, and (implicitly, through (2.1.3)) the model itself. A third category is
g(6) = ¥, (6) which arises when a hypothesis restricts 6 to a set ©,. [Here x{-) is the
characteristic function Y.(z)=1ifzeS, x(z)=0ifze¢S.] Then E[g(G)]YT] =
P( Be @oer)- Yet another important category arises from predictive densities. Denote

Y = (¥ruseores) - 1 g(8)=E[n(y)¥,.6], then E[g(6)]Y,]= E[h(y')}¥;] Through
the appropriate choice of h(y*) this category includes point prediction, turning point

probabilities, and predictive intervals.

The subject of this chapter is generic, numerical methods of evaluating (2.1.3). To
the extent a method is generic, it can be applied to many models without requiring special
adaptation, and most of the questions of applied econometrics can be addressed directly.
This chapter concentrates on numerical methods because the combinations of models and
functions of interest for which (2.1.3) can be evaluated analytically are quite limited. It
takes up posterior simulators in particular because this approach is quite general and is
especially attractive when the parameter space is high dimensional (i.e., & is large) or the

model involves latent variables.
The specification of the model (2.1.1) is completed with a prior density p(8). It

may be shown that given (2.1.1) and a density p(YT) (i.e., a density for the data
unconditional on @) a prior density must exist; see Bernardo and Smith (1994, Section
4.2). It is more direct to place the specification of the prior density on the same logical

footing as the specification of (2.1.1). Thus a complete mode! specifies
= = T
2.1.4) P(6 )= [ p(6)ds, P(Y,eTlo)= [IT. Y, 0)ay,,




where © is any Lebesgue-measurable subset of ® and ¥ is any Lebesgue-measurable
subset of R’", [To keep the notation simple, a strictly continuous prior probability
distribution for @ is assumed.]

By Bayes Theorem the posterior density of @ is

P(QIYT) = P(YTIQ)P(G)/P(YT)

o< P(lee) p(6)
o¢ L(G; YT)P(B)-
Thus
_ _ [ s(0)L(6:%,)p(6)as
(2.1.5) E[g(6)[Y,]= | 2(6)p(6]Y,)d0 = R ArOr

In the representation (2.1.5), one may substitute for p(6) any function p"(8) o< p(6). The
function p"{8) is a kernel of the prior density p(8). Posterior moments in a given model

are invariant to any arbitrary scaling of either the likelihood function or the prior density.

2.2 Sufficiency, ancillarity, and nuisance parameters
The vector s, =s.(Y,) is a sufficient statistic in the model (2.1.2) given any of the

following equivalent conditions:

(2.2.1) p[YTIsT(Y,.),G] = p[YT}sT(YT)] ¥ 0e®;
(2.2.2) p(6]¥r) = p[6ls-(Yr)] V 6 € © for all realizations Yr;
(2.2.3) p(Y,|6) = h[sT(Y,.),B]r(YT) for some h(-) and r(-).

Condition (2.2.3), the Neyman factorization criterion, is the condition usually verified to
demonstrate sufficiency of sy =s,(Y,). Sufficiency implies that one may use the

(sometimes much simpler) expression h[sT(YT), 9] in lieu of the likelihood function in
(2.1.5). )

If sT(YT)’ =[SIT(YT)’,SZT(YT):| and p[s,(Y;)6]=p[s,r(¥r)], then s.(Y,) is
ancillary with respect to 8. As a consequence, it suffices to use any function
proportional to p[sz,.(Y,.)[Q] in lieu of the likelihood function in (2.1.5).

If 8°=(6/.6;) and g(0)=g(6,) then 6, is a nuisance parameter for the function of
interest g(6). A nuisance parameter presents no special problems in (2.1.5).

2.3 Point estimatjon and credible sets
Let the g X1 vector @ € L2 represent an unknown state of the world: for example, @
could be the parameter vector @ itself, a function of interest g(#8), or a vector of future

-




’

values y ={y,. syee s Vrs f) . Let @eQcQ represent an estimate of @. The Bayes
estimate of @ corresponding to the loss function L(fb, a)) is
2.2.1) & = argmin ;E[L(@, ) Y]
[Clearly, the estimate @ depends on the complete model (2.1.4) as well as the loss
function L(&'), a)). But given the model and loss function, there is no ambiguity about the
Bayes estimate.]

Three loss functions are notable for the simplicity of the Bayes estimates @ that they
imply:

given quadratic loss L(c'é, a)) = (E) - co) Q(a) - a)) (where Qp.d., &@eRY),
@= E(a)er);

given quantile loss L{w,®)=c(&- w)x{__u,&)(a)) +o,(0 - c?))x(&'»)(cu) (where
>0, ¢,>0,g=1), &=d:Pw<d|Y;)=c,/(c, +c,) and hence if ¢, =c, the Bayes
estimate of @ is the median of its posterior distribution;

given 0/1 loss L(®,)=1- Xy, (&)(a)) (where NS(E)) is an £-neighborhood of @),
as £ — 0, @ converges to the global mode of p(co]Y,.) if a global mode exists.

All three estimators are derived in most texts in Bayesian statistics, e.g. Berger
(1985, Section 2.4.2) or Bernardo and Smith (1994, Proposition 5.2)
A 100(1 — @)% credible set for @ is any set C such that L p(mIYT)dco =1-c. The

credible set depends on the complete model (2.1.4) but is defined without reference to a
loss function because it does not involve a Bayes action. In general a credible set can be
defined with reference to any distribution for @, not just the posterior distribution. In
most cases (always, for continuous distributions) the credible set is not unique.

If p(oy|Y,)2p(w,|Y,) Y (0,0,)® € C,a,eQ-C, except possibly for a subset
of Q with posterior probability 0, then C is a highest posterior density (HPD) credible
set for @. It can be shown that HPD sets provide the credible sets with smallest
Lebesgue measure. Therefore the choice of a HPD set is a Bayes action if loss is
proportional to the Lebesgue measure of the credible set.

Since credible sets are defined with respect to a probability measure they are
invariant under one-to-one transformations: i.e., if v=h(®), h(-) is one-to-one, and C

is a 100(1— @)% credible set for @, then D={v:v=h{w),weC} is a 100{1 - )%
credible set for v. However, HPD credible sets are not invariant under transformation.
[The technical step involves the Jacobian of transformation. For demonstration and




further discussion see Berger (1985, pp. 144-145) or Bernardo and Smith (1994, pp. 261-
262).]

2.4 Prior distributions

The complete model (2.1.4) provides a representation of belief. The choice of model
is always a judicious compromise between realistic richness in form and the effort
required to obtain posterior moments E[g(Q)IYT]. To this end, it has proven useful to

employ classes of prior densities, p(6|7) where 7 is an indexing parameter, just as it has
proven useful to index the conditional density f, (y,IY,_,,G) by 8.
Suppose that p{Y|6),6 € © has sufficient statistic {T,sT(YT)}, where s (Y;) is a

vector whose dimension is independent of T and Y,. Then the conjugate family of prior
densities for @ with respect to p(Y|0) is

{p(B]'L'), 7eT; 1'0}
{r [ pfs(¥s,)= ﬂe]de}
p(67) = p[sT d@]/j p[s, —1:]9]d9.

A conjugate prior distribution for & is thus proportional to a likelihood function
composed of 7, observations whose sufficient statistics are given in the vector 7. Less

where

and

formally, the information about & in a conjugate prior distribution is equivalent to the
information about @ in a likelihood function with 7, imaginary observations and

sufficient statistic 7.
There is an extensive literature providing conjugate families of prior distributions
corresponding to various specifications of f, (y,IY,_l,G). A strong practical reason for

this effort is that in the presence of a conjugate prior distribution, the posterior
distribution will retain the same mathematical tractability that characterizes p(Y,[0) and

was likely an important reason for the choice of f ,(y,]Y,_l,B) in the first place. For
example, in the regular exponential family of distributions

p(Y+10) =[O T c(v)exp{ Zr, oo T (v}
the conjugate family for @ is

p(617) < [s(6)]" exp[ .7 c,9,(8)].

teT= { j- s(0)]° exp[z, ¢i(8)1',.]<oa}

and then




@4.1) p(6]¥) < [s(O)]* " exp{ 3 e (O 2, 7 + (3 )]}

If 6"=(6/,6;} and the value of 6,=86; is fixed, then one may define the
conditionally conjugate family of prior densities for 8, with respect to p(YTIGI,Gf) in
precisely the same way. Given purely analytical approaches to Bayesian inference the
use of conjugate prior distributions is almost always essential. With the advent of the
numerical approaches that are the focus of this chapter conjugate prior distributions are
no longer essential, but are often useful as belief representations and can simplify
computation. Numerical approaches have rendered Bayesian inference practical in
models so complex that conjugate prior distributions do not provide simple belief
representations. In these cases, conditionally conjugate priors are often more useful and
provide computational advantages, as will be seen in Section 4.

The prior distribution, even if it is restricted to a conjugate family, provides a
flexible representation of prior beliefs. It is tempting to characterize prior distributions
by the extent to which they provide information about parameters. At one extreme, a
prior distribution with all its mass at a single point 8" € © is clearly quite informative;
such a prior is said to be dogmatic. At the other extreme, what (if anything) constitutes
an uninformative prior distribution is less clear.

The desire to work with less informative prior distributions leads to an extension of
prior distributions that can be useful if applied carefully. Consider a sequence of prior
density kernels pi(6): ie., J.ep;(e)d9<oo and the corresponding prior density is

pj(6)=p;(6)/jep;(8)d9. Suppose further that lim,, p,(8)=0 and 1lim,_p;(6)
=p'(9)VOeO, but that jsp*(e)de is divergent. It is often the case that
-[e L(8;Y,)p"(8)d6 and _[6 g(6)L(6;Y,)p'(8)d6 are convergent and furthermore
fm, [.2(9) L(ﬁ’:erpl(@)d6 _k g(G)L(G:YTEP‘(G)dB
[ L(8:Y)pj(6)de | L(6:Y,)p’(6)d0

In this case the formal use of the “prior density” p*(8) has an unambiguous interpretation

and provides correct posterior moments. If p'(8) is the limit of kernels of conjugate
prior densities then it generally retains the analytical advantages of the conjugate family.
For example in the regular exponential family with conjugate priors, if
) =(0,...,7)—5->0 then the limiting posterior distribution is given by (2.4.1)
with 7,=0(i =0,...,m). Formal analysis with p'(6)=1 would have led to the same

result.




2.5 Robustness

An important part of any thorough econometric investigation is establishing the
sensitivity of key conclusions to various aspects of model specification. To the extent the
conclusions in question are insensitive to specification the model is robust. A key step in
robustness analysis is setting up the aspects of the specification to be varied. In a closed
robustness analysis one specifies a finite number of alternative models (2.1.4) and
compares posterior moments over specifications. Such a comparison is of limited
usefulness, mainly because one is typically concerned with variations in specification that
are not well captured by a few models. If a few models suffice then the method of model
averaging described below is applicable.

In an open robustness analysis one specifies an entire class of models and determines
the corresponding range of posterior moments. For example, if a class of prior
distributions is indexed by a parameter vector 7 then one may define

[ &(®)L(8:Y,)p(6]z)do
[ L(6:¥,)p(67)a6

In this approach it is necessary, first, to specify an appropriate range for 7, and second, to

(2.5.1) E[g(6)|Y;.7]=

determine the corresponding range of the posterior moment (2.5.1).

Robustness analysis may also be nonparametric. An example is provided by the
density ratio class of prior distributions. This class consists of prior densities whose
kernels p'(6) may be chosen to satisfy a(6)<p"(8)<b(8), where a(6) and b(6) are
specified bounding functions. Constraints of this form place upper and lower bounds on
P(6 € ©,)/P(6 € ®,) for all pairs of Lebesgue measurable ©, and @, contained in ©.

The posterior moment E[g(B)[YT,p*(G)] is maximized over all prior densities in the

density ratio class by setting the kernel
@252 p(6)=p6)= {a(e) re)<s
b(0) if g(B)> g
where g satisfies the fixed-point condition
(2.5.3) g =E[g(0)Y,,5(6)].
[The result is due to DeRobertis and Hartigan (1981). See also Lavine (1991a, 1991b).]
The density ratio class is one of the most convenient for studying robustness with
respect to the prior distribution, but many other classes have been studied. Berger (1985)

provides a good introduction, and a thorough survey is given in Berger (1994).




2.6 Model averaging

Typically one has under consideration several complete models of the form (2.1.4).
For specificity suppose there are J models, and distinguish model M; by the subscript

P,(6, €®,)= j p,(6,)d6;, P,(Y;e#8,)= [ TT..f{3l¥..6,)aY;.

