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1 Introduction

In this paper I develop an asset-pricing model in which financial assets are valued not only as

claims to streams of consumption goods but also for their liquidity. By liquidity I mean the

degree to which an asset is valued as a medium of exchange at the margin. Specifically, I study

a class of exchange economies in which agents sometimes trade goods and financial assets as in

Walrasian theory (in well-organized markets, at market-clearing prices), and sometimes as in

search theory (in a decentralized manner, with the terms of trade determined by bargaining).

Decentralized trade combined with an exchange motive generates the need for a medium of

exchange. The equilibrium price and rate of return of a financial asset are partly determined

by the asset’s usefulness to facilitate exchange. When an asset is held partly for its exchange

value, its price will be higher, and its measured rate of return–which takes into account only

the stream of consumption goods that the asset represents–will be lower than they would be

if the asset were not used as a medium of exchange.

In Section 2, I consider an economy with two assets: an equity share and a one-period

government-issued risk-free real bill. In the basic setup, assets differ only in their payoffs, and

agents are free to choose which assets to use as means of payment in decentralized trades. In

this case, the theory unambiguously predicts that someone testing an agent’s Euler equation

for the risk-free bill using its measured rate of return would find that, at the margin, this agent

can gain from transferring consumption from the future to the present. That is, there would

appear to be a risk-free rate puzzle.

I also analyze versions of the economy in which institutional or legal restrictions give bonds

an advantage over equity as a medium of exchange. In this case, it is possible to show that there

are degrees of these restrictions for which someone testing an agent’s Euler equation for the

measured excess returns would find that, at the margin, the agent can gain from disinvesting in

bills and investing in equity: there would appear to be an equity-premium puzzle. For this class

of economies, the risk-free rate would still seem too low to an outside observer. In fact, the risk-

1



free rate will be even lower than it would be in the absence of institutional or legal restrictions.

Without these restrictions, the theory may still be consistent with an equity-premium puzzle,

depending on parameter values. These issues are analyzed in Section 3.

In Section 4, I calibrate the model economies and study the extent to which they are able

to generate average equity returns and risk-free rates that are in line with U.S. data. Since

the class of model economies I consider nests the one studied by Mehra and Prescott (1985),

I can quantify the degree to which the liquidity mechanism considered here can help explain

the anomalies they identified. Mehra and Prescott’s test of their theory essentially consisted of

experimenting with different values of the curvature of the agent’s utility function (call it σ) to

find the values for which the average risk-free rate and equity premium in the model matched

those in the U.S. economy. I carry out a similar exercise.

First, I consider the economy with no legal or institutional differences between equity shares

and bills, and assess the ability of the model to produce risk-free rates and equity premia that

match the data for values of σ ranging from 1 to 10. I find that for values of σ up to 7, the

liquidity mechanism is inactive, and the equilibrium looks just like the one in Mehra—Prescott.

For values of σ equal to or greater than 8, equity shares and bills are valuable in decentralized

exchange at the margin. This lowers the return on equity and the risk-free rate from what they

would be in the Mehra—Prescott economy and brings them closer to the data. However, relative

to the data, for this range of σ the equity return is a bit too low and the risk-free rate a bit too

high, so the average equity premium is still too low.

I also consider the specification with legal or institutional restrictions, in which equity shares

cannot be used as means of payment in a fraction θ of decentralized exchanges. I report how

asset returns vary with θ in general and formulate the following question: For a given value of

σ, how large does θ (the relative “illiquidity” of equity) have to be for the model to generate

an average risk-free rate of 1% and an average equity premium that matches the long-term

average for the U.S. economy? The answer is, quite small. Section 4.3 offers a way to assess

the absolute size of the implied θ by relating it to relative trade volumes of equity and bonds.
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In Section 5, I discuss how the liquidity mechanism operates in this model, and what it adds

to the Mehra—Prescott model, by contrasting how the mean and standard deviation of their re-

spective stochastic discount factors fare against the bounds of Hansen and Jagannathan (1991).

In this section, I also use the model to decompose the equity premium into two components: a

pure risk premium for bearing nondiversifiable aggregate consumption risk, and an illiquidity

premium related to bonds being easier to trade away if a decentralized trade opportunity arises.

By now a vast literature seeks to solve the puzzle identified by Mehra and Prescott (1985).

As they framed it, the puzzle is the observation that the restrictions that a particular class

of general equilibrium models places upon average returns of equity and Treasury bills are

violated by U.S. data. This particular class of models has: (i) agents who maximize the

expected discounted value of a stream of utilities generated by a power utility function; (ii)

“frictionless” trading (e.g., no brokerage fees or other trading or transaction costs); and (iii)

complete asset markets (agents can write insurance contracts against any contingency).

The literature spurred by the work of Mehra and Prescott can be classified depending

on which of these ingredients it alters.1 Looked at from this angle, this paper relaxes (ii)

and (iii). There are trading frictions in the sense that agents sometimes trade bilaterally

instead of in a Walrasian marketplace. Markets are incomplete in that agents cannot make

binding commitments, and trading histories are private in a way that precludes any borrowing

and lending between people. Therefore, all trade–both in the centralized and decentralized

markets–must be quid pro quo. In terms of this broad taxonomy, this paper is related to

Aiyagari and Gertler (1991). They consider an economy with equity and government bonds in

which agents face idiosyncratic shocks, and markets are incomplete in a way that individual

agents must self-insure. In their model, agents hold assets not only for the stream of dividends

they yield but also as a vehicle of self-insurance. This alone can help to lower the risk-free rate.

The basic logic of this mechanism is similar to the one I am emphasizing, except that here,

the additional motive for holding assets is their role in transactions rather than self-insurance

1I will not attempt to list all the relevant work in the area. See Mehra and Prescott (2003) for references.
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considerations.2 At a conceptual level, the paper also shares the basic premise of Bansal and

Coleman (1996) and Kiyotaki and Moore (2005), namely, that an asset’s role in facilitating

some form of exchange will manifest itself in the equity premium and as a risk-free rate puzzle.

This paper is also closely related to the literature that provides micro foundations for mon-

etary economics based on search theory, as pioneered by Kiyotaki and Wright (1989). This

approach has proven useful for understanding the nature of monetary exchange by making

explicit the frictions–e.g., the configuration of meetings, specialization patterns, information

structure, and so on–that make monetary exchange an equilibrium. Put differently, this ap-

proach has proven useful in pricing the most elusive among financial assets: fiat money, an asset

that is a formal claim to nothing yet sells at a positive price. Somehow, this literature and the

mainstream asset-pricing literature have managed to stay disconnected.3 Recently, Duffie, Gâr-

leanu, and Pedersen (2005a,b), Vayanos and Wang (2005), Vayanos and Weill (2005), and Weill

(2005a,b) have begun to build some interesting connections between both fields. They model

asset trading as a decentralized exchange process that resembles the original vintages of the

equilibrium search models of Diamond (1982) and Kiyotaki and Wright (1989). This paper also

bridges these fields, in the precise sense that the model can be viewed as a blend of Lagos and

Wright (2005)–a recent vintage of the search-based model of exchange–and Lucas (1978).4

2To widen the spread between the risk-free rate and the return on equity, Aiyagari and Gertler (1991) introduce
differential (proportional) trading costs across equity and bonds. If transaction costs on bonds are lower than
on equity, then in equilibrium equity must pay a premium, which they refer to as a “transactions/liquidity
premium.” They also emphasize the model implications for the volumes of trade for bonds and equity as a way of
assessing the plausibility of the magnitudes of the trading costs that they feed into the model. Heaton and Lucas
(1996) analyze an economy similar to the one in Aiyagari and Gertler, but they allow for aggregate uncertainty.
Other papers that consider various combinations of transaction costs and short-sale constraints include Telmer
(1993), Lucas (1994), He and Modest (1995), and Luttmer (1996). See Heaton and Lucas (1995) for a survey.

3Mehra and Prescott (1985) were the first to point out the similarities between the equity premium puzzle
and the rate-of-return-dominance puzzle that pervades the pure theory of money. Kocherlakota (1996) picked
up on this theme in his concluding section. I will return to it in mine.

4Contemporaneously, Ravikumar and Shao (2005) are working on a related model that instead combines
features of Lucas (1978) with features of Lagos and Wright (2005) and Shi (1997). Our papers clearly share
much ground: both investigate how the role that an asset plays in the exchange process affects its equilibrium
price. As for differences–aside from several in terms of modeling–their agents trade a single asset (equity),
as the model is designed to address the excess volatility puzzle rather than the equity premium puzzle and the
risk-free rate puzzle. So all in all, our work is decidedly complementary.
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2 The model

There is a [0, 1] continuum of agents, time is discrete and the horizon is infinite. Each period is

divided into two subperiods where different activities take place. There are three nonstorable

and perfectly divisible consumption goods at each date: general goods, and two types of fruit,

which I will refer to as apples and coconuts. (By “nonstorable” I mean that the goods cannot

be carried from one subperiod to the next.) Let Zt be an aggregate productivity index, and

assume that Zt+1 = xt+1Zt, where xt+1 ∈ {γ1, ..., γn} and Pr
¡
xt+1 = γj |xt = γi

¢
= µij. (The

conditional expectation, Et, used below, is defined with respect to this transition probability.

Throughout, I will assume that the Markov chain is ergodic.) The realization of xt becomes

known at the beginning of period t.

The only durable commodity in the economy is a set of “Lucas trees.” The number of

trees is fixed and equal to the number of agents. Trees yield a quantity dt = Zt of apples–

the “dividend”–in the second subperiod of every period. Production of apples is entirely

exogenous: no resources are utilized, and it is not possible to affect the output at any time.

In the second subperiod, every agent is also endowed with n̄ units of time and has access to

a linear production technology that allows him to transform each unit of time into Zt units of

general goods.5

In the first subperiod, half of the agents are endowed with (1 + �)κZt coconuts, and the

remaining half with (1− �)κZt coconuts, where � ∈ [0, 1], and κ > 0. Thus, the total endowment

of coconuts in period t equals κZt. The agents who receive the high endowment are selected

at random from the population at the beginning of each period, so from the perspective of an

individual agent, the endowment process is independent across periods.6 Note that there is a

precise sense in which Zt indexes the economy-wide state of technology: when Zt is relatively

5This formulation is in some sense the most straightforward integration of the asset-pricing model of Lucas
(1978) with the model of exchange in Lagos and Wright (2005). In a different context, I have considered other
formulations, for example, one where instead of being consumption goods, apples are a necessary input–together
with labor–in the production of the general consumption good. (See the appendix to Lagos (2006) for details.)

6 It would not be difficult to allow the individual endowment process to be correlated over time. Reed and
Waller (2005) use a similar formulation in their study of monetary policy and risk sharing.
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high, the Lucas trees yield more apples, the technology that transforms labor into general goods

is more efficient, and there is a larger aggregate endowment of coconuts.

Let u (Q) be the utility from consuming Q coconuts in the first subperiod, and let U (c)

and v (y) represent the utilities from consuming c apples and y general goods in the second

subperiod. Each agent i wishes to maximize

E0

( ∞X
t=0

βt
£
u(Qi

t) + U(cit) + v(yit)−Ath
i
t

¤)
,

where β ∈ (0, 1), Qi
t is agent i’s consumption of coconuts in the first subperiod, c

i
t and y

i
t are his

consumption of apples and general goods, and hit is his labor supply in the second subperiod.

The marginal disutility from working is At > 0.7 Assume u0 > 0, v0 > 0, U 0 > 0, u00 < 0,

v00 ≤ 0, and U 00 < 0. It is also convenient to have u0 (0) = v0 (0) = U 0 (0) = +∞.
In the second subperiod, agents trade apples, labor, general goods, and financial assets in

a centralized (Walrasian) market. In the first subperiod, agents trade coconuts and financial

assets in a decentralized market where trade is bilateral (each meeting is a random draw from

the set of pairwise meetings), and the terms of trade are determined by bargaining. Let α̂

denote the probability of a meeting. Bilateral trade, together with the fact that some agents

receive a high endowment and others a low endowment of coconuts, gives rise to a double-

coincidence-of-wants problem in the first subperiod. There are two relevant types of meetings:

α̂/2 of them involve an agent with a high endowment and an agent with a low endowment

(naturally, in these “single-coincidence meetings,” the agent with the low endowment will be

the buyer and the other the seller); and α̂/2 of the meetings are “no-coincidence meetings”

that involve either two agents with high endowment or two agents with low endowment. Agents

cannot make binding commitments, and trading histories are private in a way that precludes any

borrowing and lending between people, so all trade–both in the centralized and decentralized

markets–must be quid pro quo.

7The t subscript on At is meant to allow for specifications where the disutility of work depends on the aggregate
technology index, Zt. The usefulness of such specifications has to do with balanced growth considerations, as
discussed below.
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Each tree has outstanding one durable and perfectly divisible equity share that represents

the bearer’s ownership of a tree and confers him the right to collect the apple dividends. There

is a second perfectly divisible asset, a one-period risk-free government-issued real bill. (Each

of these “bonds” pays off an apple at maturity.) Let Bt denote the stock of bonds that are

outstanding in period t, to be redeemed before the centralized trading session of period t.

(The government sells Bt+1 in the centralized market at the end of period t.) What I call the

“government” is essentially summarized by the budget constraint Bt = φbtBt+1 + τ t, where φbt

is the price of a bond and τ t a lump-sum tax levied on all agents during the centralized trading

session, both expressed in terms of apples. The focus here will not be on how the government

should select the path {Bt, τ t}, but rather on characterizing the equilibrium, and in particular
asset prices and returns, given such a path. All assets are perfectly recognizable, cannot be

forged, and can be traded among agents in the centralized and decentralized markets. At t = 0

each agent is endowed with as0 equity shares and ab0 units of the bond.

