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analysis which weighs these apparently conflicting facts to determine which hypothesis is more plausible; the 
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1. In t roduct ion 

Until recently, the consensus in the money demand literature was that the answer to the 

question in the title is "no" . 1 Lucas (1988) has criticized this consensus. He argues that 20th 

century data on real balances, income, and interest rates are consistent with a stable long-run demand 

for money with a unit income elasticity. To support this view, he points to the evidence summarized 

in Figure 1. That figure reports the scatter plot of (minus) the log of M1 velocity against a short-

term interest rate for annual data covering 1900-1985, with the post-1957 observations being 

indicated by a different set of symbols than the earlier observations. The striking feature of Figure 1 

is that although interest rates since 1957 have been substantially higher than in the earlier period, 

post-1957 velocity seems to be roughly what one would have predicted by extrapolating linearly from 

the pre-1958 scatter plot. Lucas conjectures that this stability in the empirical interest semi-elasticity 

of money demand that one gets when conditioning on a unit income elasticity is hard to reconcile 

with the view that M l demand is unstable. 

But if long-run M1 demand is in fact stable, then why has the literature concluded otherwise? 

It has done so because estimated money demand functions which leave the income elasticity 

unconstrained display significant subsample instabilities. For example, the estimated income 

elasticity and interest semi-elasticity are 1.0 and -0 .08 , for Lucas' entire sample while they are 0.2 

and —0.01 using only the post-1957 data. Lucas hypothesizes that this instability reflects the 

contaminating effects of shifts in the high frequency interactions between the money demand distur­

bance and the explanatory variables in the money demand equation. The purpose of this paper is 

to evaluate this hypothesis quantitatively. 

We formalize Lucas' hypothesis by building on recent developments in the theory of 

regression analysis of integrated and cointegrated variables. We identify the parameters of the long-

run money demand equation with those of a cointegrating vector relating real balances, income, and 
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the interest rate. The high frequency dynamics are identified with the parameters of a vector 

autoregression (VAR) involving the money demand disturbance, output, and the nominal interest 

rate. So, in these terms, Lucas' hypothesis is that the parameters of the cointegrating relation 

remained constant throughout the sample, but the V A R parameters governing the high-frequency 

dynamics shifted. There are two reasons to be skeptical of this hypothesis. First, the subsample 

instability in unrestricted money demand regressions is, after all, quantitatively quite large. And 

second, econometric theory tells us that breaks in the high frequency dynamics should not induce 

subsample instability in estimates of cointegrating relations, at least when each subsample is large. 

In view of these considerations, we were surprised to find substantial support for Lucas' hypothesis. 

Our investigation proceeds in two steps. We first conduct classical tests of Lucas' null 

hypothesis. This requires making auxiliary assumptions about the nature of the high frequency 

dynamics. As it turns out, these assumptions have an important impact on the outcome of our 

analysis. The stable money demand hypothesis fails to be rejected under some specifications of the 

high frequency dynamics, but is rejected under others. This motivates the second step of our 

analysis, in which we take seriously the alternative that there has been a break of the magnitude 

documented above. We adopt a Bayesian perspective and evaluate the relative plausibility of a stable 

long-run money demand function, versus the alternative of a break. We do this under various 

specifications of the high frequency dynamics. We find that the specifications under which Lucas' 

hypothesis is rejected using classical methods are relatively implausible. In addition, our analysis 

establishes that the stability hypothesis is substantially more plausible than its alternative. Our 

classical and Bayesian analyses are conducted using bootstrap methods, as in Christiano and 

Ljungqvist (1988). 

Our classical analysis is related to that of Stock and Watson (1993), who also test the null 

hypothesis of no shift in the money demand equation. However, our analysis differs from theirs in 
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several key respects. First, as noted above, classical methods do deliver evidence against the null 

hypothesis. Second, Stock and Watson's test assumes there has been no shift at all in the dynamics 

of the data. In contrast, Figure 1 suggests that something changed in the post-1957 period, since the 

interest rate was so much higher. We formally document that the proposition of no change at all in 

the data dynamics is overwhelmingly rejected. Third, Stock and Watson specify that the interest rate 

is integrated of order 1. We reject this specification based on its implication, documented below, 

that the interest rate will go negative with high probability in samples that correspond to the length 

of our data set, which is 85 years. 

But, why should we care about the income and interest elasticities of money demand and their 

stability? One set of motivations derives from the literature on empirically based dynamic, general 

equilibrium models of money.2 Most of these models focus on the role of money in reducing 

various types of transactions costs associated with trading. As Lucas (1988,1993) in particular has 

emphasized, an important subset of these models imply a long-run money demand function which 

is stable in the sense that the elasticities are invariant to changes in monetary or other policies. Since 

our sample period covers the 20th century, it spans a wide variety of policy regimes, so a test of the 

stability of the long-run money demand function represents a potentially powerful specification test 

for this class of models.3 

The numerical value of the long-run income and interest elasticities of money demand are 

also of interest to analysts of transactions cost models of money. For example, analysis of these 

models is greatly simplified by the assumption of a unitary income elasticity, so it is important to 

know whether this is consistent with the data. In addition, several analyses make use of the 

estimated long-run interest semi-elasticity of demand to calibrate certain preference parameters in 

monetary models (see, for example, Chad, Christiano, and Kehoe (1991), and Cooley and Hansen 

(1991), and Braun (1994b)). 



4 

Other reasons for being concerned about the value and stability of the money demand 

elasticities derive from direct policy considerations. One of these is that, assuming a fairly predict­

able trend in output growth and no trend in interest rates, the income elasticity determines the 

average rate of money growth that is needed to achieve a given inflation objective. Another reason 

is advanced in Chari, Christiano, and Kehoe (1991, 1993) and Braun (1994a). They describe a class 

of economic environments in which the magnitude of the income elasticity of money demand 

determines whether or not the Friedman rule of setting the nominal interest rate to zero is optimal. 

