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9. A lMore General Univariate Optimization Problem

The problem of the preceding section is a special case
of a more general quadratic optimization problem, one version of

which follows. We define the polynomial in the lag operator,
= m
(58) d(L)—dO+dlL+...+dmL,

where dO £ 0, dm # 0. We assume that 8¢ is a sequence of exponen-
tial order less than 1/V b, where 0 < b < 1. Then the problem is

to choose a sequence {yt,t >, 0} to maximize

(59) I v {ey, - 3w -3 lawy,]}

t=0
where h > 0,
subject to y_1, ¥_o, + « « ¥y_, given.
The problem of Section 8 is a version of problem (59) with
gy = (fg + a, - w), m=1, y. = ng, and d(L) =-% (1-L), except
that in the problem of this section we have strengthened the
requirement on & that it be of exponential order less than 1/VHET
rather than 1/b (note that 1/V b < 1/b). The reason that this
stronger condition is needed for the more general problem of this

section will be described below.

The Euler equation for this problem is

(60)  [a(br™)a(L) + n] y, = g,-

We invite the reader to verify that this is the Euler equation by
differentiating the right side (59) with respect to y, and re-

arranging. Note that (53) is a special case of (60) with

a(L) = (1-L)Vd73, h = £1, gt = (fo + at - wt)e
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In addition to the Euler equation (60), the necessary
and sufficient conditions for maximization of (61) are completed

by the condition
h © .t 2
(61) > Z b Ty S

Inspection of (59) reveals that any {yi} path that violates (61),
even if it satisfies the Euler equation, gives a very bad outcome
for the criterion function. In general, condition (61) is not
implied by the transversality conditions, which are obtained as in
Section 8, by differentiating a finite T version of (59) with
respect to the Yps o o o VD _ male setting the results to zero,
and taking limits as T + <. Hansen and Sargent ( ) describe in
detail why the transversality conditions, though necessary for an
optimum, are not in general sufficient. They also describe how it
is that (61) is the general condition that selects the unique
solution of the Euler equations (60) that maximizes (59).

We briefly describe how (60) is solved subject to
(61). We first note a simple but important feature of the charac-
teristic polynomial h + d(bL~1)d(L) that appears in (60). This
polynomial evaluated at any value zp equals the polynomial evalu-
ated at bzohl. In particular, if zq is a zero of this polynomial,

then so is bz, L . To prove this, suppose that zy is a zero,

0
which means setting L = z; gives h + d (bz “l) d(zy) = 0. The

0

claim is that this implies that setting L = bzo_1 will also set
the polynomial to zero. Making this substitution gives h + d (zg)
d(bzo—l), which equals the characteristic polynomial evaluated at

Zg, which equals zerc by assumption. Thus, the =zeros of the
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characteristic polynomial of the Euler equation come in pairs of

k‘.—l L) k = 1 L] - L - L) m'

the form Zy s bz
Let wus assume that the zeros of the characteristic
polynomial are distinct. (The reader can apply the methods of
Section 5 to analyze the case of repeated zeroes, if this becomes
necessarys. ) Let the zerces be ordered in descending order in
absolute value by
1

lzll > ]zgl > % lzm' > |bzm"l ’ > > |‘oze_l | > | bzl— . Let

us define A = 1/z,, k = 1, . . ., m. DNotice that the above

ordering, and in particular Izml > Ibzrﬂ-l , implies that
I\x| < 1/¥® for k =1, . . ., m. Then it is possible to factor

the characteristic polynomial of the Ruler equation as

(62)  n+ a(L™)a(L) = e(bLt)e(L)

where

(63) e(L) = cg(1-2L)(1-25L) « « o (1-A L)
(64) co = [(1)™g/(Aqhn « « ap]

and where A, 1is a constant that is uniquely determined by h and
a(L).

since |A | < 1/V B for k = 1, . . ., m, (62) - (63)
imply that h + d(bL™1)d(L) has been factored into c(bL™1) c(L),
where the zeroes of c(z) exceed V b in modulus, (from (63) the
zerces of c(z) are the 1/A\,'s) and where the zeroes of c(bz1) are
less than Vb in modulus.

Using factorization (62), the REuler equation (60) can be

represented as



(65)  c(rle(Lly, = g,

The unique solution of the Fuler equation that satisfies (61) is

given by
(66) e(L)y, = e(vr~1)~1g,.

or

(66) (1-2qL), « « (1A L)y, = 00-2 [(1-a;p071) . .

~1yi=%
(I—AmL )] ¢

A partial fractions representation of coc(bL'l)'1 is given by
m
(67) [Gaagbi ™) - o ] =} ——Ak——_l—-
k=1 (1-\ bL ")
k
where
. -1 -1
(68) A, = lim (1—kkbz ) c(bz )/cO.
z + A b
k
Using (67), solution (66) can be represented as
m
-2 A 52
(69) (1=X, L) & s «{1=Xk L)y, = ¢ 1 1< g, .
1 R =] 1-3\}{131.'1 k
or
B B % J
(70) (l—AlL) .. .(1-xmL)yt = 8y kzl A jZO (bxk) Biag®

Since Ilkl < l/f—ﬁj |bxk|'¢f7;- This condition, together with our
having assumed that {gt} is of exponential order less than 1/ ¥ b
guarantees that the right hand side converges, and that as a
function of t it is itself of exponential order less than 1/ v b.

This condition, together with the fact that
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‘Ak] <1/9¥%, k=1, .« . ., m, guarantees that the solution (70)
starting from the given starting wvalues Y15 = ¢ *s Y_p satifies
condition (61) and is therefore optimal.

We now briefly describe why we were able to get by with
the weaker assumption of exponential order less than 1/b, rather
than 1/ VY b, for {at} and {wt} in the problem of Section 8. The
reason is simply that for the special polynomial d(L) ="’_c-17§ (1-
L), it turns out that for any h > 0, the factorization (62) - (63)
is such that llll < 1, which is stronger than the general condi-
tion that ’Aly < 1/Y b. The reader can verify that with more
general polynomials of the form d(L) = Vd/2 (1l-al), values of a
exist for which the analogue of - ¢ in figure L4 is less than
(1+4v), so that 1 < A < 1/¥b. For such cases, it is necessary to
impose a stronger condition on the exponential orders of (at, wt)
than we did in Section 8.

We close this section with a remark on terminology.
Consider solution (66), c(L)y, = c(bL‘l)“lgt. In the control
literature, c(L)yt is called the '"feedback part" of the solution

for y, while c(bL“l)-lgt is called the "feed forward part."
10. Introduction to Multivariate Dynamic Optimization

We now briefly describe a multivariate generalization of
the problem of Section 9, and its solution. We define the matrix

polynomial in the lag operator

= m
(71) D(L) =Dy + DjL + « « « + DL
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where D; is an (nxn) matrix. We let {G{} be a sequence of (mx1)
vectors, each component of which is a sequence of exponential
order less than 1/V b. We let H be an (nxn) positive definite
watrix. Finally, we let {Yt} be a sequence of (mxl) vectors of
variables that are to be chosen for t > 0, with given initial
values Y 7, Y 5, « « «, Y . The problem we are interested in is

to choose {Y;, t > 0} to maximize

(72) tzo v*{e.¥, - 2 v, HY, - = [p(L)Y,] [p(L)Y,]}

given {G;, t > 0 } and Y 1, « « «, Y . 1In (72), the prime (*)
denotes matrix transposition.