In the first subperiod, endowment inequality gives agents a motive for trade. In addition, the

combination of bilateral meetings and quid pro quo trade generates the need for an asset to act as

a medium of exchange. But which of the two assets will play this role–bonds or equity shares?

From a theoretical standpoint, one could adhere to Wallace’s dictum (e.g., Wallace 1998) and

argue that in laying down the environment, one should specify assets only by their physical

properties, not by the role they play. That is, given the physical characteristics of the various

assets (their payoffs or other inherent properties such as their divisibility, recognizability, etc.),

the theory ought to determine their roles in exchange endogenously–as part of the equilibrium.

I consider a baseline version of the model that adheres to the dictum. In this version, assets

differ only in their payoffs, and there are no exogenous liquidity differences between bonds and

equity shares: the agents in the model are free to choose which asset or combination of assets

to use in exchange. But since the focus of the paper is on a primarily applied question, namely,

the extent to which an asset’s usefulness in exchange affects its measured return relative to

other assets, I also consider a more general formulation that allows for the possibility that
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bonds and equity shares may have different exogenous liquidity properties. Specifically, I will

suppose that an agent can find himself in two types of meetings in the decentralized market:

with probability θ2, he is in a meeting where he can use any of the two assets for payment,

whereas with probability θ1 = 1 − θ2, he is able to use only bonds.8 Thus, θ1 ∈ [0, 1] indexes
the degree of “illiquidity” of equity shares. (The subscript refers to the number of assets that

can be used for payment in that particular type of meeting.) The formulation that satisfies

Wallace’s dictum corresponds to the special case of θ1 = 0. In the remainder of the section,

I describe the problems that agents face in both the decentralized and centralized markets,

characterize the terms of trade that will prevail in bilateral meetings, and introduce the notion

of equilibrium.

I begin by formulating the Bellman equations that summarize the individual agents’ opti-

mization problem. Let at ∈ R2+ denote an agent’s portfolio. Since agents can hold two assets,
at = (abt , a

s
t ), where abt and ast denote the holdings of bonds and shares, respectively. Let

W (at+1, st+1) be the value of an agent who enters the centralized market holding portfolio at+1

in a period when the aggregate state of the economy is st+1 = (dt+1, xt+1, Bt+1), i.e., in a period

when the realization of the endowment process is dt+1 = xt+1dt and there are Bt+1 bonds in

circulation. Similarly, let Vj (at+1, st+1) be the value of search for an agent who enters the

8To interpret the specific modeling choice, one can follow Aiyagari and Wallace (1997) and relate θ1 to a
government transaction policy carried out by a small mass of government agents. This has become the standard
way of introducing legal or other institutional restrictions into environments with decentralized exchange. See,
for example, Aiyagari, Wallace, and Wright (1996) or Li and Wright (1998). Also, more recently, Shi (2005) has
used a similar formulation in a model with fiat money and nominal bonds to study the effects of open market
operations. He finds that even an arbitrarily small probability that matured nominal bonds will not be accepted
in decentralized exchange is enough for fiat money to drive them out of circulation. Regarding my use of this
device, I would like to emphasize that the spirit of this exercise is primarily positive. That is, here I want to
explore the implications of (small) liquidity differences for the behavior of asset prices in general, and for the
equity premium and risk-free rate puzzles in particular. In fact, given the nature of the findings, I will argue
that understanding the deeper reasons for these differences in the liquidity of these assets–by which I mean the
differences in the likelihood they can serve as means of payment in decentralized exchange–is a necessary next
step. In terms of relating these theoretical institutional or legal restrictions to actual features of “real world”
trades, consider the following readily verifiable fact. An investor who places an order to sell shares of an S&P 500
firm on a given day T will typically have to wait until T + 2 for settlement, whereas the settlement for the sale
of 90-day U.S. Treasury bills will usually take place at T +1. These types of considerations seem to suggest that
bonds are a more readily available source of funds for agents who must act quickly on some purchase opportunity,
which is at least broadly in line with the trade-offs at work in the theoretical formulation laid out here.
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decentralized market holding portfolio at+1 in a period when the aggregate state is st+1. The

subindex j ∈ {h, l} indicates whether the agent has a high (j = h) or a low (j = l) endowment

of coconuts.

Since there are, in general, two types of bilateral meetings–unrestricted matches where the

buyer can use both assets as means of payment, and restricted matches where he can use only

bonds–there are two sets of terms of trade in the decentralized market. The terms of trade

in a meeting of type i between a buyer with portfolio at = (abt , a
s
t ) and a seller with portfolio

ãt = (ãbt , ã
s
t ) are [q

i(at, ãt),p
i(at, ãt)], where pi(at, ãt) ∈ R2+ is the portfolio that the buyer

hands over to the seller in exchange for qi(at, ãt) ∈ R+ coconuts.9 Then,

Vh (a, s) =
α̂

2

X
i=1,2

θi

Z ©
u
£
(1 + �)κd− qi (ã,a)

¤
+W

£
a+ pi (ã, a) , s

¤ª
dG (ã)

+(1− α̂

2
) {u [(1 + �)κd] +W (a, s)} ,

where G denotes the distribution of portfolios across agents. Similarly,

Vl (a, s) =
α̂

2

X
i=1,2

θi

Z ©
u
£
(1− �)κd+ qi (a, ã)

¤
+W

£
a− pi (a, ã) , s¤ª dG (ã)

+(1− α̂

2
) {u [(1− �)κd] +W (a, s)} .

The expected value of an agent entering the decentralized market with portfolio a in a

period when the aggregate state is s, before knowing his endowment of coconuts, is V (a, s) =

1
2 [Vl (a, s) + Vh (a, s)]; i.e.,

V (a, s) = α
X
i=1,2

θi

Z ©
u
£
(1− �)κd+ qi (a, ã)

¤
+W

£
a− pi (a, ã) , s¤ª dG (ã)

+α
X
i=1,2

θi

Z ©
u
£
(1 + �)κd− qi (ã,a)

¤
+W

£
a+ pi (ã, a) , s

¤ª
dG (ã)

+ (1− 2α) [ū (d) +W (a, s)] ,

9 In an unrestricted match (i = 2, with probability θ2), p2(at, ãt) = [pb(at, ãt), p
s(at, ãt)], where pb(at, ãt)

denotes the quantity of bonds and ps(at, ãt) the quantity of shares that the buyer hands over to the seller. In
restricted matches (i = 1, with probability θ1), p1(at, ãt) = [pb(at, ãt), 0].
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where α ≡ α̂/4, and ū (d) ≡ 1
2 {u [(1 + �)κd] + u [(1− �)κd]}.10

The value function of an agent who enters the centralized market with portfolio at in a

period when the aggregate state is st satisfies

W (at, st) = max
ct,yt,nt,ht,at+1

{U (ct) + v (yt)−Atht + βEtV (at+1, st+1)}

s.t. ct +wtnt +φtat+1 = (φ
s
t + dt)a

s
t + abt +wtht − τ t

0 ≤ ct, 0 ≤ nt, 0 ≤ ht ≤ n̄, 0 ≤ at+1, yt = Ztnt.

The agent chooses consumption of apples (ct) and of the general good (yt), how many hours

of work to demand (nt) and supply (ht), and an end-of-period portfolio (at+1). Dividends are

paid to the bearer of the equity share after decentralized trade, but before the time-t centralized

trading session. Apples are used as numeraire, wt is the real wage, φbt the real price of a bond,

φst the real price of a share (ex-dividend), with φt = (φbt , φ
s
t ), and τ t is a lump-sum tax also

expressed in terms of apples. Let λbt =
At
wt
, λst = (φ

s
t + dt)λ

b
t , and λt = (λ

b
t , λ

s
t ). Substituting

the budget constraint and yt = Ztnt into the objective, the problem becomes

W (at, st) = λtat − λbtτ t + max
ct,nt

∙
U (ct) + v (Ztnt)− At

wt
(ct +wtnt)

¸
+ max

at+1

∙
−At

wt
φtat+1 + βEV (at+1, st+1)

¸
, (1)

with ht =
1
wt

£
ct +wtnt +φtat+1 − (φst + dt) ast − abt + τ t

¤
, and subject to 0 ≤ ct, 0 ≤ nt,

0 ≤ at+1, and 0 ≤ ht ≤ n̄.11

Consider a meeting of type i in the decentralized market between a buyer holding portfolio

a and a seller holding ã. The terms of trade [qi(a, ã),pi(a, ã)], for i = 1, 2, are determined by

10Note that this expression for the value of search is essentially the same as the one in Lagos (2006), except
that here, the utility gain of a buyer is u[(1− �)κd+qi (a, ã)]−u[(1− �)κd] instead of u[qi (a, ã)], the utility cost
of a seller is u[(1 + �)κd]− u[(1 + �)κd− qi (ã, a)] instead of e[qi (ã,a)], and agents without a trade opportunity
consume (1 + �)κd or (1− �)κd, each with probability a half, instead of 0 with certainty.
11Note that the choice of next period portfolio, at+1, is independent of the current portfolio, at. Thus, as in

Lagos and Wright (2005), a unique solution to the portfolio maximization problem implies that the distribution of
portfolios, G, must be degenerate (and equal to the mean holding) in the equilibrium, as long as ht is interior. In
the appendix (Section A.2), I derive parametric conditions such that this is indeed the case along the equilibrium
path. The nonnegativity constraints on ct and nt will not bind because U 0 (0) = v0 (0) = +∞. Also, bonds and
shares will be valued in equilibrium, and someone has to hold them. Thus, 0 ≤ at+1 will not bind either.
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Nash bargaining where the buyer has all the bargaining power.12 Thus, for i = 1, 2, (qi,pi)

solves

max
qi,pi

©
u
£
(1− �)κd+ qi

¤
+W (a− pi, s)− u [(1− �)κd]−W (a, s)

ª
s.t. u

£
(1 + �)κd− qi

¤
+W (ã+ pi, s)− u [(1 + �)κd]−W (ã, s) ≥ 0,

and subject to p1 = (pb, 0) and pb ≤ ab if i = 1 (matches where only bonds can be used as

means of payment), or subject to p2 = (pb, ps) ≤ a if i = 2 (matches where both bonds and

shares can be used for payment). The agent cannot spend more than all the assets he owns

in an unrestricted match, nor more than all the bonds he owns in a restricted match. In what

follows, I will refer to these trading constraints as “liquidity constraints.” Define the function

q (z; y) : R2+ → R+ as

q (z; y) =

½
�y if z ≥ u [(1 + �) y]− u (y)
q̂ (z; y) if z < u [(1 + �) y]− u (y) ,

where q̂ (z; y) denotes the q that solves u[(1 + �) y]−u[(1 + �) y− q] = z. Then, for i = 1, 2, the

bargaining solution in period t has qi(at, ãt) = q(λitat;κdt), where λ
1
t ≡ (λbt , 0) and λ2t = λt.

Given the dividend process {dt}∞t=0 and a path {Bt, τ t}∞t=0, an equilibrium is an allocation

{ct, yt, nt, ht,at+1}∞t=0, together with a set of prices {wt,φt}∞t=0 and bilateral terms of trade
{(qit)i=1,2}∞t=0, such that: (i) the individual choices {ct, yt, nt, ht, at+1}∞t=0 solve the agent’s
problem in the centralized market, given prices; (ii) the terms of trade in bilateral meetings are

determined by Nash bargaining, i.e., q1t = q(λbta
b
t ;κdt) and q

2
t = q(λtat;κdt); and (iii) prices are

such that the centralized market clears, i.e., ct = dt, abt+1 = Bt+1, ast+1 = 1, and the government

budget constraint, Bt = φbtBt+1 + τ t, is satisfied.

12 In the appendix (Section A.5), I study the general case in which the buyer has bargaining power η ∈ [0, 1],
both analytically and quantitatively.
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3 The equity premium and the risk-free rate puzzles

In equilibrium, asset prices {φt}∞t=0 satisfy

U 0 (dt)φst = βEtU
0 (dt+1)Ls

t+1

£
φst+1 + dt+1

¤
(2)

U 0 (dt)φbt = βEtU
0 (dt+1)Lb

t+1 (3)

with

Ls
t+1 = 1 + α (1− θ)

n
u0[(1−�)κdt+1+q2t+1]
u0[(1+�)κdt+1−q2t+1]

− 1
o

(4)

Lb
t+1 = Ls

t+1 + αθ
n
u0[(1−�)κdt+1+q1t+1]
u0[(1+�)κdt+1−q1t+1]

− 1
o
, (5)

where qit+1 = q(λit+1at+1, κdt+1) for i = 1, 2, with λbt+1 = U 0 (dt+1), λst+1 =
¡
φst+1 + dt+1

¢
λbt+1,

at+1 = (Bt+1, 1), and θ ≡ θ1.13 The factors Ls
t+1 and L

b
t+1 have a natural interpretation as the

liquidity returns from holding shares and bonds, respectively. Note that Li
t+1 ≥ 1 for i = b, s,

with strict inequality if the trading constraint pi ≤ a in the decentralized market is binding.
To illustrate, let θ = 0, i.e., suppose that all matches are unrestricted. Then, Ls

t+1 = Lb
t+1 =

Lt+1 in all states. In a state st+1 in which λt+1at+1 < u [(1 + �)κdt+1]− u (κdt+1), buyers do

not have enough real value of assets to buy �κdt+1, so Lt+1 > 1. In fact, Lt+1 − 1 is the
slope of the gains from trade that accrue to the buyer, or equivalently, Lt+1 is the expected

marginal benefit that the buyer gets from bringing the value of an additional apple’s worth

of liquidity into the search market, i.e., Lt+1 = (1− α) + α ∂qt+1
∂(λt+1at+1)

u0 [(1− �)κdt+1 + qt+1].

