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This appendix describes, in detail, the computations done for the manuscripi,
"Liquidity Effects, Monetary Policy and the Business Cycle." The computations use that
paper’s first order conditions and market clearing conditions. The appendix starts by
simply stating these. For a derivation and discussion, see the manuscript. Also, the

MATLAB software used for the computations are available on request.

The first order conditions of the model are:
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Here,
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R, =1+ (I-0)[w(Q)Ry; + (1-e(Q;))Ro, ],
1
=1 + (I-1)o()(Ry; — Boy) + (1 - 1)Ry,
is the return on the household’s deposit with the financial intermediary. The parameter ¢
denotes the reserve requirement, while (lvr)w(ﬂi) denoies the fraction of a deposit
invested by the financial intermediary at return Rl ¢ That decision is assumed to be

based on information set n%.

Substituting,
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From the law of iterated mathematical expectations,
E{X | 00} = B{ E[X|0l] | af}, since 0 c .
Then,
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Substituting this into the N, FONC:
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In addition to these 7 FONC’s, we have 2 cash constraints and 5 market clearing

conditions. The household’s cash—in—advance constraint is:

(HC) Ptct = Mt -N, + Wltth + WZtLEt‘

The financial intermediary’s reserve requirement (cash constraint) is:
(FC) Ny + Nogy = (1-r)(N, + X,).

The goods market clearing condition is

(G) Co+ K= f(Kt’Hlt’HEt’zt)'

The pericds 1 and 2 loan market clearing conditions are:

(LO)  WyHy =Ny, WoHy, = Ny,

where WltHIt is period 1 loan demand, W2tH2t is period 2 loan demand and Nlt and

N2t are the associated supplies.

Clearing in the periods 1 and 2 Jabor markets requires:

(LA)  Lyy = Hyy, Loy = Hoy.

We seek 14 objects — 9 equilibrium decision rules: N, Gy, Nlt’ N2t’ By Ho

th, th, Kt+1’ and 5 equilibrium price rules: Pt’ W.., Wo,, R R2t‘ We have 14
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restrictions available for determining these objects: the 7 FONC’s and the 2 cash
constraints and 5 market clearing conditions. Not surprisingly, we have enough here to

nail fhe objects we’re after (a transversality condition will also turn out to be needed.)



Two things need to be done. Variables need to be scaled. Also, it is convenient
to carry out some substitutions in order to whittle the problem down to finding four
objects (equilibrium rules for Ny, Ly Wi Ky +1) subject to four constraints. First, the
most straightforward simplification is obtained by using the two labor market clearing
conditions to eliminate H,, and Hzt‘ This gets us down fo 12 restrictions and 12
unknowns.

Next, cut two more unknowns and restrictions by eliminating th and Ry
using the Hlt and H2t FONC’s. Use the HZt FONC to substitute out for R2t in the Nt
and Ny, FONC’s. Doing s0, these FONC’s become:

et Ve, b+l Py 0
(N,) BLgt gt he 4 1ty 1100 =0
t t+1 gt Hgs
1 P
N gfSpttlep ¢ olv=o.
(N,,) (Ceptthny, -t 011 0})

Substituting out for R, in the N, FONC from (Hy)s
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Here, we have used the fact that Wiy is nonstochastic, conditional on Q%.
Use the th FONC to eliminate W, from the N, and No, FONCs:
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Combining the reserve requirement, (FC), and the loan market clearing condition, (LO):
(1) WLy, + WoLg, = (1-0)(N, + X,).

After substituting out for W,, from the L,, FONC, and rewriting,

(2) [Wlt 14 - (1~ I)(N +Xt)]—:p’t
2’

Combining the two cash constraints and (LO), we get,

) P - M, - N, ; (1-o)(N, + X)

t

Thus far, we have deleted the L,,, H,,, Hzt FONC’s and the LA restriction.

2t
The cash and market clearing conditions we are left with are (2), (3), (G), and (LO).
Note that N;, and N, appear nowhere in this system except in (LO). Thus, we drop N 1t
and Nzt as unknowns and drop the two (LO) equations too. Thus, we have dropped 3

FONC’s and 4 market clearing conditions, and 7 unknowns.




L

K

2(7 41

We are left with 7 objects to be determined — decision rules for N ” Ct, th,

and price rules for W, and P,. We have 7 restrictions — the (Ny), (No,),

(Lyy) and (K, +1) FONC’s and the constra.mts, (2}, (3) and (G). We reproduce these here

for convenience.
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Consider the following scaling of variables:

kt+1 = exP(_ﬁt)Kt_l.]_: ¢, = exP(_f—‘t)Ct: Wi = Wlt/Mt’




n, = Nt/Mt’ p; = Ptexp(pt)/Mt.
The production function is:
H(K B Hoyz) = K2, B 17 1 (16K, 3, = explut+0)],
H, = [(1-)EY? + vBYPP.
Here, 6, is an AR(1) time series process. Then,
£ (kB Hoy 0,) = exp(—t)H(K, By, Hyy z,)
exp(-opklexp(0)E,%) + (1-6 )k,
where 1—6* = (1-8)exp(—y). Then, it is easily confirmed that,
* *
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The utility function is:
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Then, it is readily confirmed that,
uc’t = uc(ct’th’LQt) = uc(ct’ 14 gt)e@{#t[(l'"'ﬁ@b_l]}
*
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Substituting the scaled variables into the FONCs:
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1 —n, + (I-r)(n; + xt)= 1 -+ (1-1)(n; +x)
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where
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After substituting out for ¢, p;, Ly, in the scaled FONC’s using c( ), p{ ) and
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Finally, the equations have been boiled down to the following four, which can

be solved to find equilibrium rules for kt’ Hlt’ Wy and n,:
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To obtain an approximate solution to these equations, proceed in three steps.

N LN

(i) Replace q by their linear Taylor series expansion about the

nonstochastic steady—state values of their arguments. The nonstochastic steady-sfate of
9 and x, is assumed to be the unconditional mean of these variables. Call these new

functions Q , Q 1QN Qk

(i) Posit linear equilibrium rules, k,_; = k(0}), H;, = H;(Qy), wy, =
WI(Q%), n, = n(ﬂg). Compute the coefficients of the lmea.r functlons N L N k

13
ElQ} 109 = N(ad),
E[QT1|0f] = Ly(0})

B[Q}2]0]] = N(ay)

B[Q¥|al] = kal).
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Here, QI;T denotes QN( ) with decision variables substituted out using the linear rules, k,

Hl’ Wy, L. The objects Q%i, Qlt\r?, Qlt( are defined analogously.