Necessary and sufficient conditions for a maximum of
(72) are

il -
(73) T bYy, HY, <+

=

and the Fuler equations

(T4) {1 + p(r™l)” D(L)}y, =G

t

That the Fuler equations assume the form (T4) can be proved using
the method of Sections 8 and 9, namely by differentiating (72)
with respect to Yy, equating the result to a vector of zeroes, and
rearranging. Condition (73) is the correct generalization of
(61), and is justified by similar reasoning.

The related pairs property of the zerces of the charac-
teristic polynomial of the Euler equation that held in the univar-
iate case generalizes as folllows. If zg is a zero of det {1 +

D(bz'l) D(z)} then so is bzo‘l. Here "det" denotes the determi-
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nant of a matrix. The appropriate matrix analogue of the scalar
polynomial factorization (62) is a polynomial matrix factorization
c(bL71) c(L), where the zeroes of det C(z) exceed V ©, in absolute
value, while these of det C(bz_l) are less than VDb in absolute
value. By a theorem on matrix polynomials of the form that appear

in (7L4), there always exists a matrix factorization

(75) H+ p(br 1) D(1) = c(er™) (L)
where
(76) C(L) =Cu+ CiL+ oo o+ CmLm

and where the zeroes of det C(z) exceed ¥V b.

The solution of (T4) satisfying (73) is then given by

(17) c(L)Y, = c(bL ?

t

By the above mentioned property about the location of the zeroes

of det C(bz™l), we can represent det c(br 1) as
det C(bLL) " = Agla-agpL7l) o o o(1oagprl)

where ’All < 1/ ¥ b, where kK = m n, and where we have assumed

distinct zeroes of det C(bz_l). Using a matrix version of partial

fractions, C(bL_l) -1 can be represented as

. K
(78) elsr™) e 3 —ih—f
h=1 (1-Ath- )
where
(79) A= lim (1-Ahbz“1) clpe™ty L

ES
Z Ahb
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Note that each Ay is an (nxn) matrix. Using (78), (79) can be

represented
v v 3
(80) c(L)y, = h£1 A JEO (x_b) Gy
Representation (80) is the vector generalization of (70).

Note in (77) a sort of symmetry in form between the
"feedback part" C(L)Y, and the "feed forward part" C(bL‘l)"th
that generalizes a similar symmetry that we observed in the uni-
variate problems.

A key step in solving problems of this sort is achieving
the matrix factorization (75). Hansen and Sargent | ] describe
several methods for accomplishing this. The most readily under-
standable one is probably the one that uses iterations on a '"ma-
trix Riccati difference equation" (see Chapter _ , pp. )s
For now it is sufficient for the reader to trust that practical

methods exist for factoring H + D(bL—l) D(L) in the manner

required.

Example (i) Interrelated Factor Demand
Consider the problem of a firm that maximizes

&9 d

(81) y bt{qt -, - LK - ~% [(l-L)nt]2

d
2 2
-} [(l-L)kt] }
0<b<1l
subject to

n -
G IR I A R
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where ki is the stock of capital, ny is the stock of labor, wy is
the real rental on labor, and Jt is the real rental on capital; fl
is a (2x1) vector of positive constants, ¥ is a positive definite
matrix, and d; and d, are positive constants measuring adjustment
costs. We assume that {Jt} and {wt} for t » 0 are known sequences
of exponential order less than 1/ ¥V b. The problem is to choose
sequences {ky, ny, t > 0} to maximize (81) subject to (82), given
initial values n_q, k_l and given sequences for W and Jy.
Problem (81) - (82) is a special case of (72) with

wﬁ d
g =% <™, PDlL) = (1-L) 0 , and

M ; =
—2(1-1,)

H = F. The Solution (80) is an interrelated pair of decision

m'w

rules for (ng, ki) of the form
© W
(83) c(L) (:t) = E T CWSE l:fl— (Jt+3]:| .
: k=1 j=0 t+]

where C(L) = Cq + C;Le 1In (83) the decision rules for capital and
labor interact in the sense of each of (nt,kt) depending on lagged
values of the other, and each depending on future rental rates for
the other. This interdépendence occurs so long as either F(or H)
or D(L) is not diagonal.

Versions of this problem were studied and utilized by

Nadiri and Rosen | ], Hansen and Sargent | ], Meese | lis

and Eichenbaum | ]la

Example (ii): A Dynamic Nash Equilibrium
We consider a duopoly in which demand is governed by a

linear demand schedule.



= il
- 1
(8k) P, = AO & g (qlt + th) tu, AjsAL >0

where Q¢ is output of firm i at t, and uy is a known sequence of
disturbances to demand of exponential order less than 1/VYb. Firm

1 maximizes

t 2
(85) I v {pgayy - ay sy, - [45(0)a, ]},
0<b<l

where di(L) =djg +t e oo« + 4y

m .
Lin L™, and where S;¢ 1s a sequence of

shocks to costs of production of firm i, assumed to be a known
sequence of exponential order less than 1/V b. Here [di(L)qit]2
stands for costs of adjusting production rapidly. The maximiza-
tion of (85) by i takes {s;¢}, {ugd, and {qjt’ j# 1i,} given for t
> 0, and q given for {t = -m, . . ., -1}. In particular, firm i
is imagined to regard firm j's output sequence as given and beyond
its influence.

Substituting (84%) into (85) gives

-] A]_
(86) tEO (A -5 (agq + o) * e} ayy - qpy 55

&

The Euler equations for this problem for firms 1 and 2 are

=1 Al
(4, + 4 (17" )a, (1)) - Q.
(87) -fi (A. + d_ (6" 1)a (1)) Dt
2 1 2 2

0 + ut - slt

A . +u - s
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We define a Nash equilibrium in the space of sequences
of quantities Q4> 9oy @5 a pair of sequences for qltaqgt.ii.that
solve the interrelated Euler equations (87) and satisfy the bound-

ary conditions
(88) ) btqit <+® fori=1, 2

Equivalently, the Nash equilibrium is the pair of (qlt’q2t) se-—
quences that satisfies the following conditions:
(i) Firm 1i's quantity sequence maximizes its present
value (85), given firm j's sequence, for (i,j) =
1,2) and (2,1).

(ii) The output market clears, in the sense that (8l4)
holds for all t.

Equation (87) is evidently in the form of a vector Euler
equation in (qlt’ q2t)‘ The matrix polynomial on the left side of
(87) can be factored into the form C(bL—l)‘C(L), where C(L) is a
(2x2) matrix polynomial with the zeroes of det C(z) exceeding Vb

in absolute value. Then the Nash equilibrium can be represented

Ag * up - Spy

e

q2t A +u, - s

0 t 2t

where

_ m
(L) = Co + CiL + « « o« + C LW

¥/It is necessary to add the qualifier "in the space of

oo 2t" because different definitions of
sequences of quantities qlt®> %

strategy spaces in general give rise to distinet Nash equilibria.



- 12 -

Note that the vector Euler equation (87) was discovered
by our having solved an interrelated pair of univariate dynamic
optimization problems. The resulting system of Fuler equations
(87) seemingly can itself be viewed as solving some vector optimi-
zation problem, since the matrix characteristic polynomial is
expressible in the form H + pler~1) D(L). To seek the Vector
dynamic optimization problem that is implicitly solved by (87) is
to pose a version of an "inverse optimal control problem:" given
a system of difference equations, attempt to synthesize an optimum

problem for which they are necessary conditions.