With probability (1− α) the agent has no use for the asset in the decentralized market, and

hence he gets no additional return from holding it. But with probability α he is a buyer

in the search market, and the additional value of assets he brings into the meeting allows

him to obtain ∂qt+1
∂(λt+1at+1)

additional coconuts from the seller, which at the margin, he (the

buyer) values at u0 [(1− �)κdt+1 + qt+1]. Since
∂qt+1

∂(λt+1at+1)
= 1

u0[(1+�)κdt+1−qt+1] , we have Lt+1 =

(1− α) + αu0[(1−�)κdt+1+qt+1]
u0[(1+�)κdt+1−qt+1] , which corresponds to (4) with θ = 0. In a state st+1 in which

13The Euler equations (2) and (3) are derived in the appendix (Section A.1).
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the agent has enough real value of assets to afford the quantity of coconuts that maximizes the

gains from trade, namely, �κdt+1, he will buy qt+1 = �κdt+1 coconuts, and therefore, Lt+1 = 1.

In general, for θ ∈ (0, 1], (4) and (5) imply 1 ≤ Ls
t+1 ≤ Lb

t+1. The second inequality is due

to the fact that bonds provide liquidity (they can be used to relax the trading constraint at the

margin) whenever shares do, but in addition, they can also be used as means of payment in the

fraction θ of restricted matches.

Let R̂s
t+1 =

φst+1+dt+1
φst

denote the measured return on equity between period t and t + 1,

i.e., the return that would be computed by a financial analyst, which includes capital gains

and dividend payoffs. Similarly, let R̂b
t+1 =

1
φbt
denote the measured return on bonds between

period t and t + 1. Also, define Rs
t+1 = Ls

t+1R̂
s
t+1 and Rb

t+1 = Lb
t+1R̂

b
t+1, the full (liquidity

augmented) returns, as perceived by an agent in the model. With these definitions, and letting

Mt+1 = βU 0(dt+1)
U 0(dt) , (2) and (3) lead to

Et[Mt+1(R
s
t+1 −Rb

t+1)] = 0 (6)

Et(Mt+1R
b
t+1 − 1) = 0, (7)

a pair of statistical restrictions on the marginal rate of substitution and equilibrium asset

returns.14 Using the definitions of Ri
t+1 and R̂i

t+1, the unconditional counterparts of (6) and

(7) can be written as

E[Mt+1(R̂
s
t+1 − R̂b

t+1)] = ωe (8)

E(Mt+1R̂
b
t+1 − 1) = ωb, (9)

where

ωe = E
n
Mt+1

h
(Lb

t+1 − 1)R̂b
t+1 − (Ls

t+1 − 1)R̂s
t+1

io
(10)

ωb = −E
h
Mt+1R̂

b
t+1(L

b
t+1 − 1)

i
. (11)

14Note that for the special case of an economy with no liquidity needs (i.e., Lst+1 = Lbt+1 = 1), the measured
returns equal the full returns, R̂i

t+1 = Ri
t+1 for i = b, s, and (6) and (7) are equivalent to (2a) and (2b) in

Kocherlakota (1996), except for the fact that his expressions assume U (c) = c1−σ
1−σ .
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Note that if neither asset provides liquidity services in any state (Li
t+1 − 1 = 0), then R̂i

t+1 =

Ri
t+1 and ωe = ωb = 0, so (8) and (9) reduce to (2a’) and (2b’) in Kocherlakota (1996).15

Using actual data, one could estimate the expectations on the left-hand sides of (8) and (9)

with the sample means

ω̂e =
1

T

TX
t=1

β
U 0 (ct+1)
U 0 (ct)

(R̂s
t+1 − R̂b

t+1), (12)

ω̂b =
1

T

TX
t=1

β
U 0 (ct+1)
U 0 (ct)

R̂b
t+1 − 1. (13)

A vast body of work has been devoted to trying to rationalize the finding that for standard

parametrizations of preferences, the statistical restrictions ω̂e = ω̂b = 0 are violated by U.S.

data. For instance, suppose that R̂s
t+1 =

φst+1+dt+1
φst

is constructed using the Standard and Poor’s

stock index for φst and the real dividends for the Standard and Poor’s series for dt, and that R̂
b
t

is taken to be the real return on 90-day Treasury bills. Then, if β = 0.99 and U (ct) =
c1−σt
1−σ (ct

is a measure of per capita consumption), one finds ω̂e > 0 and ω̂b < 0 for “reasonable” values of

σ. (For example, Tables 2 and 3 in Kocherlakota (1996) report ω̂e > 0 for σ ≤ 8.5 and ω̂b < 0

for σ ≥ 0.5.) The finding that ω̂e > 0 constitutes the equity premium puzzle while ω̂b < 0 is

commonly referred to as the risk-free rate puzzle.

The statistics ω̂e and ω̂b that define these puzzles are constructed using themeasured returns

R̂s
t+1 and R̂b

t . But according to the theory developed in the previous sections, agents price

assets using the full returns Rs
t+1 and Rb

t+1, that is, the measured returns augmented by their

respective liquidity factors, Ls
t+1 and L

b
t+1. To the extent that agents experience liquidity needs

in some states, the theory does not imply that ω̂e = ω̂b = 0. In fact, ωe and ωb, the theoretical

counterparts to ω̂e and ω̂b, will not be zero if the assets are held partly for their exchange value.

From (11) it is clear that ωb = 0 if Lb
t+1 = 1 in all states, i.e., if bonds never provide liquidity

services. In this case, condition (9) states that given the measured expected return on bonds, at

the margin, the investor must be indifferent between consuming an apple or saving it by using
15Kocherlakota’s (2a’) has been divided through by β and contains a typo (the marginal rate of substitution

appears as (Ct+1Ct)
−σ instead of (Ct+1/Ct)

−σ).
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it to purchase bonds. In this context, the finding that ω̂b < 0 is puzzling because it indicates

that the investor could gain by shifting consumption from the future to the present (by saving

less in the form of bonds and consuming more today). Or put differently, it appears that the

investor is too willing to hold bonds given their relatively low rate of return. But suppose that

bonds sometimes offer liquidity services, i.e., suppose that Lb
t+1 > 1 at least in some state. Then

(11) immediately implies ωb < 0: the theory unambiguously predicts that someone testing the

agent’s Euler equation for the risk-free bill using its measured rate of return R̂b
t+1 would find

that at the margin, this agent can gain from transferring consumption from the future to the

present. That is, there would appear to be a risk-free rate puzzle. But this is not a puzzle from

the point of view of the model, since the full return on bonds, Lb
t+1R̂

b
t+1, on average exceeds the

measured return R̂b
t+1, which ignores the liquidity return. Notice that the model is qualitatively

consistent with the risk-free rate puzzle for any value of θ, including θ = 0, i.e., even without

assuming exogenous liquidity differences between equity shares and bonds.

From (10) it is clear that Lb
t+1 = Ls

t+1 = 1 implies ωe = 0. That is, in a world with no

liquidity needs, the measured returns R̂s
t+1 and R̂b

t+1 have to be such that at the margin, the

agent cannot gain by substituting from bonds into stocks, or vice versa. In this context, the

finding that ω̂e > 0 is puzzling because it indicates that the investor could gain by shifting

his portfolio from bonds to stocks. Or put differently, it appears that the investor is too

willing to hold bonds vis-à-vis stocks given that, according to the measured returns, equity

pays such a large premium over bonds. But suppose that θ = 1. Then (10) becomes ωe =

E[Mt+1(Lb
t+1 − 1)R̂b

t+1] ≥ 0, with strict inequality if bonds provide liquidity in some state.

In this case, according to the theory, someone testing the investor’s Euler equation for the

measured excess returns would find that, at the margin, the agent can gain from disinvesting

in bonds and investing more in equity. There would appear to be an equity-premium puzzle

because if there are liquidity needs but equity shares cannot be used to satisfy them, equity

must pay an illiquidity premium over bonds, and this shows up as a wedge ωe > 0.

The model can generate ωe > 0 even if θ = 0, i.e., even if no advantage in exchange
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is given to bonds over stocks. In this case, Lb
t+1 = Ls

t+1 = Lt+1, and (10) becomes ωe =

E[Mt+1(Lt+1 − 1)(R̂b
t+1 − R̂s

t+1)]. The wedge ω
e is a weighted average of the measured return

differentials between bonds and equity over states. The sign of ωe is ambiguous in general.

But, for example, suppose there is a high- and a low-growth state and that (R̂b
t+1 − R̂s

t+1) is

positive in the low state and negative in the high state. Then if the “weight” Mt+1(Lt+1 − 1)
tends to be larger in the low state, the model will generate ωe > 0. Thus, even without legal

or institutional restrictions that give bonds an advantage over equity as a medium of exchange,

the theory can still be consistent with an equity-premium puzzle. In fact, in the calibration of

Section 4, I will find that for some values of risk aversion, the model with θ = 0 conforms with

this reasoning, and as a result, it indeed implies ωe > 0.

To summarize, the model with liquidity needs is always (for any θ) qualitatively consistent

with the risk-free rate puzzle. In addition, the model may also help to rationalize the equity-

premium puzzle–even if θ = 0–provided that measured returns, liquidity returns, and the

marginal rate of substitution covary in certain ways.

4 Quantitative analysis

I will follow the original formulation in Mehra and Prescott (1985) and let the utility over apples

and coconuts be U (c) = u (c) = c1−σ
1−σ , with 0 < σ <∞. For this parametrization, q (z;κdt+1),

i.e., the quantity of coconuts traded in a meeting where the buyer can pay from a portfolio of

end-of-subperiod real value16 z when the aggregate dividend is dt+1, is given by

q (z;κdt+1) =

⎧⎨⎩ �κdt+1 if z ≥ g (κdt+1)

(1 + �)κdt+1 −
n
[(1 + �)κdt+1]

1−σ − (1− σ) z
o 1
1−σ

if z < g (κdt+1) ,

where g (κdt+1) = [(1 + �)1−σ − 1] (κdt+1)1−σ1−σ . (If σ = 1, then q (z;κdt+1) = �κdt+1 if z ≥
ln (1 + ε), and q (z;κdt+1) = (1− e−z) (1 + �)κdt+1 otherwise.)

16By “real value” here, I mean real value in terms of marginal utility of fruit. For example, in a period when
the aggregate dividend is dt, the “real value” of a portfolio at = (ast , a

b
t) is λtat = λsta

s
t+λbta

b
t , where λ

b
t = U 0 (dt)

and λst = U 0 (dt) (φst + dt).
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Hereafter, I specify that the government chooses the stock of bonds according to a policy rule

Bt+1 = f (dt, xt). At any date, the variables (dt, xt) are sufficient for predicting the subsequent

evolution of the economy. So in a recursive equilibrium (one where all equilibrium values are

invariant functions of the state), one can think of the state of the economy as being the pair

(d, i) if dt = d and xt = γi. With this convention, asset prices can be written as φ
s (d, i) and

φb (d, i). To guarantee that the ratio of government debt to GDP is stationary, let f (dt, xt) =

B̂E [dt+1| (dt, i)] if xt = γi, where B̂ ≥ 0. Thus, given that xt = γi, Bt+1 = f (dt, xt) = Bidt,

where Bi = B̂
Pn

j=1 µijγj. Restricting attention to equilibria that are stationary in growth

rates amounts to focusing on equilibria where share prices are homogeneous of degree one in d,

and can therefore be written as φs (d, j) = φsjd, where φ
s
j is a constant. In turn, this implies

that φb (d, i) is independent of d, so one can write φbi = φb (d, i). Now (2)—(5) reduce to

φsi = β
X
j

µijγ
1−σ
j Ls

ij(φ
s
j)(1 + φsj) (14)

φbi = β
X
j

µijγ
−σ
j Lb

ij(φ
s
j), (15)

for i = 1, ..., n, with

Ls
ij(φ

s
j) = 1 + α (1− θ)max

⎧⎪⎨⎪⎩
⎡⎢⎣ 2∙

(1+�)1−σ+ (σ−1)
κ1−σ

µ
1+φsj+

Bi
γj

¶¸ 1
1−σ
− 1

⎤⎥⎦
−σ

− 1, 0

⎫⎪⎬⎪⎭ (16)

Lb
ij(φ

s
j) = Ls

ij(φ
s
j) + αθmax

⎧⎪⎨⎪⎩
⎡⎢⎣ 2∙

(1+�)1−σ+ (σ−1)
κ1−σ

Bi
γj

¸ 1
1−σ
− 1

⎤⎥⎦
−σ

− 1, 0

⎫⎪⎬⎪⎭ . (17)

Let (µ̄i)
n
i=1 denote the vector of stationary probabilities on i, i.e., the vector that solves

µ̄ = µ0µ̄, with
P

i µ̄i = 1, where µ is the Markov matrix [µij ] and µ0 = [µji]. Then,X
i

X
j

µ̄iµijβγ
−σ
j (R̂s

ij − R̂b
i ) = ωe

X
i

X
j

µ̄iµij(βγ
−σ
j R̂b

i − 1) = ωb
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are the analogues of (8) and (9), where R̂s
ij =

(1+φsj )γj
φsi

, R̂b
i = 1/φ

b
i , and

ωe =
X
i

X
j

µ̄iµijβγ
−σ
j

n
[Lb

ij(φ
s
j)− 1]R̂b

i − [Ls
ij(φ

s
j)− 1]R̂s

ij

o
, (18)

ωb = −
X
i

X
j

µ̄iµijβγ
−σ
j [Lb

ij(φ
s
j)− 1]R̂b

i . (19)

The average measured returns on equity and the bond are

R̂s =
X
i

X
j

µ̄iµijR̂
s
ij and R̂b =

X
i

µ̄iR̂
b
i ,

and the equity premium is π = R̂s − R̂b.