(iii) Find values for the (as yet) undetermined parameters in the rules k, H,,
Wi, D which set all parameters in 1§T, i’l’ 1;T2, and I; equal to zero. This defines a system

with an equal number of equations and unknowns.

Note that the decision rules, k(ﬂ%), Hl(Q%), wl(ﬂi), n(ﬂg), are only
approximations to the exact rules, since they satisly only am approximation to the
restrictions. It would be straightforward to improve on these decision rules by applying a
method like that discussed by Judd, or Bizer—Judd and Coleman. In the following
sections, we discuss the details of solving the model under alternative specifications of QO,
Q%. All methods require first finding the nonstochastic steady—state of the nonstochastic

version of the model, a task to which we turn to first.
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D. N i State.

In steady state, all time subscripted variables are constant. From the scaled

& ok
K, 11 FONC,1=5 fk' Solving this equation for k/H:

_gexp(—cu) [/0-e)

k
= exp(f ]
o eXIJ()[(ﬁ) 1

Suppose
v=1/2.

* %
Because of the definition of v(Ly,Ly,), uLl,t = uLz,t' Then the Ly, and N, FONC’s

imply

where
H = (1) ? + v}/ PP,

The Nf. FONC implies:
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where,
£, = (1-a)exp(~au) (k/H) %exp[(1-c) )
- )
Then,
1 __269{(14x)/f — 1]

R (1-7) (1-1)ig

Next, go after n. Let w denote the steady state value of W, /M, and Wzt/ M,

%
up P
L

Ue

v 1=1n+ (1-t)(ntx)
1— — 2H )

Substituting this into 2wH = (I-1)(n+x), get

n= 2H[1 + (1-r)x] — (1—r)(1—~2H)x(1——'y)/7.
(=) (T=r){I2H)]7 + 2Hr

These calculations made use of:
p=[1-n+ (I1)(n + x)]/c.

The period 2 real wage is W, / Pt’ which, after detrending, is
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*

—-u
Lz,t

W2t = (_ﬂt)j’_ =

Ue t

in steady state. Then,

R, = Ry = (1/2)fg/w,,
and
R =1+ (1-1)R,.

An alternative way to find R and R, works with the scaled representation of

E{[ufg_!;i_,g c,t+1R |n° — 0.

After scaling, the steady state version of this is just

so that,

Consider the following quarterly parameterization:
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§= 02 f =102 4 =004 1r=.0179=2/3 a=.360=0,

L
P=-2,x=0 -18-007, p=10/9.
Then,
2H = .299919, k/H = 39.804, R = Rl = R2 = 1.0.
When x = .012:

2H = 205277, k/H = 39.804, R = 1.0222 (v 9.2% AR)
R, = Ro = 1.0225 (¥ 9.3% AR).

Then, .209019/.295277 = 1.01572. Thus, an 9 percentage point drop in the inflation rate
(AR), induced by an equal drop in the money growth rate, induces a 1.6 percent increase
in employment. Roughly, a one percent drop in inflation (AR) induces a .178 percent
increase in employment. The corresponding figure in the Cooley—Hansen model is a .5
percent increase in employment, and in the Fuerst model it’s 2 percent.

Following is a simple procedure for estimating the parameters. First, set ¢ =

0,8= 1.03_‘25, # =0, = .005 a priori. The capital first—order condition boils down to

et
o =g

ﬁuc,t+1

or,

where Y/K is the steady state gross output—capital ratio. Then,
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K exp(y)
a—?{ 5 - (1-8) }.

The average rate of depreciation rate on capital is .0212. That is, this is the sample
average of

= e

Also, u is set to the sample average of per capita output, .0041. Christiano (Table 1,
1988) reports 10.59 as the sample average of the capital output ratio, thus

exp(.0041)
1.03 -

after rounding.
The parameter x was set to .0119, the sample average growth in the monetary
base. Next, consider the utility function parameter, 7. The period 2 intratemporal first

order condition says:

f* *
u
Hz_w2=_. Ly .
_2 2
R2 u,

But, fI";z = (1/2)fg + (1/2)(1 - G)Y/H. Then,

(1-a)Y/(2H) ¥ c

R, 1—q1-2H

Rearranging,
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2
1= {11

where,

R -1

R, = T R = (1+x)/4.

In the formula for R we have used the assumption that ¢ = 0. Otherwise R would be a
function of 4 and our estimator of 4 would have involved solving a fixed—point problem.
Christiano (Table 1, 1988) reports a sample average for c/Y of .72.

Substituting this and the other parameters into the formula for v, we get

v=.761




In this section we set §, = 8, X, =X for all t, and study the properties of the

Ny P1y Mo k
remaining variables. We assume q (-), g “(-), @ “(-), and ¢ (-) have been linearized

L N
around steady state. We call these linearized functions QN(-), Q 1(-), Q 2(-), and
Qk(-), respectively. We establish that there exists a unique transition path which

converges to steady—state in the linearized system.

N

To do this, we first establish q? = qg 2

L
l=0,i=1,23 ¢ =0,i=5

6, 7. Here, a subscript i means the partial derivative with respect to the ith argument,

evaluated in steady-state. If is easily verified that

de dH
LA cg. t¢g 2
dH,, Pt HotdH,
AN
Hiy Hopy
=0

is steady state. It follows that

* du, * *
dfp ¢ Lpy degy dpy

e = = = 0,
O, 9 o dHy A
N_ Di_ N g
in steady state. It is then easily confirmed that ds =qg =dg" =q; =0, i=56,T.

Ly
Consider a;°:
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Ly Wig % Wiy o« Pyodeg

%*
= {u — — .
91,1t { cLyst + Py Uee,t * pﬁt Uet Cy E]c_t'

Here, we have used the fact, dp; / de, = —B; / Cy-

Then,
*
L W u de
1 _ . * 1. * ¢,k t
ql,t_{ucLl,t+_pt [‘1cc;a+_L“ct ]}ak';
u* *
*®* Ll,t * u i dct
= fugy, s~ —2~[ngg, ~ 24} g
cLyt ce,t ¢ E:'ik_t
c,t

by the first order condition for ]'.,1 ;- 1t is easily confirmed that

g ¢ = [(1=7)% — Tug /e,

% *
u(:Ll,t = _")"“L'uc,t/(1 - Hy - Hyy).
L1
Simple substitution can be used to show that the term in braces defining Qs is zero.
L L ’

1

Thus, g, = 0. The result, q,* = 0, is derived similarly.