Another Example: Learning by Doing

The following example 1is interesting from both the
substantive and a technical points of view. From the technical
point of view, the example will introduce a control problem in
which it is a rational characteristic polynomial for an Fuler
equation that must be factored.

We consider a monopolist who faces the linear law of

demand

(a) Py = Ag = AQp + uy, Ag, A > O

where Py is price, Qt is output, and Uy is a known sequence of
shocks to demand assumed to be of exponential order less than

1/¥b. The monopolist's total costs at t are given by
= ¢ 2
(b) C(Qy) =cp + cqQ + Eg Q" + c3Qysy - o [h(L)Qy Qg

Co, Cl, C2, C3., C,_l > 0

where S¢ is a known sequence of shocks to marginal cost, assumed
®
to be of exponential order less than 1/Yb, where h(L) = | hJLj.
As an example of the sort of h(L) that we have in mind,dwe shall
later consider the special case h(L) = 1/(1-pL) where p < 1 but
where p is close to one. Then (6) captures the notion that mar-
ginal costs of current output fall with cumulated past output.
This is one version of a "learning-by-doing" cost structure.

The firm maximizes
o &

} v'{p Q -C(Q,)}
£=0 tQt %

or using (a) and (b)
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Tt Ay % @
(c) tzob {[AO—~§— Qt+ut]Qt'[°0+°1Qt+'§_ Q, “*esQ s,

~c), [n(L)q, 1Q, I}.

By using the preceding method, the FEuler equation for the firm's

problem is found to be, after some rearrangement,

() [(a e )-c) (L)) h(BL ™) 1Q, = A + u, - cs, -

1 t 0 t 37t

The boundary condition is
(e) - AL YT bQ < +m,

We shall now consider the special case of the model that
emerges when we set h(L) = 1/(1-pL), 0 < p < 1. 1In this case, the
characteristic polynomial on the left side of the FEuler equation
(d) become the rational polynomial

) CJ-\‘ _ Ch
e LR

1

where k = (Aj+cp). To solve the Fuler equation (d) subject to
boundary condition (e), the first step is to express the charac-
teristic polynomial in terms of a common denominator, which gives
2 -1
[k(14p BJ-2ch1 - (k-ch)L 5 (k—ch)bL

(f) 7 .
(1-pbL™") (1-pL)

Notice that the denominator is already factored, and that the
zeroes of the numerator come in the familiar type of pairs
(zo,bzo'l). Our next step on the way to solving our problem is to

factor the numerator. WNote that the numerator can be written
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a k(1+p2b)—20h
(g) (k-Ch)Pb[-L +| (k-ch)pb

]-1/vL] = (1-0bt™Y) (1-aL)
ab

where 1/a is the zero of the characteristic polynomial that ex-

ceeds 1/Yb. Equating powers of L, as in section 8, shows that o

mist solve

k(1+p°b)-2c))

1
(h} EE + o = [ (k—ch)pb ].

We assume that the parameter k = A; + c5, ), P, b are such that
the right side exceeds 2/b in absolute value. This guarantees the
existence of a real value a that solves (h). Note that for p = b
= 1, the above equation has the solution a = 1/a = 1. By continu-
ity of the solution in the arguments on the right hand side, for
values of p and b sufficiently close to 1, a will be close to one.

Using (f) and (g), the Fuler equation can be expressed

(l—abL-l){l-aL} ab
(J) Q. = [A +u -c_s ]
(1ptL- 1) (1-pr) F (s=cy)ed 70 4737t

The solution of the FEuler equation (d) that satisfies boundary

condition (e) can be expressed in "feedback-feedforward" form

(1-alL) _ ab . (1-pbL7h)
(k) (TpL) % = (A re,1 Py~ (1-gbr-1) [Ay*+u -cgs, ]

Unless a = p, Qi feeds back on an infinite number of its own past
values, reflecting the dynamics of the firm's optimally coping
with the learning-by-doing cost structure. In general, p #* a.

However, in the special limiting case p = b = 1, it can be veri-



o

fied that p = a. In this special case, (k) collapses to the

static decision rule

b
Q, = [A +u, -c.s,],
o Al + 02 = By 0"t 37t

despite the presence of the learning-by-doing cost structure.



A version of figure 4 with b = 1 determines the intriguing golden
ratio or golden section. The golden ratio is the unique positive number
A whose reciprocal equals itself plus unity: A-l =1+ ). This equation
can be rearranged to read l—l + A =1+ 2\, From the quadratic formula,

5 - 1
the golden ratio equals 21 and is found as the intersection

2

in the positive quadrant of the line 1 + 2\ with the curve ) + l-l, The
golden ratio, which appears repeatedly in nature and mathematics, fascin-
ated the ancients, and is said to be reflected in the design of the Par-
thenon., One place that the number occurs in mathematics is as the limit
as t goes to infinity of the ratio of successive terms in a Fibonacci
sequence. A Fibonacci sequence is generated by the difference equation
Xep1 = % + X1 with initial conditions Xy = L, X ™ 0. The charac-
teristic polynomial (1 - L - LZ) associated with this equation can be fac-

-1
tored as (A - L)(\ + L) where A is the golden ratio. For more on the

golden ratio, see '"Math and Music: The Deeper Links'', New York Times,

Sunday, Aug. 29, 1982.



More Exercises

1. (Advertising)

1. A monopolist faces the following demand curve for his product,
Py = Ag - AQ * &l(L)ay + ugs Ay, Ay > 0

where Py is price, Qt is output, g is advertising, ug is a se-
quence of shocks to demand, and g(L) = 8y * &L t ... F gmLm,

where g; >0 for j = 0,ees, me« The firm maximizes

oo

t 2 Y . 2
(1) tZOB {p,Q-Qs,-1/2[a(L)Q 1" - 5 a,"-a, v}, 0 < B <1

where d(L) = ? djLJ. In (1), s, is a shock to costs, 1/2[d(L)Q]?
represents cégg; of rapid adjustment, and the marginal costs of
advertising at t are (W£+Yat), where w, is a known sequence. We
assume that (ut,st,wt) are known sequences of exponential order
less than 1/YB. The criterion (2) is to be maximized over se-
quences for {Qs,as,s>0} taking as given {Qs,as,s<0}-
a. Find the Euler equations for this problem.
b. Argue that the solution of this will be linear laws of
motion for (Qt’at) in which each of (Q,a;) depend on

lagged values of both Q and a, and current and future

values of all of (u,s,w).

