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On Existence and Uniqueness of Stationary Distributions

Without Continuity

Section 2. Propositions and Proofs

In this section we present the two main results of the
paper and corollaries,

Theorem 1 establishes the existence of fixed points for
monotone maps defined on & space of measures, Corcllaries 1 and 2
are applications of Theorem 1 to Markov Processes. Theorem 2
glves sufficient conditions for the invariant measure guaranteed
to exist by Theorem 1 to be unigue,

The proof of Theorem 1 involves defining an antisymmet-
ric order on the space of meassures on a compact subset of B with
minimal and maximal elements. The order is shown to have adequate
continulty properties so that every linearly ordered subset has a
sup. The proof of the theorem is then a direct application of the
Knaster-Tarski fixed point theorem (see Dugundji, pg. 14).
Definition: for x,y members of RY, let x < y if xy €y 1 =1,
veey, N, Let S be & compact subset of R" with minimal and maximal
elements a, b, l.e., for all x e 8§, & € x <€ b, A
function f: S + R 1is 3aid to be monotone if whenever x < vy,
£(x) < t{y). For ECS, let E , (E.) = {yeS: y>x(y<x) for some

xeE}.

Lemma: If E is a closed subset of S and G an open subset of S,

then E. and E, are closed and G, and G, are open.
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pf: Let Yo * ¥ and y, € E;. Then there exist x ¢ E such that
Xn < Yne Since E 1is compact, xnk + x € E for some subsequence.
But by continuity of <, x <y so y e E,.

et ¥y € Gco Then there exists an element x € G such

that y < x. Let U = (G-(x-y))nS. Then U is open, contains y and
if y' € U, then y' = x'-(x-y) for some x' € G and since (x-y) > 0,
x' =y' + (x-y) >y'. Thus G, is open.

Similar arguments can be used to show that E< is closed
and G, open.

Let M be the class of bounded, monotone, measurable and
nonnegative real valued functions on (S,S), where S is the Borel
o-algebra of subsets of S.

Let [a,b] = {xeR": a<x<b}. Let GC.[a,b] be an open set

(in the relative topology of [a,b]) with G = Ggo Let 1v:

[a,b] + [0,1] be a correspondence defined by:
v(x) = {xel0,1]: re+(1-2)xe6c®}V {0}.

Define p: [a,b] + [0,1] by p(x) = max {A: Aey(x)}. vy is non-

empty valued and G® is compact. Hence p is well defined.
Claim: p is continuous.

Proof: It will suffice to show that y is a continuous correspon-
dence. The conclusion will follow from Berge (1959). Upper hemi-
continuity can be easily checked noticing the graph of y is
closed. To see that y is lower hemi-—continuous, let V be an open

set in [0,1]. Denote g(A,x) = X + (1-A)x. The function g can



easily be checked to be continuous, non-increasing in A and non-
decreasing in x. Suppose g(A,x) e G° for some A € V. We will
show that there exists an open set U in Ia,b] such tha;t X € U and
for x' €U, v(x') VvV # ¢. Without 1loss of generality we can
assume 0 f\’. Then (A*,)) e VvV for AY € Lo Let
W= g((A',2)x{x}). Since g is affine for fixed x, W is open in
[a,b]. Alsq, g(e+,x) is non-increasing and G¢ = (6%), (as can be
easily verified), so WC-G°. Since g 1is continuous, g~1(W) is

open. Also (A',1) X{x}C.g l(W). Hence, there exists open sets

U', U where U' x UCg~}(W), x & U and uU'Nn(rx',2) # ¢. For anw /

v

e U, glu'x{x})c wc.G®, and thus there exists some J\iv such that
g(A,x') € GC.
Lemma: p is increasing.
pf: Suppose x 2 y. It will suffice to show that y(y)c y(x).
Without loss of generality assume x fG and y f G. Suppose
Aevyly)e Then 2 + (1-A)y € G°. But since y < x, Aa + (1-
Ay < 2 + (1-A)x and hence A € y(x).