These derivative results allow us to simplify the linearized first order

L N -
conditions, QN(-), Q 1(-), Q 2(-), Qk(-). Use QN(-) = 0 to solve for H,

-y - N - N- N -
Ak + Qe kg T Ay kg T AW T Wy

N~ , N- _ NZ
T4y + 90 = —agHy

Here, a t{ime-subscripted variable with a tilde over it denotes derivation from steady

- N
state. Thus, kt = kt — k. Substitute this into the Q 2 equation:




22

N, - N N
N N 2 N N N 2
(qk —agdx )kt + (qk' A9 - )kt+1 + (qkn qukn)kt_'_z
N N
N _ N N
+ (0 — age, Wy, + (0, - )
N N
N N N N
+ (a4, —aga, )11 + (4, BYn )nt+1 0.
Iy
Solving for wy, from the Q “(-) = 0 equation,
Ly
9p
Wl ——]qnt.
Uy
N

Substitute this into the Qk(-) = 0 equation and the modified Q 2

equation:

. N, - N, -
N N N N2 N N No
(qk — g )kt + (qk’ = qukf)kt+1 + (qkr . qukn)kt_]_z
Ly
N q N, -
N_ N*"2 N M2
+ (a; - dga, —El—[quﬂqw ),
qW
Ly
Ng ¢q N, -
N Mo N Mo
+(qY, ~a}a ~i-f—[q — a4 g
qW
Ly
K+ oSk, +qk, kot o (-2 E)n,
UK T Ao Che1 qk” t42 qkm t+3 cln E 4

qw
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qu Ly
k n k- n k .~ _
Oy T G )y + g~ Gy B2 = 0
qW qW

N

Now, lead the modified Q 2() = 0 equation by one period and solve for I-lt 19

N N N
N _""2.7 N "2/ N 2
(QE —agdy )kt+1 + (q.k/ A9y - )kt+2 + (qk’ Ty I)kt+3

L
1
N N
N_ NY2 4 N_ N "2
+ (qp - 99, %%hwﬂﬂwmwl
q'w

Ll
N q, N, -
N *'2 N *'2
= _(q = qun . | [q Qqur])nt+2-
qw

Use this to substitute out for ;11;—1—2 in Qk(-) = 0. Let,

L
1
N No

n 2
a=_(qn' 9dn - ~ _II[qw'-quw’])nt+2

_k
b_anl qurz

Then,

N, - N .
N N k N N "2 k
+ aqkt]kt+1 + [b(qk, - quk") -+ aqk, ']kt+2

aqkk + [b(a} ~aga, )
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N _ NN S k qu ky-

+ [b(Q.kr T quk ’ 1) + a‘qkl ’ I]kt_]_s + a’(qn —%Iqw)nt
qW
Ly Ly
N, gq N q -

N N2 N N2 k k

+ [b(qn - qun - %_[qw - quW ]) + a'(qnf - —‘Iq-_q qwr)]nt_{_.l‘
qW qW

After these substitutions, we are left with the following versions of QN(-) =0
and Qk(-) = (:

- -

ok + oy kg toyp, ki otan o,y =0

-~ - - - -~ -

Neke + Mo Kppr T Ve Ko T Mo Kppg F Dy F T Dy =0

where

k
e = 89

N
N N 2 k
Yoo = b(qk — 49k )+ aqy .,

N
N N 2 k
'Yk,, - b(qkr _qukr) + a'qkit

N
N N *'2 k
71{;/! =b(q:k.rf _qukf!) +8‘ku11

Ly
q k
kK N
7, = 2(d; - —ﬁl— q,)

Uy
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L
1
N, q N
N N 2 n N N 2
Yy =bla, — a9, - 1[qW"quW )
Uy
k qu
n _k
+ a(quf _—[qul)
qW
N
N N2
% = dx ~ 99
N
N 2
ak’ il — g9 -
N
N 2
akrr ='qkt; _q.qufl
Ly
N, gq N
N N 2 N N 2
&) =q, ~qpd," - nl [0, — 959y ]
Uy
Ll
N, 4q N
_ N "2 ®"n [N N 2
@, =d,, ~qIgd, " ——rl[qw, = 49y, ]-
Uy
Define:
5
k
Xt= ~t+1 '
Kira
-nt -

Then, our two efficiency conditions can be written



AXt+BXt+1=O,

O{k 00 an

A= 7k007n

0 1 ¢ 0
|0 0 1 0 |
[ o, o, 0
7 s 'y rr ’y rrs
B = k k k
-1 0 0
0 -1 0
1t follows that
1l
Kiyj = X,
where
I =-BlA.
Write

I=PA P_l, 50 that

plx, . =Apix,
] i

6+
or,

- - [ Ajp X 1

plXt n 1 1™
j

PRyl | A2Po%y

PaXi L MpaX, |’

LAY j

' T | APy
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where
Py A 0 0 0]
Pg 0 A, 0 0
Pl=| |, A= 2
P3 0 0 X0
Lp4_ i 0 0 A4-

a.ndpiis 1x4,fori=1,2 3,4.
Now, three elements of Xt are undetermined: it 41 ];t 42 ;lt. if |:\i| > 1, i-=
1,2, 3, and |A;] <1, then there is a unique way of selecting these so that {k;} and {n}

converge to zero (i.e., steady—state). This is defined by the condition:

pyxy =0
Pox, = 0
PyXy = 0.

For the parameter values used in the illustration in Section D,

A, =16 10°
/\2 =-2.21

Ag = 1.0387
Ay = 9723,

Thus, the uniqueness condition is satisfied.
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F. The Linearized Decision Rules.

This section describes the computation of the linearized decision rules under

five specifications of QO, ﬂi The firsi, which we call the "limited information"

gpecification, is the following:
= {kt’ -1 t—l}
_{kt’ -1 t’ Xt 1}
In the "full information™ specification,
Q —Q = {kt’ i’ t}'
In the "intermediate information” specification,
0l =0f = {k,0.x ;}=0
= 1Y% —1 t
In the "Fuerst specification," we set
_{kt’ t-1° t~—1}
ol = {k..,0, .,0.x ,x}
t = Wl -1

Finally, we also work with the "sluggish saving" specification. This is like the Fuerst

specification, with the single exception that k, , , is determined prior to observing x,.