2. (Time to build with two processes)

Consider a monopolist whose output satisfies

(1) Q = f(L)nyy + &(L)npy



B
Y i) 5 o g
where f(L) = ) f,1’, g(L) = § g.1Y; £, > 0, g, » O for all j.
=0 9 =) 9 J J
J=0 J=0
In (1), Nyt is the amount of labor at k that is assigned to pro-
cess 1, while Noy is the amount that is assigned to process 2.
The idea is that output can be produced via two processes, with
different timing characteristics, e.g., to represent the notion
that the first process is fast but wasteful, while the other is
efficient but time consuming, we might set f(L) = L, g(L) =

1/2[L+L2+L3+Lh]. The firm faces the demand curve

(2) Py = Ay - A + ., Ay, A >0

where Uy is a known sequence of exponential order less than 1/f§.
The firm hires labor at the wage rate Wy s where w, is a known
sequence of exponential order less than 1//5. The firm's problem
is to maximize
(3) ] 8%Mp,Q -, Q}, 0 <8 <1

t=0
subject to (1) and (2), with {n)_g>8=-1,00e,-m} {ny ,s=-1,...,-r}
given.

a. Find the Euler equations for this problem.

b. Indicate the form of the optimum decision rules for

(ny¢snpp)e
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Among those solutions for [nt} that satisfy the Fuler equations,
it turns out that the conditions that {at}, {Wf}, {nt} are also

necessary for the transversality condition (54) to hold.



Insert B

The first-order conditions (51)-(52) are necessary and
sufficient conditions for maximizing the finite T criteria (50).
(The reader can verify that the second order conditions for a
maximum are satisfied.) For this particular problem, although not
in general, it turns out that the limits of the first-order condi-
tions (51)-(52) as T approaches infinity are necessary and suffi-
cient conditions for a maximum of the infinite horizon problem
(49). In more general linear-quadratic optimization problems, the
limits as T + = of the first-order conditions are necessary condi-
tions for maximization of the infinite time problem, but are not
in themselves sufficient. Hansen and Sargent | ] discuss this
point and provide examples. The special features of the present
problem that makes the limits as T + « of the first-order condi-
tions necessary and sufficient for maximizing the infinite T
problem are (i) the condition that f; > 0, and (ii) the fact the
zero of the characteristic polynomial of the first difference
polynomial that governs adjustment costs, being exactly unity, is
not less than unity in absolute wvalue. By violating condition
(ii), Hansen and Sargent | | provide an example in which the
transversality condition and Euler equation fail to be sufficient
conditions for an optimum.

We now turn to a method for solving the Euler difference
equation subject to the initial condition and the transversality

equation.



Finding a Wold Representation:
m”" order moving average
More generally, suppose that we are given a process ug

with finite order moving average representation

where
5 h
a(L) = Z a, LY, , and where g is a white noise that
j=0 4
is not fundamental for x,, i.e., w # x, - P[xt'xt—l « « o]« For
convenience, we assume that the zeroes of the polynomial a(z) are

distinct. The covariance generating function of Xy is given by

(1) glz) = a(z)a(z‘l)cue.

We know that this process also possesses a Wold moving average

representation
(2) x, = d(L)ey, dg = 1,

where dy €¢ = x; - P[xtlxt_l, « o« «]e The condition that ey lie
in the linear space spanned by {xy, X{_7, « + «} is equivalent
with the condition that the zeroces of d(z) not exceed unity in

absolute value. To see this heuristically, represent d(L) as

(3) d(L) = o (1-3L) « « «(1-A_L)

th

where Aj is the reciprocal of the m zero of d(z). Represent

a(L)~L as



=B =

m A
il = J
(L) a(L) le TTZXEET “

Then (2) and (4) imply

( ) £
5) €, = A ALTx
t 55 J g d Tteke

The geometric sums on the right side fail to converge if 'Ajl >
1. Imposing that IAJ] <1 for j=1, « « «, m is necessary and
sufficient for ey to lie in the space spanned by current and
lagged x's. (This argument fails to reveal why when |Aji =1 for
some Jj, €y lies in the space spanned by current and lagged xt's.
When |Xj| = 1 for some Jj, then although Xy possesses a moving
average representation, it possesses no autoregressive representa-
tion. In this case, although €, is in the closure of the linear
space spanned by {xt,xt_l, « + «}, it cannot be expressed in the

form .z WiXe_j for any sequence of wd's, but only as the limit of
a seqﬂgice of such expressions.)

To find a fundamental moving average representation, we
note that (2) and (3) imply that g,(z) = Aoe(l-llz) e o o(1-2p2)
(l-hlz'l) . . .(l-lmz'l). Then we equate this to g.(z) given by

(1) to get

cu2a(z)a(z_1) o€2d(z)d(z_l)

or

4

(6) ouza(z)a{z-l) %2‘1"*1Z) e o of1-A 2) (1A 8"

1

s

. s e (l—lmz
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Equation (6) asserts that d(z)d(z"l)oe2 is a symmetric factori-
zation of nga(z)a(z'l) in which the zeroes cuea(z)a(z_l) that are
not inside the unit circle are placed in d(z), while those that
are not outside are put into d(z”1). (Note that since

evaluated at Zq equals its value at zo_l, the zeroes
-1

of ¢ 2a(z)alz come in reciprocal pairs. Thus, it is remini-

u
scent of the characteristic polynomial of an Euler equation in the
undiscounted case).

The preceding tells us how to achieve a Wold moving
average representation for a finite-order wmoving average
process. First, find the zeroes of g.(z). By the reciprocal
pairs properties of these roots, half will not be outside the unit
circle, while half will not be inside the unit circle. (Excuse
the cumbersome wording, which is designed to cover the case of

roots on the unit circle.) Let kl, § e Am be the roots that

are inside the unit circle. Then set
(1) a(L) = (l—J\lL) S (l—J\mL).

Then to find Uu2’ solve equation (6) at z = 1 to get

. 8,(1)
(8) By ¥l
a(1)
Hansen and Sargent | , pe 102] give a quick but equi-

valent method of finding d(L). Given ougd(z)d{z'l), the problem
is to find 052d(z)d(z_1), where the zeroes of d(z) are not inside
the unit circle. Let zy, . . «, 2, be the zeroes of a(z) that are

outside the unit circle, where 0 € k € m« Then d(z) satisfies



Q

Kk
(9) 0—8 d(z) = alz) 1 .
u J=

For example, suppose Xy = (1+2L)ut, where aue = 1. Then applica-
tion of (9) gives the Wold moving average representation Xy =
(1+(1/2)L)u;, with o = 2.

Finding a Wold representation:
th .
An m”"* order moving average, n order autoregression

The following problem is a useful input into solving an

"signal extraction" problems.

interesting class of
Consider a covariance stationary process x; with repre-

sentation

where g is a (not necessary a fundamental) white noise and

"

B(L) = (1-u) « o o (Lo L), fuy) <2

a(L) = (1-aqL) « « « (1=a L)

Note that we assume that the zeroes of b(z) are outside the unit
circle, but that those of a(z) are unrestricted. Our problem is
to find a Wold moving average representation for xi.

The solution of this problem is simply

_d(L)
X T o(n) %t

where d(L) = (1-A\qL) . . . (1-A L), where A;, « . ., A are the

m
zeroes of a(z)a(z"l) that do not lie outside the unit circle, and
2

where €4 is the fundamental white noise for Xt 5 with variance O

given by



In other words, the denominator polynomial b(L) is left unaltered
while the methods of the preceding section are applied to factor
the numerator polynomial. The reader should convince himself that
this method delivers an €y process that is a white noise, and that
lies in the linear space spanned by {xt’xt—l’ « « o}e This can be
done by constructing an argument along the lines of the one in the
preceding section, by assuming |AJ| <1 for j=1, « +» «, mand by

premultiplying (10) by b(L)/d(L).

Signal Extraction Problems

Let y; be a covariance stationary stochastic process

th

with m order moving average representation

Yg = a(L)ut,
m
where alLy = ) a r,J , where
j=0 !