Also, the interest elasticity of money demand can be used to compute an estimate of the welfare cost 

of inflation. (See Lucas (1993) and the references he cites.) These considerations suggest that it is 

important to know the value of the money demand elasticities. At the same time, there would be 

little meaning or interest in knowing the values of these parameters if they were not stable across 

different policy environments. 

Our work is related to that of Stock and Watson (1993), who also test the null hypothesis of 

no shift in the money demand equation. However, we differ in the specification of the maintained 

hypothesis in several key respects. First, Stock and Watson specify that the interest rate is integrated 

of order 1. We reject this specification based on its implication, documented below, that the interest 

rate will with high probability go negative in a sample of the length of Lucas' (85 years of data.) 

Second, under Stock and Watson's maintained hypothesis, there is no break in the high frequency 

dynamics. We document that this proposition is overwhelmingly rejected by the data. 

The paper is organized as follows. In Section 2 we report estimates of restricted and 

unrestricted money demand equations, based on the whole sample and based on subsamples. These 

results constitute the basic facts that motivate our analysis. Section 3 presents a formal description 

of our null and maintained hypotheses. In Sections 4 and 5 we present our classical and Bayesian 

analyses, respectively. Finally, Section 6 concludes. 
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2 . Empirical Results for Money Demand 

The money demand literature contains a great variety of analyses. In order to focus our 

analysis a sharply as possible, we concentrate on the functional form, data set, and econometric 

procedure used in Lucas (1988). 

2.a. The Money Demand Function 

Lucas (1988, 1993) displays a class of economic environments which imply a relationship 

between real balances, m,, the rate of interest, r t, and "permanent income," y p t : 

(2.1) log m, = ac + ay log y p l + a r r , + u t 

where E\\ = 0. The disturbance, u t , may reflect shocks to the transactions technology (that is, 

money demand shocks), and/or measurement error in log m,, and log y p t . We follow Lucas by 

estimating the income elasticity of demand, ay, and the interest semi-elasticity, a r , by running an 

ordinary least squares regression using (2.1). One set of assumptions which guarantees that ordinary 

least squares estimates are consistent for a y and c*r is that log y p , , log rc\, and r t are integrated of 

order one and cointegrate. Roughly, this requires that u t have finite variance and that log y p t and 

r t have a unit root, that is, A log y p t and Ar t have spectral densities which are nonzero at frequency 

zero. 4 Here, A is the first-difference operator. The intuition surrounding this result will be 

important for interpreting our empirical results, so we briefly review it. The fitted disturbance from 

the regression in (2.1) is 

(2.2) Qt = ( a y - a y ) log y p t + ( a r - d r ) r t + (ae-&,) + u t 

where a variable without a hat denotes its true value and a hat indicates an estimate. In a large 

sample, the variance of log y p t and r, are arbitrarily large under the unit root assumption, and the 

variance of 0, is infinite for any parameter estimates such that ay ay or a{ ^ ar. Thus, the finite 
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variance assumption on u ( implies that, in a large sample, the only way to get the variance of u, to 

be finite is to set ay = a y and d r = a r . Consistency of least squares follows from the fact that it 

chooses a y , d r to minimize residual variance. Because in a large sample the variance of the 

dependent variable is infinite, while the residual variance is finite, it follows that, asymptotically, 

the R 2 of the least square regression is unity. In contrast to regression in the standard covariance 

stationary framework, interaction between u, and the explanatory variables (as would be expected 

under our measurement error interpretation) does not affect the consistency of the least squares 

estimator. Basically, the low frequency considerations involved in achieving a finite variance in Qt 

completely swamp the impact on estimation of higher frequency interactions between ^ and the right 

hand variables. In a small sample, though, the role of the low frequency considerations may be 

reduced, in which case estimates of the parameters of long-run money demand are contaminated by 

high frequency dynamics, that is, simultaneity bias.5 One possible signal that a sample may not be 

large enough to rule out simultaneity bias is a low estimated R 2 . 

A problem with the assumption that r t is integrated, is that although this specification can 

capture the considerable persistence observed in r t, it also has the counterfactual implication that r t 

can be negative. Concern about this implication for r t leads us to explore alternative representations, 

including ones in which rt is stationary. As the intuition described above suggests, under these 

circumstances OLS is still a consistent estimator for a y . At the same time, it is not consistent for 

a r . However, we conjecture that as long as the variance of rt is large relative to the covariation 

between r, and u t , then OLS will be approximately consistent. 

2.b. Estimation Results 

We use Lucas' annual data, covering the period 1901-1985. Real balances are measured by 

M1 divided by the deflator for net national product. Permanent income is measured as a geometri-
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cally weighted sum of current and past net national product with weight 1/3. Finally, r t is measured 

as a short-run commercial paper rate. For further details about the data, see Lucas (1988, foot­

note 3) . 6 

Empirical estimates of the money demand coefficients are reported in Table 1. That table 

provides results for the restricted case, ay • 1, and for the unrestricted case. Also, results are 

provided for the whole sample, 1901-1985, and the pre-1958, and post-1957 subsamples. The 1958 

date is taken from Lucas (1988). He broke the sample in 1958 because that was the end of the data 

sample used in Meltzer (1963), and Lucas' objective was to evaluate Meltzer's money demand 

equation in light of subsequent data. The fact that the 1958 break date was selected for reasons 

unrelated to the data themselves simplifies the sampling theory used in this paper considerably.7 

For the evidence of instability in money demand, compare rows 1 and 3. These give the 

unrestricted regression results for the whole period and the post-1957 periods respectively. As noted 

above, the estimated income elasticity drops substantially, from around 1 to around 0.2. If we let 

6y denote the difference between the elasticity relevant for the whole sample and the one relevant for 

the post-1957 sample, then the estimate of this quantity, 6y, implied by the results in Table 1, is 

0.77. The interest semi-elasticity also drops substantially, from (in absolute value) 8 percent to 1 

percent. (The interest rate data are measured in units of percent.) Letting 5 r denote the estimate of 

this difference, Table 1 implies 6 r = -0 .07 . 