The J models are related by then’ description of a common set of observations Y, and a

L o2

g

common vector of interest @. The number of parameters in the models may or may not

be the same and various models may or may not nest one another. The vector of
interestw -- e.g., the outcome of a change in policy, or actual future values of y, -- is
substantively the same in all models although its representation in terms of 8, may vary

greatly from one model to another. Each meodel specifies its conditional p.d.f. for o,
p j(wlﬂj,Y,.). The specification of the collection of J models is completed with the prior
ape . K
probabilities p; (j =1,...,J), E,-=[Pj = L.
There are now three levels of conditioning. Given model j and &,, the p.d.f. of Y,
isp j(YTIB ) Given only model j, the p.d.f. of 8, is p; J(6 ) And given the collection

of models M,,...,M, the probability of model j is p,. If the collection of models
changes then the p; will change in accordance with the laws of conditional probability.

There is no essential conceptual distinction between model and prior: one could just as
J

well regard the entire collection as the model, with { PP j(ej.)}_ ,as the characterization
J=

of the prior distribution. At an operational level the distinction is usually quite clear and

useful: one may undertake the essential computations one model at a time.
Suppose that the posterior moment E[h(@)[Y] is ultimately of interest. (This

expression is just as general as (2.1.3) and encompasses the particular cases discussed
there.) The formal solution is

2.6.1) Elh(@)Y,]=3,_ Eh(@)|Y, M, ]P(m,]Y,).
From (2.1.5),
Jo, E8)L,(6,:Yx)p,(8,)a6,
.[aJ L,(6;:Y)p,(6;)46;
with g(Qj) = L h(w) pj(wlej,Yr)dw. There is nothing new in this part of (2.6.1). From

(26.2) E[h()|Y,, M, ]=

Bayes’ rule,




P(M;'IYT) = p(leMj)P(M ,)/ p(Yr)
(2.6.3) =P .L;;J P; (YTIBJ‘) p,-(ej )‘19;' / p(Yr)

o Pffe} pj(Yflej)p:‘(Gi )46, = p, My
The value M is known as the marginalized likelihood of Model j. The name reflects

the fact that one can write
(2.6.4) M, ‘“‘L,, L,(6,:¥,)p,(8;)46;.

Expression (2.6.4) must be treated with caution, because the likelihood function
typically introduces convenient, model-specific proportionality constants:
[.p(24]6,)dZ, =1 but [ 1,(6,:Z;)dZ, #1. Whereas (2.6.2), like (2.1.5), is invariant

to arbitrary renorinalizations of pj(Y IB) and pj( ) (2.6.3) is valid only with the

conditional p.d.f.’s themselves, not their kernels. As a simple corollary, model averaging
cannot be undertaken using improper prior distributions, a point related to Lindley's
paradox described below.

Model averaging thus involves three steps. First, obtain the posterior moments
(2.6.2) corresponding to each model. Second, obtain the marginalized likelihood M

from (2.6.3). Finally, obtain the posterior moment using (2.6.1) which now only involves
simple arithmetic. Variation of the prior model probabilities p; is a trivial step, as is the
revision of the posterior moment following the introduction of a new model or deletion of
an old one from the conditioning set of models, if (2.6.2) and (2.6.4) for those models are
known.

2.7 Hypothesis testing
Formally, hypothesis testing is the problem of choosing one model from several.

With no real loss of generality assume there are only two models in the choice set.
Treating model choice as a Bayes action, let L(il j) denote the loss incurred in choosing

model i when model j is true and suppose that L{i{) =0 and L(i| j)>0(j#¢). Given
the data Y, the expected loss from choosing model i is P(M j|YT)L(i[ j) (j=i) and so
the Bayes action is to choose model 1 if and only if

P(MI|YT) My > L(ﬂz)

P(M2|Y,.) p2 L(21)’
The value L{H2)/L(2]1) is known as the Bayes critical value. The data bear on mode!

choice only through the ratio M, /M,,, known as the Bayes factor in favor of Model 1.
The term p, M,/ p, M, is the posterior odds ratio in favor of Model 1. For reasons of

10



economy an investigator may therefore report only the marginalized likelihood, leaving it
to his or her clients -- i.e, the users of the investigator’s research -- to provide their own
prior model probabilities and loss functions. The steps of reporting marginalized
likelihoods and Bayes factors are sometimes called hypothesis testing as well.

It is instructive to consider briefly the choice between two models given a sequence
of prior distributions p,;(6,} in Model 1 in which lim;  p (6,)=0V 6, €®,. It was
seen in Section 2.4 that the limiting posterior moment in Model 1 can be well-defined in

this case, and that it may be found conveniently using a corresponding sequence of
convergent prior density kernels. The condition lim,_,_p, j(Gl) =0V 6, €8, ensures

lim, ., M, =0, however. Therefore, if the prior distribution in Model 1 is improper

jvee
whereas that in Model 2 is proper, the hypothesis test cannot conclude in favor of Model
1. This result is widely known as Lindley's paradox, after Lindley (1957) and Bartlett
(1957).

As will be seen, the computation of marginalized likelihoods has been a substantial
technical challenge. The reason is that in general M cannot be cast as a special case of
(2.1.5). In specific settings, however, (2.1.5) may be used to express Bayes factors. A

common one is that in which models 1 and 2 have a common likelihood function and
differ only in their prior densities p,(6). Then the Bayes factor in favor of Model | is

M, _ L 2OL(6:Yr)p,(6)d6

@71 M,r jeL(e;Yr)pz(a)da
with
(2.7.2) 2(8) =p,(8)/p.(0).

2.8 Hierarchical priors and latent variable models

A hierarchical prior distribution expresses the prior in two or more steps. The two-
step case specifies 2 model p,(Y,|6) (8 €®) and a prior density for 8 conditional on a

hyperparameter ¢, p B(G]qb) (¢ € ®). The model is completed with a prior density for ¢,
pc(qb). There is no fundamental difference between this prior density and the one
described in Section 2.4, since

2.8.1) p(68)= | pa(6l9)p.(0)ds.

As will be seen, however, the hierarchical formulation is often so convenient as to render

fairly simple problems that otherwise would be essentially impossible. Given a
hierarchical prior, one may express both a posterior density for 8,

11




P(BIYT) o _L, pA(YTIe) PB(91¢)PC(¢)d¢
=Pu (YTIQ)J¢pB(6[¢)pC(¢)d¢ = pA(YTIB) p(@),

and a posterior density for ¢,
(2.8.3) p(9]Y+) < [ pu(Y+16)pa(6]8) pc(9)d6 o p(Y18) po(8).

A latent variable model expresses the likelihood function in two or more steps. In
the two-step case the likelihood function may be written p, (YTIZ;) (Z;. € Z) where Z;

(2.8.2)

is a matrix of latent variables. The model for Zy is p,(Z;]¢) (¢ € ®) with prior density
pc(¢). The prior density induces an unconditional density for Z,
(2.8.4) p(Z7) = |, pa(ZrIp)pc($)ap.
The posterior density for the latent variables is
B(ZoY 7)o [ p,(YoZ7 ) ps(Zi10)po{(9)dg

(2.8.
285) = 2u(YolZ:)], pa(Zi10)pc()a0 = (¥.[2: )o(2:),

The posterior density is
(2.8.6) P(¢IYT) oe Jz pA(YT Z;‘)PB(Z;' ¢’) Pc(¢)dz; ec P(Yrkb) Pc(¢)'

Comparing (2.8.4) with(2.8.1), (2.8.5) with (2.8.2), and (2.8.6) with (2.8.3), it is
apparent that the latent variable model is formally identical to a model with a two-stage

hierarchical prior: the latent variables correspond to the intermediate level of the
hierarchy. The formal identity continues to hold if the p.d.f. for Y, is

expressed p ,_(YTIQ, ¢) in the hierarchical prior and p A(YT|Z;,¢) in the latent variable
model.

In the latent variable model, (2.8.6) reflects the uncertainty about Z'r, which is a
matrix of nuisance parameters if one is interested only in ¢. The density p(Z;|Y)
reflects the uncertainty in ¢, which is a vector of nuisance parameters if one is interested
only in Z;. These advantages of Bayesian methods for latent variable models in general
are supplemented with their computational convenience, as will be seen in Section 4.

The duality between the hierarchical prior and latent variable models often suggests
formulations that decompose more complex problems into simpler ones. For example,

y, ~ {0,0%v)
is formally equivalent to the latent variable model
Y, = W€,
with @, a latent variable, v/@? ~x*(v), and g, ~N(0,1) independent of @, The

equivalent hierarchical prior formulation is the p.d.f. specification

12



y,](co,,oz) ~N(0, o’w,)

and the conditional prior distribution
v/o! ~ 2*(v).

3. Simulation!

Bayesian methods are operational only to the extent that posterior moments (2.1.5)
can actually be computed. There are three ways in which this can be done. If the
posterior distribution and the function of interest are sufficiently simple, the posterior
moment may be obtained analytically. Most resuits in this category in econometrics may
be found in Zellner (1971); few further analytical results for posterior moments in
econometrics have been obtained since that work was published. If the required
integration takes place in fewer than (say) six dimensions then classical deterministic
methods of numerical analysis, principally quadrature, are often practical. (A standard
reference for these methods is Davis and Rabinowitz (1984).) In the remaining cases,
which constitute the preponderance of applied econometrics, posterior simulators are the
approach of choice.

Posterior simulators have a single characteristic principle: generate a sequence of
vectors {9,,,} with the property that if E[g(@)er] exists then there is a weighting
function w(@) such that

301 Bu=X &(0.)w(8,)/ 2 w(6,) > Elge)Y,]|=7

(Here and throughout this chapter, “—" denotes almost sure convergence.) Many
simulators produce {Bm} that -- at least asymptotically in M -- all have the posterior
distribution, and in this case Z,, = M™Y. g(6,).

Posterior simulators have several attractions. First and foremost, they are often
straightforward to construct, even in quite elaborate models. This includes models
sufficiently complex that non-Bayesian methods like maximum likelihood are impossible
or impractical. Second, posterior simulators can take advantage of the structure of latent
variable models as set forth in Section 2.8, simulating parameters and latent variables

jointly. This often renders them operational even when the likelihood function cannot be
evaluated. Third, posterior simulators are well suited to situations in which g(8) cannot

be evaluated in closed form, but unbiased simulators are available, because g(6) may

then be replaced by its simulator. Leading examples are forecasting and discrete choice

LThis section draws heavily on Geweke (1995a).

13



models. Finally, posterior simulators are practical: they can be executed in reasonable
time using desktop equipment, and their very construction often provides further insight
into the statistical properties of the model.

All this comes at some cost. The proper use of posterior simulators requires
analytical work on the part of the econometrician. First and foremost, the investigator
must verify that the posterior distribution exists. A proper prior and a bounded likelihood
function are sufficient for the existence of the posterior distribution, but if the prior is
improper then the existence of the posterior must be demonstrated. Simulators can
appear well-behaved over a finite number of iterations even though the product of the
prior and the likelihood is not a probability density kernel in . Second, the investigator
must verify analytically that the posterior moment of interest exists. In this section it is
implicitly assumed that this has been done for the problem at hand; expectation operators
used here all apply to moments that exist under the posterior. Third, the investigator must
verify (3.0.1). This section provides conditions for the convergence in (3.0.1) for a
variety of simulators.

3.1 Pseudorandom number generation
All pseudorandom number generators begin with a pseudorandom sequence {u,.} in

which the i, are assumed to be independently and uniformly distributed on the unit
interval (0, 1). In fact the sequence {1} is deterministic: most software employs a
multiplicative congruential generator which generates integers J, =(aJ,-_,)modm and
takes #, =J,/m. The constants @ andm are chosen carefully so that {u,} has good

properties: e.g., a=16807 and m = 2% —1 are common choices. The design and testing
of uniform pseudorandom number generators is an important part of numerical analysis
with a substantial literature: see Geweke (1995a, Section 3.1) for an overview and
citations, and suggestions regarding the use of multiplicative congruential generators.
For the purposes at hand it is assumed that the sequence {uf} is a satisfactory

approximation to an i.i.d. sequence with a uniform distribution on the unit interval. In
what follows “z” will denote a realization from this distribution, and *{i,}” a sequence

of such i.i.d. realizations.
Given {u,.}, one can in principle generate random variables from any univariate

distribution whose inverse cumulative distribution function (c.d.f.) can be evajuated.
Suppose x is continuous, and consequently the inverse c.df. F7'(p)={c:P(x<¢)= p}
exists. Then x and F'(u) have the same distribution:
P[F'(u) < d]|=P[u < F(d)]|= F(d). Hence pseudorandom drawings {, }L of x may be
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constructed as F'(u,), where {LI:,,}i1 is a sequence of pseudorandom uniform numbers. A
simple example is provided by the exponential distribution with probability density
f(x)=2Aexp(—-Ax), x=0. Then F(x)=1-exp(-Ax),F*(p)=-log(l-p)/A, and
consequently, x=—log(u)/A. The inverse c.d.f. method is very easy to apply if an
explicit, closed form expression for the inverse c.d.f, is available. Since most inverse
c.d.f.’s require the evaluation of transcendental functions, the method may be inefficient
relative to others.
Acceptance methods are widely used as a simpler and more efficient alternative to

the inverse c.d.f. method. Suppose that x is continuous with p.d.f. f(x) and support C.
Let g be the p.d.f. of a different continuous random variable z with p.d.f. g(z) which has
a distribution from which it is possible to draw i.i.d. random variables and for which

sup, e[ f(x)/g(x)] = a <.
The function g is known as an envelope or majorizing density of f, and the distribution
with p.d.f. g is known as the source distribution. To generate x,,

(a) Generate u;

(b) Generate z;

(©) If u>1(z)/[ag(z)], go to (a);

d x=z.
The unconditional probability of proceeding from step (c) to step (d) in any pass is

[t leg@] e@)dz=a™,
and the unconditional probability of reaching step (d) with value at most ¢ in any pass is
[ {t@/lag@)]}e(x)dz=a"F(c).