The liquidity factors (16) and (17) reflect the fact that the trading constraints in the bar-

gaining problem, pk ≤ a for k = 1, 2 (where k = 1 denotes a restricted match, and k = 2

an unrestricted match), may bind in some states and not in others. Suppose that the current

realization of the growth rate is γi. Then from (16), it is clear that the set of next-period states

in which the trading constraint binds in unrestricted matches is

Ω (Bi) =

½
j ∈ {1, . . . , n} : 1 + φsj +

Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
.

Hence, an economy with θ ∈ [0, 1) has Ls
ij > 1 if and only if j ∈ Ω (Bi). Similarly, given that the

current period growth rate is γi, the set of next-period states in which the liquidity constraint

binds in restricted matches is

Ωθ (Bi) =

½
j ∈ {1, . . . , n} : Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
.

Naturally, Ω (Bi) ⊆ Ωθ (Bi); i.e., if the liquidity constraint binds in unrestricted trades, it also

binds in restricted trades. If Ωθ (Bi) = ∅ for all i, then Ls
ij(φ

s
j) = Lb

ij(φ
s
j) = 1 for all i and j,

ωe = ωb = 0, and the model reduces to Mehra and Prescott (1985). The following example can

help build some intuition.

Example 1 Suppose µij = µj for all i, let ∆ ≡ β
P

j µjγ
1−σ
j < 1, γ = maxi γi, and γ =

mini γi. Let B =
n
κ1−σ
σ−1

h
1− (1 + �)1−σ

i
− 1

1−∆
o
γ. Then, φsi = φs, φbi = φb, and Bi = B for

18



all i, and: (a) For B ≥ B, we have φs = ∆
1−∆ , φ

b = β
P

j µjγ
−σ
j , and Ωθ = Ω = ∅; i.e.,

Ls
j (φ

s) = Lb
j (φ

s) = 1 for all j. (b) For B < B, φs = φ∗, where φ∗ is the unique solution

to φ
1+φ = β

P
j µjγ

1−σ
j Ls

j (φ), and given φ∗, φb = β
P

j µjγ
−σ
j Lb

j (φ
∗). In this case, Ωθ 6= ∅

and Ω 6= ∅, so Lb
j (φ

∗) > Ls
j (φ

∗) for (at least) some j, and Ls
i (φ

∗) > 1 for (at least) some

i. To provide a full characterization, let Bθ =
κ1−σ
σ−1

h
1− (1 + �)1−σ

i
γ, Bθ =

¡
γ/γ

¢
Bθ, and

B =
n
κ1−σ
σ−1

h
1− (1 + �)1−σ

i
− (1 + φ∗)

o
γ. (It is easy to see that in general, Bθ < Bθ, B < B,

B < Bθ, and B < Bθ.) Let Ω
c
θ denote the complement of Ωθ and Ω

c the complement of Ω.

Then it can be shown that (i) Ωcθ = ∅ iff B < Bθ, and Ωθ = ∅ iff Bθ ≤ B; and (ii) that Ωc = ∅

iff B < B, and Ω = ∅ iff B ≤ B.

4.1 Calibration

The three basic types of parameters are those that define preferences (β and σ), those that

define technology (α, �, κ, and the elements of [µij] and [γi]), and B̂, which defines government

policy. In the formulations that assume differential liquidity, there is also θ, the probability

that a randomly drawn trading partner will not accept shares as a means of payment in a

decentralized exchange.17

I follow Mehra and Prescott (1985) and assume that the growth rate of the aggregate fruit

endowment follows a two-state Markov chain with γ1 = γ̄ + δ, γ2 = γ̄ − δ, µ11 = µ22 = µ, and

µ12 = µ21 = 1− µ, and set γ̄ = 1.018, δ = 0.036, and µ = 0.43.18 Next, I propose a calibration

procedure for the remaining parameters. Since the main goal here is to explore the quantitative

relevance of the liquidity channel (rather than to devise a definitive calibration strategy for this

class of models), I will also consider various alternative parametrizations for the variables that

were not in Mehra and Prescott’s original analysis.

17There are also the parameters associated with the utility of general goods and the disutility of work, but
they are irrelevant for asset prices within the class of equilibria studied here. (See Section A.2 in the appendix,
in particular footnote 39, for details.)
18Mehra and Prescott selected these parameter values so that the average growth rate of per capita consump-

tion, the standard deviation of the growth rate of per capita consumption, and the first-order serial correlation
of this growth rate (all with respect to the model’s invariant distribution) matched the sample values for the
U.S. economy between 1889 and 1978. The same is true here.
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The strategy for calibrating κ consists of selecting the value for which the fraction of GDP

that corresponds to production units (“trees”) that have outstanding tradeable equity shares in

the model matches the sample value for the U.S. economy. Since this statistic is not readily

available, I have instead guided the choice of κ by using the gross value added of the nonfinancial

corporate business sector as a share of GDP. In the U.S. National Income and Product Accounts

(NIPA), this number is slightly above 0.5 for the fifty-seven-year period 1947—2004.19 Not all

businesses have outstanding tradeable equity, so this amounts to an upper bound. With this

in mind, I target 0.4 as a benchmark, which results in κ = 0.5.20 In the appendix, I also report

results for different targets, both larger and smaller.

The policy parameter B̂ determines the size of the stock of government-issued assets that can

be used as a medium of exchange, and hence the extent to which agents may experience liquidity

needs in decentralized trades. Government bonds are the only such asset in the model, but in

the United States, agents may use other government-issued assets (and claims to these assets)

to satisfy their liquidity needs. With this in mind, I constructed a new empirical monetary

aggregate, M1∗, which augments and adjusts the standard M1 measure. The measure M1∗

differs from M1 in two ways. First, it includes Treasury bills in circulation. And second,

it makes an adjustment for the amounts of M1 and Treasury bills outstanding that are held

outside the United States.21 The ratio of M1∗ to annual GDP was about 0.3 in 1959, declined
19The data for Gross Value Added of Domestic Corporate Business and GDP are from NIPA, Tables 1.1.4 and

1.15, respectively.
20 In the model, the fraction of GDP produced by trees that have outstanding, tradeable equity shares is 1

2+κ .
In period t, there is an endowment κdt of fruit in the first subperiod and an endowment dt in the second, so the
total endowment of fruit in period t is (1 + κ) dt. The output of general goods in the second subperiod is n∗dt,
where n∗ = A−1/σ. (See Section A.2 in the appendix for details.) Multiplying this quantity by the relative price
of general goods in terms of fruit, A, yields the value of production of general goods expressed in terms of fruit,
An∗dt. So real GDP (in terms of fruit) is (1 + κ+An∗) dt, or just (2 + κ) dt, given A = 1.
21Data for M1 are from the Board of Governors of the Federal Reserve System (Money Stock Measures,

Release H.6). The amount of Treasury bills outstanding for 1959—2004 was obtained from the Bureau of the
Public Debt (Monthly Statement of the Public Debt, Table I: Summary of Treasury Securities Outstanding).
The Flow of Funds Accounts of the United States compiled by the Board of Governors of the Federal Reserve
System provides estimates of the portion of checkable deposits and currency and of Treasury securities that is
held by the rest of the world (Table L.204, line 20, and Table L.209, line 11, respectively). The series for M1 was
adjusted by assuming that the proportion that is held domestically is the same as the proportion of currency and
checkable deposits that is held domestically. Similarly, the stock of outstanding Treasury bills held domestically
was estimated by assuming that the fraction of Treasury bills held by the rest of the world is the same as the
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through 1979, hovered around 0.2 until 1995, and has been about 0.15 since then. So summing

up, this ratio has been in the interval [0.15, 0.3] over the last 40 years. I use 0.3 as a benchmark

target–a conservative choice, since the magnitude of the liquidity factor is decreasing in the

value of this ratio. This choice, together with the benchmark value for κ, implies B̂ = 0.75. In

the appendix, I will also report results for different values of B̂.

The parameters α and � index the agent’s ability and desire to engage in bilateral exchange,

respectively. If α = 0, the economy is just a sequence of Walrasian markets, and assets are

valued only for their intrinsic payoffs but not for their role as media of exchange: in this case,

the model reduces to the one studied by Mehra and Prescott (1985). If � = 0, each agent has

the same endowment every first subperiod, so there are no benefits from trade in any bilateral

meeting and therefore no role for a medium of exchange. In this case, asset prices and returns

will again be just as in the economy studied by Mehra and Prescott.

The choice of � has implications for consumption inequality. In the baseline calibration, I

set � = 0.8, which implies that the variance of the log of total (including general goods and

fruit in both subperiods) per capita consumption is 0.013.22 In the appendix (Section A.4), I

will also explore the implications of higher and lower values for �. Note that α = α̂/4, where

α̂ is the probability that the agent finds an opportunity to trade in the decentralized market.

I set α̂ = 1 in the baseline, which basically says that every agent has a trading opportunity

in the decentralized market over the course of the year. However, only the products αθ and

α (1− θ) matter for asset prices and returns, and I will be experimenting extensively with θ.

In the appendix (Section A.4), I verify the robustness of the main findings to changes in the

fraction of Treasury securities held by the rest of the world. The series for M1∗ was constructed by adding the
estimated domestic holdings of Treasury bills to the estimated stock of M1 that is held domestically.
22This number is rather low relative to the values of about 0.15 that Krueger and Perri (2005) report for the

within-group (i.e., conditioning on education, age, sex, experience, occupation, region of residence) variance of the
log of per capita consumption in the United States. The cross-sectional variance of the log of total consumption
is low even for values of � close to 1. This is so because in the model, there is only inequality in consumption of
fruit in the first subperiod, and this is only a fraction of total consumption (in addition, all agents also consume
the same amounts of fruit and general goods in the second subperiod). For the various parametrizations, I have
also computed the variance of the log of per capita consumption in the first subperiod only–and found it to be
in line with the estimates of Krueger and Perri (2005).
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values of B̂, κ, and ε, the parameters that were not in Mehra and Prescott (1985).

The nature of Mehra and Prescott’s test of the theory was to experiment with different

values of β and σ to find the combinations of these parameters for which the model’s average

risk-free rate and equity premium matched those observed for the U.S. economy. (Table 1,

taken from Mehra and Prescott (2003), reports the basic facts according to various data sets.)

In the next section I will carry out a similar exercise, except that I will not experiment with β,

which is set to 0.99 throughout. I will first consider the economy with no exogenous liquidity

differences between equity shares and bonds, and assess the model’s ability to produce bond

returns and equity premia that resemble those observed for the U.S. economy. I will then go on

to consider the specification with exogenous liquidity differences where shares are not accepted

as a means of payment in a fraction θ of decentralized exchanges. For this specification, the

question I pose is: how large does θ (the relative illiquidity of equity) need to be for the model

to generate an average risk-free rate of 1% and an average equity premium that matches the

one observed in the U.S. economy?

Data Set % Real Return % Real Return on a % Equity Premium
on a Market Relatively Riskless (Mean)
Index (Mean) Security (Mean)

1889—1978 (Mehra—Prescott, 1985) 6.98 0.80 6.18
1889—2000 (Mehra—Prescott, 2003) 8.06 1.14 6.92
1926—2000 (Ibbotson Associates, 2001) 8.80 0.40 8.40
1871—1999 (Shiller, 1990) 6.99 1.74 5.25
1802—1998 (Siegel, 1998) 7.00 2.90 4.10

Table 1: U.S. equity premium from different data sets

4.2 Results

Table 2 reports the average percentage return on equity, the average percentage return on the

bond, and their difference (the equity premium) in the Mehra—Prescott economy for values

of σ ranging from 1 to 10. For these “reasonable” values of σ, the risk-free rate is too high

and the equity premium too low. Table 3 corresponds to the benchmark calibration of the
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basic model augmented to allow for a liquidity motive, as outlined in the previous sections.

(Table 3 assumes θ = 0, i.e., no exogenous liquidity differences between equity and bonds.)

The last column of each of these tables reports the pair of wedges (ωe, ωb) to the agent’s Euler

equations (see (18) and (19)). These wedges are zero if agents have enough liquidity to conduct

decentralized transactions in all states of the world, or if the liquidity channel is shut off, as in

the Mehra—Prescott economy.

σ
Equity
Return

Bond
Return

Equity
Premium

EE wedges
ωe, ωb

1 2.83 2.70 0.13 0,0
2 4.58 4.30 0.28 0,0
3 6.27 5.79 0.48 0,0
4 7.89 7.18 0.71 0,0
5 9.42 8.45 0.97 0,0
6 10.88 9.62 1.26 0,0
7 12.24 10.67 1.57 0,0
8 13.52 11.60 1.92 0,0
9 14.70 12.41 2.29 0,0
10 15.79 13.10 2.69 0,0

Table 2: The Mehra-Prescott economy

σ
Equity
Return

Bond
Return

Equity
Premium

EE wedges
ωe, ωb

1 2.83 2.70 0.13 0,0
2 4.58 4.30 0.28 0,0
3 6.27 5.79 0.48 0,0
4 7.89 7.18 0.71 0,0
5 9.42 8.45 0.97 0,0
6 10.88 9.62 1.26 0,0
7 12.24 10.67 1.57 0,0
8 8.80 6.76 2.04 .0010,-.0435
9 5.97 3.54 2.43 .0014,-.0790
10 4.35 1.50 2.85 .0017,-.1027

Table 3: Benchmark economy with θ = 0

The first thing to note is that the first seven rows in Table 3 are identical to the corresponding

rows in Table 2: the economy behaves exactly as the Mehra—Prescott economy up to σ = 7. By
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the time σ reaches 8, equilibrium asset prices and returns begin to differ across both economies.

For example, in Table 2, when the curvature parameter goes from 7 to 8, the return on equity

rises from 12.24% to 13.52%, and the bond return rises from 10.67% to 11.6%. In contrast,

in the economy of Table 3, the equity and bond returns fall from 12.24% to 8.8%, and from

10.67% to 6.76%, respectively. The two economies behave differently for higher values of σ

because agents face binding liquidity constraints in bilateral trades for high values of σ, but not

for low values.