Another indication of substantial instability is evidenced by the reduced performance of the 

unit income elasticity hypothesis as one goes from either the whole sample or the pre-1958 sample, 

to the post-1957 sample. To see this, consider the f-statistic reported in the sixth column of Table 1. 

That statistic measures the percent increase in the sum of squared residuals (SSR) induced by 

imposing the restriction ay • 1. According to row 2, the restriction induces only a 1.6 percent 

increase in SSR over the whole sample, and a 5.9 percent increase when the pre-1958 sample alone 
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is considered. By contrast, the restriction induces a 725 percent increase in SSR in the post-1957 

sample. A way to get a sense of the magnitude of this increase is to note that the product of f and 

the degrees of freedom of the unrestricted regression is the usual f-statistic. This product is 181.25. 

Under simple textbook regression assumptions, this number would be a realization from a F-

distribution with 1 numerator and 25 denominator degrees of freedom under the null hypothesis 

ory = 0. The tail area to the right of 181.25 under this distribution, is 0 to 6 digits after the decimal. 

We summarize the evidence of instability in the unrestricted regressions with the following three 

statistics: 

(2.3) Evidence of Instability: 8y = 0.77, 6 r = - 0 . 07 , f = 7.25. 

The evidence of instability just described may not reflect a change in the underlying money 

demand function, but instead may reflect the small sample simultaneity-type problems that we 

referred to above. This view seems consistent with the drastic reduction in the R 2 of the regression 

in the second part of the sample (compare rows 1 and 3). In addition, as noted in the introduction, 

Lucas (1988) draws attention to evidence in Figure 1 which supports a presumption that M l demand 

is stable. We quantify that apparent stability using the restricted regression results in the even-

numbered rows in Table 1. According to the results there, the estimated constant term in the 

regression covering the pre-1958 period, less the corresponding object covering the post-1957 period, 

is 5C = 0.209. The analogous expression for the interest elasticity is 6S = -0.0231 (the subscript 

s signifies "slope"). Thus, 

(2.4) Evidence of Stability: 6C = 0.209, 5S = -0 .0231. 

Lucas (1988) conjectures that it would be hard to reconcile this evidence of stability with the 

hypothesis that long-run M l demand has been unstable. 



3. Formalizing the Stable Money Demand Hypothesis 

The null hypothesis considered in this paper is that the parameters of the money demand 

equation are constant throughout the sample. As usual, additional assumptions are required to 

actually implement a test of this hypothesis. These comprise the maintained hypothesis, which 

specifies such things as the functional form of the money demand equation, and the time series repre­

sentation of the high frequency dynamics. Since there is no natural single specification of the 

maintained hypothesis, we are led to consider several. Our bootstrap procedure for testing the null 

hypothesis requires that we capture the null and maintained hypotheses in the form of a fully 

parameterized data generating mechanism (DGM). We explain how we do this below. 

3.a. Modeling the High Frequency Dynamics 

We adopt the following canonical representation: 

(3.1) A (L )Y t = c + 6t 

where, 

(3.2) Y t = 

A l Q g yP,t 
f(r t,r t_,) 

Here, u t is defined in (2.1), and f(r t,r t_^ is discussed below. In (3.1), e, is uncorrected over time 

and 

(3.3) A(L) = I - A , L - ••• - ApLP 

where L is the backshift operator. Also, c is a 3 x 1 vector of constants. Throughout the analysis, 

we set p = 2. Below, we report diagnostics on the adequacy of this specification. 

When f(r t,r,_,) = r t - r t_,, (2.1) and (3.1) form a time series representation that has been 

used extensively for modeling cointegrated variables in other applications (see, for example, Hansen 
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and Sargent (1991), Phillips (1991), Campbell (1987), and Campbell and Shiller (1987, 1989)). In 

addition, Hoffman and Rasche (1991), and Stock and Watson (1993) use it to model money demand 

data. 

3.b. Three Versions of the Stable Money Demand Hypothesis 

The null hypothesis of a stable money demand asserts that the parameters in the cointegrating 

relation between log y p „ r,, and log m, are constant. In order to test this null hypothesis, we have 

to take a stand on the nature of the high frequency dynamics, that is, the parameters in (3.1). We 

formulate three distinct maintained hypotheses about these parameters: The No Break Maintained 

Hypothesis, the High Break, Innovation Maintained Hypothesis, and the High Break, VAR Main­

tained Hypothesis. 

Under the No Break Maintained Hypothesis (No Break), the parameters in (3.1) are constant 

throughout the sample. This maintained hypothesis, together with the specification f(r,,r t_,) = r t 

- r,_|, is the one underlying the test for stability of the long-run money demand function executed 

by Stock and Watson (1993). 

Our method for testing the null hypothesis requires that we have a fully parameterized data 

generating mechanism which embodies the null and maintained hypotheses. We obtain parameter 

values for the money-demand equation from the first row of Table 1, and use the implied fitted 

disturbances to measure u t . We then obtain values for the V A R parameters in (3.1) by applying least 

squares equation by equation to Y t , using the period 1904-1985 as the estimation period, and 

1901-1903 for initial conditions. This way of assigning values to the model parameters is statistical­

ly consistent under the No Break Maintained Hypothesis. We refer to this parameterized model, 

together with the distribution of the fitted values of the tt's, as the No Break Data Generating Mecha­

nism (DGM). We analyze this D G M by simulating 5,000 artificial data sets from it, conditioning 
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on the 1901-1903 values of log y p , , r t, and log m,. The e t's needed for the simulations are obtained 

by drawing, with replacement, from the empirical fitted values. Drawing the e t's in this way 

imposes the assumption that the «t's are independently and identically distributed over time. We 

investigate the empirical plausibility of this assumption in Subsection 3.d. 