Hence the probability that x, is at most ¢ at step (d) is F(¢).

A key advantage of acceptance methods is that they often can be tailored to
idiosyncratic univariate distributions that arise in the posterior distributions for specific
econometric models. This frequently happens in conjunction with the Gibbs sampler
(Section 3.4.1); some examples are provided in Geweke and Keane (1995). In this use of
acceptance sampling it is often useful to consider a family of source densities g(x;c)
indexed by a parameter vector ¢. It is then usually easy to choose ¢ to maximize the
probability of acceptance from the source density (Geweke, 1995a, Section 3.2).

Composition methods decompose a random variable into two or more components,
each of which is casy to generate. For example, x ~ t(0,1;2) can be generated in the

obvious way from three independent standard normals; if x~B(m,n) then
x=2/(z;+z,) with z and z, independent, z, ~ ¥*(2m +2), z, ~ x*(2n+2) (Johnson
and Kotz, 1972, Section 40.5).
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The univariate normal distribution arises repeatedly in posterior distributions, usually
as the distribution of a subset of parameters conditional on others. Both inverse c.d.f. and
acceptance methods for generating univariate normal pseudo-random vectors are well
developed. Good software libraries implement both. The gamma distribution with scale
parameter A and shape parameter a has p.d.f.

£(x) = A exp(—=Ax)(Ax)"" /T(a), x 2 0.
In general, random variables from this distribution may be generated efficiently using
composition algorithms and acceptance methods. Fast and accurate methods are
complicated but readily available in statistical software libraries.

Two multivariate distributions are especially important in posterior simulators. The
generation of a multivariate normal random vector X from the distribution N(z,%) is

based on the familiar decomposition
z~N(0,1,), x=p+AzwithAA’=X.

While any factorization A of X will suffice, it is most efficient to make A upper or
lower triangular so that m(m-+1)/2 rather than m® products are required in the

transformation from z to x. The Choleski decomposition, in which the diagonal elements
of the upper or lower triangular A are positive, is typically used.

up . . . f — —_ ’ . . .
If X, ~ N(0,Z), the distribution of A = Z,-=|("f ~X)(x,—X) is Wishart, with p.d.f.
A exp(— Str Z"A)
o1y _m(m- Lin- - NE
2 e [ )]
for brevity, A ~W(E,n—1). Direct construction of A through generation of {x,},_

(3.1.1) f(A) =

becomes impractical for large n. A more efficient indirect method follows Anderson

(1984). Let I have lower triangular Choleski decomposition £ =LL’, and suppose
Q~W(I,n—1). Then LQL'~W(E,n-1) (Anderson, 1984, pp. 254-255).

Furthermore Q has representation
Q=Uuu uﬁ=0(i<j<m)
u, ~N(©G,1)  u,~x(n-i)
(i=1,...,m), with the Uy mutually independent for i 2 j (Anderson, 1984, p. 247). Even

if n is small, this indirect construction is much more efficient than the direct

constructiort.




3.2 Independence simulation

The simplest possible posterior simulator can be constructed if one can generate the
i.i.d. sequence {f,} with common p.d.f. p(6]Y;). Denoting g=E[g(8)|]Y;] and
g =M Z:L ,£(8,,), by the strong law of large numbers
3.2.1) g.¢8.
If the posterior variance of g(6), o> = var[g(B)[Yr]= E{[g(@) —-F ﬁYr} < e, then by
the Lindberg-Levy central [imit theorem
(3.2.2) M(z, -5)=N(0, 0?).
(Here and in what follows “ =" denotes convergence in distribution.)

The leading simple example of a posterior simulator based on independence
sampling in econometrics is the normal linear model with conjugate prior distribution,

= - 2
(3.2.3) y=XpB+e, &X~N00L)
(3:24) vs'/o® ~x*(v),  Blo* ~N(B, ’H').

[The matrix ¢>H, is the precision of the conditional prior distribution for 8§ -- i.e., the
g P

inverse of its variance matrix.] Straightforward manipulation shows

(3.2.5) (w’/c )] y,X) 2(v),
(3.2.6) Bl(o*y.X (ﬁ o’Hp )
where V=y+T-k 5= T’[zgz -i«(y—Xb)'(y"Xb)jl, H, =H; +(X'X)7,

H"I[Hp B+(X’X)" ] with b=(X’X)"X’y. [For derivations see Zellner (1971,
Section 3.2.3) or Poirier (1995, Theorem 9.9.1).] Since the marginal posterior
distribution of § is multivariate Student-f, closed-form expressions for the moments of §
exist. But many functions of interest are nonlinear if 3. For example, if the explanatory
variables include lagged dependent variables then conditional on the presample lagged
dependent variables the posterior distribution is given by (3.2.5) and (3.2.6), but functions
of interest like predictors of future values and spectral densities involve nonlinear
transformation of B and o*.

The generation of pseudorandom vectors following (3.2.5) and (3.2.6) in fact
involves acceptance sampling, as explained in Section 3.1, although this feature will be
transparent to the user of a mathematical software library or a higher-level language. The
acceptance sampling algorithm is quite general and can in principle be used to produce an
independent sample from any posterior density p(GIYT). The essential requirement is
that one be able to draw pseudorandom vectors from a distribution whose p.d.f. r(8) is an
envelope of p(B]YT). One then proceeds as in Section 3.1. The advantages of the
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procedure are that it requires only specification of the kernels of the two p.d.f.’s, and that
it produces i.i.d. pseudorandom vectors from the posterior distribution. The
disadvantages are that it is often difficult to find an envelope and determine
supeee[p(GIYr) / r( 6)], and that acceptance probabilities may be so low as to render the

whole algorithm impractical. The potential for these difficulties generally increases with
the dimension of @ (although the strucutre of the posterior density is also important).
When acceptance sampling succeeds, however, (3.2.1) always applies, and (3.2.2) applies
if the posterior variance exists.

A simulator closely related to acceptance sampling is importance sampling. Let j(6)

be a probability density kernel corresponding to a distribution from which an i.i.d.
sequence {6, } can be drawn conveniently, and whose support includes ®. Define the

corresponding weight function w(6) = p(6]Y) / j(6). (In this expression, p(6]Y,) need
only be the kernel of the posterior density.) Then

(3.2.7) Zu=3, 5(6.)w(8,)/3" we,)-z
If both

(3.2.8) E[w(6)] = [ [p(6]¥+) /i(6)|a6

and

E[g(0)’ w(6)|Y]= J,[e(6)" p(6l¥1)*/i(6)|do
are absolutely convergent, then
(3.2.9) M (g, -g)=N(0, 6%)
and

sh = MZ:LI{g(Gm) - §]2 W(@m)/[2:=l w(8,, )r - ¢?
where
o* =E{[g(6)- 2] w()}.
(For proofs see Geweke (1989b).)
In importance sampling the simulated 8_ are independent but the sample must be

weighted to produce a simulation-consistent approximation of the posterior moment g
from an “incorrectly drawn” sample. The intuition underlying (3.2.7) is that if 6, is

drawn from an area that is undersampled, relative to the posterior distribution, then that

drawing must receive a large weight to compensate, and conversely. Neither (3.2.7) nor
(3.2.9) requires that w(8) be bounded, but as a practical matter if w(8) is bounded and

var[g(B)]YT] < oo then (3.2.8) is satisfied, and without this condition establishing (3.2.8)
is usually tedious. Experience suggests that when w(@) is unbounded convergence in

(3.2.7) is so slow as to make the method impractical.
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In many circumstances one therefore can choose between acceptance and
importance sampling. The choice depends on the computational demands of the problem.
If evaluation of g(8) is trivial relative to the generation of 8, and computation of w(8)
then importance sampling is preferred; conversely, acceptance sampling is the method of
choice. Geweke (1995a, Section 4.4) provides elaborations on the comparison, as well as
a mixture of acceptance and importance sampling that can be optimized for each problem.

3.3 Variance reduction

In many instances it is possible to modify independence sampling to produce a
sequence of drawings each of which is identically distributed as in the original algorithm,
but with dependence between draws that substantially lowers the sampling variance of
the mean, thereby increasing the accuracy of g, as an approximation of F.

Antithetic acceleration (Geweke, 1988) is based on a technique originally due to
Hammersly and Morton (1956). The essential properties are most easily conveyed in the
case where the sequence { 8,,} can be drawn directly from the posterior distribution. In

this method the sample drawn can be described {6,,}.," with the 6, identically

distributed and the only mutual dependence being that arising between 8, and 8,,. Let
M2

=My z; g(6,) and suppose var[g(8)}¥; | < 0. Then

Mg, -F)= N(O, 0’*2), o= var[g(@w.)] + cov[g(Bm!), gl sz)].
As long as cov[g(ﬁml),g(ﬂmz)]<0, antithetic acceleration with M/2 replications will
have smaller variance of approximation error than importance sampling with M
replications, and the computational requirements will be about the same.

To focus further on the properties of antithetic acceleration, consider the situation in
which p[B]Y,.) is symmetric about the point g . In this case 6, =y +¢,,0,, = —¢,
describes a pair of variables drawn from the posterior distribution, with correlation matrix
—~I. If g(@) were a linear function, then var{,‘z[g(ﬂm‘)+g(9m2)]}=0, and variance
reduction would be complete. At the other extreme, if g(€) is also symmetric about u,

then var{%[g(@ml) +g(8,., )]} = var[g(6)]: antithetic simple Monte Carlo integration will

require double the number of computations of simple Monte Carlo for the same
information. As an intermediate case, suppose that d(y)=g(6y) is either monotone

nondecreasing or monotone nonincreasing for all 8. Then g(6,,)—-7 and g(6,,,)—F
must be of opposite sign if they are nonzero. This implies cov[g(em,), g(6,,)] <0,
whence o™ < var[g(8)]= o, and so antithetic acceleration produces gains in efficiency.

*
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As T increases, the posterior distribution generally becomes increasingly symmetric
and concentrated about the true value of the vector of unknown parameters, reflecting the
operation of a central limit theorem. (For an overview and citations, see Bernardo and
Smith (1994, Section 5.3).) In these circumstances g(8) is increasingly well described
by a linear approximation of itself over most of the support the posterior distribution as T
increases. Let oF indicate the accuracy of simple Monte Carlo and ¢} the accuracy of
antithetic Monte Carlo. Given some weak side conditions, it may be shown that
o7 /0% — 0, and under somewhat stronger conditions that Toy? /o converges to a
constant (Geweke, 1988).

To introduce another method of variance reduction, suppose there is an
approximation to the original problem that can be solved exactly with reasonable effort:
i.e., one can determine 7 = E[h(V)|Y,]= JN h(v)B(v]Y,)dv exactly. Suppose that the
sequence {6,,v,} can be drawn, {6, } an i.i.d. sequence from the original posterior
distribution and {Vm} an i.i.d. sequence from the approximating distribution, but with
8, and v,, constructed from the same underlying random numbers so that
g(6,) and h(v,) are correlated. Let %, "—-M“E::lg(()m) and &, =M 2:=lh(vm),
and consider approximations of the form

B =8y +ﬁ(EM - E)
Clearly E(g;,)=g. One can easily verify that var(g},) is minimized by
p= —cov[g(@m),h(vm)] / var[h(@m)]
and that in this case
var(gy) = var(gM){l —corr’[(8,,),h(8, )]}
The parameter § may be estimated in the obvious way from the replications, This is an
example of the use of control variates, introduced by Kahn and Marshall (1953) and
Hammersly and Handscomb (1964).
Yet a third method of variance reduction is the use of conditional expectations If

9f=(9(’]),6{’2)) and g(@):g(em), it may be the case that E[g(ﬂm)le(z),\’r] can be

evaluated analytically. If so, then by the Rao-Blackwell Theorem the variance of
approximation error can be reduced by using the function of interest E[g(t‘?}m)‘Bmm,YT]

rather than 8(9(1)m) in any posterior simulator. Extensions of this idea are developed in

Casella and Robert (1994),
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3.4 Markov chain Monte Carlo

This section takes up a recently developed class of posterior simulators that have
collectively become known as Markov chain Monte Carlo. The idea is to construct a
Markov chain with state space © and invariant distribution with p.d.f. p(G]Y,.).
Following an initial transient or burn-in phase, simulated values from the chain form a
basis for approximating E[g(B)[YT]. What is required is to construct an appropriate
algorithm and verify that its invariant distribution is unique, with p.d.f. p(B[Y,.).