141
The basic structure of the decision rules is as follows:
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0y 17
k 1=k k, + k4

27 3. 4~
e t—1+k9t+kxt—1+kxt

- 0] 17 97 | =3° 4
H, =Hk +H0_ +H6+Bx_ +H

Xt

R 15 y - 4
Wi =Wk Wl Wl +wx WX,

£t = nol-{t + nll-?t_l + n2at +n ;ct—l + n4.:ct
All specifications have the same values for coefficients with superscript 0. The
specifications differ in terms of the other coefficients. For example, in the full information
specification, all coefficients with the superscript 1 and 3 are zero.

We can obtain more model specifications than were described simply by
"mixing" them. In particular, our "basic sluggish saving" and "limited information
employment" models both have the values of coefficients with superscrips 1 and 2 from
the full information model. The basic sluggish sluggish saving model takes the coefficients
for parameters with superscripts 3 and 4 from the sluggish saving model and the limited
information employment model takes these coefficients from the limited information
model.

We apply the undetermined coefficients method described in section C to each

version of our model economy.
he Li

It is convenient to write k(-), H;(-), w;(+) and n(-) out in detail. In

particular,

+ &1

- 0+
(3) k =k'k i1

2% | 13-
41 £ +E7 + k7%,
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where ki, i=0,1, 2, 3 denote the undetermined coefficients and a tilde over a variable
denotes deviation from steady state, i.e., k, = k, — k. It is useful to solve (3) forward

recursively, and to make use of our assumption,

(4)  EI90] = pgd,_; Bl%9)] = B% 071 = o, % ;.

Then,

(5) B[k, , ol01 = (0%, + k%19, + O 08, + O g, .
(6) Blk, 5101 = %)%k, + (O)%'0,_, + {kﬂ[kokz-i-kl-{-kng] + ko, + kzp'g}at

0,2, 3 0,3,.3 =
+ {00284, P 5, .

Similarly,
U | PR 2% . ne
(7) fi,, = 8%, + B8, + B3, + B%,_,
(8) Bl 104] = B0k, + BO'3,_ + B0+ E %0, +

3.
B3+ B, .
- 1 0,0:2 | 0,1,0%
9) B[, 504 = B00%, + m%40,
n {Ho[kﬂk2+k1+k2pg] + 1+ H%%}@t

+ {H0k0k3+px[H0k3+H3px]}3'ct_1.
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(10) g, = vk + W'l + Wl F R,
(1) By, 1940 = vOulk + w0, + WOk e el
+ (WS Wil .

(12)  Eliy, o000 = vl + whi%'s,_,

+ {Wo[k0k2+k1+k2p’9] + wlpg + wzp%}ﬁt

+ {w0k0k3+px[wok3+wspx]}it_l.
(18) i, =2k +20'3_, + 0% .
(19) B, 10;] = 0%k, + n%1F,_, + (@OP4n)E, + (2OP4p 00, .
(15) Blf, o9 = n%00)%, + %0,

+ {n{)[kﬁk2+k1+k2p6] +n1p9}?)t
0, 0,3 0,3, 3 1l=
+ {n k'k"+p, [0k +n px]}xt_l.
We will also need the conditional expectations of the above objects based on ﬂ?, ie.,

- 0
Efn; ol94)
. . - 0 I 10
mathematical expectations: E[nt+2mt] = B{ E[nt_[_zlﬂt] lﬂt}, so that

These can be obtained in the obvious way, using the law of iterated

- O _ 0,012 , 0,017
Eln, o)) = 0 () %k, + 0 Kk B,
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+ {no[k0k2+k1+k2p6] +n1pg}p9?t_1
+ { 200k 5, [n01% 403 px]}i'c 1

. T - 1 -
In effect, we just replaced 0, in the formula for E[n, +2| Q:1by pgb, ;-

Recall (see step (i) of the undetermined coefficients method in section C) that

N,y aFly o2,y oK
we define the functions Q (), @ (), @ “( ), Q () as the first order Taylor series

. N, B, Nooook .

expansions of @ ( ), q “(}, @ “(), ¢ () about the nonstochastic steady state values of
their arguments. (For a definition of these latter functions, see section C above.) The
Taylor series expansions are written in detail as follows. We suppress an explicit
statement of all the arguments of the functions in order to conserve on space.

N;\_ N¢ N ¢ N =« N N &

N.. N - N. N .
+ QW14 + Q- Wig41 + qp 04 + 94y N |

N.. N . N7 N 7
'i' qxxt + qxfxt_i_l + ngt + qgrgt_l_l-

Ly Li. Ly Ly Ly Ly, Ly Ly
7)) QO =gkt ke Hag Hyg b a ¥y +ay 6 K g0
N N N N N N
2, N 2¢ 9 & 9 2.
N N N N

9. . 2. 2.
Ty Wy Ay Wy T Oy Ty 0 g

Ng Ny N, Ng.,
S AW AP PR AR X VA S

K,y ke, k7 k k-
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ks k = k =
+agHytag Hyp g T ag By

k- k - k.
+ QWi T e g1 T S W40

k. , k. k
TGl + Ry s By

k. k . k -
T Xy + qx’xt+1 + Uy - ’xt+2

k -
+aghy + a4 by + 95, By

Since the coefficients in (16) — (19} are derivatives of the first order conditions, evaluated
at nonstochastic steady state, they are functions of the model’s parameters. We
computed them by numerical differentiation methods, and they are treated as known from
here on.

We now move to steps (ii) and (iii} of the undetermined coefficients procedure.