Uy is a white noise with variance o 2 that 1is not necessarily

u

fundamental Ffor Vo Suppose that Xy is the sum of Yy and an

2
n °

orthogonal serially uncorrelated white noise ny with variance ¢
% Sidy g

where Enju,_o = 0 for all s.

Suppose that an agent observes {xt,xt_l, « « +} at t, and wishes

to construct linear least squares forecasts of x's on the basis of

this information set. To construct the linear least squares

forecast for xt+k &€iven {xt,xt-1, . « <}, one uses the Wiener-
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Kolmogorov formula (52), which requires that a Wold moving average
representation x, = d(L)e, be obtained for x.

To obtain the Wold representation for Xy, We simply use
the method of section __ .+ 1In particular, the covariance gene-

rating function of Xy is

We find the zeroes of gx(z), which come in reciprocal pairs, and

prepare the factorization

-1 2
gx(z) = d(z) da(z™") o,
where the zeroes of d(z) = (1-x72) « . .(l-kmz) do not lie inside
the unit circle, and °s2 solves

5 gx(l)
e 4(1)2

g

The Wiener-Kolmogorov formula (52) can then be used, to calculate

P[xt+k|xt’xt—l' i alls

Moving into a richer class of examples, we now let y, be

a process with mixed moving average, autoregressive representation

L)

=

u

Yy = t

S

2

where u; is a white noise with variance Oy s and

us]
el
i

(1-a1L) . .(l-amL)

o’
ey

S
I

= (1-pyL) « o o(1-n L), |qu <1



=P o

where the aj's can be on either side of the unit circle. Suppose
that Xq is the sum of Ty and a serially uncorrelated white noise
2

¥

Ng with wvariance cn

Xp, = ¥g ¥ g

where Eny uw_. = 0 for all s. Again we desire to find
P[Xt+k|xt’xt~1’ « « «], so we need to find a Wold representation
for Xypo We use the method of section .

The covariance generating function of x is

(el = a(z)a(z™1) %

Ll Ve ™hy B n

&x

Taking the right hand side to a common denominator gives

o a(z)a(z_l) + Uneb(Z)b(z_l)
-1,

b(z) blz

The numerator polynomial is of order p = max (n,m), and can be

factored to be of the form
(12) ouea(z)a(z“l) 4 cneb(z)b(z_l) = 0_%a(z)a(z"")
where

1

a(z) = (1-A.L) « . . (l—lpL), lJ\J_l(l la=1...0p

and where 062 solves
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The Wold moving average representation for Xy 1s then

(13) Xt =Fm Et .

The Wiener-Kolmogorov formula can be applied to (13).

A famous application of the preceding analysis is due to
Muth | ] Muth assumed that income Xy is the sum of a first
order Markov process [1/(1-pL)]uy, Ip' < 1, and an uncorrelated

white noise ny. The agent's problem was to predict his future

income. Setting a(L) = 1, b(L) (1-pL), we find that equation

(12) becomes

2 2 =1 2 -1
gy * 9, (1-pz)(1-pz™) o, (1—Alz)(l~llz )

The expression on the left can be written

-1 2 2
0270 P[-2° + (=2 + (3 +p)) -1].
n Uﬂ2p p

Applying the quadratic formula, and setting 11 equal to the root

that is smaller in absolute value, we have

2 [
) ay =R (R Lee)] -\l

2
g
s+ (o)l b
o}
Un p

The limiting value of ll as p approaches 1 from below is

2 2 2
1 0u 0u 1 Gu
15) M =1+E () -y
o] o o
n n n
which is the expression obtained by Muth | ]« Thus, we have

that Xy has the first-order moving average, first order auto-

regressive representation



1-A.L
X, = -———L-]a
t 1-pL’"¢’
where €y is a fundamental white noise for Xy with wvariance 0€2
that solves
2 2 2
02_02 + % (1-p)
£ 2 '
(1-1,)
The result from page now applies with B = p and Xl S : T
Thus we have
P, x = [pk(p-k ) / (1-x L)]x
t Tt+k 1 j B £*?

so that projections of future x's are a geometric average of past

x's,




5. Signal Extraction With Dynamics

We now use the recursive projection formula (15') to
solve a signal extraction problem that John Muth | ] used to
provide a rationalization for Milton Friedman's formula for perma-
nent income. This will lead us to a version of the Kalman filter.

We consider the structure

where p and c are scalars, €441 is a random variable satisfying

E €y = 0O for all t, E stg = 082 for all t, and E €4€¢_g = 0 for s

# 0. We assume that uy is a random variable satisfying E e = 0

for all t, E ut2 = °u2 for all ¢, E wuy . =0 for s # 0 and E

ueg = 0 for all t, s. Equation (1) states that Bt is governed by

a first-order linear stochastic difference equation, while equa-
tion (2) states that z, is a linear combination of 8, and a
"noise" uy. Given this structure, we imagine the following prob-

lem that is to be solved by an agent who knows the wvalues of

2

(cs0 50,55 052)' At time t, the agent is imagined to see (zy,z;_

1,...,20), but not to have seen 8 for any t. Thus 8, is a "hidden
variable." At time 0O, before observing zp, the agent is imagined

to have an initial idea about the location of 90, which can be

summarized by saying that he thinks it is distributed with mean

60 and variance about 60 of ZO. The agent's problem is to calcu-

late P[Bt+1|zt,zt_l,...,z0]. Using (15'), we shall derive a

convenient recursive formula for this projection.



e

: _ '
We define 8, . = P[e l,...,zo]- In (15'), at

w1124 9%4
t> 1, ve let y = 04,9, @ = (zt_l,zt_Q,...,zo), x = z,« Then in
light of (1)-(2), and using Pet+l'zt,zt_1,..z0 = 0 by virtue of

(1)-(2) and the orthogonality conditions assumed for (e,;,u;),

(15') becomes

P = P[pﬂtlz

[9t+1|zt,zt_1,...,z ] t_l,zt_g,-.-,zol

+ P[p&t—P[thlzt_l,...,zol)I(zt-P[zt|zt_l,... zO]).

or
(3) 8.9 =90, + Plp(6,-0)|(c(0 -6 )+u ).
where in the last line we use z; - P[ztlzt_l,...zol =cOp + ug -
cet. Let us define
() . = B(6,-8,)°.
t t 't
Then we have that
(5) Plp(6,-6,)|c(0,-0 )+u,] = K [c(6,-6 )+u ]
where
cp L
t
(6) Ke = 2. 2°
c L, +0
t u

In deriving (6), we use the orthogonality condition Eut(ﬂt-at) =0
which follows from (1)-(2) and the orthogonality conditions im-
posed on (et+1,ut). Substituting (5) into (3) and rearranging
gives

(7) 9t+1 = (p-Ktc)et + K.z,



-

Subtracting (7) from (1) and using (2) gives

-~ ~

Bipq = Bpyq = (p—Ktc)(Bt—Bt) Ll L
Computing variances gives
_ 2 2 2 2
(8) By s B (p—Ktc) I, +0.° + K" 0 “.

Equations (6), (7) and (8) are to be solved starting from the
initial condition EO given. These three equations give a conve-
nient recursive solution to our problem. The equations are a
scalar verson of the famous "Kalman filter."