Markov chain methods have a history in mathematical physics dating back to the
algorithm of Metropolis ef al. (1953). This method, which is described in Hammersly
and Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was generalized by
Hastings (1970), who focused on statistical problems, and was further explored by
Peskun (1973). A version particularly suited to image reconstruction and problems in
spatial statistics was introduced by Geman and Geman (1984). This was subsequently
shown to have great potential for Bayesian computation by Gelfand and Smith (1990).
Their work, combined with data augmentation methods (Tanner and Wong, 1987), has
proven very successful in the treatment of latent variables and other unobservables in
econometric models. Since about 1990 application of Markov chain Monte Carlo
methods has grown rapidly; new refinements, extensions, and applications appear almost
continuously.

3.4.1 The Gibbs sampler
The Gibbs sampler begins with a partition, or blocking, of 6, 6" = (6’“’,...,9’(3}).
x

For b=1,...,B, 8™ = (Gf"),.,.,aﬁﬂ)) where k(b)21; 2; k{b) = k; and the 6% are the
components of 8. Let p(G” |9("”,Yr) denote the conditional p.d.f.’s induced by
p(BIYT), where 8% = {9(“),41 # b} .

Suppose a single drawing 8,, 8, = (95{”,...,95(31), from the posterior distribution is

available. Consider successive drawings from the conditional distribution as follows:
o0 ~ p(6™ |65, Y )

B . »{ e 9(1)’9(3),_“,9(8),1;
3.4.1) 1 . P( ’ 1 Y% 0 r)
6 ~ (69 [6,...,607,65",..., 08, Y,

91(3) - p(g(B) lel(_s]’YT)'
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This defines a transition process from 6, to 8] = (6,’ M,...8 (B‘). The Gibbs sampler is
defined by the choice of blocking and the forms of the conditional densities induced by
p(Ber) and the blocking. Since @, ~ p(Q[Yr), (61('),...,9,“'”,91("),69”),...,658))
~ p(B[Y,.) at each step in (3.4.1) by definition of the conditional density. In particular,
6, ~ p(6]Y).

Iteration of the algorithm produces a sequence 6,, 8,,...,8_,,... which is a realization

of a Markov chain with probability density function kernel for the transition from point
8, to point 6,,, given by

g a a
(3.4.2) Ko(0):6,,) =T 1,.,0|0 | 60(a > b), 6i%h(a < 5), Y, ].
Any single iterate 8, retains the property that it is drawn from the distribution with p.d.f.
p(6lYy).

For the Gibbs sampler to be practical, it is essential that the blocking be chosen in
such a way that one can make the drawings (3.4.1) in an efficient manner. For many
probiems in economics, the blocking is natural and the conditional distributions are
familiar; Section 4 provides several examples. In making the drawings (3.4.1) all the
methods of this section are at one’s disposal,

The informal argument just given assumes that it is possible to make an initial draw
from the posterior distribution. That is generally not possible; otherwise, one could use
independence sampling. Even if it were, the argument potentially establishes only that
given a collection of independent initial draws from the posterior distribution, one can
generate a collection of independent final draws by iterating (3.4.1) on each initial draw.
What is needed for application is a demonstration that one can consistently approximate a
posterior moment with successive realizations of a single chain that begins with arbitrary
8, € ©. The stylized examples in Figures 1 and 2 show that this need not be the case.

Conditions for this sort of convergence are based on the mathematics of continuous
state space Markov chains. Brief overviews for econometricians are presented in Chib
and Greenberg (1994) and Geweke (1995a); from there the reader may turn to Tierney
(1991), and to Tierney (1994) for a rigorous treatment based on Numelin (1994). There
are two sets of convergence conditions emerging from this literature that are most directly
useful in Bayesian econometric models. If either set holds, then g, = M~ 'zr=lg(8m)

- E[g( B)IYT]'

Gibbs sampler convergence condition 1 (after Tierney, 1994). For every point
6" €® and every ©, C©® with the property P(Ge@,er)>O, it is the case that
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PG(QM € @,IB ;= 9*,YT) >0, where P(-) is the probability measure induced by the

transition kernel (3.4.2).
Gibbs sampler convergence condition 2 (after Roberts and Smith, 1994). The
density p(GlYT) is lower semicontinuous at 0, Lm p(BlYT)dB(b) is locally bounded

(b=1,...,B), and © is connected. [A function h(x) is lower semicontinuous at 0 if, for
all x with h(x)> 0, there exists an open neighborhood N, > x and £ > 0 such that for all
y € N, h{y}2 e>0. This condition rules out situations like the one shown in Figure 2.]

These conditions are by no means necessary for convergence of the Gibbs sampler;
Tierney (1994) provides substantially weaker conditions. However, the conditions stated
here are satisfied for a very wide range of posterior distributions in econometrics and are
much easier to verify than the weaker conditions. Furthermore, the appropriate blocking
is usually inherent in the structure of the posterior density, as will be seen in several
examples in Section 4.

3.4.2 The Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm begins with an arbitrary transition probability
density function q(8,,,6") and a starting value 6,. The random vector § generated from
q(@m,e') is considered as a candidate value for 8,,,. The algorithm actually sets
8,,., = 8" with probability
a(B ,8')=mir\ p(Q*lYT)qEGJ,Qn:) ,1};
" p(6,[¥+)a(6,..6")
otherwise, the algorithm sets 8,,, =8,,. This defines a Markov chain with a generally

mixed continuous-discrete transition probability from 8, to 8, ,, given by
q(em’ 9m+[ )a(em‘em-ﬂ) if 9m+l * em
KMH(Gm’ 9m+!) =

1-] a(6,.6)a(6,.6)d6 if 6,,, =6,
This form of the algorithm is due to Hastings (1970). The Metropolis et al. (1953)
form takes q(Bj,B’) = q(t‘)',Gj]. A simple variant that is often useful is the independence
chain (Tierney, 1991, 1994), q(6,,6")={6"). Then

o(8,,6")= min{p(g lYT)fI 0, ,1} = min{m,l},
p(6Yx)i(6') w(6,)
where w(8) = p(B]YT) / i(8). The independence chain is closely related to acceptance

sampling and importance sampling. But rather than place a low (high) probability of
acceptance or a low (high) weight on a draw that is too likely (unlikely) relative to
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p(GlY,.), the independence chain assigns a high (low) probability of accepting the

candidate for the next draw.

There is a simple two-step argument that motivates the convergence of the sequence
{Gm} generated by the Metropolis-Hastings algorithm to the posterior distribution. (This

approach is due to Chib and Greenberg, 1994.) First, observe that if any transition
probability function p(9,,.8,,,) satisfies the reversibility condition

p(8,Y7)B(6,:8s1) = P(6,11]Y7) P(B,015 6, )»
then it has the posterior as its invariant distribution. To see this, note that

[B(6Y 1) (6. 6,1)d6 = [ D8, Y1) P61 )0

= p(6i[Y1) [ P(Brs1 8)d6 = p(8,,.,[Y 7).
The second step is to consider the implications of the requirement that K,,,(6,,.6,.,,) be
reversible: p(GleT)KMH(Gm,GmH) =p(8, al¥r)Ky(6,:156,,)- For 8, = 8, it implies

that
p(6,[Yr)a(6,6")(6,.6") = p(6'Y1)a(6".8, )(6",6,)-
P

Suppose (without loss of generality) that p( 8,|Yr ) ( ) (9 Y )q(B 8 ) If we
take o(6°,6,) =1 and a(6,,6")=p(67|Y,)q(6",8 )/p(e Y, )a(6,.6"). this equality is

satisfied.

In implementing the Metropolis-Hastings algorithm, the transition probability
density function must share two important properties. First, it must be possible to
generate 6" efficiently from q(8,,,8"). All the methods of this and the previous section
are potential tools for these drawings. (Once again, acceptance sampling is attractive
relative to importance sampling.) A second key characteristic of a satisfactory transition

process is that the unconditional acceptance rate not be so low that the time required to
generate a sufficient number of distinct 8, is too great.

The convergence properties of the Metropolis-Hastings algorithm are inherited from
those of q( ") (Roberts and Smith, 1994). In particular the following condition

guarantees M~ '2 —}E[ (6)Y, ]

Merropolzs-Hastmgs algorithm convergence condition [ (after Tierney, 1994). For
every point 8" € ® and every ®, ¢ © with the property P(B € GI[YT) >0, it is the case

that Pq(@m+1 € ®]|9m = 6',YT) >0, where Pq(v) is the probability measure induced by
the transition kernel q(6,,,6"}.




Metropolis-Hastings algorithm convergence condition 2 (after Chib and Greenberg
(1994) and Mengersen and Tweedie (1993)). For every 8 €0, p(B]YT) > (), and for all

pairs (Bj,GJ-H) €Ox0, p(Bj[Yr) and q(Bj,Gjﬂ)are positive and continuous.

Once again, the conditions are sufficient but not necessary, but weaker conditions are
typically much more difficult to verify. On weaker conditions, see Tierney (1994).

3.4.3 Caveats

In any practical application one is concerned with numerical accuracy. Markov
chain Monte Carlo methods present two characteristic potential difficulties in assessing
numerical accuracy: slow convergence, and the formal inapplicability of central limit
theorems.

A leading cause of slow convergence is multimodality of the posterior distribution,
for example, as shown in Figure 3 for a Gibbs sampler. In the limit multimodality
approaches disconnectedness of the support, and increasingly large values of M are
required for a good approximation. This difficulty is essentially undetectable given a
single Markov chain: for a chain of any fixed length, one can imagine multimodal
distributions for which the probability of leaving the neighborhood of a single mode is
arbitrarily small. This sort of convergence problem is precisely the same as the
multimodality problem in optimization, where iterations from a finite collection of
starting values cannot guarantee the determination of a global optimum. Multimodal
disturbances are difficult to manage by any method, including independence sarnpling.
In the context of the Markov chain Monte Carlo algorithms, the question may be recast as
one of sensitivity to initial conditions: 63, 65, and 62 will lead to quite different chains,
in Figure 3, unless the simulations are sufficiently long,.

A Markov chain Monte Carlo algorithm can be made more robust against sensitivity
to initial conditions by constructing many very long chains. Just how one should trade
off the number of chains against their length for a given budget of computation time is
problem specific and as a practical matter not yet full understood. Many of the issues
involved are discussed by Gelman and Rubin (1992), Geyer (1992), and their discussants
and cited works. In an extreme variant of the multiple chains approach, the chain is
restarted many times, with initial values chosen independently and identically distributed
from an appropriate distribution. But finding an appropriate distribution may be difficult:
one that is too concentrated reintroduces the difficulties exemplified by Figure 3; one that
is too diffuse may require excessively long chains for convergence. These problems
aside, proper use of the output of Markov chain Monte Carlo in a situation of
multimodality requires specialized diagnostics; Zellner and Min (1995) have obtained
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some interesting results of this kind. At the other extreme a single starting value is used.
This approach provides the largest number of iterations toward convergence, but
diagnostics of the type of problem iilustrated in Figure 3 will not be as clear.

If one assumes standard mixing conditions for the serially correlated process g(@m)

(e.g. Hannan, 1970, 207-210) then well-established central limit theorems apply to the
distribution of g,_. The resulting assessment of numerical accuracy (Geweke, 1992) has
proven reliable in econometric models in the sense that it provides good forecasts of the
output of repeated simulations. This approach is fundamentally unsatisfactory, however,
because it assumes properties that should be derived from the known structure of the
algorithm, and/or are strictly not true. For example, if the posterior variance exists, then
in a stationary Metropolis-Hastings algorithm a standard central limit result applies
{Geyer, 1992; Kipnis and Varadhan, 1986). But since a Metropolis-Hastings algorithm
begins with an arbitrary initial condition it is not stationary. In addition, there is no
central limit theorem applicable to Markov chain Monte Carlo in which it has been
shown that the variance parameter can be estimated consistently in M, to the author’s
knowledge. Given the success of both Markov chain Monte Carlo algorithms in
econometrics and statistics and the apparent reliability of assumed central limit theorems,
these questions are clearly prime candidates for future research.