Lucas (1988) has little confidence in the No Break Maintained Hypothesis' assumption 

of stability in high frequency dynamics. Our other two maintained hypotheses allow for instability 

in the high frequency dynamics. The High Break, Innovation Maintained Hypothesis (HB/I), holds 

c and the parameters of A(L) constant throughout the sample, and draws the e t's from a different 

distribution in the pre- and post-1958 samples. Thus the High Break, Innovation D G M is just like 

the No Break D G M except that the first 54 e t's are drawn from the pre-1958 fitted e t's and the next 

28 e t's are drawn from the corresponding post-1957 fitted values. Under the High Break, V A R 

Maintained Hypothesis (HB/VAR) , the e,'s are drawn from a different distribution in the post-1958 

period and all other parameters in (3.1) are permitted to change as well, including the elements of 

c, which control the drift in the variables. We refer to the model estimated in this way as the High 

Break, V A R D G M . 

Two of the three maintained hypotheses described above are capable of capturing arguments 

spelled out in Lucas (1988). His explanation of the apparently conflicting regression results in 

Table 1 is based in part on shifts in the trend in log m t and r t (in our context, a change in c), and 

in part on a change in the dynamic interaction between the variables (that is, a change A(L) and/or 

in the variance-covariance matrix of the e t 's). To summarize his trend argument, it is useful to first 

difference (2.1) and then apply the expectations operator to both sides: 

(3.5) EA log m t = a y E A log y p l + a r E A r t 
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since E A u t = 0. According to (3.5), to be consistent with the basic trends in the data, the least 

squares estimates must satisfy a line formed by replacing the population means in (3.5) by their 

sample counterparts. In the pre-1958 data, r t is roughly trendless. At the same time the trends in 

log y p t and log m ( are roughly identical, so that matching trends implies ay close to unity. Trend 

considerations in this period place no restrictions on at. In the post-1957 data, there is a substantial 

trend in r t, while the trend in log m t falls and the trend in log y p t remains roughly unchanged. As 

a result, being consistent with the trends in the post-1957 data implies a menu of possible values of 

(a y,6; r). It happens that the pre-1958 parameter estimates are an element in this menu, and this 

explains why the restricted post-1957 regression results (Table 1, row 4) are so similar to the 

unrestricted pre-1958 results (row 5). But, the unrestricted least squares algorithm applied to the 

post-1957 data obviously prefers a very different (a y ,a r ) combination in this menu. This can be 

explained by appealing to a change in the dynamic interactions in the variables in the post-1957 

subsample. According to Lucas, least squares is driven away from the pre-1958 point in part 

because the variability in r t increases relative to the variability in log m t . This results in a positive 

covariance between the money demand disturbance and the interest rate in the post-1957 subsample 

when the pre-1958 interest elasticity is imposed. This explains why the interest semi-elasticity is 

closer to zero in the post-1957 sample. This argument is similar to a standard simultaneity-bias 

argument. 

The High Break, Innovation Maintained Hypothesis attributes all of the evidence of instability 

to a change in the variance-covariance matrix of the V A R disturbances. Drawing the post-1957 e t 's 

from a different distribution allows the variance of r t to change relative to that of log m,. It also 

allows the correlation of r t and u, to change. By allowing the values of c and A(L) to also change 

in 1958, the High Break, V A R Maintained Hypothesis allows for a richer change in the dynamic 

interactions and has the potential to account for the trend shifts as reflecting a change in drift. 
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3.c. Interest Rate Implications of Our Time Series Representations 

To complete our specification of the data generating mechanisms, we need to specify the 

interest rate transformation, f. When incorporated into one of the D G M ' s discussed above, f has 

implications for the dynamic behavior of the interest rate. In this section we consider several 

transformations and select two based on the plausibility of their implications for the mean and the 

sign of the interest rate. 

A standard specification of f is f(r t,r t_,) = r t - r,_, (see Stock and Watson (1993) and 

Hoffman and Rasche (1991)). We show that this transformation has the troublesome implication that 

r t can go negative with high probability. In the real world, simple arbitrage considerations suggest 

that this is impossible. We rule out this transformation on the principle that models which predict 

the impossible with high probability are inadmissible (see Harvey 1990). We also consider the 

following alternative choices for f: f(r (,r t_,) = log(rJ - log(r t_,), f ( r „ r t _, ) = log(r l), f(r t,r t l) = 

r t, and f(r t,r t_j) = g(r t). The latter corresponds to f(r t,r t_,) = r t, modified slightly to guarantee 

non-negativity of r t: 

(3.4) g(r) = 
r, r > 1 

1 + log(r), 0 < r < 1 

Panels A and B in Table 3 reports the interest rate implications for two specifications 

of f(r t,r,_,) which allow r t to go negative. The first row in each of Panels A and B reports the 

fraction of 5,000 realizations, each of length 85 periods, in which r t was negative at least once. The 

second row reports the fraction of times that the sample average was negative. The last row reports 

the mean, across the 5,000 replications, of the sample average of r t. With the exception of the last 

row, numbers in parentheses are Monte Carlo standard errors. 9 In the last row, numbers in 

parentheses are the mean, across replications, of the sample standard deviation of r t. 
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The results in Table 3 show that the interest rate goes negative with very high probability 

under the two interest rate transformations considered in Panels A and B. For example, under the 

first difference specification the High Break, Innovation D G M produces a negative interest rate at 

least once in 53.3 percent of realizations of length 85 years. Even the 85 year average is negative 

8.3 percent of the time. Thus, we are led to dismiss the level and first difference specifications of 

f. 

Next consider panels C , D, and E in Table 3, which report results for transformations that 

restrict the interest rate to be nonnegative. In the U.S. data, the mean, and standard deviation of r, 

are 4.41 and 2.91 percent, respectively. Two of the transformations are consistent with this. 

However, one is not. In particular, f(r t,r t_j) = logO^) - log(r t_,), has the implication that the 

average, across replications, of the mean rate of interest ranges from 13 to 41 percent per year, 

depending on which representation we consider. The standard deviation across replications is 30 to 

168 percent per year. These results lead us to focus on the transformations reported in Panels C and 

E in our analysis. 1 0 

3.d. Diagnostic Checks 

As noted before, our model simulation procedure presumes that the e,'s are i.i.d. Because 

this assumption plays such an important role in our analysis, it is particularly important that we test 

it. We apply standard diagnostic tests for residual autocorrelation and conditional heteroscedasticity. 