To see why this is the case, let Ω (Bi) denote the set of states for which the liquidity

constraints bind in the economy with θ = 0, in a period when the outstanding stock of bonds

is Bi
γj
d. From the analysis in the previous sections, we know that

Ω (Bi) =

½
j ∈ {1, 2} : 1 + φsj +

Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
. (20)

Recall that (1+φsj +
Bi
γj
)d is the real (value in terms of fruit of the) equilibrium portfolio at the

beginning of the first subperiod when the state is (d, j) and the outstanding stock of bonds is

Bi
γj
d, and hence (1 +φsj +

Bi
γj
)d1−σ is the “price” of this portfolio in terms of marginal utility of

fruit. The definition of the set Ω (Bi) states that the buyer’s liquidity constraint binds if this

value of her portfolio falls short of u [(1 + �)κd]−u (κd) = κ1−σ
σ−1 [1−(1 + �)1−σ]d1−σ, namely, the

amount of utility she has to transfer to the seller for him to be willing to consume κd instead

of (1 + �)κd in the first subperiod. In the benchmark parametrization, it can be shown that

κ1−σ
σ−1 [1− (1 + �)1−σ] is strictly increasing in σ. This means that, keeping φsj constant, the set Ω

is nondecreasing in σ. Of course, in the general equilibrium σ also affects equity prices φsj , but

for the baseline parametrization, the direct effect that tends to tighten the liquidity constraint

quantitatively dominates the indirect effect that operates through the price of equity (which in

general tends to loosen the liquidity constraint, since equity prices typically rise with σ when

the liquidity constraints are not always slack).

To be more precise, for the economy reported in Table 3, there is a σh ≈ 7.153 such that
for all i ∈ {1, 2}, we have Ω (Bi) = ∅ for σ ≤ σh and Ω (Bi) = {1, 2} for σ > σh. That is, for
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σ > σh, buyers in the decentralized market face binding liquidity constraints for all realizations

of the aggregate endowment process and every outstanding stock of bonds implied by the

government’s policy rule. When liquidity constraints bind, assets help relax those constraints,

and this additional “liquidity service” they provide is reflected in asset prices and their measured

returns–the asset returns as they are conventionally measured. When the liquidity constraints

bind, asset prices rise, and their measured, intrinsic returns fall with σ. The reason is that

the liquidity constraint becomes progressively tighter with larger values of σ, so agents have

an additional incentive to hold assets: they help relax liquidity constraints. This means that–

relative to a world with no liquidity–investors no longer require such large expected measured

returns to be willing to hold those assets. (Conversely, in the Mehra—Prescott economy of Table

2, asset prices are strictly decreasing and returns strictly increasing in σ, at least for reasonable

values, e.g., σ ≤ 20.)
If we compare the third columns of Tables 2 and 3, it is clear that, for σ > σh, the equity

premium is only slightly higher in the model with liquidity and θ = 0, relative to the Mehra—

Prescott economy. Take the row corresponding to σ = 10, for instance: the standard model

generates a premium of 2.69% and the model with liquidity a premium of 2.85%. The big

difference is in the actual asset returns that compose this premium. In the standard model the

2.69% is the difference between an equity return of 15.79% and a risk-free rate of 13.10%–both

much too high relative to the values reported in Table 1. In contrast, the 2.85% premium in

the model with liquidity is the difference between an equity return of 4.35% and a risk-free rate

of 1.5%. The former is rather low, but the latter is within the range of estimates reported in

Table 1. All this is illustrated in Figure 1.

The last column of Tables 2 and 3 reports the “wedges” to the Euler equations defined in

(18) and (19). This column can be used as an indicator of when the liquidity constraints bind

and when they do not. In Table 3, for σ ≤ σh, i.e., when these constraints are slack in all states,

both wedges equal zero, and the equilibrium asset prices and returns coincide with those in the

Mehra—Prescott economy. For σ > σh the liquidity constraints bind, so these wedges become
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Figure 1: Returns for Mehra—Prescott and for the economy with liquidity (θ = 0)

nonzero. Since Table 3 assumes θ = 0, we have Lb
ij(φ

s
j) = Ls

ij(φ
s
j), and therefore (see (18)) the

wedge −ωe is a weighted average of (R̂s
ij − R̂b

i ), the state-by-state equity premium. Since the

average equity premium is modest and the “weight” βγ−σj Lij is large in the low-growth state,

when (R̂s
ij − R̂b

i ) < 0, and small in the high-growth state, when (R̂s
ij − R̂b

i ) > 0, the model

delivers ωe > 0.23 The wedge −ωb is a weighted average of the risk-free rate, R̂b
i , so we have

ωb < 0 (see (19)).

As mentioned in Section 3, a large body of empirical work in asset pricing specifies and tests

the sample counterpart to the moment restriction implied by the Euler equation of candidate

structural models (e.g., Hansen and Singleton (1982)). The wedges ωe and ωb in the last column

of Table 3 can be thought of as the theoretical counterparts of the sample means reported in

Kocherlakota (1996) (Tables 2 and 3, pp. 50—51). Interestingly, even with θ = 0, the model is

able to replicate the signs of these wedges. Quantitatively, however, ωe is too small relative to

23For σ = 10, for example, R̂b
1 = 0.96, R̂b

2 = 1.07, R̂s
11 = 1.076, R̂s

21 = 1.169, R̂s
12 = 0.92, and R̂s

22 = 1.
Note that R̂s

i1 − R̂b
i > 0 and R̂s

i2 − R̂b
i < 0 for i = 1, 2. The liquidity factors are L11 = 1.0726, L21 = 1.0725,

L12 = 1.1355, and L22 = 1.1353.
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the sample means that Kocherlakota reports in his Table 2.24 Conversely, the value of ωb for σ

ranging from 7 to 10 is roughly in line with magnitudes of the sample means that Kocherlakota

reports in his Table 3–an indication that, even with θ = 0, the model is able to rationalize the

risk-free rate puzzle.

The risk-free rate remains low for high risk aversion because assets, and in particular bonds,

yield a liquidity return which agents take into account when choosing their portfolios, but

financial analysts don’t include in their calculations of actual measured returns. In the usual

Mehra—Prescott economy, the risk-free rate puzzle arises because at relatively high levels of σ,

the equilibrium must offer agents in a growing economy a high return on bonds for them to be

willing to hold them. From the optic of the model with liquidity needs, at higher levels of σ the

equilibrium compensates agents for holding bonds (and since θ = 0, equity) with a high overall

return composed of a relatively high liquidity return and a relatively low “measured” return of

about 1.5%.

Now consider the more general formulation with liquidity differences between bonds and

equity indexed by an arbitrary θ ∈ [0, 1]. Figure 2 reports the asset returns and equity premia
corresponding to various economies indexed by θ and σ, with θ ranging from 0 to 3%, and σ

ranging from 1 to 5. Specifically, the figure depicts the “level sets” for the theoretical average

equity returns, bond returns, and equity premia. The first panel, for instance, shows the various

θ—σ combinations that generate a given average equity return. Equity returns are independent

of θ, so the level sets are flat lines. For example, if σ is slightly above 4 (if σ = 4.072, to

24For σ ranging from 7 to 10, the magnitude of the ωe wedge generated by the model is relatively close to
some of the mean values one obtains from data sets other than the one used by Kocherlakota (1996). See Table
3 in İmrohoroğlu (2003), for example. There, he compares estimates of the wedges for two measures of the “risk-
free” rate, the usual one based on 90-day Treasury bills, and another based on high-grade long-term corporate
bonds; and for two measures of equity returns, the standard one based on S&P 500, and another based on
S&P 500 but subject to the adjustments suggested by McGrattan and Prescott (2001, 2003). Their adjustments
are intended to account for taxes, regulatory constraints, and diversification costs. McGrattan and Prescott’s
emphasis on defining the equity premium relative to long-term bonds–as opposed to relative to 90-day Treasury
bills–seems to be an attempt to control for possible liquidity premia: “One problem [with Mehra and Prescott’s
analysis] is interpreting the return on a 90-day T-bill as the rate at which households intertemporally substitute
consumption. We do not interpret it as such. Treasury bills provide considerable liquidity services and are a
negligible part of individuals’ long-term debt holdings” (McGrattan and Prescott (2003), p. 393).
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be precise), the model economy generates an average equity return of 8% for any value of θ.

Similarly, the level sets in the middle panel show the various θ—σ combinations that generate

a given average bond return. Notice that even for this relatively narrow parameter range

(0 ≤ θ ≤ 0.03 and 1 ≤ σ ≤ 5), the model can display a wide range of bond returns, as high as
5% and as low as −10%. For example, if σ = 4, the equilibrium average bond return would be

1% if θ = 0.0222. The last panel shows the average equity premium generated by the model

for each θ—σ combination. For a given value of σ, the equity premium is increasing in θ, and in

fact, it is more responsive to θ for larger values of σ.

Figure 2: Economies with exogenous liquidity differences

I can now address one of the questions posed in the introduction: for any given view on the

value that σ should take, how large does θ (the relative assumed “illiquidity” of equity) have

to be for the model to generate an average risk-free rate of 1% and an average equity premium

that matches the long-term average for the U.S. economy? The answer is Table 4.

Table 4 was generated with the baseline parametrization used to generate Table 3. The

difference is that in Table 4, for each value of σ, the parameter θ was chosen so that the risk-

free rate is equal to 1%, whenever possible. (The middle panel of Figure 2 gives a clear idea of

how this can be done.) The resulting value of θ, denoted θ∗, is reported in the last column.

The key difference between an economy with θ > 0 relative to one with θ = 0 is that in the
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σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

θ∗

1 2.83 2.70 0.13 0,0 –
2 4.58 1 3.58 .0316,-.0316 .3799
3 6.27 1 5.27 .0453,-.0453 .0742
4 7.89 1 6.89 .0576,-.0576 .0222
5 9.42 1 8.42 .0687,-.0687 .062×10−1
6 10.88 1 9.88 .0786,-.0786 .015×10−1
7 12.24 1 11.24 .0873,-.0873 .032×10−2
8 8.80 1 7.80 .0526,-.0950 3.40×10−5
9 5.97 1 4.97 .0240,-.1016 2.45×10−6
10 4.35 1 3.35 .0062,-.1072 7.26×10−8

Table 4: Benchmark economy with exogenous liquidity differences

former there are two types of decentralized trades: some where agents can pay using bonds and

equity, and a fraction θ where they can use only bonds. This means that in any given state

of the world, agents may face binding liquidity constraints in all decentralized trades, just in

those where only bonds can be used as a medium of exchange, or in none of the decentralized

trades. Formally, in addition to the set Ω (·) defined in (20), there is now another set,

Ωθ (Bi) =

½
j ∈ {1, 2} : Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
, (21)

that contains the states for which the liquidity constraints are binding in meetings where only

bonds can be used in exchange when the outstanding stock of bonds is Bi
γj
d.

The first row of Table 4 is identical to the first row of Table 3 (and of Table 2). That is,

if σ = 1, the agents’ liquidity needs are so modest that the value of their equilibrium bond

holdings is large enough to allow them to buy the first-best quantity �κdt in every round of

decentralized trade, for all realizations of the dividend process. Formally, Ωθ (Bi) = ∅ for all i

and Ω (Bi) = ∅, since Ω (Bi) ⊆ Ωθ (Bi). Thus, the equilibrium is independent of the value of θ.

For σ = 2, agents’ liquidity needs are already strong enough so that the liquidity constraint

is no longer slack in all decentralized meetings. (The nonzero wedges indicate the agent is

sometimes short of liquidity.) In fact, for the benchmark parametrization, the equilibrium has

Ωθ (Bi) = {1, 2} for all i. That is, for all realizations of the aggregate endowment process
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and every outstanding stock of bonds implied by the government’s policy rule, the liquidity

constraint binds in decentralized trades where the buyer can use only bonds. With σ = 2

liquidity constraints do not bind in decentralized trades where both equity shares and bonds can

be used as means of payment, i.e., Ω (Bi) = ∅ for all i. The equilibrium remains qualitatively

the same (in the sense that Ω (Bi) = ∅ and Ωθ (Bi) = {1, 2} for all i) up to σ = σh. For σ > σh,

the liquidity motive becomes so strong that the equilibrium has Ωθ (Bi) = Ω (Bi) = {1, 2} for
all i; that is, liquidity constraints bind at all dates, in all decentralized trades–even when

agents can pay with bond and equity shares.25

Figure 3 illustrates and complements the findings summarized in Table 4. For each value

of σ ranging from 1 to 10, the dashed line gives the corresponding value of θ∗, which can be

read off the left vertical axis. As mentioned while discussing the first row of Table 4, there is a

σm ≈ 1.760 such that there is no θ ≤ 1 that can make the bond return 1% for σ < σm. Thus,

the first point on the dashed line is (σm, θ∗) with θ∗ = 1. As we increase σ away from σm, the

implied θ∗ falls rapidly for relatively small values of σ, e.g., up to σ = 5, and levels off–at very

low values–for larger σ.

For each value of σ, the solid line in Figure 3 displays the equity premium generated by the

model with θ = θ∗. (The percentage equity premium can be read off the right vertical axis.)

For values of σ between 1 and σl ≈ 1.695 < σm, the liquidity needs are so mild that the bond

portfolio alone is enough to satisfy them. This is the range at which Ω (Bi) = Ωθ (Bi) = ∅, so

neither bonds nor equity yields a liquidity return. The equilibrium is independent of θ, and the

equity premium increases slightly with σ just as in Mehra—Prescott. The first kink (the one

at σl) occurs because for σ > σl, the liquidity constraint starts to bind in restricted matches.