In particular, write

(200 E[Q} 0% = QE, + QY7 ; + QY%

Ly, B g L. Iy,
(21) E[Q, [0l =Q, k, +Q, 0, +Qyr9, +Q "%

(23 E[QN2|91 - QN2E + QN2'9 + Q 23 +
) § t]_'kt f “t-1 f° 7t Qx t-1
k
(24) E[Qt[Q] Qkkt'l'QGt 1+Q9:9 +th 1
Recall from the discussion of step (ii) that QI:T denotes the function QN( ), after the

period t decisions have been substituted out using the linear decision rules. The objects

Q'It" 1, Qlj 2, Qlf are defined analogously. Thus, the coefficients to the right of the equalities
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in (20)—(24) are functions of the Taylor series expansion coefficients and the undetermined
coefficients in the linear decision rules, (3), (7), (10), (13). The requirement that the

conditional expectations, (20) — (24), be zero implies:

N

x=0

Q) =Qp=0

(25)
N N N N
Qk2=Q92=Q0?=QX

Qf = Qj=Qf = QS =

Conditions (25) represents 15 equations to be solved for the 15 decision rule parameters.
We proceed now to solve these equations. We exploit the fact that, conditional on ko,
they are linear in the remaining undetermined coefficients. Also, these equations are

block recursive. This enables us to solve first for ko, ik n0

and w'. Then we solve for
k3, H3, w and n®. The remaining 7 parameters are then solved in a final block.

Substituting (3)—(15) into (16)—(19):

N N N ,0 N 0,2 N,O N 0,0
(25) Qk=qk+qk’k +qk,,(k) +qHH +quHk

n quo n qN wlil 1 anO " qN nok

L L L L L L
1 1 0 1.0 1 0
(26) le—'qk + 9y k0+qHH +4, W +q, 0
N N N N N
2 2 2 0 0.0
(27) Qk =dqy + qk:k + qku(k ) + A H + qH,H k
N N N N
¥ q 2WO + q 2 Oko q 11 + q 2 01{0.
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k, k

k 0 k 02

ok + ol 10 4 om0

k 0 k

+apw® + g w0+ o, w0(0)?

k0 k

+ ¢ +qn’noko k

T X

0

Note that the only unknowns in (25) — (28) are ko, HO, no, and w-. We use these

equations to determine these four unknowns. Conditional on a value for ko, the three

equations Qk = Qk = Qk

linear equations. In particular, let

1 2 0 _0

= 0 determine HO, n”, w- as the solution to a system of

N N

] 0 N 0.2
9, + qp .k + qp..(k)
L L
1 1
(29) 2= g~ + gk
N N N
2 2,0 2 10,2
i.qk + qk:k + qkrr(k ) |
[N, N N, N N ]
qH+qH,k° qw+qw,k0 q]_1+ql§,k0
L L L
1 1 1
(30) A= au R . q,
N, N L L
2 2, 0 1 L0 N, N
Qg tep Kk q, T4,k qn+qﬂ,k0

Then, if v = [HO w® no]’,

(31) Ay+z=0,
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0 0

which is easy to solve for 7. After substituting HO, w , and n~ expressed as functions of

1 into (28), we have a function, Qt(ko). The value of k¥ we seck satisfies the property,
Qff) =o.

We studied the function Qi]z( -} for the model parameter values used in the
illustrative, steady—state calculations. We plotted it over the range 10 € [-1,2] and noted
that it appears quadratic and concave. Also, the function has exactly two zeros; 19 =
0.971335 and k¥ = 1.039765. The product of §* and the higher zero is 1.029. We rule it
out on account of its large magnitude.

There are 11 remaining coefficients to be determined, and 11 conditions to do it

with (e.g., all the expressions in (25), except those with a k subscript). It turns out that

L. N
k%, B2, w®, and n® can be determined from Q¥ = Q 1= Q_% = Q¥ = 0. Let

z = [k3 i w? n3]’.

Then,
N N ,3 N 0,3,.3 N3 N 0,3, 3
(32) Qy = qp k" + @y, (KK"+k", ) + qyH” + g, (A k" +H"p, )
N N
+ QWW3 + qw,[wok3+pxw3] + ql:lTn3 + qli,(noka—l-pxn?')
N N 2
+ qn 9,0y
N 2
=Bzt a0 + qlz\cr’px’
Let
N N 0 N L0 N _ 0 N 0O
By 1=y, + a4y, (K +p) +ag H +ag,w +q,.n
Then,
N N N N N N
Bl = [Bl’p g + Qg Pxr Dy + QP50 9 -+ qn’px]'
L L L L L L
1 1.3 1.3 1.3 1.3 1
(33) Q. =q K +agH +q, w +q, 0" +q p
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Ly
= Bzz + a0,
By = [qi}, qgl, q:f, QEll-
60 02=ay 2+ 200+ K + op?R® 4 ay 2 4 p B
+ q§2w3 + q‘,Nv?[Wok3 + pst] + quzns + qf?[n0k3 + pxn?’]
+ (q1:2+ pqu::?)px
=Bgz + (ql,jz + qul::?)ﬂx—
By, = qllj?‘ + quj?,(koﬂx) + qg?HD + qi?wo + qu?no-
Bz =By 1, qu + pxqg?, q:z + qi?px, qu? + qu?px]-
() Q=g o KPR+ o, {00 + o P00 )]

+ o + ag (%4, 8%) + o, {BOO + o (8% 480 )

k_3 k

0 3, k
+q,w g [w k3+ﬂxW I+4q

0.0,3 0,3, .3
W,,{W kK°k” + p [w k4w px]}

k 3 k

+qfo® + ¢f, 0%

+p,0% + gf, fn0i® 4 p,n%> 4030 )

k k 2 k 3
Rl W Y e o Y O

k k 2 k 3
= B4Z + qXpX + q.xtpx + qx, rpx'

k k 0 k 0,2 0
B4,1 = qkf + Qk/r(k +Px) + qk,,, [(k ) + px(k -{—px):|

k k

+ qH,H0 + qH,,[HOkO-l-prO] + &, w0+ ok

0,0
s qw,,[w k

0
+o, W]
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+ qﬁ,n0 + qﬁ, ,[n0k0+pxn0].

_k k k2
134,2 =qp + 7./ + A Ay

_k, k k 2
34,3 =qp + Qg Py T Qs Py

k k kK 2
B4,4 = qn + anpx + qnz fpx'
Let

(36) 7, = N, . 2)
(a, Pr7)Py

k k 2k 3
| 9xPx T Uy Px t g Py

B
B
(37) B=| 2
B,
1By
Then,

which can easily be solved for =z.