By analyzing the pair of difference equations (6), (8),
it 1is possible to establish the following two properties of the
solution. First, for any value of p and for any value c # 0,
starting the system from any EO 2 0 leads to a Et sequence that
converges as t + ®. Second, for the same range of values of p and
c, the parameter (p-Kc), where K = lim K,» is less than unity in

>0
absolute value. This implies that ;or the infinite history fil-

-

tering problem, in which the agent is imagined to form et+l =
P[et+1lzt’zt-l""] by projecting on an infinite record of current
and past z's, the solution can be represented by the time invari-

ant equation

-~

(9) B4 = (p-Kc)et + K.

where ](Q—Kc)’< 1, where K is the unique stationary solution of
(6) and (8) that is associated with a stationary solution for
which 1lim Z; = I > 0. Equation (9) can be solved to give a ver-

sion of Friedman and Cagan's formula



ol

(10) 0.,

o
;=K JZO (p—Kc)Jzt_J.
Muth considered the case in which ¢ = 1, p = 1. In this case,
(10) becomes exactly the adaptive expectations mechanism that was
used by Friedman and Cagan.

Note that the orthogonality conditions imposed on the

(e,u) process imply that

- a
(11) P = p [p—Kc]0t+1 for j > 1.

[et+J’zt’zt-1""]
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Additional Exercises

Suppose in (1)-(2), that ¢ # 0. Prove that starting from Ly =
0, iterations on (8) produce a convergent sequence. (Hint:
first prove that starting from I, = 0, iterations on (8) lead
to a monotone sequence. Then argue that this sequence is
bounded by producing a naive estimator compared to which the
linear projection must give a lower variance of estimate.)
Using the results of exercise (1), prove that starting from ZO
= 0, the stationary value of the parameter (p-Kc) must be less
than unity in absolute value. (Hint: you have already proved
that I, converges starting from ZO.)

Prove that the stationary value of I is independent of %,, and
that (6)-(8) have a unique stationary solution with I > 0.
Substitute stationary values into (6) and (8), and eliminate K
to get a quadratic equation in Z. Argue that this equation
resembles an Euler equation for an undiscounted quadratic

optimization problem.



Evaluating the Inverse z-Transform

In the previous section, we saw in the corollary to the
Riesz-Fischer theorem that given a square summable sequence {cj}’

there exists a function g(z), defined as

which is well defined at least on the unit circle (z=e'%, we

[0,2r]). The function g(z) is often called the "z-transform" of
the sequence Cye The function g maps points z in the complex
plane into points g(z) in the complex plane. Furthermore, we saw

that the 5 can be recovered from the function g(z) by the inver-

sion formula

(a) ey = 2Tlri [alz)z 514z, k=0, + 1, + 2,...
r

where the integral is a contour integral in the complex plane, and
I' denotes the unit circle. 1In this section, we give a pair of
simple formulas for evaluating the integral on the right side of
(a). Virtually no knowledge of complex analysis is required to
use the formulas.

As a prelude to giving this formula, we need to explain
two concepts: that of a pole of the complex valued function g(z),
and the residue that is associated with each pole.

Roughly speaking, a pole is a point in the complex
plane, say Z(» such that g(z) approaches infinity as z approaches
zge In this book, we work almost entirely with functions g(z)
that are rational, that is, ratios of finite order polynomials in
Ze For this reason, the following test for poles of order m

sufficient to identify all of the poles of a function g(z):



-

Test for poles: Given a function g(z), suppose that for

some positive integer m the function
(b) $(z) = (z-25)"g(z)

can be definedt so that ¢(zy) # 0. Then g(z) has a pole of order
m at zq.

To illustrate the concept of a pole, consider the im-
portant case in which g(z) is a rational function, g(z) =
a(z)/b(z) where a(z) and b(z) are finite order polynomials in z
with no zeroes in common. Then according to the above test for
poles, the poles of g(z) are simply the zeroes of b(z). For one
example, letting g(z) = 1/(1-Az)%, r an integer, we find that g(z)
has a pole of order r at z = at.

We now turn to define the residue associated with a pole
at zq.

Definition of residue: Suppose that g(z) has a pole of

order m at z = z3. Define the function ¢(z) = (z-2z35)™ g(z). Then

the residue associated with Zg is defined as

¢(m—1) (ZO)

(c¢) res(zo) = N

where ¢(m‘1)(zo) is the (m-1)P

order derivative of ¢ evaluated at
Zge In the important special case in which m = 1, formula (c)
reduces to res(zg) = ¢(zq) or

(d) res(zo) = 1im (z—zo)g(z).
232
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We now give two convenient formulas for evaluating the

inversion integral

-Jhldz.

-
¢y =31 frg(z)z

The formulas are given by c:‘j =-§%€ j g(z)z_j_ldz

r
= [sum of residues of g(z™1)zd™1 at poles inside unit
circle

= [sun of residues of g(z)zﬁj“l at poles inside unit

circle

It is a good idea to use whichever of the two branches of (e) is
most convenient to avoid the appearance of poles of order greater
than one at zerorg/

We now illustrate the utility of formulas (e) with some
examples. For our first example, we take g(z) = 1/(1-Az) with ’l|
< 1. Using (e), we have that for j > O, cy = sum of residues of
zd=1/(1-2z"1) inside the unit circle. For j > 0, the function
29=1/(1-2z"1) has a single pole of order one at z = A, with resi-
by =ad.

due given by lim (Z-A)zj_lf(l—kz_
z*A

Therefore, for j > 0, ey = Ad. For J < 0 we use the second branch

of (e) and find that the function z~971/(1-Az) has no poles inside

the unit circle. Therefore, Cy = 0 for j < 0. Finally, for

j = 0, we use the second branch of (e), and find that the function

z=3=1/(1-Az) has a pole of order one at z = 0, which is the only

pole inside the unit circle. The residue associated with this

pole is lim (z-0)z~1(1-2z)~1 = 1. Therefore co = 1. Thus we have
z+0



M350

0 j <O0.

Of course, these results could be more easily obtained simply by
expanding 1/(1-Az) in a geometric sum. Hovever, for some of the
more complicated examples to be described below, the residue
calculations are quicker, then such an alternative method.

As a second example, consider the covariance generating

h

function of the n®! order autoregressive process

g (z) = d
y (l—klz)...(1-lnz)(1—klz_l)...(l-lnz_l)

n
Z

= (1-A1z)...(1-xnz)(z-xl)...(z-xn)

where |Aj| <1 for J = l,eesyne

Using formula (e) to evaluate

_ 1 o~ 0~L
cy(r) = s IP (z)z dz, we have
Zn-'r—l
¢ (1) = sum of residues of
y (l-Alz)...(l—Anz)(z—kl)...(z—kn)
() at poles inside the unit circle

n+t-1
Z

Tf—klz)...(lulnz)(z-llj...(z-kn)

= sum of residues of
at poles inside the unit circle.

It is convenient to use the first line of (f) for T < 0 and the
second line for T 2> 0, in order to avoid poles of multiple order
at z = 0. In each case, the function has poles of order one at

Al""" ln. For T 2 0 residue at pole Aj is readily found to be



n+t-1
A
res (AJ) = J = , T » 0.
(1-xkxj) p (AJ-Ak)
k=1 k=1
k#J
It follows that
" XJH+IT'_1
(1) = }
(g) °y L n n
=1 o (l-AkAJ) I ("J"‘k)
k=1 k=1
k#J

where the absolute value sign in (g) follows either the symmetry
of the covariogram or from pursuing the implication of the second

line of (f).