However, even though bonds yield a liquidity return, it is too small to lower the measured

return to 1%, even if θ = 1. That is, even with θ = 1, the measured bond return is above

1% for σ < σm. The second kink (the one at σ = σm) indicates that from then on (i.e., to

25Again, notice that the column that reports the Euler equation “wedges” ωe and ωb can be used as an indicator
of the binding patterns of the liquidity constraints. To see this, refer back to (18) and (19) and note that: (i)
ωe = ωb = 0 if Ωθ (Bi) = Ω (Bi) = ∅, (ii) ωb < 0 iff Ωθ (Bi) 6= ∅, and (iii) ωe =

¯̄
ωb
¯̄
iff Ω (Bi) = ∅.
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Figure 3: The equity premium in economies with liquidity differences

the right of σm), θ can and is chosen to peg the bond return at 1%. For values of σ between

σm and σh, the implied equilibrium has Ωθ (Bi) = {1, 2} and Ω (Bi) = ∅ for all i. The equity

premium peaks at 11.45%, corresponding to an economy with σ = σh and θ∗ ≈ 4.21×10−5. The
third kink (the one at σh) occurs because for parametrizations with σ larger than σh, liquidity

needs are so severe that agents are constrained in all trades, restricted and unrestricted, i.e.,

Ω (Bi) = Ωθ (Bi) = {1, 2} for all i.
Notice that equity returns are identical across Tables 3 and 4, as is to be expected from the

results in the first panel of Figure 2. Thus, just as for the economy with θ = 0, equity returns

coincide with those of the Mehra—Prescott economy for σ ≤ σh. Although equity shares can

in principle provide liquidity in the economies of Tables 3 and 4, they don’t for relatively low

levels of σ. Accordingly, for this range of σ, equity returns are increasing in σ.26 Interestingly,

26Just as in Table 3, equity returns start falling for σ above σh, once equity shares can be used to relax liquidity
constraints at the margin, i.e., once liquidity constraints start binding in decentralized trades where agents can
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the equilibrium equity returns and the equity premium implied by σ = 3, σ = 4, and σ = 5 in

Table 4 lie within the range of estimates reported in Table 1.27 The corresponding values of θ∗

are 0.0742, 0.0222, and 0.0062, respectively. So, for example, if σ = 4, this says that in 2 out

of 100 decentralized trading opportunities, agents find themselves in a situation in which they

cannot trade away the shares in their portfolios. At face value, this proportion seems rather

small, especially given that the institutional arrangements for trading away equity and bonds

are rather different in actual economies.28 But this view may leave room for dissent, so in the

following section, I propose a more systematic way to gauge the absolute size of the difference

in the relative ability of shares and bonds to serve as mediums of exchange, which are needed

for the liquidity motive to be able to rationalize the full observed equity premium.29

The signs and magnitudes of the Euler equation wedges in Table 4 are in line with those

estimated by Kocherlakota (1996) using Mehra and Prescott’s (1985) data. For example, if

σ = 5, (ωe, ωb) = (.0687,−.0687), compared to (.0433,−.0675) in Kocherlakota’s Tables 2 and
3. For σ = 4, the model implies (ωe, ωb) = (.0576,−.0576), and Kocherlakota’s estimates are
(.0464,−.0569), and for σ = 3, (ωe, ωb) = (.0453,−.0453), compared to (.0496,−.0448).30

To see the effects that liquidity differences among assets have on equilibrium returns, con-

sider Figure 4, which is analogous to Figure 1, but with θ = 0.0222 (the θ∗ corresponding to

σ = 4 in Table 4). The only difference between the first panel of Figure 1 and the first panel of

pay with any combination of shares and bonds.
27Note that although the equity return (and consequently also the equity premium) is too high for σ = 6 and

7, the equity return and the equity premium are also in line with the data for σ = 8. Liquidity constraints bind
in all trades for σ ≥ σh, so in this range equity yields a liquidity return, and this depresses the measured intrinsic
return back to a level consistent with some of the estimates in Table 1.
28Here I have in mind the fact that from an investor’s standpoint, executing and settling a sale of shares

routinely takes longer than executing and settling a sale of bonds (see footnote 8). These differences may imply
that once in a while, the proceeds of a sale of equity shares may not be available in time to take advantage of a
fleeting trade opportunity.
29Lest there be any confusion, I want to stress that these exercises are not meant to suggest that only liquidity

considerations are behind the observed equity premium. The spirit is rather to put this liquidity mechanism to
an extreme test by asking whether it could conceivably account for the whole premium. To the extent that these
sorts of liquidity considerations are only one of several ingredients of a broader theory of the equity premium,
the implied values of θ∗ will be even smaller.
30For σ = 8, the other parametrization that can generate reasonable average equity return and premium, the

model has (ωe, ωb) = (.0526,−.0950), and Kocherlakota reports (.0341,−.0910).
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Figure 4 is the dashed line, i.e., the measured bond return, which is much lower in the latter.

The most noteworthy feature of the second panel of Figure 4 is the sheer size of the equity

premium in an economy with only modest liquidity differences. (Note that the vertical axis

here goes from 0 to 7% but only up to 3% in the second panel of Figure 1.) For example, the

equity premium is 7% if σ ≈ 4.0125.

Figure 4: Returns for Mehra—Prescott and for the economy with liquidity (θ = 0.0222)

The focus of the paper is on the first moments of asset returns, but I conclude this section

with a remark on second moments. The standard deviations of equity returns in the model with

liquidity (for any value of θ) do not differ much from the Mehra—Prescott model. For example,

they are 3.6% for σ = 1, 6.2% for σ = 5, and 9.6% for σ = 10. (The standard deviations are

identical to the Mehra—Prescott counterparts up to σ = σh and vary only slightly for higher

values of σ.) Even though these standard deviations are rather low (the standard deviation

is roughly 16% in the data), the Mehra—Prescott model still generates a Sharpe ratio that is

too low (0.035 for σ = 1, 0.156 for σ = 5, and 0.276 for σ = 10) relative to the standard

estimates (about 0.5). Interestingly, the Sharpe ratio is too high in the model with liquidity
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for the parametrizations that generate the right premium. Of course, this is just another way

of saying that the liquidity mechanism, as modeled here, does not induce additional volatility

in equity returns.

4.3 Bond—equity trade-volume bounds

A natural way to assess whether the values of θ that are needed for the model to rationalize

the equity premium as a liquidity premium are “reasonable” follows from the realization that

θ determines the frequency with which bonds get traded vis-à-vis shares. For example, in

the extreme case with θ = 1, equity shares never change hands in this economy: each agent

holds a single equity share at the end of the period, and since these shares are never used in

decentralized trades, each agent also enters every second subperiod with the same share, so no

shares are traded along the equilibrium. Conversely, in this case the volume of bonds traded

will be positive along the equilibrium path, since at least some bonds will be exchanged in the

first subperiod and again in the second subperiod. The idea, then, is to construct the ratio of

the value of bonds traded in a given period (as a proportion of the total value of outstanding

stock of bonds), relative to the value of shares traded (as a proportion of the total value of

outstanding equity).

Let vbij and v
s
ij denote the quantities or volumes of bonds and equity shares that are traded

in a period when the aggregate state is (d, j) and the outstanding stock of bonds is Bi
γj
d. Then

vbij and φsjdv
s
ij are, respectively, the value of bonds and shares that change hands during the

period, expressed in terms of fruit, the numeraire. The total values of outstanding bonds and

shares in the same period are Bi
γj
d and φsjd. The proportion of the outstanding value of the

stock of bonds traded during the period–the bond turnover ratio–is vbijγj/(Bid). Similarly,

the proportion of the outstanding value of equity that was traded during the period–the equity

turnover ratio–is vsij . Therefore,

υij =
vbijγj
vsijBid

can be used as a measure of the turnover of bonds relative to the turnover of equity.

34



The total volumes traded are vbij =
α̂
2 [θp

b
ij + (1− θ) p̂bij], and vsij = α̂ (1− θ) p̂sij , where p

b
ij

is the quantity of bonds traded in a match where shares cannot be used, and (p̂sij, p̂
b
ij) is the

portfolio that changes hands in a match where both shares and bonds can be used for payment,

in a period when the aggregate state is (d, j) and the outstanding stock of bonds is Bi
γj
d. (Clearly,

as mentioned earlier, vsij → 0 as θ → 1, so values of θ close to 1 are unreasonable in that they

would imply an unrealistically large volume of trade for bonds relative to shares.)

To get a sense for how the quantities pbij , p̂
s
ij, and p̂bij of assets traded in the decentralized

market are determined, it is convenient to consider the four possible types of double-coincidence

trades a buyer may find himself in when θ ∈ (0, 1). The buyer may be in a meeting where he
can use shares as means of payment, or where he cannot, and in each case, the relevant liquidity

constraint may be binding or slack. In the two cases where the relevant constraint is binding,

the agent simply spends all his portfolio if the meeting is one in which both can be used in

exchange, or just all his bond holdings if the meeting is one in which shares cannot be traded.

If the liquidity constraint is slack in a meeting where only bonds can be used in exchange (for

example, as is the case when σ = 1), he will spend just enough bonds to afford �κd. However,

if the liquidity constraint is slack in trades where either asset can be used as a medium of

exchange, then only the real value of the portfolio that changes hands is pinned down by the

equilibrium–the precise composition of the portfolio that the buyer gives the seller in exchange

for the �κd quantity of fruit is indeterminate.31

This means that in those cases where the liquidity constraint is slack in trades where either

asset can be used in exchange (as is the case for σ = 2 through 7 in the benchmark parame-

trization of the model with θ ∈ (0, 1)), the precise trading volumes of bonds and shares are
indeterminate in the equilibrium. Nonetheless, for each value of θ, it is possible to derive im-

plied upper and lower bounds for υij, denoted υij and υij , respectively. From these, I derive the

average (with respect to the model’s invariant distribution) upper and lower bounds, υ and υ

for the ratio of the value of traded bonds (as a proportion of the value of the outstanding stock

31For details, see the discussion around (27) in the appendix (Section A.3).
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of bonds) to the value of traded shares (as a proportion of the value of outstanding equity).

(See the appendix for details.) Values of θ that imply bounds υ and υ such that the ratio of

bond to equity trade volumes computed from actual data is smaller than υ would be deemed

too large. Similarly, values of θ for which the value of the ratio observed in the data is larger

than the implied υ would be too low.

From Table 4, the values of σ for which the model is able to generate a risk-free rate of 1%

and an equity premium that is in line with the data are σ = 3, 4, and 5. For σ = 5, θ = 0.0062,

and this value of θ implies [υ, υ] = [.01, 2.55]. This means that the model is consistent with the

value of traded bonds (relative to the value of outstanding bonds) being at most two and a half

times and at least 1% of the value of traded equity (relative to the value of outstanding equity).

Similarly, the volume bounds implied by θ = 0.0222 (the value corresponding to σ = 4) are

[.09, 6.29], and those implied by θ = 0.0742 (the value corresponding to σ = 3) are [0.7, 20]. The

bound for the pair (σ, θ) = (6, .0015) is [.0015, 1.17]. Naturally, υ is increasing in θ (decreasing

in σ).

5 Discussion

The bounds of Hansen and Jagannathan (1991) provide a way of assessing the magnitude of

asset-pricing puzzles and are often used as diagnostics tests for asset-pricing models. I begin

by asking how the Mehra—Prescott economy and the benchmark economy with liquidity fare

against these bounds for different values of σ. This is a useful way to understand how the

two models differ at the core, i.e., in terms of the first and second moments of their respective

stochastic discount factors.

Let m denote a stochastic discount factor that satisfies E (mR) = 1, the unconditional

version of the agent’s Euler equations, where R = [R1, R2]
0 and 1 is a vector of ones. Let Σm

denote the standard deviation ofm. The cup-shaped line in Figure 5 is the Hansen—Jagannathan

bound for returns; i.e., Σm ≥ [b0cov (R,R) b]1/2, with b = [cov (R,R)]−1 [1−E (m)E (R)]. The

straight line is the Hansen—Jagannathan bound on excess returns; i.e., Σm ≥ [b0cov (z, z) b]1/2,
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with b = − [cov (z, z)]−1E (m)E (z) and z = R1 − R2.32 The lines are drawn for the orig-

inal Mehra—Prescott data: R0 = [1.07, 1.01], var(R1) = 0.0274, var(R2) = 0.00308, and

cov(R1, R2) = 0.00104. According to these data, the minimum standard deviation an admissi-

ble stochastic discount factor must have is about 0.3509 (the minimum height of the cup-shaped

curve). This value of Σm corresponds to an E (m) of about 0.9855. Since the sides of the cup

are rather steep, a model that satisfies this bound must have a stochastic discount factor with

a mean that is close to 0.9855, unless one is willing to accept a dramatically higher standard

deviation for the stochastic discount factor. (If agents have access to a risk-free return, then

this value of E (m) implies a risk-free rate close to 1.0147.)

Figure 5: Hansen—Jagannathan bounds

32See Ljungqvist and Sargent (2000) for a textbook treatment. The bounds in Figure 1 are identical to those
in Ljungqvist and Sargent’s Figure 10.4, p. 287. McGrattan and Prescott (2003) suggest some adjustments to
the basic data that result in a different–lower–pair of bounds. See İmrohoroğlu (2003) for details.
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Consider the basic model with no exogenous liquidity differences between assets. The Euler

equations (14) and (15) imply:
P

j µijmijR̂
s
ij =

P
j µijmijR̂

b
i = 1, where Lij = Ls

ij (as given

in (16), with θ = 0) and mij = βγ−σj Lij is the stochastic discount factor between states i

and j. The circles in Figure 5 give the mean—standard deviation pairs of this discount factor

implied by the benchmark calibration of Table 3, for values of σ ranging from 1 to 10. The

crosses are the analogous mean—standard deviation pairs obtained by setting Lij = 1 for all i

and j. In this case, the stochastic discount factor for state j is just mj = βγ−σj : this is the

basic Mehra—Prescott economy of Table 2. For example, if σ = 1, the mean—standard deviation

pair is (0.9737, 0.0346) for both models. This is the lowest point in the figure; higher points

correspond to higher values of σ. In fact, for σ = 1 through 7, the liquidity constraints are

slack (recall that the Euler equation wedges are zero in Table 3), so both models share the

same stochastic discount factor, and hence they generate the same mean—standard deviation

pair for each σ. (These seven points appear marked with a circle and a cross in Figure 5.)