4, Some models

Recent innovations in posterior simulators have made possible routine and practical
applications of Bayesian methods in statistics. This section reviews the implementation
of posterior simulators in some common econometric models. The survey is selective. It
concentrates on generic or “textbook™ models to introduce approaches that can be applied
in many specific settings. In so doing the interrelatedness of specific approaches is
emphasized. All of the methods presented here can be combined, used in more elaborate
models, and be tailored to more specific models implied by the theory and data in a given
application.

In keeping the number of topics manageable the examples exclude time series
models, largely because of another survey in preparation (Geweke, 1995b) on that topic.
The reader will note that most of the posterior simulators presented rely principally on the
Gibbs sampler. In part that reflects the exclusion of time series models, where the
Metropolis-Hastings algorithm is more important. But it also reflects the fact that more
elaborate econometric models are typically constructed through the use of conditional
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distributions which can usually be undone by the Gibbs sampler to exploit the simpler
conditionals. That is especially so in models involving latent variables.

4.1 Normal linear regression

The normal linear model with conjugate priof distribution was discussed in the
context of independence simulation (Section 3.2). This prior distribution links dispersion
in prior beliefs about 8 and &2, since 8 ~ t(g, .gzﬂ;';z). Suppose instead that prior
beliefs about f are represented by f§ ~ N({_i‘, ﬂ;) independent of ¢®. Then the prior

density kernel is

4.1.1) (0?4 exp(-ys? /zoﬂ)exp[—,}(ﬁ —lj)'ﬂﬁ(ﬁ —Q)}
and the likelihood function may be expressed either

4.12) (a?)™ exp[—(y~Xﬁ)'(y—Xﬁ)/2<f’}

or

(4.1.3) exp(—vsz/ZO'z)exp[ (B-b) X’X /20']

with b=(X'X)"Xy,v=T-k s*=v'(y- Xb) (y—Xb). Forming the posterior
density kernel as the product of (4.1.1) and (4.1.2) it is immediate that

4.14) {[z._m(y—x;a)'(y—xzs)} f20*}|(6.5.%) - (7 + )

Forming the posterior density kernel as the product of (4.1.1) and (4.1.3) and completing
the square,
(4.1.5) Bl(o*,y.X) ~ N[(ﬂﬁr +07X’X)" (Hy B+ 0*X’Xb), (H, + or"’X'x)"].

In this model the prior for § is conjugate conditional on o, and the prior for o2 is
conjugate conditional on §. Hence the conditional posterior distribution of each is of the
same family as its conditional prior distribution. Moreover, (4.1.4) and (4.1.5) indicate
the obvious construction of a Gibbs sampler to draw from the posterior distribution. It is
trivial to verify either Gibbs sampler convergence condition (Section 3.4.1) in this model,

Several general principles are at work in this simple but important model.

(1) The decomposition of the posterior distribution into mutually conditional
distributions can provide a convenient description of a nonstandard
distribution.

(2) Conditionally conjugate prior distributions are convenient representations
of belief when their blocking coincides with that of the Gibbs sampler.
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(3) Further blocking of the Gibbs sampler is clearly possible (by means of
conditional normal posterior distributions for subvectors of §) but is
counterproductive because it generally increases serial correlation in the
Gibbs sampler thereby slowing the rate of convergence (Geweke, 1992,
Section 3.6).

To provide more flexibility in the representation of prior beliefs, suppose in lieu of
B~ N[g, _Ii}‘) that § ~ t(g, H;'; J‘L). If the corresponding density kernel is substituted
appropriately in (4.1.1) the resulting expressions are formidable. Instead, write the prior
distribution in hierarchical form
(4.1.6) Mw~x*(A), Blw~N(B,wHS').

Conditional on w the model has not changed: (4.1.4) remains true as does (4.1.5) once
H, is replaced with w™'H,. Tt remains only to find the conditional posterior density

kernel for w,
@.1.7) w A exp(—A/2w)pw | exp["(ﬁ - 1_3_)’ H,(8-B) /ZW]
which implies

[JL +(B —E)’Hﬁ'(ﬁ—ﬁ)}/w | (*.8.5.X) ~ (A +k).

This modest extension of the model illustrates three further principles that hold more
generally in using posterior simulators in econometrics.

(4) Decomposing a prior distribution into a hierarchy of simple distributions
can simplify the model and help in constructing the posterior simulator.

(5) Correspondingly, conditional distributions are natural building blocks for
more elaborate models and simulator design.

(6) While conditional posterior distributions may be obvious, there is no
substitute for deliberately writing the entire posterior kernel in detail, and
then establishing kernels for conditionals.

The last point was honored in (4.1.1)-(4.1.3) but violated in the extension (4.1.6): it
would have been easy to carelessly neglect the term [w"ﬂﬁ] in (4.1.7) because the

corresponding term vanished in the kernel of the simpler model. While point (6) is
essential to research practice editorial constraints generally demand its violation in
published scientific papers.
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4.2 Normal linear regression with constraints

It is often the case that coefficients in the linear model are assumed to satisfy
constraints that are not well represented by multivariate normal or Student-¢ distributions,
or there is a substantial prior probability that these constraints may be satisfied.
Examples include the restriction of 8 to a subset of R*, and the event that some
coefficients take on specified values, in particular O.

There is a long history of formal treatment of restrictions of this kind in linear
models in econometrics including Judge and Takayama (1966), Lovell and Prescott
(1970}, Gourieroux, Holly and Monfort (1982), and Wolak (1987). Analytical Bayesian
treatments include Chamberlain and Leamer (1976), Leamer and Chamberlain (1976),
and Davis (1978). Non-Bayesian approaches are technically awkward and lead to
estimators with unappealing properties because of their ex ante conditioning (Poirier,
1995, Section 9.8). Analytical Bayesian approaches produce useful results in one
dimension but fail in higher dimensions.

The earliest treatment using a posterior simulator is Geweke (1986). That work
considered the model (3.2.3) and (3.2.4) with v—0, H; — 0, combined with the
restriction e Q< R*. A posterior independence simulator in this case generates a
candidate using (3.2.5)-(3.2.6) and accepts it if and only if f e Q. The advantage of the
procedure is its simplicity and ability to handle constraints expressed implicitly as well as
explicitly. Its disadvantage is that the rate of acceptance may be so low as to render it
impractical. When k is large (exceeding 8, say) computational efficiency can be quite
poor even for restrictions that are reasonable when compared to the likelihood function.
Nevertheless, the method works well for many problems and no better method has been
developed that applies to a general restriction set.

When the restrictions are linear inequalities, substantial improvements in efficiency are
possible. Beginning with the model (3.2.3) and (4.1.1) suppose the constraints
(4.2.1) asDpsw

are added, where the elements of aand w are extended real numbers. Since this
constraint has no effect if g, =—e and w, =+ fewer than k linear inequality

restrictions may actually be involved. In particular, this model includes as specific cases

sign restrictions on coefficients. Rewrite the model
y=Zoa+e, &~N(0,0°,),

vs'/o® ~ x}(v), a~N(a,H;),
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where Z=XD", a=Df, a=Dj, H,=D""H,D”. The Gibbs sampler may be
applied to this model just as it was in (4.1.4) and (4.1.5) to (3.2.3) and (4.1.1), except that
the conditional distribution of & is truncated normal:

a](d’,y, Z)~ N[{ga + U“ZZ’Z)"I(E‘, a+07Z'Za), (H, + a‘“X’X)_I], asa<w,
with a= (Z’Z.)"1 Z'y. The algorithm of Geweke (1991) for the truncated normal then

applies directly to a. Decompose ¢ into k blocks of one parameter each, and draw each
element successively conditional on the other. The conditional distributions involved are
all univariate truncated normal, so this procedure is straightforward. Since no draw is
ever rejected, the procedure does not suffer from the potential inefficiency of the more
general acceptance algorithm.

In a variant on this method (Geweke, 1995c), B, =0 with prior probability P
conditional on S, # 0 the prior distribution of 8, is N(ﬁ_i, Tf) possibly truncated to the
interval (4;,v,). These priors are independent across the k coefficients. This model

characterizes the ubiquitous variable selection problem in regression. With a Bayesian
treatment, problems of regression strategics and pretest estimators do not arise: the
interpretation of the posterior distribution is unambiguous.

The posterior simulator for this model again has complete blocking, but now the
conditional posterior distribution of each coefficient is mixed: the coefficient is either
zero or is drawn from a possibly truncated normal distribution. The respective
probabilities are proportional to the conditional marginalized likelihoods for each event.
This amounts to evaluating the posterior distribution at 8, =0 in the one case, and
integrating it over the permitted range of the coefficient in the other. The Gibbs sampler
satisfies condition 1 for convergence, and the posterior probability of any configuration
of regressors being in the model is the posterior expectation of the corresponding
indicator function.

A closely related procedure is stochastic search variable selection (SVSS),
introduced by George and McCulloch (1993, 1994). (A related work is Clyde and
Parmigiani (1994).) The prior distribution in this model is

Bi=7v:0,+ (1 - ?’5)652:
& ~N(0.7) (j=121%>>7)

P('J’i ‘—"O)=Pi: P(?f =1)=]"p,--
Here a regressor is selected if ¥, =1 and not selected if ¥, =0, but “not selected” means

that the corresponding coefficient is small in absolute value, not 0. Posterior moments
are obtained using a Gibbs sampler. Conditional on (yl,...,yk) the relevant conditional
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distributions are of the form (3.2.5) and (3.2.6), and the conditional posterior distribution
of each 7, is Bernoulli. Condition 1 for convergence of the Gibbs sampler again applies.

But note that as 72 — O the probability that ¥, will change from 0 to 1 in successive

iterations also goes to 0.

Markov chain Monte Carlo posterior simulators for variable selection in regression
exhibit increasing serial correlation as the degree of multicollinearity increases, and as the
number of regressors grows more iterations are generally required to represent all models
with nonnegligible posterior probability. George and McCulloch (1994) have addressed
this problem in two ways. First, by using a conjugate prior conditional on the included
variables, closed form expressions for the probabilities of different configurations can be
obtained, which obviates the problem of serial correlation in the presence of
multicollinearity. Second, a Metropolis algorithm that generates candidates far from the
current selection of regressors appears promising in finding models with substantially
different regressors than the current model in the Markov chain.

Raftery, Madigan and Hoeting (1993) take up the variable selection problem using a
posterior simulator, but their approach is distinetly different. The “priors” employed are
data dependent. The computational algorithm uses the Occam’s window algorithm of
Madigan and Raftery (1994) and therefore does not provide a simulation-consistent
approximation of the posterior probability of all combinations of regressors.

These methods for normal linear models have much wider applicability than the
normal linear modetl itself. The reason is principle (5) stipulated above: linear model
posteriors appear as conditionals in many other models. In particular, the conditional
posterior distribution of 8 as it appears in these models arises repeatedly in Bayesian

econometrics.

4.3 Seemingly unrelated regressions

The seemingly unrelated regressions (SUR) model of Zellner (1962) has been
extensively applied in economics, especially in neoclassical models of production and
consumption. It appears repeatedly conditional on other parameters or latent variables in
other models as well, including the multinomial probit model (Section 4.6), linear
instrumental variables models (Section 4.7), factor analysis models, and vector
autoregressions. The simplest form of this model is
(4.3.1) v,=X, B8, +¢, (7 =L..,m).

Tx1 Txkjkxl Txl
Let ¢’ =(g],...£,) and X =[X,,....X,]; then
(4.3.2) X ~N(0, 2®1,).
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Defining y’ =(y},....y,,) the model may be expressed

4.3.3) y=Zf+e, £~N(0,Z®I;).
If
X, 0 0

B =(B..8,) Z= L
6 0 --- X
then (4.3.3) is equivalent to (4.3.1) and (4.3.2). With the appropriate reorganization of

Z, it also includes cases in which there are exact cross-equation restrictions on the

coefficient vector, a situation that arises commonly. The independent priors
(4.3.4) B~N(BH;), " ~W(S",y)

are conditionally conjugate. (The Wishart distribution is briefly presented at the end of

Section 3.1.)
The complete SUR model is (4.3.3) and (4.3.4). The kernel of p(g, Z) from (4.3.4) is

(4.3.5) [y (vemtiz exp[—-;-trE'S]exp[—é(ﬁ —E)'H; (ﬁ —[_3)}

’

Defining s,(8)=(y, - X.5,) (yj —Xjﬂj) and S(fB) =[s,;,.(,8)] then following Zellner
(1971, Section 8.5) the likelihood function may be expressed either
(4.3.6) = exp|~ 5 tr Z7S(B)]

@3n exp{[ﬁ -hm)] (= o1,y —ﬁ(z)]}

with A(Z)=[Z(2" ®1,)Z] 'Z/(2" ®1,)y. Forming the posterior density kemel as the
product of (4.3.5) and (4.3.6) and comparing the result with (3.1.1),

(4.3.8) 3! [(;3, v.X) ~ W([S+S(8)], T+y).