For E a closed subset of S abusing notation we will

denote p(E) = min {p(x): xeE}. Since E is compact and p is con-

tinuous, this 1s well defined. Let Cy = {feM: f is continuous}.

Proposition 1: For any bounded measure p on (S,S), where S is the

Borel o-algebra of subsets of S, C is L1(u) dense in M.

pf: case 1: Suppose; g 1s a monotone indicator function. Then
g = Xp for some set A. Fix € > 0. Since S is a metric space, y

is a regular measure. Thus there exist sets (0cS and D=S closed

R ovewrt
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such that CcA, D<A® and u(AAC) + u(DAA®) < e. Let E=C, g

previous lemma E 1is closed and that E (N D = ¢ can be easily
checked,

Since S is a normal space, there exist disjoint open
subsets U, V of S such tha.t- DcU and EC V. Let G = Ug and
F = (V%) (. Then G is open, F is closed and GCF. Furthermore,

FAE = ¢ can be easily checked. Define f: [a,b] + [0,1] by
f = min
(x) {15 o(E)

We need to check that p(E) > 0. For this purpose, let
x € E. Since EAA\F = ¢, there exists an open set W such that x e W
and W(\F = ¢. Since g is continuous, g'l(W) is open and (0,x)

q;"l(w). But then there exists some A > 0 such that g (A,x) @
[

liwercce. Hence, for x ¢ E, p(x) > 0. Since p is continuous
and E compact, p(E) > 0 and the definition of f is justified.

For x ¢ E, f(x) = 1 and for x € G, f(x) = 0., Thus
flp ue = E]DUC' Furthermore, f is continuocus since p is continu-
ous. We will now show that f is monotone. Choose x € S, y € S
such that y € xo If y ¢ E then x € E and f(x) = f(y). Also, if x
€G, f(x) = f(y). If x e Eor y € G then f(x) > f(y). So assume
y and x are not in E\/G. Since y < x and G satisfies assumptions
of previous lemma, p(y) < p(x), so f(y) < f(x). The restriction
of f to 8, fg: S + [0,1] is also continuous and monotone. Finally

'rs—giLl(u) = ﬂfs-g[du < cﬂnlfs -g|du

+
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Case 2: Suppose g 1s a monotone simple function, 1i.e.,
n

glx) = ) cixA (x). Without loss of generality assume cy < cy
i=1

whenever i < j, and A N AJ = ¢ for 1 # J. Write

g(x)—z():a.) (x), where a, = ¢, - ¢, , and ¢, = O.
=1 yo1 9 A J J J-1 0

Let €0. For each i = 1, ... ,n let g(x) = x J A Let

i
y € y A, and y < x. Then g(x) > g(y) and thus ye \) A,. So the
J
B! 121

functions g4 are monotone. Also,

n i n
g L(Ta = laIx -

i=1 j=1 i=1 jﬁ J i

[ =)
o

g -
1 i~

By previous step, there exist continuous and monotone fi:s + [0,1]
[>
with Ify - gl (q) < me, Let £ = Ja;f;. Since a; > 0 fy is
monotone, continuous and non-negative. Finally
|r_g|Ll(u) =17 a,f - ¥ a8, 1 =1 ) &i(fi-gi)l

<Ja, i I <ne —— =g,
i n nc.
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Case 3: Suppose g € M. Then by the standard proof of denseness
of simple functions in L,(u) we can approximate g by a monotone
simple function. This, together with results for the previous
case show that g can be approximated by a continuous, monotone and
non-negative function J (1)

Let A be the space of bounded measures on S. For (u,v)

in A x A we will say that y > v or p is stochastically greater

than v, if [fdu > [fdv for all f € M.