(i).

(ii).

(154).
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Additional Exercises
Let Vi be a mixed moving average, autoregressive process Yy
= (B(L)/A(L))et, where €, is a white noise with unit vari-

n
l(l-uJL), and A(L) = JEI(I—AJL), ‘le < 1 for

ance, B(L) =

n=s

J

. J=1 =
J=1,ses, n, and where AJ # Ay for i#° AJ # p for all j =
ly,eeeyn, k = 1,¢4., my and m € n. The autovariance gener-

ating function for y is gy(z) = B(z)B(z"1)/A(z)A(z™1). Use

formula (e) to establish the formula

m
n+h[qmlﬂ
c(r) = ] s = (1 A0y
Vi = n n
s=1 it (1-xjxs) I (AS—AJJ
j=1 J=1
J¥s

Let b(L) be the polynomial in the lag operator b(L) =

(1+uL)/(1-AL) =

I~ 8

bij where IAI < 1. Use formula (e) to

J_W
establish that
0] J <o
b, = 1 J =0

YCIERTY Cint i P
Consider the generating function of the second-order
Solow-Pascal lag distribution w(z) = 1/(1—Az)2, |l| < 1s
Use formulas (c) and (e) to evaluate the coefficients of the
lag distribution. Compare your results with equation

of chapter IX.



Footnotes

1/he function ¢(z) mst also be "analytic" at zy, which
means that its derivative exists at zn and at each point in same
neighborhood of zy. In our examples, this requirement will rou-
tinely be satisfied.

2/mhe second representation in (e) is a standard in
texts in complex analysis (e.g., see Churchill | 1)s  The

first is derived simply from the second as follows. Notice that

-] o0 oo
glzl) = J c2=7 ¢ 29 = ) szJ with d; = c_j. Using
n=-o J=-= =dJ Jj=-
the second representation in (e) to calculate dy, it follows that
¢, = sum of residues of g(z"l)zj-l at poles inside the unit cir-



Predicting Geometric Distributed Leads

It is important to know the solution of the following
problem in order to use a variety of linear rational expectations
models. Let X4 be a covariance stationary stochastic process with

Wold moving average representation

(1) Xy = c(L)et, cg =1

where €, is a fundamental white noise for x and e(L) = § cJL'j is
J=0
square summable. We further assume that c(L) has an inverse a(L)

= (:(L)'1 which is one-sided in nonnegative powers of L and square

summable. Thus, X¢ has the autoregressive representation

(2) al(L)x, = ey

where a(L) = 1 - aOL - aeLe-....
We want to calculate the following linear projection

(3) v, =P I ¥x
=0

3 t+j Xy Xy pacee] = By

where |A| < 1.
Projections of such geometric distributed leads occur in a variety

of linear rational expectations model. We begin by noting that Yt

defined by (3) satisfies the stochastic difference equation
(4) Yg = APy¥igq + Xgo

That is, Vi is the stationary solution of the difference equation
(3) as can be verified by repeated substitution in (4). We seek

expressions for ¥i of the forms



and

]
fo
_—
[
m
+

Yt
vhere d(L) = § A9, (1) = gJLJ,
) g _ g w, Edj2 < + =,
j=0 9
We know that representation (5) exists by definition, and there-
fore that d(L) = g(L)c(L) also exists. That is, a representation
of the form (6) exists because {xy,X{_j,+++} and {eg,eq 1,.-.}
span the same space.

We shall solve for d(L) using (4) and prediction theo-

ry. Using (6), we have that

d(L)
Pyves = [524], €, or
aw) %
Py = [0 - 18

(L) ey = A[T - 2]e, + (L)

€y
Since this equation holds for all €4 realizations, it implies,

after rearranging, that
(a-xz72)a(L) = e(n) - AgorL,

an equation that we desire to solve for d(L) as a function of
c(L). We determine do by evaluating the above equation at L = A,

to get c(A) = dye Using this value for Adg gives,

(7) a() =L = Ae (ML :
TN




=~

Using g(L) = d(L)e(L)™! and ¢(L) = a(L), ve get

-1 -1
1 -2
(8) g(L) - a(;\) _i(L)L .
1-AL

For the case in which a(L) is an rt? order polynomial a(L) = 1 -
r :
E aJLJ, Hansen and Sargent | | show by using polynomial long
J=1

division that (8) can be expressed

| r-1 r - i
(9) g(L) =a(\)" [+ ( ] a a, )]
3=1 k=j+1
r-1 r-1
so that g(L) = ) gJLJ, with g_ = a(l)_l, 8 = a(l)_l ¥ A oy

J=0 k=j+1

for' J = l,aoo,r - 1.

Various versions of formulas (7), (8), and (9) were originally
derived in papers by Saracoglu and Sargent | ], Hansen and

Sargent | |, and Futia | ].



Exercise:

« Assume that my is covariance stationary and has an auto-
regressive representation a(L)mt = ey where €, is a fundamental
white noise for m, and a(L) =1 - ajL - ... - a L',

Aa Define a state wvector X¢ and a unit vector e, and

use it to express the law of motion for mo = exy in the first-
order vector form x; = Axy ; + e; where eg is a vector white
noise.

b. Use the formula ( ) to derive the formula (H-S)

by inverting (I-AA), taking into account the many zeroes in (I-

XA



Insert F

This difference equation can be rewritten as

- 1
B = Ty © e,

or

+ (1-A)m

Py = APDey &

where A = -a/l-a, which implies that o < A < 1 since a < 0. The

stationary solution of the above difference equation obeys‘EEJ

) T
(1) By = Y JEO A Ptmt+j.

Let us assume that my has the autoregressive representation

a(L)m, = ey
where €, is fundamental for m, and alL) = 1 - alL...arLr. Then
from formula ( ) of the preceding section we have that (1)
implies
r-1 P
(1) p, = 1-\)a(W) 1+ ] (] 2o )dm
J=1 k=j+1
(ii) a(L)mt = €.

These two equations express how the stochastic process for pg is a
function of the stochastic process of m . Notice that p, depends
on My, My _q,eee My iy via coefficients that partly reflect the

stochastic process (ii) that governs mi. As an example, we set

all) =71 = a;L - a2L2 - a3L3. Then (i) and (ii) become

2 [ la A A®)L + (s A)Lelmt

_ 2
D = (l-l)(l-all-azk -a Atas 3

3
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We have assumed that Xy has the autoregressive represen-

tation a.(L)xt = €40 Now by using methods similar to those used to

derive ( ), it can be established that
o e S 0 I 168
Peg L A Xe4y ~ ( -3 Jxe 1t
j=0 1-AL
Substituting this and ( ) into (60) we have the following

formula for the equilibrium stochastic process for price p. as a

function of the Xy process:

1 1

I-L a(A)”

3. {G_IA(YM)[L— -
1-AL

Pe A4 YT e o

1-xelx)~taln)n—
«[= l—ALil )]

a(L)xt = €4
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for the log of the price level of the form

() D, = (1-x)j£0 Athmt+J

where A = -a/(l-u), and where my is the log of the money supply.
Suppose that my is the first element of a vector Xg that evolves
according to xy = Axy , + €, where €, is a vector white noise.
Let e be the unit wvector that wvalidates our writing m = eXge
Then substituting (69) into the above solution for p, gives

o

py = (1-0)e (] aIad)x,.