This leaves 7 coefficients, Q, where values need to be determined, where

(39) Q=[x ? B! B2 w! w? 1}
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N_ 1 N g
We nail these coefficients using the 7 conditions, Q § = Q g =Q4 = Q =10
L N
and Qqr = Q4 = Qf, = 0. Now,
) QY=o kl+qf, k% + o !+ o] B0

-+ qgw1 + qN,WUk1 + qlg n1 + qf,nok1

+ qlgﬂg + qlg,ﬂg

2 0.2 2

+ q]Ninpg + qg,[Hokz'!'Hl‘i'Hzﬂg]Pg

N_2 N

2
+ QW gt qw,[wok

+W1+w2p6]pg
0,2
+ ), (@"k%+nt)p,

N N 2
= A]_Q + Qgpg'[' ngpg

where A= [Al,l’ A1,2’"’ Al,'i'] and,

_N N .0, NoO, N 0, N 0,6 N
A=, T Ok Fag BT+, Wby nT a0

N N 0 N 0 N _0 N .0

_N_. N _ N N 2
Ay 3= dy +dg.Ag A1 g=UuPgt Ay Py
_ N N 2 _ N, N
Ap 4 =Pyt 9Py A 7=0, +4,.0

_.N N
A1,5 = Qy + Ay Py

L, & L Ly Ly

(41) Qy =qk%k1+qH H1+qu +q,n




where

(42)

(43)

where,

(44)

40
= AEQ

L L L L

1 1 1 1
A2=[qk«0qH qu 0 q ]

n !

N N N N N, N
1 2 2
Qp? = 2k + a2 k% + g ?mt + gy ?m% 4 g2

N N

N
+ qw?wokl + qn2n1 . qn%nokl
= A,Q.
N N. N N N N N, N
2 2.0 2,0 2.0 2 2 2 2
A3 = [qkf + qkrzk + QHIH + qwfw + qnfnol 0: qH 30: qW’ 0: qI]. ]'

QIZ; = qt,kl + qlﬁ,,kgkl + qﬁ,, (0% + qﬁH1 + q,{‘I,HOk1

k Hoklko k_1 k Wﬂkl k WOk{]kl k1

+qu1 + qu +qwr +qwrr +qnn

= A4Q:

k k .0 k 0,2 k 0 k 0,0
A4,1=qkf +thfk +q_klr:(k) +quH +qH;er

+ qﬁ,wo + q‘kv, ,woko + qﬁ,n0 + qi,,noko.

_ k k k
Ay= [A4,1 0 g 0 q, 0 gl

L

L L
1.2
+ag

L L
Qg} = qk}kz 1H2 + Qy W + qu

L
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L L L
1 1 1
Ag=100 q, 0 qg 0q_" 0]
N N N
2 1
N N
+ag B’ + q (8% + B + B
N N
+ qW2W2 + qw?[wokz + wl + W2.00]

N

N
2
+q,.n

N
2 2
% +n1]+q§2+q‘9,99

Ny N,

N

Aﬁ,l = qk?,

= qllj? * qf?'(ko + pg) + QE?HO + qf?wo + qu‘?no.
Ag g = qg?-

A6’4 = qu + ql]i“,)‘pg.

A5,5 = qi?

Agg = q:2+ q:?pg.

As"{ = ql:?-

Ag = [Ag 11 Ag o A g 3 Ag 4o Ag o Ag e Ag 7l
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(46) Qlé, = qii,kz + qi:, I kzpe]

+ qlﬁ,,,{ko[kok +k' 412 ] + Ko+ 12 6}

+ ofB? + of [E%2mt %)

k

+ qy w2+q [W0k2 1

+w +w2p P

+ q\l,:,, ,{Wo[k0k2+k1+k2p(}] + wlpe + wzp%}

+ ap, (0% +n"] + o, ,{no[k0k2+k1+k2p0] +1lp 9}

+ qg + qg,pg + qﬁ,p%

k k 2

k ko g0 k g0k 0. k 0
A7’1= k}f +Qk:”{k +Pg}+qH”H +qw,,W +qn,, .

k , k 0 X [,0,.0 9
Apg=ap, +q (K +op + qk,,,[k (+0p) +pg]

k k

k k 0
+ qH,HO + qH,,HO(kO—}-pg) + qW,W0 +qg..[w (k0+p0)]

+ap,00 4 of, 000040,

_ X k
Ay 3=ag. +qg..0g
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_k k k 2
A7,4 =4 + Q1-Pp + Qg --Py

k k
A7,5 =dg, + 9. Py

_k, k k 2
A»,}ﬁ =q, + 4,09+ Q. P

_ k& ok
Apg=. + 9.0y

=[A A

71812 Ay g Ay g Ay s Ay g Ag ol
Let

Li Np Ny oy % kK 2
(47) F= qug-kqg;,pg, 6, 0, 0, qg » Ay +q9,pg, Ogtdg.pytdg, A’

48)  A=| 2%

Then,
(49) AQ +F =0,

which is a system of equations that can be solved easily for Q.

The decision rules were computed using the parameter values studied in the
steady—state section. The linearized first order conditions were obtained by numerical
differentiation, i.e., letting f(x) be the function of interest, then f’'(x) =
[f(x+eps)—f(x)]/eps, where x is a steady—state value. We set eps = xA when |x| > 0 and

eps = A when [x| = 0, for two values of A. Table 1 reports our results.

. Th nformation E
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We now turn to the case in which

Qg = e tpxgh = 0
The discussion in this section closely parallels that in the previous subsection. First, we
use the same linearized first order conditions that we used there. Second, we must
re—specify the decision rules, to reflect the changed information set and modify the
equations.

The decision rules are:

10 2 4
kt+1——kkt+k €t+k X,

- )

Bk, o19,] = ()%, + 1750 + p 0, + K00 + o x,
. - .

Elk,, 519, = %k, + K@ + 0 + 4518,

K00 + o) + ol

R, LA b

Hy, = H'k, + H*6, + H'x,

- _ 0,07 0,2 , 2 1} 0,4 , 4
E[Hy, |0 = Ekk, + [Ek + B 6, + [H'k" + Ho,Jx,

E[H Lol O] =H %0%%, + BA%CWC + 5 + B Pa]"f,
[H0k4(k0 +p,) + B,

-~ 0F 27 4
W = Wkt+W9+W

1

4 -

- 0,0 0,2 2 \7; 0,4
E[w J=wkk +(Wk™+wpg)l, + (wk +wp)x

14+119
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- 0 27 2.0 2 2.7
Efwy, ol @] =W (&%) k, + Pk + pg) + Wirgld,

0 4 2
+ WO + o) + whollx,

_ 0L 27 4~
ny, =1 kt-}-n 6t+nxt

- 0.0, 0,2 2 7 0. 4 4 -
E[n1t+1|ﬂt]=n k kt+(nk + n pe)ﬁt—]—(n kK +n px)xt
- 0,,.0,27 0,20 2 27
E[n1t+2mt] =0 (k")k, + [07k(k" + pp) + n%ppl0,
4,0 4 2.~
+[n0k (k" + p,) + 0 pl]x,.