Forming the posterior density kernel as the product of (4.3.5) and (4.3.7) and completing
the square,

(43.9) B(Z.y.X) ~ N[B(Z) Hy(2)"]

with Hy(Z)=H,+Z/(Z7 ®1,)Z. B(Z)= [ﬁﬁ(z)]" [gﬁg +Z(Z'® IT)Zﬁ(Z)]. A
Gibbs sampling algorithm is defined by (4.3.8) and (4.3.9); both conditions 1 and 2 for
convergence are satisfied trivially. Early publications of this algorithm are Blattberg and

George (1991) and Percy (1992).

The prior density (4.3.4) may be an insufficiently flexible representation of prior
beliefs about the vector 3. For example, in many applications the vectors §; of (4.3.1)
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are thought to be similar but not identical (Stein, 1966; Ghosh, Saleh and Sen, 1989). In
such situations a hierarchical prior often provides a good representation of beliefs that is
also convenient because the Gibbs sampling algorithm can be extended to the implied
complete model. Chib and Greenberg (1995) consider the hierarchy

B=AB,+u, u~N(0,B)

Bo=Ap+n, n-~N(0,B,)

1~ N(to, M)

and derive the required conditional posterior (normal) distributions for 8, f3,, and .
Modest variants of this model accommodate time-varying parameters (Chib and
Greenberg, 1995; Min and Zellner, 1993; Gammerman and Migon, 1993). An alternative
to hierarchical models is the recursive extended natural conjugate prior distribution of
Richard and Steel (1988) in which some of the integrations can be performed
analytically.

Since the conditional distribution of S is multivariate normal, the methods for
coping with inequality constraints described in Section 4.2 apply in the SUR model as
well. Such constraints can be a fundamental part of the economics underlying the model.
Perhaps the Jeading example is quasiconcavity constraints in neoclassical
microeconomics, the imposition of which has spawned a substantial econometrics
literature {e.g., Barnett and Lee (1985), Diewert and Wales (1987), and references
therein). Chalfant and Wallace (1993) and Terrell (1995) illustrate that simple
acceptance sampling, in conjunction with a posterior simulator, can be a simple practical
method for imposing these constraints.

4.4 Nonnormality

Analytical approaches to Bayesian inference in econometrics rest heavily on
normality assumptions: e.g. Zellner {1971) uses this distribution exclusively for
continuously distributed disturbances. (The same is very nearly true of analytical non-
Bayesian methods for which there exists a finite sample theory.) The combination of
hierarchical models and posterior simulators has removed this constraint, so greatly
expanding the scope for practical work that ideas about what the effective limitations of
this approach might be are not yet well formed.

There are at least three compelling reasons why distributional assumptions are
important in Bayesian econometrics.

33




(1) Distributional assumptions are central to Bayesian inference and its claim
of exact finite sample results. Flexible representations of beliefs about the
shapes of distributions are essential to reliable results.

(2) Many of the posterior moments of interest that motivate applied
econometrics are sensitive to distributional assumptions. This is perhaps
most evident in prediction of future events and the consequences of policy
changes. (For a compelling example see Geweke and Keane (1995).)

(3) Utility functions typically assumed in general equilibrium models make
equilibrium outcomes sensitive to the assumed distribution of shocks.
Flexible assumptions about these distributions are therefore necessary in
empirical work if the implications of these models for prices, welfare and
dynamics are to be evalnated.

The leading Bayesian approach to nonnormality is the application of normal mixture
models. The most general such model in the univariate case may be written

g, 6*) ~N(n, 0*),

(4.4.1) u~dp,(1:8,).
(4.4.2) o® ~dP ,(0%6,.).
Then

p(e[6..6.:)

=2 —]/2,[_,_[: o exp[ﬂ(e —‘u)z/20'2]dPU, ((‘41‘2;6(JJ )d P, (}L;Bﬂ)
and the model is completed with prior distributions for the parameter vectors §, and
6 F)

a

In practice the mixture may be either discrete or continuous. Continuous mixture
models often mix only with respect to the scale parameter o if (4.4.1) degenerates to
4 =6, but (4.4.2) is nondegenerate, the model is said to be a scale mixture of normals.
Scale mixture normal models have a substantial history in the Bayesian hierarchical
modeling literature, e.g. West (1984). In constructing such models one has available a
rich set of results on the genesis of continuous distributions, which often involve scale
mixtures of normals. (A classic and quite useful reference is Johnson and Kotz (1970,
1972).) For example, it was seen at the end of Section 2.8 that for the specific case of
(4.4.2),

6. =(v.0"), ve?/o’ ~ (V)

a

it follows that
e~ t(p, 07 v).
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A convenient flexible completion of the model is pravided by the independent prior
distributions

vs*/c” ~x'(¥), v~exp(A).
The implementation of this model is discussed fully in Geweke (1993) which finds
v <10 in autoregressive representations of a variety of U.S. macroeconomic time series.
Gamma mixing distributions yield a variety of other distributions for & including the
Erlang and LaPlace (Tsionas, 1994, Section 3.2).

Another class of nonnormal distributions with increasing application in Bayesian

econometrics is the additive mixture model. The general formulation is

m=0+&
where {, and g, are mutually and serially independent, €, ~ N(O, 0'1), and £, has p.d.f.

p(cj,fec). Assume that 7, is observed. (In fact 77, may be the disturbance in a regression

equation, or some similar unobservable, but in the context of a posterior simulator that
applies the Gibbs sampler this assumption is typically innocuous.) Treating ¢, as a latent

variable, or equivalently a parameter in the first stage of a two stage hierarchy,

p[¢[(n,0*)] < exp[~(n, - ¢.)' /20% (L )6, ).
(k- 6r) = T p{Gif0c)

This procedure has found considerable application in stochastic frontier models in which
distributions have constituents with sign constraints (van den Broek, Koop, Osiewalski
and Steel, 1994; Koop, Steel and Osiewalski, 1995). For an application to heterogeneity
in panel data, see Geweke and Keane (1995).

The development of nonnormal multivariate distributions along the same lines is
clearly straightforward and should be practical, but there are as yet no published
applications to the author's knowledge. A leading case is the multivariate Student-¢
distribution in the context of the seemingly unrelated regressions model.

In implementing new nonnormal distributions using normal or additive mixtures it is
especially important to verify the existence of posterior distributions and moments of
interest, and to be cognizant of the role of prior distributions. If the likelihood function is
bounded and prior distributions in all stages of the hierarchy are proper, the posterior
distribution exists. If not, there may be no posterior distribution despite the existence of
well defined conditionals for each block of a Gibbs sampler. (In this case, no invariant
distribution exists.) Verification of the existence of posterior expectations of unbounded
functions of interest is typically more difficult and must proceed on a case-by-case basis.
In any event, the econometrician will often find it enlightening to compare prior and
posterior moments to assess, informally, the informativeness of the data.

35




4.5 Censored regression
The standard Tobit censored regression model (Tobin, 1958) is
@4.5.1) ¥ =xB+s, & ~N0,0%),
(4.5.2) y, = max(y; ,0).
The observed data are {qu’r}L;- The model may be completed with the independent

prior distributions
(4.5.3) B~N(B.H;'), vs'/o® ~ 2 (v).
This is one of the simplest latent variable models in econometrics, and is also a simple
example of a limited dependent variable model (Maddala, 1983). Censored regression
models are widely applied; Amemiya (1984) provides a survey.

The only econometric novelty in (4.5.1)-(4.5.3) is that y, is unobserved. If it were

observed, the model would revert to normal linear regression (Section 4.1). On the other
hand, conditional on B, 0%, and the data the distribution of the y, is simple. These latent
variables are conditionally independent,

y, =y, ify, >0,

y, ~ N(x_fﬁ, 02) s.t.y <0ify, =0.
Bayesian inference may proceed in the Tobit censored regression model by means of a
posterior simulator employing the Gibbs sampler. Condition ! for convergence applies,
although condition 2 does not. The earliest published implementations of this algorithm
appear to be Chib (1992) and Geweke (1992), but see Wei and Tanner (1991) for a
similar approach.

The step of drawing {y: }Ll is known as data augmentation after Tanner and Wong

(1987). In a Bayesian approach there is no formal reason to distinguish between latent
variables and parameters (Section 2.8). The single step of drawing from the conditional
distribution of the latent variables has been used in non-Bayesian approaches as well, and
hence the distinction. (For a closely related procedure, see Rubin (1987).)

Generalizations of the Tobit censored regression model in which Bayesian inference
is practical are available immediately from the developments in preceding sections,
including a multivariate Student-f rather than a normal prior distribution for 8, linear
inequality restrictions on elements of f, selection of regressors, and generalizations of
the assumed normal distribution for &, through mixture and additive models.
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4.6 Probit models

Situations in which individuals make a single choice from among a number of
alternatives are very common. The study of this behavior is the subject of a vast
literature in economics, psychology, political science, marketing, and other disciplines.
One of the earliest and still most important statistical models is the multinomial probit
model developed by Thurstone (1927). Until quite recently the application of this model
was impractical for more than three choices because of technical problems to be
described shortly.

An alternative, the multinomial logit model, presents no such problems and in
particular maximum likelihood is simple even when there are scores of choices.
However, this model in its common form is inconsistent with choice theory. (For a
classic and thorough discussion of this and related issues, see Manski and McFadden
(1981).) Bayesian methods, some based on importance sampling, have been developed
for these models: see Zellner and Rossi (1984) and Koop and Poirier (1993, 1994),

To describe the probit model, suppose
(4.6.1) w,=x,B+e, (j=1...,J)
where X, is a vector of individual characteristics for individual ¢ and choice attributes

for choice j, u, is individual ¢’s utility from choice j, and g, = (8“,...,8‘”)’ ~N(0, Z).
The econometrician does not observe u, of course, but only the choice corresponding to
the highest utility. Correspondingly denote 4, =1 if individual ¢ makes choice j and
d;, =0 otherwise. Since the model has implications only for observed choices, any
translation and positive scaling of (4.6.1) will be produce an equivalent model. It has
become conventional to normalize (4.6.1) with u, =0, o, =var(g,)=1. In the
presence of suitable variation in individual characteristics and choice attributes (Heckman
and Sedlacek, 1985), (4.6.1) is identified. These conditions are usually satisfied in
practice.

If individuals are observed over several time periods in a panel data set it is typically
unreasonable to assume that shocks are serially uncorrelated. Then the unit of
observation remains the individual, but if there are Q choices in each of § periods, there
are J = Q° possible choices that may be observed. In this way the number of choices can
become quite large. (A model for panel data has other changes in structure as well; see
Geweke, Keane and Runkle (1994b).)

In the case of dichotomous choice the normalization leaves a single equation which
may be expressed
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I
u=xf+e, & ~N(0,1),
w,20ifd, =1, u<0ifd, =1
If the model is completed with a prior distribution of the form f ~N([_3, ﬂ;‘) it is

immediately clear that a posterior simulator based on the Gibbs sampler may be
employed. Conditional on {u,}:P=l the model reverts to the normal linear regression

model. Conditional on § and the data
u=20ifd =1,
u, ~ N(x8,1) s.t. {ui c0if d:, L
This algorithm was first published by Albert and Chib (1993). Clearly the various
extensions of linear models discussed in Sections 4.1, 4.3 and 4.4 apply immmediately to
this model. Of these, the most interesting are nonnormal distributions.
When there are more than two choices the model is more complicated. Writing the
normalized model by individual, with J choices,
@ =X B+ E ., E~N0X) (r=1..T)

(J—lel (-tik gy (-1
If the model is organized by equation instead of by observation,
uJ.=XJ,}5' +E, (j=1,...J-1).

Ty THrk kx} Twmi
Defining u’ = (uj,...w}_,) and &’ =(g/,...,€_,) the model may be expressed

u=Zf+¢, £~NO,Z®L,).

This is precisely the seemingly unrelated regressions model (4.3.3). The essential
econometric differences are (1) the unobservability of u and (2) the restriction o}, = 1.

The latency of the utilities in the multinomial probit model prevented its practical
application for many years. The difficulty is that all approaches, including non-Bayesian
procedures like maximum likelihood and method of moments, involve expressions for the
probability of choice conditional on the data and parameters. This entails integration
over the appropriate orthant of a (J —1)-dimensional multivariate normal distribution,
and there are T such integrations for each evaluation of the likelihood function or
moment conditions. For up to five choices, an approximation due to Clark (1961) was
generally used. Only with the advent of simulation methods for assessing these
probabilities (beginning with McFadden (1989) and Pakes and Pollard (1989)) did the
multinomial probit model for more than five choices become feasible.