We report results for the representations based on the transformation f(r t,r t_ j) = g(rj in Table 5. 

Results for representations based on f(r,,r t_,) = logCr^ are similar and so we do not report them. 

Panel A in Table 4 reports autocorrelation tests, while Panel B reports tests for first order conditional 

heteroscedasticity. 
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The first column which is labeled "No Break" reports results for (3.1) estimated over the 

whole sample, 1903-1985, assuming (2.1) is constant. The next two columns are relevant for the 

High Break, Innovation D G M . They analyze the pre-1958 and post-1957 subset of the column 1 

residuals, respectively. The final two columns are relevant for the High Break, V A R D G M . They 

analyze the residuals of equations fit separately to the pre-1958 and post-1957 subsamples. 

An examination of these statistics reveals some evidence of conditional heteroscedasticity in 

the output equation disturbance for the No Break D G M (see the 4.7 percent p-value in the first rows 

of Panel B). Also there is some evidence of residual autocorrelation in the disturbances of the High 

Break, Innovation D G M ( see columns 2 and 3). However, there is little evidence of residual 

autocorrelation or heteroscedasticity in the High Break, V A R model. This latter result is important 

to us because, in the end it is the High Break, V A R D G M that we focus on most closely. 

4 . Testing the Null Hypothesis that Long-Run M1 Demand is Stable 

Recall that in Section 2, we described three pieces of evidence characterizing the instability 

in empirical money demand equations. In this section we use these to test the null hypothesis that 

long-run M1 demand is stable. The main analysis is done using the specification, f(r t,r t_|) = g(r l). 

Our analysis is based on the three maintained hypotheses about the high frequency dynamics dis­

cussed in Section 3. We also examine the robustness of our results to using the f(r,,r t_|) = log(rt) 

specification. 

4.a. Results for the g(r) Specification 

Consider Figure 2, which reports three scatter plots, each containing 5,000 realizations of 

A A 

(5 r,5 y). These realizations are based on calculations done on artificial data generated by our three 

D G M ' s . The vertical and horizontal lines in each scatter plot indicate the empirical magnitudes of 

6 r and 8 y (see Section 2). The frequency of points falling in each quadrant is reported, and the 
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number in parentheses is the associated Monte Carlo standard error. 1 1 Consider the scatter plot 

with the heading, "No Break." There, the null hypothesis of no break in the interest elasticity is 

rejected at the 3.7 percent significance level (see the sum of the frequencies in the bottom two quad­

rants). The null hypothesis of no break in the income elasticity is rejected at the 5.5 percent signifi­

cance level. The other two scatter plots, which accommodate a change in high frequency dynamics, 

fail to reject the null hypothesis that money demand is stable. 

The results in Table 5 provide additional insight to the findings in Figure 2. The first column 

of Panels A and B in Table 5 report estimated money demand elasticities taken from Table 1. The 

next three columns report the mean and standard deviation across 5,000 simulated data sets of OLS 

estimates of money demand elasticities. The three columns correspond to the three D G M ' s 

incorporating the g(r) specification discussed in the previous section. 1 2 Note that significant post-

1957 subsample instability only occurs in simulated data that allow for a break in the high frequency 

dynamics. 

Panel C pertains to our third piece of evidence of instability: The value of the f-statistic, f 

(see (2.3)). The statistics reported in Panel C overwhelmingly reject the null hypothesis (at the 1.3 

percent significance level) under the No Break Maintained Hypothesis. However, the null hypothesis 

is not rejected when the maintained hypothesis allows for a break in the high frequency dynamics. 

4.b. Evidence of Robustness 

To investigate the robustness of our conclusions to the choice of f, we redid the calculations 

in 4.a. above, using D G M ' s that incorporate f(r t,r t_,) = logO^). We redid the scatter plots in Figure 

2, and found essentially the same results: The null hypothesis is rejected under the No Break Main­

tained Hypothesis 1 3, but the null hypothesis is not rejected under the other two maintained hypothe­

ses. However, when we test the null hypothesis using the f statistic, we reject it for all three 
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maintained hypotheses. The p-values are: 0.0 (0.0), 0.002 (0.001), 0.004 (0.001), for the No 

Break, High Break, Innovations and High Break, V A R Maintained Hypotheses. Numbers in 

parentheses are Monte Carlo standard errors. Thus, the finding of the previous subsection is not 

robust to this change in the maintained hypothesis. 

5. Which is More Plausible, Stability or Instability of M1 Demand? 

In the previous section we reported several maintained hypotheses under which the null 

hypothesis fails to be rejected. We found it surprising that it is possible to reconcile the observed 

instability in estimated money demand equations with the null hypothesis. Stil l, this result seems 

fragile: It is overturned by an apparently small change in the maintained hypothesis. In particular, 

the null hypothesis is rejected when we replace the g(r) specification of f with the log(r) specifica­

tion. This drives us to pose the question: "Which perspective is more plausible, the one suggested 

by the results based on log(r), according to which M1 demand is unstable, or the one suggested by 

g(r), according to which M1 demand is stable?" 

We investigate this question by pursuing the strategy of Christiano and Ljungqvist (1988). 

Namely, we identify data generating mechanisms which formalize each perspective, and select the 

most plausible one based on its ability to account for the relevant facts. In this study, these are the 

evidence of stability and instability reported in Section 2. We find that by this criterion, the 

perspective suggested by the g(r) specification is the most plausible. 

We already have two D G M ' s which capture the perspective that money demand is stable, 

namely, the High Break, Innovation and High Break, V A R D G M ' s which incorporate the g(r) 

specification. In contrast, the log(r) results drive us to think about breaks in money demand. In the 

context of the present study, it is natural to posit a break in 1958. To capture the instability 

perspective, we estimate three new D G M ' s using the log(r) specification. The cointegrating vectors 
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used in these D G M ' s are the pre-1958 and post-1957 estimates reported in Table 1. The three 

D G M ' s are differentiated according to how they handle the high frequency dynamics. In particular, 

we adopt the three specifications analyzed in the previous section. We call these D G M ' s the Low 

Break D G M , the Low Break, Innovation D G M and the Low Break, V A R D G M . For the sake of 

symmetry, we also estimate these D G M ' s for the g(r) specification. Counting the three D G M ' s 

based on the log(r) specification studied before, gives us a total of 12 D G M ' s to use in evaluating 

the question that motivates this section. 