Substituting these into the linearized first order conditions,

QY 10, = QiF, + Q78 + Q)x,

L L L

1 i Li;
E[Qt [ﬂt] = Qk kt + Qg

1

-
9+ Q%

N, N,- N,- N,-
E[Q, 19 =Qy "k + Qp 0, + Q. x,

k ; k7 )
E[Qy 19 = Qiky + Qpfy + Qux;.
The coefficients to the right of the above 4 equalities are functions of the 12 undetermined

decision rule parameters. As before, efficiency requires that all 12 coefficients be equated

to zero and this (in addition to a transversality condition) is enough to determine the 12

L N,
decision rule parameters. It is easy to verify that the formulas for QE, le, Q k2’ QE
. . N_ 1 N2k
coincide exactly with (25)~(28). Thus, the conditions Q) = Q" = Q" =Q =0

0

determine ko, HO, nU, w- in precisely the way that was described there.

0 2

Conditional on values for ko, HO, w-, and nO, values for the parameters k2, HY,
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L N

2 2 91 =Q 02 = Qlé = 0. In particular,

w*, n” can be obtained from the conditions QI;T =Q

L, N
: k
ifB,=[QY, Q ", Q4% QF) then

where z, = [k2 02 w2 nz]’ and

_ N i
qlg 4+ Qg - Py
L
q§1
=) n, N,
Qg T Gy’ Pg

Also, A g 18 constructed as follows:

N N 0 N0, N 0, N0
A1’1=qkr+qkl;(k +Pg)+qH,H +qW’W -[-qn,n

N, N _ N, N
Ao =0y +ag.Pgp Ayg=dy+ dy.0y

_.N, 6 N
A1,4 =qp ta,.P9

Ap=I[Ay Ay g Apg Ayl

L. L, L, L
1 1 1 1

A2 = [qkn A » Yy » 95 ]
The 1 x 4 vector A3 is constructed in the same way as Al’ except that the superscript N

is replaced by N2 everywhere. Now consider the 1 x 3 vector A 4
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k k 0 k 0,0 2

k k_0 k

0 0
+af B+ ag, B + ) + ag w0 +qf, w0 + )

k
+ gkl ¢ g, 0000 4 5

_ .k k k2
A-4’2 =dg + dy.Pg T - /Py

_ .k k k 2
A4’3 =q, + .05+ 9. .Fg

k k k 2
A4’4 = qn + qnfpg'!' qnl /pg

Ag=Ihg 1 Ay Ayg Ay gl

Finally, the 4 x 4 matrix A

Al“
A2
A,= .
7 A3
(A4]
Thus, BH is a simple linear function of k2, Hz, w2, 112. The condition B g="0
implies
|
Zﬂ = —Ag Fg.
Finding z = [k4, H4, w4, n~]” requires a similar set of calculations. That is,
_ a1
z, = —Ax Fx’

where Ax and Fx are obtained simply by replacing 8 subscripts by x subscripts.
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This time, let

0_ ol _ -
=0y = {k,0x 1} =0

and

0L 2 3
ki =k kt+k 9t+k X 4

t+

_ g0 27 3.
Hy,=H% +H Ht+H X 4

Y1t

— 0 2 3.
=w k, + w0, +wx 4

R | 25 3”7
0, =10 kt+n 9t+n X g

To compute kO, HO, WO, nO, kz, Hz, w2, n2, use the procedure used for the full

N Nk -
information economy. Let Qx, Qx , Qx R Qx denote the coefficient on X1 in

- L, - N, - -
E[Qlfl 2], E[Qtllnt], E[Q, 2] Qt], and E[Qltil 0,]. Working out the algebra, we get

N,3, N ,3,0 N3 , N 50,3 3
QL =qp K + q, k(K +p,) + agH° + qgp, [H'K° + B ]
N N, 0,3 3, N .0
+ QWW3 + qw,[w k™ + w3px] + ql;In + qn,[n k3 + n?’px]
N N 2
+qx*ox+qx'ax
L L L L L L
1 1 1
Qx1=qk,k3+ dg H3+qW w +qnln3+ qxlpx
N N N N N
2 2,3 2,340 23 210, 3 3
N N N N
0 3 2 2
+ qW2w3 + qw?[w K+ w Pl + ay n® 4 qn,[n0k3 + n3px]
N N

2 2 2
+a, e + A TPy




Let

Q

A

A

A

A

k

x =

49

k k 2
ag & + a0+ o) +of, RGO 4 ) + o
+afB® + qf (B4 + B3 ) + of, (1%L + o) + B0

k 3 k , 0,3 3 k 0,30 32
QW+ q (KT + Wi ) +oap, [W KK+ py) + WOl

k3, k,03, 3 k ;.0,3.,0 32
+ 0" + ¢ (K7 + 0% ) + g, 07K (K 4+ p) 4+ 0%p]]
k k 2, k 3

ta.p. + a0+ A/ Py

N N N N _0 N 0

0 0
1’1=qk1+qq:l(k +px)+qHzH +qwfw +ann

_ N, N
1,2~ 9 T 9H-Py

N

_.N
1,3_qw Oy Py

N N

1,4= 9 T4,/

1,10 A1, A 30 Ag 4]

L L1 Ly Ly

1
Ag=[q, ag 9y 44|

A

2 2

N
32~ 9g T4g.Px

N N N N

W

2. 0. Nog

2 ) +q %0

N N,
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=[A Ay A

3,10 A3 Ag g Ag 4l

k k 0 k 0,0 2
A4’1 =q. +q,. (k + py) + Q. Kk + Py) + Pl
k k k k

+ [q,lfl, + qﬁ, L + :ox)]ﬂ0

k k k 2
A4,2 =qg + 4.4, + Q- -Px

_k, k k 2
A4’3 = QO e + Q. Py

_ k., k k 2
Ay g =y T ap.0 + 4.8

A =[A A

4,1’ 42’ 4,3 44]

Let

Let

2
a4, + 9,58,

k k k 2
Ax T Ay Py + g Ay
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" [N ]
k3 Qx
;s Qi1
= . 8| Bx T NI
w 2
Qyx
3
() k
x|
Then,
x°x + Fx = Bx’

or, Bx = 0 implies
- -
z, = _Ax F_.