Proposition 2: u > v if an only if [fdu > [fdv for all f ¢ Cye




pf: Necessity 1is immediate by definition. Suppose g € M. By
proposition 1 there exists a sequence ({f }, f eCy, with
'fn_glLl(LH-U) +0 as n + = Notice that since f are positive and
bounded, Ifn—-glLl(u) + 0 and lfn-gILl(“) + 0 as n + =,

Suppose fgdu < fgdv. Then there exists some N such that
for n » N, ffndu < ffndv, contradicting the fact that ff'du > ffdv
for all f € Cye

Let Gr (3) = {(u,v)eAxA: p>v}, the graph of > in A x A,
Lemma: Gr (?) is weak-* closed.

pf: Suppose u, 2 vy, and u, *+ u, v, * v. Let f ¢ Cyqe Then
| [fdu,-[edu] + 0 and  |[fdv -[rdv] + oO. Since

[fdu, > [fdu for all n, [fdu > [fdv. By previous lemma, y > v.
Lemma: 2 is an anti-symmetric partial order.

pf: Reflexivity and transitivity are immediate. Hence we need to
prove that if w >v and v > yuy then u= v, Notice that
u(s) = v(s) < », Without loss of generality, assume u(s) = 1.
Let Fu and Fv be the corresponding distribution functions of y and

Ve Since u 2 v,
c c -
Fu(") -1~ h‘ly(xl i €% - Ixh"(x] dv = F (x),

since X[y<x]© is a monotone, bounded and non-negative function.
Since v > yu, the reverse inequality is also true and hence

Fu(x) = Fy(x).



Proposition 3: Let C be a chain in A relative to », i.e., a

linearly ordered (2) subset of A. Then u' = sup C exists and C

converges (as a net directed by itself) to u*.

pf: Since C is a chain, it is a net directed by itself and the
identity function. S compact implies that A is weak-* compact.
Hence there is a subnet C' that converges to u'. We will now show
that u' = sup C.

We show first that u' is an upper bound for C. Let
veCs Let C" = {ueC': p>v}. C" is a subnet of C' so it con-
verges to u‘. By previous lemma, the graph of > is closed and
thus u’ ? V.

Finally, we need to show that u' is a least upper
bound. Suppose towards a contradiction that u* is another upper
bound and there exists f e Cy with ffdv* < ffdu'. Since C' con-
verges to u', there exists y on C' with ffdv' < ffdu, and hence v‘
is not an upper bound.

We will now show that c¢ converges to u‘. Suppose not.
Then there exists an open set U; such that u' € U and for every
u € C there exists u' > pwith u' e U, Let C' =C US. C' is a
cofinal subset of C and can easily be verified to be a subnet of C
(see Kelley, 1955, pg. 65-T0). By compactness, C' has a further
subnet that converges to some element u' € A. As seen previously,
u' is a sup for C, and thus yu' < u' and u' < u so by antisymmetry
of <, y' = u‘. But this contradicts the definition of C'.

We are now in conditions to prove one of the main re-

sults of the paper.



Recall that S 4is a compact subset of R" containing
elements a, b such that if x € S then a < x < b, and A is the set

of bounded measures on S.

Theorem 1: Let T: A + A be a monotone function relative to the
stochastic dominance order. Then T has a fixed point, i.e., there

exists y € M such that u = Tp.

pf: By proposition 3, every chain in M has a sup. Let 85 € A,

denote the measure with:
1 if a € A
Ga( A) = ?0 otherwise®
Then §, < u for every u € A, Thus §, < T6,, and by assumption T
is monotone. Thus the hypothesis of Knaster-Tarski's fixed point

theorem (see Dugundji, pg. 14.) are satisfied and the conclusion

follows.

We will now state some corollaries that prove useful in
many economic problems.

Let P: S x 8 + [0,1] be a transition function for a
Markov Process. We will say that P is increasing if x € S, y € S
and y < x => P(x,+) > P(y,+) in the stochastic order sense.

The transition P induces a map T: A + A by:
Tu(A) = [P(x,A)u(dx)

Corollary 1: If S has the properties listed above and P is in-

creasing, then T has a fixed point on A.



pf: We will show that T is monotone on S. Let p' and y be ele-
ments of A such that u' > p. Let f ¢ M. For A € A, denote
<TA,f> = [fdA. We will show <Ty',f> > <Ty,f>. Since monotone
indicator functions are dense in the monotone functions of Ll(Tu)
and Ll(Tu'), we may assume without loss of generality that f = XA »
a monotone . indicator function. For x' > x, P(x',A) =
fo(s)P(x',ds) > fo(s) P(x,ds) = P(x,A), since x, € M and P is
increasing. Hence P(+,A) ¢ M. Thus if y' > p then <Tyu',f> =
Tu'(A) = [P(x,A)u'(dx) = [P(x,A)u(dx) = Tu(A) = <Ty,f> and the
proof is complete.