Our results are reported in Table 6. The entries in this table are the frequency of times that 

various events occur in 5,000 artificial data sets simulated from each of our 12 D G M ' s . The num­

bers in parentheses are Monte Carlo standard errors. We identify seven different events that 

•summarize the evidence of stability and instability discussed in Section 2. The events, I and S, are 

boxes constructed about (5 y,5 r) and (6C,8J respectively. The event, F, is an interval constructed 

about f. For details about these intervals, see the notes to Table 6. We also consider four additional 

events defined by the various combinations of I, S, and F. Results pertaining to the g(r) and to the 

log(r) specifications appear in Panels A and B, respectively. We use the entries in the table to 

evaluate the relative likelihood of alternative D G M ' s . 

Consider first the results pertaining to the event i n S H F in Panel A . Consistent with our 

previous results, the High Break, V A R D G M is more likely than the No Break D G M . Interestingly, 

the Low Break, V A R D G M is about one-third as likely as the High Break, V A R D G M . That is to 

say, according to the g(r) specification, the hypothesis of a stable money demand is substantially 

more plausible than the alternative, when we jointly take into account the evidence of stability and 

instability. It is particularly notable that the stable money demand hypothesis is more likely than the 

unstable version, even when we focus exclusively on the evidence of instability (that is, the events 

I O F , I and F). So the g(r) specification strongly favors the stable money demand hypothesis. 
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The results for the log(r) specification in Panel B are quite different. Relative to the I n S n F 

event, the stable money demand hypothesis is roughly as plausible as the alternative that there was 

a substantial break in 1958. 

Comparing across Panels A and B, we find that the best D G M which incorporates the g(r) 

specification is over five times more likely than the best D G M which incorporates the log(r) 

specification. We conclude from the results in this table that the null hypothesis of a stable money 

demand equation is much more plausible than the alternative. 

We investigate the robustness of this finding by comparing the likelihood of the best g(r) 

D G M with that of 54 other D G M ' s . To begin, we considered the 24 D G M ' s obtained by construct­

ing the entries in Table 6 for the other specifications of f(r t,r t_,) described in Section 3. Our best 

g(r) D G M is four times more likely than the best of the l o g ^ - l o g ^ . , ) , gO"t) -g(r t_i), and 

r t—r t_i D G M ' s . The results for the r t specification are virtually identical to those reported in Panel 

A of Table 6 for g(rj. For example, the frequency of the event I O S n F is 0.037 with a Monte 

Carlo standard error of (0.003) and 0.004 (.001) for the High Break, V A R and Low Break, V A R 

D G M ' s , respectively.1 4 

Next, we considered the 30 D G M ' s formed by constructing the entries in Table 6 for all five 

specifications of f, using 3-lagged V A R ' s rather than 2-lagged V A R ' s (that is, we set p = 3). Our 

best 2-lagged D G M based on the g(r) specification dominates all these models too. Of these 30 

D G M ' s the 15 which capture the unstable money demand hypothesis are of particular interest. Of 

these, the most plausible D G M is the log(r) Low Break, V A R D G M . For it, the frequency of the 

event, I n S O F , is 0.0304, with Monte Carlo standard error, (0.0024). This frequency is less than 

that of our best p = 2, g(r) model, even when Monte Carlo sampling uncertainty is taken into 

account. Presumably, the latter model dominates even more when account is taken of the fact that 
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the Low Break, V A R D G M with p = 3 has 21 more parameters.15 The results of these calcula­

tions are discussed in detail in Braun and Christiano (1993). 

We conclude that the stable money demand hypothesis is more plausible than the alternative. 

6. Conclusion 

In a recent paper, Lucas (1988) presented an example of the kind of evidence that has led 

many in the literature to conclude that 20th century data cannot be characterized by a single, stable 

long-run money demand function. He showed that the long-run empirical money demand elasticities 

based on 85 years of data differ greatly from the corresponding quantities estimated using only the 

post-1957 data. He sketched an argument that is capable, in principle, of reconciling this evidence 

of instability with the existence of a stable long-run money demand equation that emerges from 

Figure 1. To our surprise, we found a simple linear data generating mechanism which (i) verifies 

Lucas' argument and (ii) passes stringent tests for empirical plausibility. 
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Footnotes 

'See Laidler (1977), Judd and Scadding (1982), and Goldfeld and Sichel (1990) for a review 

of this literature. 

2 See, for example, Braun (1994a), Chari, Christiano, and Kehoe (1991), Kydland (1989), 

den Haan (1991), Christiano (1991), Christiano and Eichenbaum (1992a,b), Cooley and Hansen 

(1989, 1991), Cho and Cooley (1990), King (1990), Hodrick, Kocherlakota, and Lucas (1991), 

Marshall (1992), and Sims (1989). 

3Kareken and Wallace (1980 pp. 2-3) argue that transaction cost models fail this specification 

test by pointing to the alleged instability in empirical money demand equations. 

4There is a large literature on the subject of cointegration and integration, and on the 

consistency result described in the text. See Engle and Granger (1987), Phillips (1991), Stock 

(1987), and West (1988), and the references they cite. 

5Note, although consistency of ordinary least squares is unaffected by simultaneity bias 

considerations, inference generally is not. In particular, the asymptotic sampling distribution of the 

ordinary least squares estimator is influenced by the degree of interaction between right-hand 

variables and the disturbance term, Phillips (1991). 

6 Our data reflect a slight correction made by Lucas after publishing his paper. 

7 For a discussion of the complications that arise in contexts where the break date is selected 

after looking at the data, see Christiano (1992). 