But, F = Fxpx and A= AK, so that

-
Zy = Ay Foby

=prx.

4. Fuerst Specification.

Now,

00 = (k.0 .x .}
t P11

ol = {k.,8, 1,0,.x, ..x.}
LS The = Rt A 2 Lo 2

Then,

Y A U 2% | 3" 4-
kt+1_k kt-i-k Ht_l+k 9t+k xt_1+kxt
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7 _ oL 15 27 3. .
B, = 8%k, + B, + B2, + B, + B,
o0 15 27 - 4~
Wy =Wk +wl  +wl+wx W
B | 17 3.

ntunkt+n0 TR 4.

We have 18 decision rule parameters to be determined. We do this by
substituting the decision rules into the efficiency conditions and coefficients in the

following expressions to zero:

E[Qflﬂg]=Qkkt+Q oY% 1+Qx i1

L.. L Ll L Ll"

L -
E[Qt1|9%]=Qk kt+Q9 b1 T Qv by + QX g + Qlxy

Ny o Ny N, Np- N, N2-
E[Q, 210y] = Qp %k, + Qp0,_; + Q70 + Q% _y + Q7

ElQ¥ia}] = ofk, + oo, _, + Qb0 + ok, + Q5%

L N
The formulas for Qll\g = le = ka = QI;]: = ( are precisely what they were in the limited

information economy (see equations (25)—(28)). Therefore, just like there, these formulas

0 0

can be used {o solve for ko, HO, n,and w.

Next, consider the 7 coefficients @ = [kl, k2, Hl, H2, wl, w2, nl]'. These can
0 40 0 _0 N L1
be obtained using the given values of k°, H™, n~, w, and the 7 conditions, Q 9= Q g =

N L N
ng:Ql(;:Qg%:Qg?:Q];,:D- Now,
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Ql1| =AqQ +F,

where F and A are defined in (47)—(48). Thus,

-1

Q=-A"Tp.

Finally, consider the 7 coefficients Z = [k3,k4,H3,H4,W3,w4,n3]. These can be

0

obtained using the given values of ko, HO, 110, w, and the 7 conditions

L N L N
N __ 1 2 _ ~k_ 1_ 2_~k _
QX—QX _‘Qx _QX-‘QX'_QX"-—QX'_O
Then,
F a1
Q.X'.
L
1
Q
N
2 - -
Qx =AZ+F
k
Qx
L
1
Q..




b4

Here, A is the same as A in (48), except that Py replaces p 9 everywhere. Also, F is the

same as F in (47), except that the subscript x replaces the subscript # everywhere.
5. Sluggish Saving.

Now, suppose H1 " and H2 ; are contingent on x,, 0t, but It ig not contingent on

Xy Thus,

-~

_ 051G 25, ,3C
kg =Kk + k00 ) + K0+ kx

. %) 4 w32 -
H, = Bk, + B'o_, + H%0, + B%x,_, + B,

o _ 0 17 25 . 47
Wy =Wk +wl  +wl +wx  +wx

B 1 17 3
n,=nk +nf ,+0n%x ..

These 17 coefficients can be determined by setting the 17 coefficients in the

following expressions to zero:

N - - i i }
B[QY Ikpby_gox g1 = Qpky + Q04 + Qux

- . - L L Ll" L

E[QLIL'E; 8% .x]=0Q 'k +Q,0 . +Q L g
Xl fp® Xl = Qpk +Qp 8 + Qy

l91'. + Qx X1 + Qx’xt

Ny - - - - Ny- Ny
E[Q ¢ "Ikt _g00% pxd = QR + Q70
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N N2~ N2"

E[Q lkt,ﬂt 1 0% 1] = Qkk + Qaﬂt 1t Qarg + Q X

L N
As before, Qll\z = le = ka = Q]k‘ = 0 are used to determine ko, HO, n

L, N L, N
Similarly, as in Section 4, Qy = Q,' = Q,° = Q5= Q,l = Q2 = Q%, = v are used to

L N - L
determine kl, k2, Hl, Hz, w]', Wz, 111. Now, use QI;: = Qxl = sz = Qi = Qx} =

Ny 3 g3 gt 3 4 3
Qx’ = 0 to determine k", H", H*, w", w*, n". To do this, simply modify the equations

used in Section 4 to get z = [1:3,1114,H3,H4‘,w3 w4,n ‘. Define

0 0

, and w .

™ O o O

oo o0 o o
[ T R e R
o oo~ o O
o o HH o oo
oo o oo
===

[ B s
L

Let A be the 6 x 6 matrix given by TA with the second column removed. Here, A is as
defined in Section 4. Also, let z denote the 6 x 1 vector given by z with the second

element removed. Then,

it

]
1

= A; + 'ri"‘,

=] ZHHrwwx ZM MM =

O OH OH O O O

~ b3
L




where T is as defined in Section 4. Then,

; = -A_l 'rB-‘.

26
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Table 1
Model Parameters

6= 02, f= 10372, 4= 004, r = .01, 7= 2/3, & = .36,

0, 9 =-2 x=.012, py=95,p_= .81, p=10/9.

D

0 1 2

kg = (1) + k ky + k7(8,_y—0) + k°(0,-9) + k3(xt_1-x)
0 1 ) 3

Hyy = H+ B (k&) + B (6,_j—0) + H*(0-0) + B(x,_;x)

O ) + wl(0,_y=0) + w2(6,-0) + w(x,_ )

n, =1+ no(kt—k) + nl(ﬂt_l—ﬂ) + n3(xt__1-x)

w1t=wl+w

ki1 Hyy Wy n,
58766 H .1476 w, 28479 1§ 8374
0 0 0

9117 HY _oo2655 w® —02085 n® —02149
(.9713) (—.002744) (—.02155)  (-.02222)
1172 HY 04960  wl .3895 ol 4015
(.1164) (.04926) (.3868) (.3988)
2146  H2 0 w2 0 n? —
(.2139) (0) (0) (—)

0826  H® —04389 w° 1.0348 1n° -.4855
(.0824) (—.04393) (1.9345) (4857