The stochastic discount factors of the two models diverge for σ = 8 and higher, i.e., once the

liquidity constraints start to bind. The liquidity mechanism increases the standard deviation,

but especially the mean of the stochastic discount factor. For instance, at σ = 10, the model

with liquidity has a stochastic discount factor with mean and standard deviation (0.9878, 0.3602)

just inside the admissible cup-shaped area.33

I would like to stress that this discussion is not intended to suggest that the model developed

here solves the equity premium puzzle because the point corresponding to σ = 10 lies inside the

cup-shaped area. Instead, the spirit is that, by understanding how the new ingredients I have

added to the standard Lucas-type asset-pricing model (e.g., decentralized exchange, anonymity,

and the resulting need for a medium of exchange) affect the moments of the stochastic discount

factor that prices returns, one can get a better sense for why these ingredients can enhance the

ability of the model to explain asset returns.

33For σ = 10, the Mehra—Prescott economy implies (0.8861, 0.3010), which does not even satisfy the bound for
excess returns. It takes a value of σ of about 20 in the Mehra—Prescott model to bring the mean and standard
deviation of their stochastic discount factor within the bounds implied by their data.
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Next, consider the more general formulation with θ ∈ [0, 1]. The (unconditional versions of
the) corresponding Euler equations (2) and (3) imply the following expression for the average

risk premium:

E(R̂s − R̂b) =
−cov(Rs,MRS)

E (MRS)
+

cov(Rb,MRS)

E (MRS)
− cov(R̂s, Ls) + cov(R̂b, Lb)

+[E(Lb)− 1]E(R̂b)− [E(Ls)− 1]E(R̂s), (22)

whereMRSt+1 denotes the marginal rate of substitution, βU 0 (ct+1) /U 0 (ct). (Recall that R̂i
t+1

is the measured return of asset i, and Ri
t+1 = Li

t+1R̂
i
t+1 is the full return, as perceived by the

agents in the model.) The first two terms are standard: excess returns are partly due to the

fact that the full return on equity covaries with the growth rate of consumption more than

does the average bond return. The third term is an adjustment for the degree to which equity

returns covary with the liquidity constraints; i.e., it reflects the extent to which equity shares

are a good hedge against binding liquidity constraints. For example, if the liquidity constraints

that can be relaxed with shares are looser in periods when the equity return is relatively high,

then cov(R̂s, Ls) < 0, and the third term tends to magnify the measured equity premium. The

fourth term is an analogous adjustment for bonds. The last two terms reflect the liquidity

return differential between the assets: their sum will be positive if lnE(Lb) − lnE(Ls) >

lnE(R̂s) − lnE(R̂b), namely, if the average (geometric) excess liquidity return of bonds over

shares is larger than the average (geometric) excess measured return of shares over bonds.

When this is the case, the combination of the last two terms adds on to the equity premium as

it is typically measured.34

To get some intuition about the signs and relative magnitudes of the various components of

the equity premium, Tables 5 and 6 report the first and second moments of the asset returns,

34 If Lst = Lbt = 1 with probability 1 at all t, as is the case for the benchmark parametrization with θ = 0 for
σ = 7 or lower, and for any parametrization of the Mehra—Prescott model, then

E (Rs)−Rb =
−cov (Rs,MRS) + cov

¡
Rb,MRS

¢
E (MRS)

,

and the model relies only on the first two terms discussed above to account for the whole equity premium.
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Mean Variance-Covariance
R̂s R̂b Ls Lb Rs Rb MRS

R̂s 1.043518 .00914 .00282 -.00268 -.00268 .00728 .00039 -.02569
R̂b 1.015041 .00269 -.00023 -.00023 .00287 .00274 -.00219
Ls 1.103996 .00099 .00099 -.00193 .00075 .00946
Lb 1.103996 .00099 -.00193 .00075 .00946
Rs 1.149354 .00601 .00121 -.01849
Rb 1.120370 .00378 .00719

MRS 0.886144 .09063

Table 5: Moments of returns, baseline with σ = 10 and θ = 0

Mean Variance-Covariance
R̂s R̂b Ls Lb Rs Rb MRS

R̂s 1.078871 .00305 .00042 0 .00028 .00305 .00074 -.00701
R̂b 1.01 .00039 0 -2.8×10−8 .00042 .00042 -.00036
Ls 1.00 0 0 0 0 0
Lb 1.061942 .00003 .00028 .00003 -.00073
Rs 1.078871 .00305 .00074 -.00701
Rb 1.072561 .00048 -.00112

MRS 0.933394 .01722

Table 6: Moments of returns, baseline with σ = 4 and θ = 0.0222

liquidity premia, and marginal rate of substitution implied by the model. Table 5 corresponds

to the baseline economy, but with θ = 0 and σ = 10 (the tenth line of Table 3). In this case,

we know that there is no liquidity differential, i.e., Lb = Ls = L always, so the premium can be

written as

E(R̂s − R̂b)| {z }
.028477

=
−cov(Rs,MRS)

E (MRS)E (L)| {z }
.018904

+
cov(Rb,MRS)

E (MRS)E (L)| {z }
.00735

−cov(R̂
s, L)

E (L)| {z }
.002433

+
cov(R̂b, L)

E (L)| {z }
−.000210

The numbers below each term are for the decomposition implied by the model. The first

two terms account for about 92% of the premium and the third for 8.5%. In this case, since

cov(L,MRS) > 0, the liquidity mechanism is causing the total return on equity, Rs, to covary

more with the MRS than the measured return R̂s, and this tends to bring the equity premium

down from what it would have been in an economy with L = 1.35 However, the fact that
35For Mehra—Prescott, in this parametrization the premium is 0.02689, and it is accounted for fully by the
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cov(L,MRS) > 0 turns cov
¡
Rb,MRS

¢
positive even though cov(R̂b,MRS) < 0 (see Table 5).

Intuitively, the measured asset returns R̂s and R̂b tend to be high in times when the growth

rate of consumption is high (the MRS low), but these are also times when the value of the

average portfolio is high, which means that each agent will face looser liquidity constraints, or

equivalently, that L will tend to be low in those periods.

Table 6 corresponds to the baseline economy, with σ = 4 and θ = 0.0222 (the fourth row of

Table 4). In this case Ls = 1 always, so the third and fifth terms of (22) are identically zero,

and the premium can be decomposed as

E(R̂s − R̂b)| {z }
.068871

≈ [−cov (Rs,MRS) + cov(Rb,MRS)]E (MRS)−1| {z }
.0063

+ [E(Lb)− 1]E(R̂b)| {z }
.062571

.

The liquidity differential between bonds and equity accounts for about 90% of the equity pre-

mium.36 In yet another way to try to assess which fraction of the equity premium is due to risk

and which to liquidity considerations, I have set δ (the standard deviation of the growth rate

of the endowment) to zero in the baseline. For example, with σ = 4 and θ = 0.0222 (see Tables

4 and 6), the equity premium goes down from 6.8871% to 6.3146%. So in this case, about 90%

of the equity premium is due to the fact that equity pays an illiquidity premium.

6 Conclusion

I have presented an asset-pricing model in which financial assets are valued for their liquidity–

the degree to which they are valued as a medium of exchange–as well as for being claims

to streams of consumption. The key implications of the model for average asset returns, the

equity-premium and risk-free rate puzzles, were explored analytically and quantitatively.

Explicitly modeling the exchange process, and allowing for the possibility that the value of

equity shares and bonds may partly depend on the role that each plays in exchange, rationalizes

the two most commonly addressed asset-pricing anomalies. Quantitatively, the model performs

negative covariance of equity returns with the MRS.
36The fourth term in (22), cov(R̂b, Lb), is negative, but zero to the fifth decimal, as a percentage.
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better than the Mehra—Prescott frictionless benchmark, even if shares are just as useful as

bonds for exchange purposes. But with standard constant relative risk aversion preferences, it

still takes a coefficient of relative risk aversion of about 10 for the model to be consistent with

asset return data.

If, in addition, one allows for the fact that bonds may be (slightly) better suited than equity

shares to play the medium-of-exchange role, then the model is able to match the historical aver-

age return to equity and the risk-free rate for the United States with values of the risk aversion

coefficient between 3 and 5. These results indicate that prying deeper into the microeconomics

of the decentralized exchange process may add to our understanding of how asset prices are

determined in actual economies.

Kocherlakota (1996) ended his survey on the equity premium puzzle by drawing a parallel

between the pure theory of money–much of which seeks to understand issues such as the

coexistence of interest-bearing risk-free nominal bonds and fiat money–and the branch of

financial economics that deals with the equity-premium puzzle. He argued that “we must seek

to identify what fundamental features of goods and asset markets lead to large risk-adjusted

price differences between stocks and bonds.” And he concluded with, “While I have no idea

what these ‘fundamental features’ are, it is my belief that any true resolution to the equity

premium puzzle lies in finding them.”

In this paper, I have tried to pursue this line of reasoning a step further. I have advanced

some candidate “fundamental features.” These features are those that go into making an asset a

medium of exchange, which–aside from the measured properties of the asset–are bound to be

related to the frequency of trade, the determination of the terms of trade, and the nature of the

information structure. I have also asked whether these features stand a chance quantitatively.

They do.

Having identified these features, at a deeper level, the key issue becomes, why is asset X

more generally accepted or better suited than asset Y to function as a medium of exchange? In

terms of the equity premium, the next step is to explain precisely how these particular features
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can lead to differences in acceptability or, more generally, in the readiness for exchange between

equity and bonds. In this regard, Kocherlakota (2003) and Zhu and Wallace (2005) may provide

some valuable hints.
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A Appendix

A.1 Euler equations

Here I show how to derive the Euler equations (2) and (3). First, note that the bargaining

solution derived at the end of Section 2, and the fact that W
£
a+ pi (a, ã) , s

¤
= W (a, s) +

λpi (a, ã), imply that the expected value of search can be written as

V (a, s) = α
X
i=1,2

θiS(λia; d) +W (a, s) + (1− 2α) ū (d) , (23)

where S(λitat; dt) = u
£
(1− �)κdt + q(λitat;κdt)

¤
+ u

£
(1 + �)κdt − q(λitat;κdt)

¤
. Then, focus

on the agent’s maximization problem in the centralized market, i.e., (1). The optimal choices

of ct and nt satisfy

U 0 (ct) =
At

wt
(24)

v0 (Ztnt) =
At

Zt
. (25)

The portfolio choice, at+1, satisfies

U 0 (ct)φit = βEt
∂V (at+1, st+1)

∂ait+1
(26)

for i = b, s, where

∂V (at+1, st+1)

∂abt+1
=

⎡⎣1 + α
X
i=1,2

θi

Ã
u0
£
(1− �)κdt+1 + q

¡
λit+1at+1;κdt+1

¢¤
u0
£
(1 + �)κdt+1 − q

¡
λit+1at+1;κdt+1

¢¤ − 1!
⎤⎦λbt+1,

∂V (at+1, st+1)

∂ast+1
=

"
1 + αθ2

Ã
u0
£
(1− �)κdt+1 + q

¡
λ2t+1at+1;κdt+1

¢¤
u0
£
(1 + �)κdt+1 − q

¡
λ2t+1at+1;κdt+1

¢¤ − 1!#λst+1,
are obtained by differentiating (23). Using λ1t = (λ

b
t , 0) and λ

2
t = (λ

b
t , λ

s
t ), with λbt =

At
wt
and

λst = (φ
s
t + dt)λ

b
t , (26) can be rewritten as (2)—(5).

A.2 Equilibrium allocations and prices

In this section, I derive the full set of equilibrium allocations and prices for the economy of

Section 4. Given that U (c) = u (c) = c1−σ
1−σ and that the supply of bonds is set according to
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the rule Bt+1 = f (dt, xt) = Bidt if xt = γi, and focusing on recursive equilibria where share

prices are homogeneous of degree one in d, leads to (14)—(17). The equilibrium asset prices are

φs (d, i) = φsid and φb (d, i) = φbi , where
¡
φsi , φ

b
i

¢n
i=1

solve (14) and (15) for i = 1, ..., n. The

decision rules for bond holdings, shares, and consumption are ab (d, i) = Bid, as (d, i) = 1 and

c (d, i) = d, respectively.