8 We thank Julio Rotemberg for suggesting the g(-) transformation to us. 

9 To compute the Monte Carlo standard errors, we note that the first four rows in Table 3 are 

the average, across artificial data sets, of an indicator function, I r(A), which is one if a specified 

event A is true on the r"1 data set, and 0 otherwise. Denote the average of this function by I'(A). 

Then, because I r(A) is an i.i.d. random variable, the standard deviation of I'(A) is just the standard 
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deviation of I r(A) (which we estimate by the standard deviation of L(A) across our 5,000 data sets), 

divided by the square root of the number of replications, 5,000. We refer to this as the Monte Carlo 

standard error of I'(A). 

1 0In results not reported in Table 3, we also investigated and rejected the f(r t,r t_,) = g(rj 

~ g( rt- i) transformation. We found that this transformation has the implication that interest rates 

can often be very close to zero for extended periods of time. To see why this happens, it is useful 

to note that the estimated V A R parameters for all three representations corresponding to this transfor­

mation are virtually identical to the representations corresponding to the f(r t,r t_,) = r, - r t_,, 

transformation. This is because g(jj = r t for virtually every observation in the U.S. data. 

Therefore, to understand the interest implications of representations based on f(r t,r t_,) = g(rj -

g(r t_,), one can look at the results in Panel A of Table 3. They indicate that these representations 

imply a substantial amount of variation in g(r t), and, in particular, imply that this object can go 

negative for long periods of time. But, this maps into r, being roughly zero for long periods of time. 

"These plots leave out six observations for the No Break D G M and eight observations for 

the H B / V A R D G M . Including these points would make it difficult to discern the patterns in the 

plots. 

l 2Notice that the standard errors are quite large in the post-57 subsample for the No Break 

and the High Break, Innovation models. These large standard errors are due to the influence of a 

small number of realizations. On rare occasions these two models produce realizations of the interest 

rate that are very close to zero for the entire post-1957 subsample. This in turn results in estimates 

of the interest semi-elasticity that are very large. For the No Break model there are eight realizations 

where the estimated interest semi-elasticity is greater than two in the short sample and for the High 

Break, Innovation model there are 12 such events. Leaving out the eight realizations for the No 

Break model results in a mean and standard error for the post-1957 interest semi-elasticity of -0 .027 
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(0.053). Leaving out the 12 realizations for the High Break, Innovation D G M results in an interest 

elasticity mean and standard error of -0.005 (0.074). 

1 3 The p-value testing the null hypothesis that there is no instability in the income elasticity 

is 1.9 percent. For testing that there is no instability in the interest semi-elasticity, it is 12 percent. 

1 4These results are available on request from the authors. 

1 5 A n extra lag in the V A R with a break in 1958 introduces 18 extra parameters, and the 

break in money demand introduces three extra parameters. We did not formally investigate the 

quantitative importance of the degrees of freedom issue. 
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Table 1: Ordinary Least Squares Regression Results 

Dependent Variable: log m t 

Coefficient on: 

Line Years constant '°g yP.t f1 R 2 

1 1901-1985 1.830 .975 - .0847 .9631 
2 1901-1985 1.722 1.0 - .0874 .0163 

3 1958-1985 5.683 .205 - .0148 .3281 
4 1958-1985 1.548 1.0 - . 0683 7.251 

5 1901-1957 1.371 1.08 - .0788 .9629 
6 1901-1957 1.757 1.0 - . 0914 .0593 

f = (RSS-USS)/USS, where RSS is the sum of squared residuals of the money demand regression 
restricted to have a unit income elasticity and USS is the sum of squared of residuals of the 
unrestricted regression. 

Table 2: Sample Averages 

Line Years 

average annual changes 

log m, log y P i t 

in: 

1 1901-1985 .0242 .0310 .0427 

2 1901-1957 .0336 .0313 - . 0 1 0 0 

3 1958-1985 .0052 .0304 .1500 



Table 3: Interest Rate Implications of Alternative Specifications of f(r,,rt_i) 

No Break HB/I H B / V A R 

Panel A: f(rt,r,_i) = rt - rt_j 

freq(r, < 0 at least once) .323 .533 .498 
(.007) (.007) (-007) 

freqfr, < 0) .027 .083 .062 
(.161) (.277) (.242) 

r 7.001 4.828 5.862 
(4.100) (3.381) (3.585) 

Panel B: f(rt,r,_,) = r, 

freq(r, < 0 at least once) .291 .524 .590 
(.006) (.007) (.007) 

freqfr, < 0) .034 .103 .042 
(.001) (.002) (.001) 

r 6.401 4.712 4.542 
(2.660) (2.702) (1.174) 

Panel C: f(r„r t_!) = Iog(r,) 

r 5.788 5.085 4.550 
(3.174) (2.795) (1.587) 

Panel D: f(rt,r,_,) = log(rt) - log(rt_|) 

f 18.799 13.470 41.098 
(46.533) (29.902) (168.309) 

Panel E: f(r„r t_i) = g(rt)2 

r 6.448 4.912 4.591 
(2.555) (2.403) (1.114) 

'freq (A) denotes the fraction of replications, out of 5,000, in which the event A is satisfied, r, is the nominal 
rate of interest, in percent terms, r, denotes the sample average of the interest rate. Numbers in parentheses 
for the "freq" rows are Monte Carlo standard errors. Numbers in parentheses in the f rows are the average, 
across 5,000 replications, of ?,. The associated numbers in parentheses are standard deviations. 

2g(r) = r for r > 1, g(r) = 1 + log r for 0 < r S 1. 