Many problems on economic dynamics have the following
structure: Given a state space S and a random variable € on the
space (E,e) with distribution u, the evolution of the state is
described by a mapping g: S x E + S, where if at time t the state
is S, and realization of € is e, then s, ; = g(sy,e;). This
structure induces a mapping P: S x S + [0,1] defined by P(s,A) =
u{e: g(s,e)eA}, which under appropriate conditions is a transition

function for a Markov Process.

Lemma: Suppose g is monotone for each € € E. Then P is increas-

ing.

pf: Let s' > s, Let g be a monotone indicator function of a set
A. Then we need to show that P(s',A) > P(S,A). Let
E, = {e: g(s,e)eA} and define similarly Eg1» It suffices to show
that E; < Ege. let € € Eqge Then g(s,e) € A. But then

g(s,e) < g(s',e) € A since A is a monotone set.
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pf: See appendix.

Corollary 2: If g is measurable in S x E and monotone in S for
each € € E, then g induces a Markov Process which has a stationary

distribution.

-pf: As shown in the appendix, g induces a transition function
P. Since, as proved above, P is increasing, the process has an

invariant measure by corollary t.
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Section 2.2 Uniqueness and Global Stability

In this section we will provide conditions under which
the invariant distribution for the process is unique and globally

stable.,

We say that transition P satisfies the stability crite-

rion if there exists a point s* € S, € > 0 and N such that

PN(b,[a.x']) > ¢ and Pﬂ(a,[x*,bl) > €.

Theorem 2: Suppose P 18 1increasing and satisfies the stability
criterion. Then there is a unique and globally stable stationary

distribution for P.

pf: Fix N as given by the stability criterion. Let Gx denote the
probability measure that concentrates all the mass on the set

{x}. We will prove that the following inequality holds:
(1-€)8, + ebu < TN, < TS < (1-€)6, + eb u

vhere € is given by the stability criterion. For this purpose let

f e M.

[ gar 8,

f,r:m-"ca + f .deNGa
x<s X2>8

#(a) (1=¢) + £(s )e

v

[£(s) a{(1-€)5 +es_*}].

The right hand side inequality can be proved in the same way.

‘I'Néa < Tﬂdb since T is increasing. The above inequality implies:

k+N

k % K K.
(1-€)T 8, + €T 8 * < T 63((1-5:)'1‘ 8, + €T 6 %,
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Since by Proposition 3 monotone sequences converge Tkﬁ8 * Ao
Tkéb + ), and if necessary along a subsequence, Tkss* -+ 15“.

Hence the following inequality holds:

(1-€)A, + erg® < Ay < Ay < (1-€)Xy + erg*.

Ay - {1-e)la > A" s0 A, > A

Similarly Ay < Xs*. gince )B < ).b and » was shown to be transi-

tive and autisymmetric, A, = A* = ). Let u e A. Then
k k kK k
T 6 <T u<T & and thus T u + Age That A, is an invariant

measure follows from the fact that there is an invariant measure

u* and Tku' + 8;. Uniqueness and global stability follow.
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Notes
(1) 1In proving this proposition the only features of SCR® and <
being the order defined used, is the fact that < is a continuous
partial order, R" is a normal space and (E",<) is an ordered
topélogical vector space, (Shafer, 1971) 1i.e., a topological
vector space X with a partial order that satisfies the following
conditions:
If y € x, then:
(i) for any z e X, y + z < x + z
and
(ii) for any A > 0, Ay € Xx.
Hence this approximation result can be extended to S
being a compact subset of an ordered topological vector space X
with d continuous order and such that there exist elements a € X,

b € X with a < x <b for all x ¢ S.