In a posterior simulator based on Gibbs sampling the step of assessing the

probabilities is avoided all together. Conditional on all other parameters and the data the
4, are independent,
(4.6.2) i, ~N(x/B.Z°), s.t. u, 2u,ifd, =1,

=
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where the restriction is taken over j=1,...,J and u, =0. Since there are exactly J—1
linear inequality constraints on the (J—I)-dimensional multivariate normal random
vector i, the algorithm of Geweke (1991) described in Section 4.2 can be applied,
drawing the individual elements of i1, in succession, each from the appropriate univariate
normal distribution truncated appropriately as indicated by (4.6.2).

The restriction o], =1 is not accommodated if the model is completed with a
Wishart prior distribution for £ in the same way that the secmingly unrelated
regressions model was completed. The earliest implementations of posterior simulators
for the multinomial probit model (McCulloch and Rossi, 1995; Geweke, Keane and
Runkle, 1994a) use the Wishart prior ignoring the restriction ¢j, =1 and report Bo™* in
lieu of 8. More recently McCulloch, Polson and Rossi (1995) present a convenient
algorithm for drawing from the conditional posterior distribution for £* when the prior
distribution is £° ~ W(§“, g) subject to o), =1.

While the posterior simulator does not require the evaluation of choice probabilities,
functions of interest often do. In this step the Bayesian econometrician has available all
the methods developed in conjunction with non-Bayesian procedures that require
probability evaluations for estimation. A thorough review and comparison of methods is
Hajivassiliou, McFadden and Ruud (1995) which concludes that the Geweke-
Hajivassiliou-Keane (GHK) simulator performs best. Geweke, Keane and Runkle (1993)
provide a self-contained description, algorithm and code for this procedure; see also
Hajivassiliou and McFadden (1990) and Keane (1990).

Besides the general argument in favor of Bayesian procedures, in the multinomial
probit model there is evidence that posterior means of parameters computed using the
posterior simulator described here have better sampling properties than do non-Bayesian
estimates using the best available technology for approximating choice probabilities.
Geweke, Keane and Runkle (1994a, 1994b) compare the performance of various
estimators in Monte Carlo studies with from 7 to 30 choices and 5,000 to 30,000
observations. With very few exceptions, the posterior means have smaller root mean
square errors than do maximum likelihood or simulated method of moments estimators.

4.7 Linear simultaneous equation models
The linear simultaneous equation model has a long and rich history in theoretical
econometrics, approached from both Bayesian and non-Bayesian viewpoints. The

canonical model
y)T' +x’'B =¢/, & ~N(0,%)

IL Exs, IxkgxL IxL
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consists of L equations with L endogenous variables (y,) and k predetermined variables
(x,). The system is normalized by ¥, =-1 (j=1..,,L) and with this normalization

one may write
Y. = LéMz" TE
in which M=K+L, 2, =(y,,x)), a; =0 (j=1,...,L), and for all i=1,...,L, q;=7%,
(j#i,j=1..,L)and a,,,; =B, (j=1,...,k). The corresponding reduced form is
y,=xTl+v,, O=-Br”, v,~N(0o,I""Ir").
The likelihood function is

e ™ exp[—;Zil(y, +T"'B'x,) TE7T(y, + r'-'B'x,)]
4.7.1) == CXP['% Ty B’X,)'E" Ty, + B’X:)}

(4.7.2) =7 |g ™ exp[—;‘z; (v, - Az,)’}:" (v, - Az, )].

Even before taking up the completion of the model with the prior distribution for the
parameters in I', B and Z, the essential technical difficuity with the posterior density is
evident in the presence of the term |[" in (4.7.2). The problems in using the posterior
density that derive from any one of a variety of priors have been extensively studied.
Richard (1973) and Rothenberg (1975) took up the general question, Dreze (1976)
studied the analogous limited information problem, and Kloek and van Dijk (1978)
approached the problem using importance sampling. A thorough survey of this work is
Dreze and Richard (1983). In approaches using independence sampling poly-t densities
have proven useful (Dreze, 1977; Bauwens, 1984; Bauwens and Richard, 1985).
Approaches using improper priors have proven especially troublesome, because of the ill-
conditioned likelihood function (4.7.1); Chao and Phillips (1994) and Kleibergen and van
Dijk (1994) are recent examples. No method emerging from this research has been used
widely in applied work.

From (4.7.2) observe that if T is lower (or upper) triangular then [[]=1 and the
likelithood function is precisely that of the seemingly unrelated regressions model. If in
addition £ is diagonal then the likelihood function factors equation-by-equation and if
prior distributions are also independent across equations then the methods of Section 4.1
apply. This corresponds to the well-known fact that maximum likelihood is equivalent to
least squares in a recursive simultaneous equation system. But the essential
simplification requires only that [I[=1. The significance of this point for applied work
was first noted, to the author’s knowledge, in Zellner, Min and Dallaire (1994).
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The leading instance of this case in applied econometrics is the incomplete
simultaneous equation model that specifies only the first equation, leaving the rest of the
system in reduced form:

10
i} e )
Y Li-1 kx{L-1)

the variance matrix X is unrestricted. This is perhaps more commonly known as “the
instrumental variables model” after the popular method of estimation. If the model is
completed with a multivariate normal prior for 8 and IT,, and (independently) a Wishart
prior for £~ then the posterior simulator for the seemingly unrelated regressions model
described in Section 4.3 can be used with no change at all. The commonly employed
improper prior p(ﬁ, Iy Z) o~:|21|"(“])”2 corresponds to ¥=0 in (4.3.8) and Hg =0 in
(4.3.9).

While the difficulties surrounding the presence of [T in (4.7.1) have received most
of the attention in the theoretical literature, most applications involve the incomplete (or
instrumental variables) model in which |[I|=1. For these applications, the posterior

simulator based on the Gibbs sampler provides a practical basis for Bayesian inference.
5. Model comparison and communication

For a subjective Bayesian decision maker the computation of the posterior moment
(2.5.1) for a suitable model, prior and function of interest is the final objective of
inference. For an investigator reporting results for other potential decision makers,
however, the situation is quite different. In the language of Hildreth (1963) these
decision makers are remote clients, who ideally have agreed to disagree in terms of the
prior (Poirier, 1988). Clients may also have different uses for the model. In general,
therefore, the investigator will not know either the priors or the functions of interest of
her clients.

What should the investigator report? Traditionally, published papers report a few
posterior moments, and more rarely some indication of sensitivity to prior distributions
and alternative data densities may be given. Such information is generally much too
limited. At the other extreme, the investigator may simply report some likelihood
functions, but this leaves most of the work to the client. Investigators almost never report
marginalized likelihoods, thereby leaving unrealized the promise inherent in model
averaging.
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This section first takes up the model comparison question, which has been
intensively studied in the past five years in the wake of the rapid innovations in posterior
simulators. It surveys some of these developments and argues that one method in
particular is most promising for the generic comparison of models to which posterior
simulators apply. It then turns to the more general question of Bayesian communication.
Here it appears that posterior simulators, coupled with current storage, communication
and computation capabilities (to say nothing of future developments in these areas) offer
the potential to revolutionize applied econometrics.

5.1 Model comparison

Posterior odds ratios are the basis of model comparison, by which is meant both
model averaging and model choice. The essential technical task in model comparison is
obtaining the marginalized likelihood M defined in (2.6.3). In describing how the
marginalized likelihood can be obtained using a posterior simulator it is convenient to
drop the subscript j denoting the model. For reasons discussed in Section 2.6 it is
essential to distinguish between probability distribution functions and their kernels in the
marginalized likelihood. In what follows, p(f)} always denotes the properly normalized
prior density and p(YTIG) the properly normalized data density.

There are three conditions that a good approach to the computation of the

marginalized likelihood M, should satisfy.

(1) Given a large number of models it is much easier to summarize the comparative
evidence through the marginalized likelihood than through pairwise Bayes
factors. Therefore, the approach should provide a simulation-consistent
approximation of M, alone, rather than the Bayes factor comparing two
models. For example, it is sometimes easy to compute a Bayes factor using
(2.7.1) and (2.7.2), but that does not meet this criterion.

(2) The development of a posterior simulator, its execution, and the organization of
simulator output all require real resources. Therefore, the numerical
approximation of M, should require only the original simulator output and not
any additional, auxiliary simuiations.

(3) Accurate approximations are always desirable. The accuracy of the
approximation of M, should be of the same order as the approximation of
posterior moments in the model. Ideally, it should be convenient to assess
numerical accuracy using a central limit theorem.

For posterior simulators based on independence sampling it is generally
straightforward to satisfy all three criteria. In the case of importance sampling let j(8)
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denote the p.d.f. of the importance sampling distribution, not merely the kernel. Since
importance sampling distributions are chosen in part with regard to the convenience of
generating draws from them, their normalizing constants are generally known. So long as
the support of the importance sampling distribution includes the support of the posterior

distribution,
(5-1.) 20 = MY, p(6,)p(Y:18,)/i(6,) = M w(6,)
— [, p(8)p(Y|6)d0 = M.

And if
(5.1.2) [ [p(6Y p(¥16) /i(0)|de = [ w(6) i(6)do < =
then

MM - M) = N(0, 0%)
where

o = | [p(0)p(Y-16)/(8) - M;] (6)do
and

m=]

& =M"3 " [p(6,)p(Y416,)/i(6.) - M| - 0.
A sufficient condition for these results is that the weight function w(68) be bounded
above, the same condition that is most useful in establishing the simulation-consistency
of importance sampling simulators,

This approximation to the marginalized likelihood was used in Geweke (1989a).
More recently it has been proposed by Gelfand and Dey (1994); see also Raftery (1995).
The practical considerations involved are the same as those in the approximation of
posterior moments using importance sampling. For the sake of efficiency the importance
sampling distribution should not be too diffuse relative to the posterior distribution. For
example j(8)=p(8) satisfies (5.1.2) and leads to the very simple approximation
M =M"Eilp(YT|8m). But the prior distribution works well as an importance

sampler only if sample size is quite small and 8 is of very low dimension (Kloek and van
Dijk, 1978). For an evaiuation of the use of the prior in this way, see McCulloch and

Rossi (1991).
Acceptance sampling from a source density r(6) is so similar to importance

sampling that exactly the same procedure can be used to produce M}”’. The ratio
p(Gm)p(YTIBm ) / r(8,,) is needed for the acceptance probability in any event. The only

additional work is to record p(6,,)p(Y+|6, )/t(6,,) whether the draw is accepted or not,
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and then to set M) = M"'Zil p(6.,)p(Y+)6,.)/x(6, ), the summation being taken over

all candidate draws.

Simulation-consistent approximation of the marginalized likelihood from the output
of a Markov chain Monte Carlo posterior simulator is a greater challenge, and has
spawned a substantial recent literature. No method will fully meet the three criteria
stipulated above, without more fundamental progress on the application of central limit
theorems. Many methods are specialized to particular kinds of models and require at
least two models for the computations because they provide Bayes factors rather than
marginalized likelihoods. One example was presented in Section 4.2: the prior
distribution that places mass at zero on regression coefficients produces a posterior
distribution which provides Bayes factors for models in which the regressors are subsets
of the superset. Methods have been developed for approximation of Bayes factors when
the dimension of the parameter vectors in the two models is the same (Meng and Wong,
1993; Gelman and Meng, 1994; Chen and Shao, 1994), or the models are nested (Chen
and Shao, 1995). A more general procedure is due to Carlin and Chib (1995) but this
requires simultaneous simulation of two models. Methods that exploit the decomposition
of the marginalized likelihood into predictive likelihoods (Kass and Raftery, 1995,
Section 3.2) in effect require the consideration of many models (Gelfand, Dey and
Chang, 1992; Geweke, 1994; Min, 1995).

Many straightforward approaches yield procedures with impractically slow
convergence rates. A leading example is the “harmonic mean of the likelihood function”
suggested by Newton and Raftery (1994): if g(8)= [p(Q) p(YTIB)]-‘ then E[g(6)]=M;".
But g(8) generally has no higher moments and consequently numerical approximations

are poor.

At this juncture the procedure for approximating the marginalized likelihood from
- the output of a Markov chain Monte Carlo posterior simulator that comes closest to
satisfying all three criteria is a modification of the harmonic mean of the likelihood
function, suggested in Gelfand and Dey (1994). They observed that
(5.1.3) E[£(6)/p(6)p(Y16)] = ;'
for any p.d.f. f(#) whose support is contained in ©. One can approximate (5.1.3) from
the output of any posterior simulator in the obvious way, but for this approximation to
have a practical rate of convergence f(6)/ p(8) p(YTIG) should be uniformly bounded.
Gelfand and Dey (1994) and Raftery (1995) interpret this condition as requiring that £(8)

have “thin tails’” relative to the likelihood function.