Table 4: Analysis of V A R Residuals 

For Level, g(r\) Models' 

No Break HB/I H B / V A R 

1903-1985 1903-1957 1958-1985 1903-1957 1958-1985 

Panel A: Autocorrelation Analysis2 

1st order - . 0 0 9 - . 0 4 7 .253 - . 0 3 4 .017 
(.933) (.728) (.181) (.797) (.927) 

3rd order .109 .094 .011 .097 .198 
(.316) (.484) (.955) (.467) (.295) 

Qstat 32.828 21.039 34.730 21.831 13.409 
(.203) (.457) (.002) (.409) (.495) 

1st order .051 .119 - . 0 4 4 - . 0 1 7 - . 089 
(.642) (.374) (.815) (.897) (.639) 

3rd order .199 . 390 .008 .169 .083 
(.068) (.003) (.965) (.207) (.662) 

Qstat 18.739 37.332 8.429 18.993 8.761 
(.879) (.015) (.866) (.586) (.846) 

1st order .037 .130 - . 0 4 0 .010 - . 0 5 5 
(.738) (.332) (.832) (.943) (.771) 

3rd order .092 .255 - . 0 3 2 .130 .022 
(.397) (.056) (.867) (.332) (.908) 

Qstat 15.748 32.730 7.450 32.503 6.058 
(.958) (.049) (.916) (.052) (.965) 

Panel B: Test for First Order Conditional Heteroscedasticity3 

ty 3.931 1.018 .580 .639 .066 
(.047) (.313) (.446) (.424) (.797) 

tr .503 1.010 .001 .307 .453 
(.478) (.315) (.977) (.580) (.501) 

ta .043 .012 .305 .005 1.217 
(.835) (.915) (.581) (.944) (.270) 

(y, ( t, ( u are the first, second and third elements of«, in (3.2). The VAR's indicated in column headings are the ones we had to estimate to 
construct our six Level, log r, data generating mechanisms. 

2We report 1st and 3rd order autocorrelations and the corresponding p-values that would be appropriate if these were autocorrelations of 
independent random variables. Also reported are Q-statistics and their associated p-values. 

3We report the product of the number of observations and the R-squared of the regression of the squared fitted VAR disturbance on one lag 
of itself. In parentheses is the p-value of this statistic assuming it is a realization from a chi-square distribution with one degree of freedom. 
(See Engle (1982) for a discussion of this statistic.) 



Table 5: Regression Results in Data and f(r,,r t_i) = g(rj Specification 

M O D E L S 3 

Variable 1 U.S. Data 2 No Break HB/I H B / V A R 

Panel A : Whole Sample Unrestricted O L S (1901-85) 

ay .975 .816 .901 .936 
(.185) (.135) (.063) 

a r - .085 - .051 - . 0 6 4 - . 0 7 2 
(.018) (.017) (.014) 

Panel B: Post-1957 Unrestricted O L S (1958-85) 

ay .205 .766 .304 .302 
(.468) (.456) (.247) 

ar - . 0 1 5 - . 0 1 6 .049 - .011 
(.386) (1.945) (.008) 

Panel C : Post-1957 f Statistic 

f 7.251 1.049 4.811 9.861 
(1.734) (5.628) (9.545) 

freq(f >7.25) .013 .210 .493 
(.002) (.006) (.007) 

See Equation (2.1) and Table 1, note 2 for an explanation of the variables. 

Numbers taken from Table 1. 

Numbers are the average, over 5,000 artificial datasets generated by the indicated model, of the 
indicated variable. Numbers in parentheses represent standard deviations across datasets. The final 
three columns impose the restriction that the money demand disturbance is independent of y and r. 



Table 6: Evaluation of the g(r^ and log(r l) Specifications 

No Break HB/I H B / V A R Low Break LB/ I L B / V A R 

Panel A : f(rt,rt_,) = g(r,) Specification 

freq(I)2 .010 .120 .285 .131 .125 .135 
(.001) (.005) (.006) (.005) (.005) (.005) 

freq(S)3 .172 .196 .309 .049 .117 .114 
(.005) (.006) (.007) (.003) (.005) (.004) 

freq(F) 4 .043 .272 .342 .292 .226 .153 
(.003) (.006) (.007) (.006) (.006) (.005) 

freq(I n F) .003 .048 .110 .039 .028 .019 
(.001) (.003) (.004) (.003) (.002) (.002) 

freq(I f l S) .001 .027 .103 .010 .017 .023 
(.000) (.002) (.004) (.001) (.002) (.002) 

freq(S f l F) .006 .057 .107 .016 .030 .015 
(.001) (.003) (.004) (.002) (.002) (.002) 

freq(I n S n F) .000 .010 .039 .004 .004 .003 
(.000) (.001) (.003) (.001) (.001) (.001) 

Panel B: fd^r,.!) = log(rt) Specification 

freq(I) .004 .050 .138 .131 .148 .195 
(.001) (.003) (.005) (.005) (.005) (.006) 

freq(S) .186 .202 .354 .049 .107 .122 
(.006) (.006) (.007) (.003) (.004) (.005) 

freq(F) .002 .013 .057 .302 .295 .153 
(.001) (.002) (.003) (.006) (.006) (.005) 

freq(I f l F) .000 .001 .013 .045 .045 .035 
(.000) (.000) (.002) (.003) (.003) (.003) 

freq(I f l S) .000 .010 .060 .008 .019 .038 
(.000) (.001) (.003) (.001) (.002) (.003) 

freq(S f l F) .000 .002 .023 .014 .032 .021 
(.000) (-001) (.002) (.002) (.002) (.002) 

freq(I n S n F) .000 .000 .006 .003 .004 .007 
(.000) (.000) (.001) (.001) (.001) (.001) 

Table contains frequency, out of 5,000 artificial datasets generated by the indicated model, that the indicated event, or intersection of events, is 
satisfied. 

2I = event {Sy r € 3 y ± 0.25, S r r € Sr ± 0.01}, where S y , S r are defined in equation (2.3), and S y ( , Sr r are the simulated values of hy, hr in 
the r-th artificial dataset, r = 1 to 5,000. 

3 S = event {hcl € S c ± 0.25, J M € S, ± 0.01}, where hc, i, are defined in equation (2.4), and 3C r , S, r are the simulated values of S c, S, in 
the r-th artificial dataset, r = 1 to 5,000. 

4 F = event {fr E "f ± 3}, where f is defined in equation (2.3) and 
fr is the simulated value of f in the r-th artificial dataset, r = 1 to 5,000. 
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U.S. DATA, 1900 TO 1985 
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