J=0

If the eigenvalues of A are bounded by 1/A is modulusfggj then we
o

have that ) Adad = (1-xa)"1, Therefore, our solution can be

J=0
represented

py = (1-2)e(I-2a)"1x,

Xy = Axg_q + €y

Two comments about this derivation are in order. First,
in the special case in which only lagged m's appear in the Xy 1
vector, the above formula is equivalent with formula ( ) on
page ( ) [H-8 formula with g(L)]. In fact that formula could
be derived from the above one simply by explicitly inverting (I-
AA).

Second, we notice from ( ) that not only lagged m's
but also any other variables that appear in the vector Xy also

enter the equation ( ) for Pyge Thus, any variables that help
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predict future m's end up in the equation ( ) expressing py as
a function of current and lagged variables. We shall expand upon

this shortly.



mg = ajm 4 + a
oy o + &



l. Introduction

In Chapter IX, we studied linear difference equations of

the form
rl —
(1) (1-&1-...-a.n1- )yt - Xt,
vhere {xt}t_fm was taken to be a known sequence. We studied how

to find the class of sequences {yt} that satisfy the difference
equation and a set of prescribed bhoundary conditions on the {yt}
sequence. Such a {yt} sequerce was said to solve the difference
equation.

The present chapter studies linear difference equations
of the form (1) in which, rather than being a sequence of known
numhers, {xt} is a sequence of independently and identically
distributed random variables with known variarce ard mean. With
this choice of mechanism for generating {x}, eguation (1) is
called a linear stochastic difference equation. A solution of
such a difference equation is a segquence of random variables
{yt}. A sequence of random variables is called a stochastic
process. While the Xy sequence is by assumption a stochastice
process consisting of random variahles that are independently and
identically distributed over time, the y; process that solves (1)
will in peneral be correlated over time. That is, while the {x;}
process ty assumption satisfies E(xy - Fx;) (xp, - Fxy,.) = 0 for
s # 0, for the y; process in general Fly, - Fyy) (yi,o - Byiyg) #
0 for s # 0. One way to characterize the solution of the differ-
ence equation is to summarize the second moments of the {yt}

process and to describe how they depend on the aj‘s of (1).
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Stochastic difference equations provide a natural tool
for interpreting and modeling economic time series. Macroecono-
mists spend mch of their time interpreting sample first and
second moments of observed time series. For example, for an
observed sample on two variables (yy, z; t =1, ..., T) we often

calculate various of the sample moments

3 8 1 % ]
T Ly T Lz, (TR)T ] oyov o
t=1 t=1 t=k+1
T T
=1 g 3
(T-k) Y V. x and  (T-k) Y ox ¥
fkdl & oK tuk4l © oK

for various values of k. It is convenient to adopt a mathematical
context in which these sample moments can be regarded as estima-
tors of the population roments Fy,, Fzy, Eyy vy _p, Fyy x4y, and
Ext Y¢.x» respectively, estimators which converge to these popula-
tion roments as T + o, Iinear stochastic difference equations
provide suck a mthematical context. In studying how to solve
stochastic difference equations, ore of our intermediate goals is
to learn how the coefficients aJ of (1) can be chosen in order to
make the implied pattern of population moments Eyt Y e resemhle
(m-x)™t % Yy Yy, @s the lag k is varied.
t=k+1

Stochastic processes provide a natural context in which
to formulate the problem of prediction. At time t, suppose that
observations on a stochastic process fyt, Vi1 Y2 «e.) have not
vet been revealed. Suppose that the moments Fy, and Fyt Y.k are
known for all t and k. Then what is the best way to predict
(V441> Yt4ps +++) 85 a linear function of (yi, ¥4_1» «++)? This
linear prediction problem was solved bty Wiener and Kolmogorov in

the late 1930s.
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The linear prediction problem is of interest to macro-
economists for at least two reasons. First, macroeconomists are
interested in modeling the behavior of agents who are operating in
dynamic and uncertain contexts. Typically, the hypothesis of
utility or profit maximization ends up confronting those agents
with some version of a prediction problem that they mst solve in
order best to achieve their objective. As we shall see, by using
prediction theory, it is possible to extend the solutions of the
quadratic dynamic optimization problems that were encountered in
Chapter IX to the case in which the forcing functions are stochas-
tic processes whose future values are not known at the time when
decisions must be made. Thus, prediction theory is an important
tool in determining optimizing behavior under uncertainty.

Second, macroeconomists are interested in using their
own models of economic time series (often a collection of esti-
mated a,'s in (1) or estimated moments Fy, y4 ;) in order to
predict the future conditional on the past. When the econometric
model occurs in the form of a vector version of (1), it is said to

be a vector autoregression. Iinear prediction theory applies

directly to such a model.

One of the goals of much recent work in rational expec-
tations economics has been to create models whose eguilibria are
vector stochastic difference equations. In these models, the
outcome of the interaction of a collection of purposeful agents is
a stochastic process for, say, prices and quantities whose evolu-
tion can be described by a (vector) stochastic difference equa-

tion. We shall study versions of such models in which the equi-
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libria are described hy linear stochastic difference equations,
i.e., vector versions of (1). In such models, some of the a.‘j's
become interpretahle in terms of the purposeful behavior of the
agents in the model; that is, they are functions of the parameters
of people's ohjective functions ard constraints. One goal of this
line of research is to acquire the ahility to predict how the
equilibrium stochastic process (or difference equation) would
change in response to hypothetical changes in particular aspects
of the environment confronting the agents in the model.

The idea that low order 1linear stochastic difference
equations could provide a useful model for husiness cycles can be
traced back at least as far as Slutsky (1937) snd Frisech (1933).
We have seen in Chapter IX that low order nonstochastic linear
difference equations with no forcing functions present (i.e., X =
0 for all t in (1)) result in solutions for Y4 that are "smooth,"
being the weighted sum of a small number of geometric sequences.
Such smooth sequences do not resemble obhserved economic time
series. However, if a sufficiently erratic forcing sequence {xt}
occurs in (1), the resulting {yt} sequence that solves (1) can bhe
sufficiently erratic that it resembles observed economic time
series. The idea of Slutsky was to make the {x;} sequence suffi-
ciently erratic hy choosing it as the realization of a sequence of
independently and identically distributed random variables. The

resulting realizations of the {yt} sequence that solved*/ (1)

..*_/Here "solve" refers to the ordinary sense used in

Chapter IX of finding a {y,} sequence that satisfies (1) given the
realization of the {xt} sequence.
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would be erratic enough to resemble observed time series. As we
shall see, even first-order stochastic linear difference equations
(n = 1 in (1)) can generate realizations that look like observed
economic time series. Furthermore, the hypothesis that {x.} is a
sequence of 1independently and identically distributed random
variahles in general implies that the future wvalues (yt+1’ Vi40s
...) are at hest imperfectly predictable from past values (yt,
Yeo1s eee)e It is desirable to have models in which hoth economic
agents and econometricians confront uncertainty in this sense.
This is one mjor reason that Slutsky's idea was adopted early on
in dynamic econometrics, and why it has been retained and expanded

upon in work on rational expectations.