It is not difficult to guarantee both the boundedness and thin tail condition in (5.1.3).
Consider first the case in which ® =R*. From the output of the posterior simulator

define 8, = M 2'::! 6 and £, =M 'Zf=l(9m - éM)(Bm - éM) . [Since the posterior
simulator is a Markov chain Monte Carlo algorithm, it is assumed that w(Gm) =1. If the

posterior simulator is an importance sampler, then (5.1.1) can be applied directly.] It is
not essential that the posterior mean and variance of @ exist. Then take

(5.1.4) 1(6)=2(22) [, [ " exp[—;(em - éM)’z-'(a,,, - éM)]zéM (),

8, = {9:(9,,, - éM)’z"(em -6,)< x_";(k)}.

If the posterior is uniformly bounded away from O on every compact subset of ©, then
the function of interest f (9)/ p(6) p(6|YT) possesses posterior moments of all orders. For
a wide range of regular problems, this function will be approximately constant on ) M

which is nearly ideal.
If u 18 not included in © some modifications of this procedure are required. In

some cases it may be easy to reparameterize the model so that ® =R*. If not, the
domain of integration for the function of interest £{6)/p(6)p(Y,|8) can be redefined to

be ©, MO or a subset of ©,, MO, and a new normalizing constant for f(6) can be well
approximated by taking a sequence of i.i.d. draws {8,} from the original distribution
with p.d.f. (5.1.4) and averaging xe(f)z), at the cost of an additional, but simple,
simulation.

In the case of the Gibbs sampler there is an entirely different procedure due to Chib

(1995) that provides quite accurate evaluations of the marginalized likelihood, at the cost
of additional simulations. Suppose that the output from the blocking 8’ = (9’“’,...,6’“”J )

is available, and that the conditional p.d.f.’s p(G(”ltE?{")(i # j),Y,.) can be evaluated in

closed form for all j. [This latter requirement is generally satisfied.] Suppose further
that condition 1 or 2 for convergence of the Gibbs sampler is satisfied.

From the identity p(0]Y,)=p(8)p(Y;[0)/M,, M, = p(G')p(YTIB’)/p(G']YT) for
any 6" €©. [In all cases, p(-) denotes a properly normalized density and not merely a
kernel.] Typically p(YT|9') and p(6") can be evaluated in closed form, but p(ﬁ']YT)

cannot. A marginal/conditional decomposition of p{8°|Y ..} is
g p P T

p(6'Y)= p(e*‘”lY,.)p(e“‘”le*“’,y,.)-...- p(e“‘“}e“”,..., 9““’"%&',).
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The first term in the product of B terms can be approximated from the output of the
posterior simulator because
M—-] zM p(e“‘(l)

m=]

82, 9,‘,,5’,YT) - p(6"®

Y).

9‘“’,...,9‘“"’,3{,), first execute the Gibbs sampling algorithm

To approximate p( g

with the parameters in the first j blocks fixed at the indicated values, thus producing a
sequence {9},{:’1) 9},‘:’} from the conditional posterior. Then

M- Z:ﬂp(e*mle.m"'-’Q*U_[)’e}igf”"'"eﬁzl’Yr) N 9(9'“’|6*“’,...,8’“‘”,YT).

Extension to include latent variables, so long as the vector of latent variables is not
blocked, is straightforward; see Chib (1995) for details and applications.

5.2 Bayesian communication

An investigator cannot anticipate the uses to which her work will be put, or the
variants on her model that may interest a client. Different uses will be reflected in
different functions of interest. Variants will often revolve around changes in the prior
distribution. Any investigator who has publicly reported results has confronted the
constraint that only a few representative findings can be conveyed in written work.

Posterior simulators provide a clear answer to the question of what the investigator
should report, and in the process remove the constraint that only a few representative
findings can be communicated. What should be reported is the M x(k+2) simulator

output matrix,

6, w(6,) »(6,)

by making it publicly and electronically available. In a reasonably large problem
(M =10,000 and k =100) the corresponding file occupies about 3.2 megabytes of
storage (at a current capital cost of about US$1.40) and can be moved over the internet in
about 2 minute.

Given the simulator output matrix the client can immediately compute
approximations to posterior moments not reported or even considered by the investigator.
For example, a client reading a research report might be skeptical that the investigator’s
model, prior and data set provide much information about the effects of an interesting
change in a policy variable on the outcome in question. If the simulator output matrix is
available via FTP anonymous the client can obtain the exact (up to numerical
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approximation error, which can alsc be evaluated) answer to his query without arising
from his office chair in considerably less time than required to read the research report.

With a small amount of additional effort the client can modify many of the
investigator’s assumptions. Suppose the client wishes to evaluate E[g(B)[YT] using his
own prior density p'(6) rather than the investigator’s prior density p(@). Suppose
further that the support of the investigator’s prior distribution includes the support of the
client’s prior. Then the investigator’s posterior distribution may be regarded as an
importance sampling distribution for the client’s posterior density, The client reweights
the investigator’s {9"‘}':::1 using the function

p'(6Y.) _p(OL(EY,) _p'(6)
p(6lY,) ~ p(O)L{6]Y,}  p(6)’

where p’(6]Y,) denotes the client’s posterior distribution. The client then approximates

w(8)=

his posterior moment E'[g(6)[Y,] by

B = 20V (6,)9(6,)2(8,)/ 3, W' (6,)w(6,) > Eg(0))¥, ] =5 .

The result g,, — g follows almost at once from Tierney (1994); see Geweke (1995d).

The efficiency of the reweighting scheme requires some similarity of
p (8) and p(f). In particular, both reasonable convergence rates and the use of a central
limit theorem to assess numerical accuracy essentially require that p’(6)/p(8) be
bounded. Across a set of diverse clients this condition is more likely to be satisfied the
more diffuse is p(8), and is trivially satisfied for the improper prior p(€) o< constant if
the client’s prior is bounded. In the latter case the reweighting scheme will be efficient so
long as the client’s prior is uninformative relative to the likelihood function. This
condition is stated precisely in Theorem 2 of Geweke (1989b). Diagnostics described
there will detect situations in which the reweighting scheme is inefficient, as will
standard errors of numerical approximation as well. If the investigator chooses to use an
improper prior for reporting, it is of course incumbent on her to verify the existence of the
posterior distribution and convergence of her posterior simulator.

Including p(em) in the standard simulator output file avoids the need for every client

who wishes to impose his own priors to re-evaluate the investigator’s prior. Of course,
the p“(8)’s need not be the client’s subjective priors: they may simply be devices by
which clients explore robustness of results with respect to alternative reasonable priors.
The client can also undertake a nonparametric analysis of prior robustness for his
posterior moments, using the density ratio class described in Section 2.5. There is an
efficient, generic algorithm to determine the maximum value of the posterior moment of
the density ratio class described in Geweke and Petrella (1993), which extends earlier
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work of Wasserman and Kadane (1992). First, order gm-—*g(Bm) in monotone

nondecreasing order, and define

(5.2.1) Mﬂ—— (£=0,....M)
Zm-lu'” + zm—”l Vin

where =, =w(0,)a(6,)/b(6,) and v,=w(6,)b(6,)/p(6,) (m=L...,M). Using
successive bisection determine an index £ such that g, < @, < g,,,. Increment this index
£ until g,> Q, and then set m" =£—1. This provides the global maximum of (5.2.1).
Under weak conditions (Geweke and Petrella (1995), Proposition 4),
0, = SUP,ucss [ E(O)L(O)P(6)48 /[ L(6)p(6)d.
The reweighting scheme permits updating of the investigator’s results at low cost. If
observations T +1,...,F beyond the T originally used have become available then

P (61Yr) = pOL{6IY | = p(OL[OV. )T, . (3]¥..,6)
=P [BIY ] s—T—{-l ,(y ,lY,_l,G)
The client therefore forms the approximation to the updated posterior moment
Elg(e)¥ .},
gu=2 w(8,)w(6,)8(6,)/>" wi(e,)w(6,)—E[g6)Y.]=3"
with w'(6) = l—Lﬂ_+1 ,(y,!Ys_,, 9). Rare pathological cases aside the likelihood function
and therefore w*(6) is bounded. If F—T is small relative to 7, and there is no major
change in the data generating process between T and 7 + F, the new approximation will

be efficient. But as F grows, efficiency diminishes and at some point the approximation
g becomes too inaccurate to be useful.

The potential for clients to alter investigators’ priors, update their results, and
examine alternative posterior moments, exists given current technology. All that is
required is for Bayesian investigators to begin making their results available in a
conventional format, in the same way that many now provide public access to text and
data. Once this is done, colleagues, students, and policy makers may employ the results
to their own ends much more flexibly than has heretofore been possible, with modest
technical requirements.

6. Conclusion
The introduction set forth three propositions which, if believed, would keep most

econometricians from using Bayesian methods in most applications. The intervening part
of this chapter has presented some developments that, to the extent an econometrician
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was previously unaware of them, might well revise beliefs about these propositions. 1
conclude with a personal revision, taking the propositions in reverse order.

The statement that most posterior moments are unobtainable because of technical
difficulties with integration was true for many models a decade ago, although steady
inroads had been made (Zellner, 1971; Richard, 1973; Dreze, 1977; Kloek and van Dijk,
1978; Bauwens, 1984)., With breakthroughs in importance sampling (Geweke, 1988,
1989} and especially in Markov chain Monte Carlo (Gelfand and Smith, 1990; Tierney,
1994) the statement is false. Econometric models in which any posterior moment of
interest that exists cannot be obtained using a posterior simulator are now the exception,
not the rule. In the past two years there have emerged important cases in which the
posterior moments are more easily and reliably obtained than are non-Bayesian estirnates.
This is especially the case for models with latent variables; an example was presented in
Section 4.6.

The implications of posterior simulators for model comparison and the
communication of results bear on the subjectivity of the prior distribution. It is now the
case that the reader -- or more generally the client, as described in Section 5 -- need not
be passive and can conveniently take a role in the specification of econometric models
and their application. The reader is free to explore posterior moments of his choice and
examine the implications of revisions of the investigator’s prior distribution for those
moments. Indeed, the investigator can choose her prior to facilitate this process, as
described in Section 5.2.

If exploration of priors by readers becomes commonplace, then questions about the
impact of subjective choices made by the econometrician shifts from the prior
distribution to the functional form of the data distribution. This choice is made
subjectively in Bayesian and many non-Bayesian procedures alike, and when it is not
made explicitly in non-Bayesian procedures then implicit restrictions on functional form
exist in the assumed applicability of a central limit theorem. Alternative functional forms
for data distributions can be compared using Bayes factors; no such general comparison
is possible using non-Bayesian methods. Within the past two years reliable methods of
approximation for the marginalized likelihoods that constitute Bayes factors have become
available, and rapid further progress is currently being made.

None of the innovations in posterior simulators relieves the Bayesian econometrician
of the burden of specifying a likelihood function and a prior distribution. To the contrary,
there are three reasons for the econometrician to subject himself to this discipline, two of
which have been made more compelling by developments in posterior simulators. First,
specification of the likelihood function and prior distribution make assumptions explicit,

49



and this has clear benefits in interpreting what the econometrician has done. [For
example, in non-Bayesian approaches an alternative to specifying a likelihood function is
to assume the applicability of a central limit theorem or a particular nonparametric
expansion, and an alternative to stipulating a prior distribution is to discard or discount
results that don’t look right.] Posterior simulators have no implications here. Second, if
one specifies a likelihood function and prior distribution then one can obtain useful
results, not merely expressions. Posterior simulators have made this possible to the point
that it is now increasingly easier to obtain posterior moments than to compute non-
Bayesian estimates. Finally, and most important, economic theory that addresses
decision making under uncertainty -- which is to say, most economic theory -- requires
distributional assumptions, and results in theory are generally not robust to changes in
these distributions. Decisions and policy recommendations depend on distributional
assumptions. Econometricians cannot address these matters without being concerned
with likelihood functions and prior distributions.
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Figure 1. The disconnected support ®= @ v B, for the probability distribution
implies that a Gibbs sampler with blocking (6(1), &(2}} will not have the
probability distribution as its invariant distribution, for any starting value.
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Figura 2. The probability density p( 8} is uniform on the closed set © and
consequently is not lower semicontinuous at 0. The point A is absorbing
for the Gibbs sampler with blocking (& (1), 6 (@), so if 8, = A convergence

will not cccur.




Figure 3. Iso-probability density contours of a multimodal bivariate
distribution are shown. (Arrows indicate directions of increased density.)
Given sufficiently steep gradients the Gibbs sampler will converge very

slowly.