A buyer who enters a bilateral meeting holding a = (as, ab) in a period where the state is

(d, i) has a portfolio that is worth (d+ φsid) a
s+ ab in terms of fruit in the round of centralized

trade that follows.37 Such a buyer purchases

q(abd−σ;κd) = min

(
�κ, (1 + �)κ−

µ
1

[(1+�)κ]1−σ+(σ−1) ab
d

¶ 1
σ−1
)
d

in a decentralized meeting in which he can pay only with bonds, or

q[(d+ φsid) a
sd−σ + abd−σ, κd] = min

⎧⎨⎩�κ, (1 + �)κ−
Ã

1

[(1+�)κ]1−σ+(σ−1)
h
(1+φsi )a

s+ab

d

i
! 1

σ−1
⎫⎬⎭d

in a meeting in which he can pay with bonds or shares. Along the equilibrium path, if the state

today is (dt, i), all agents bring as (dt, i) = 1 and ab (dt, i) = Bidt into the following period’s

round of decentralized trade. Note that if in the following period the state is (dt+1, j), then

the bond holdings of agents in that period, ab (dt, i), can be written as Bi
γj
dt+1. Thus, along

the equilibrium path, in a period where the state is (d, j) and the outstanding stock of bonds

is Bi
γj
d, a buyer purchases a quantity

min

⎧⎨⎩�κ, (1 + �)κ−
Ã

1

[(1+�)κ]1−σ+(σ−1)Bi
γj

! 1
σ−1
⎫⎬⎭d

in a decentralized meeting in which he can pay only with bonds, or a quantity

min

⎧⎪⎨⎪⎩�κ, (1 + �)κ−
⎛⎝ 1

[(1+�)κ]1−σ+(σ−1)
µ
1+φsj+

Bi
γj

¶
⎞⎠ 1

σ−1
⎫⎪⎬⎪⎭d

37 In terms of marginal utility, the value of this portfolio is λ (d, i)a, where λ (d, i) =
£
λs (d, i) , λb (d)

¤
, with

λb (d) = U 0 (d), and λs (d, i) = U 0 (d) (1 + φsi ) d. Intuitively, λ
b (d, i) and λs (d, i) are the end-of-period values (in

terms of marginal utility of apples) of a bond and a share, respectively, in a period where the state is (d, i).
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in a meeting in which he can pay with bonds or shares. In the former, the buyer pays

min

½
Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ

1− σ

¾
d

bonds, and in the latter, he pays with a combination of bonds and shares, p2 =
¡
ps, pb

¢ ∈ R,
with real value (in terms of apples)

(1 + φsj)p
sd+ pb = min

½
1 + φsj +

Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ
1− σ

¾
d, (27)

where 0 ≤ ps ≤ 1 and 0 ≤ pb ≤ Bi
γj
d. The real value of the portfolio that changes hands is

pinned down, but the precise composition is indeterminate.38

To derive equilibrium real wage (wt) and the remaining individual choices, namely, labor

demand (nt), consumption of general goods in the second subperiod (yt), and labor supply (ht),

we need to parametrize v (·) and At. Let v (y) =
y1−σ
1−σ , At = AZ1−σt , where σ and A are positive

constants, and recall that Zt = dt.39 Then, (24) and (25) imply w (d) = Ad, n (d) = n∗, and

y (d) = n∗d, where n∗ = A−1/σ.

Finally, along the equilibrium path, an agent who enters the centralized market with port-

folio (abt , a
s
t) at the end of period t chooses to work

ht = n∗ +
1

wt

h
(φst + dt) (1− ast) +Bt − abt

i
. (28)

38This is also a feature that can be found in Lagos and Rocheteau (2004), a version of Lagos and Wright (2005)
where capital goods and fiat money compete as media of exchange.
39Setting At = AZ1−σt means that the disutility from work depends on the level of technology of the economy.

This specification is useful for two reasons. First, it makes the agent’s preferences consistent with balanced
growth. And second, it allows one to derive relatively simple conditions to ensure that the constraints 0 ≤ ht ≤ n̄
are slack at all dates and for all states of the world–which must be the case for the distribution of asset holdings
to be degenerate in the equilibrium. Alternatively, one could assume At = Aγ(1−σ)t, where γ is the mean
growth rate of the economy, as done in many RBC models (see Greenwood, Rogerson, and Wright (1995), or
Neumeyer and Perri (2005)). This formulation is enough to guarantee that ht has no secular trend, but in the
present context, one would still have to verify that the structure of the shocks and other primitives of the model
are such that the choice of ht is interior for all realizations of the uncertainty. In fact, this should not be too
difficult, for instance, if the variance of the shocks is small, since both formulations coincide if the economy
grows deterministically. To conclude this technical digression, I would like to stress that although the particular
specification for At (and v) matters “globally,” i.e., to ensure that the equilibrium is indeed within the class
of those with a degenerate distribution of asset holdings–as was conjectured for the derivations–it does not
matter “locally,” e.g., for the behavior of asset prices. That is, given that the equilibrium distribution of asset
holdings is degenerate, asset prices are independent of At and v. Observe that (14)—(17) were derived before
parametrizing At and v.
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Intuitively, agents supply labor to finance their consumption of the general good (the first term)

and possibly also to rebalance their portfolios.40

Recall that the analysis has been predicated on the premise that the distribution of assets is

degenerate at the beginning of each decentralized round of trade–which will indeed be the case,

as in Lagos and Wright (2005)–provided the constraints 0 ≤ ht ≤ n̄ are always slack. Next, I

provide two alternative sets of sufficient conditions on parameters, such that this is indeed the

case along the equilibrium path. In a period where the state is (d, i) and the outstanding stock

of bonds is Bj

γi
d, the right-hand side of (28) can be written as

h (Bj , i, d) = A−1/σ +
1

A

∙
(1 + φsi ) (1− as) +

Bj

γi
− ab

d

¸
.

Along the conjectured equilibrium path, 0 ≤ as ≤ 2 and 0 ≤ ab ≤ 2Bj

γi
d. That is, after a round

of decentralized trade, an agent can enter the centralized market neither with a negative asset

position nor holding more than twice his beginning-of-period portfolio. Thus, the inequalities

h (j, i) ≤ h (Bj , i, d) ≤ h (j, i), where h (j, i) ≡ A−1/σ − 1
A(1 + φsi +

Bj

γi
), and h (j, i) ≡ A−1/σ +

1
A(1 + φsi +

Bj

γi
), hold along the equilibrium path in a period where the dividend level is d,

the realization of the dividend growth rate is γi, and the outstanding stock of bonds is
Bj

γi
d.

Let ∆ = maxi,j(1 + φsi +
Bj

γi
), and note that ∆ is independent of A. Then, it follows that

the inequalities A−1/σ − ∆
A ≤ h (Bj, i, d) ≤ A−1/σ + ∆

A hold along the equilibrium path in

every period and all states (i.e., for every d, Bj and i). Thus, ∆ ≤ A
σ−1
σ ≤ An̄ −∆ implies

0 ≤ h (Bj, i, d) ≤ n̄, for all i, d and Bj , and is a sufficient condition for the constraints 0 ≤ ht ≤ n̄

to be slack at all dates, with probability one.

An alternative, simpler way to ensure that ht stays off corners is to interpret it as effort

and proceed as follows. Since the asset-pricing implications of the model are independent of

the specification of preferences over general goods, v (y), one can normalize v (y) = y. Then,

40For example, an agent who neither bought nor sold in the decentralized market enters the centralized market
holding (abt , a

s
t ) = (Bt, 1) and therefore chooses ht = n∗.
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the problem in the centralized market becomes

W (at, st) = max
ct,nt,ht,at+1

{U (ct) + Ztnt −Atht + βEV (at+1, st+1)}

s.t. ct +wtnt +φtat+1 = (φ
s
t + dt) a

s
t + abt +wtht − τ t.

Interpreting ht as effort amounts to assuming that n̄ is arbitrarily large, and then the max-

imization is subject only to 0 ≤ nt and 0 ≤ ht (the nonnegativity constraints on ct and

at+1 will not bind). Assume, as above, that the disutility from work is indexed by the state

of technology; in particular, let At = Zt. Then, the budget constraint implies ht − nt =

1
wt
{ct + φtat+1 + τ t − [(φst + dt)ast + abt ]}. This can be substituted into the objective to yield

the unconstrained maximization problem:

W (at, st) = λtat − At

wt
τ t +max

ct
[U (ct)− At

wt
ct] + max

at+1
[−At

wt
φtat+1 + βEV (at+1, st+1)].

Since ht =
1
wt
{ct + φtat+1 + τ t − [(φst + dt)a

s
t + abt ]} + nt, and nt can be chosen to be any

arbitrary nonnegative number, it follows that the constraint ht ≥ 0 can be made slack at all
dates and states.

A.3 Bond—equity trade-volume bounds

In this section I derive the bond—equity trade-volume bounds discussed in Section 4.3. In

equilibrium, in a period where the state is (d, j) and the outstanding stock of bonds is Bi
γj
d,

the portfolio that is traded in meetings where only bonds can be used to pay is p1ij = (0, p
b
ij),

with pbij = min
n
Bi
γj
,
h
(1 + �)1−σ − 1

i
κ1−σ
1−σ

o
d. In meetings where both assets can be used in

exchange, the portfolio that is traded is p2ij = (1,
Bi
γj
d) if the liquidity constraint binds and any

vector (0, 0) ≤ (psij , pbij) ≤ (1, Bi
γj
d) that satisfies (27) if it is slack. Given all this, it is possible

to derive an upper and a lower bound for the quantities of bonds and shares traded in each

state, vbij and v
s
ij . To derive the upper bound, resolve the (potential) indeterminacy in (p̂

s
ij , p̂

b
ij),

namely, in the quantities of shares and bonds that get traded in a meeting where either can

be used for payment, by assuming that buyers always follow a spend-bonds-first rule. This rule
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means that (p̂sij , p̂
b
ij) = (p

s
ij
, pbij), where

pbij = min

½
Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ
1− σ

¾
d

ps
ij

= min

½
1,max

½h
(1 + �)1−σ − 1

i κ1−σ
1− σ

− Bi

γj
, 0

¾
1

1 + φsj

¾
.

To derive the lower bound, resolve the indeterminacy in (p̂sij , p̂
b
ij) by assuming that buyers follow

a spend-shares-first rule. This implies (p̂sij , p̂
b
ij) = (p

s
ij , p

b
ij
), where

psij = min

½
1,
h
(1 + �)1−σ − 1

i κ1−σ
1− σ

1

1 + φsj

¾
pb
ij

= min

½
Bi

γj
,max

½h
(1 + �)1−σ − 1

i κ1−σ
1− σ

− ¡1 + φsj
¢
, 0

¾¾
d.

Thus, pbij and p
s
ij
are the quantities of assets traded in matches of type 2 when the buyer uses the

spend-bonds-first rule, and psij and p
b
ij
are the assets traded in matches of type 2 when the buyer

uses the spend-shares-first rule. (Note that the formulas for pbij , p
s
ij
, pb

ij
, and psij are general in

that they apply both when the liquidity constraint binds and when it is slack.) Recall that the

total quantities traded in the period are vbij =
α̂
2 [θp

b
ij + (1− θ) p̂bij] and vsij = α̂ (1− θ) p̂sij, and

define the following bounds on the total quantities traded:

vbij =
α̂

2

h
θpbij + (1− θ) pbij

i
vbij =

α̂

2

h
θpbij + (1− θ) pb

ij

i
vsij = α̂ (1− θ) psij

vsij = α̂ (1− θ) ps
ij
.

So vbij and vsij are the total quantities of bonds and shares traded under the spend-bonds-first

regime, and vbij and vsij are the total quantities of bonds and shares traded under the spend-

shares-first regime. In turn, these bounds can be used to derive upper and lower bounds for

the ratio υij , namely,

υij =
γjv

b
ij

vsijBid
and υij =

γjv
b
ij

vsijBid
.
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Finally, the average upper and lower bounds for the ratio of the value of traded bonds (as a

proportion of the value of the outstanding stock of bonds) to the value of traded shares (as a

proportion of the value of outstanding equity) are υ =
P

i

P
j µ̄iµijυij , and υ =

P
i

P
j µ̄iµijυij .

These bounds can be compared with actual trade volume data to assess the plausibility of the

underlying value of θ.

A.4 Robustness

In this section I verify the robustness of the benchmark results to changes in the values of the

parameters B̂, κ, and ε, the key parameters that were not in Mehra and Prescott (1985).

The benchmark parametrization is perhaps too conservative, in the sense that it biases the

case against the liquidity mechanism by using 0.3 as the target ratio of M1∗ to annual GDP,

which implied B̂ = 0.75. Tables 7 and 8 are analogous to Tables 3 and 4, but with B̂ = 0.5,

which is consistent with a ratio of M1∗ to annual GDP of 0.2 (this is roughly the average for

the 1975—1995 period). All the other parameters are kept at their benchmark levels. All entries

corresponding to σ = 1 through 7 in Table 7 are identical to those in Table 3. In both, the

liquidity constraints bind for σ ≥ 8. When the constraints bind, the asset returns are only

slightly lower in Table 7, as is natural, since the relative scarcity of outside bonds means that

both assets yield larger liquidity returns. The equity premium is essentially unchanged.

The first four columns of Table 8 are identical to the corresponding columns of Table 4

through σ = 7. Again, equity returns and premia are slightly lower in the economy with lower

B̂ for higher values of σ. Since the bond to GDP ratio is smaller in this economy, the liquidity

constraint is even more binding in trades where only bonds can circulate, and therefore the

implied values for θ are uniformly lower in Table 8 relative to Table 4. In Table 8, the volume

bounds implied by the values of θ corresponding to σ = 5, 4, and 3, i.e., those that imply

returns consistent with the data, are [.004, 2], [.03, 5], and [.23, 14], respectively.

In the benchmark calibration, I set κ = 0.5 so that the model implies that the fraction of

GDP that corresponds to trees that have outstanding tradeable equity shares equals 0.4. Next,
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σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 0,0
2 4.58 4.30 0.28 0,0
3 6.27 5.79 0.48 0,0
4 7.89 7.18 0.71 0,0
5 9.42 8.45 0.97 0,0
6 10.88 9.62 1.26 0,0
7 12.24 10.67 1.57 0,0
8 8.70 6.65 2.05 .0010,-.0444
9 5.94 3.50 2.44 .0014,-.0794
10 4.34 1.49 2.85 .0017,-.1028

Table 7: Robustness, lower B̂ with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

θ∗

1 2.83 2.70 0.13 0,0 –
2 4.58 1 3.58 .0316,-.0316 .078000
3 6.27 1 5.27 .0453,-.0453 .026300
4 7.89 1 6.89 .0576,-.0576 .008020
5 9.42 1 8.42 .0687,-.0687 .002080
6 10.88 1 9.88 .0786,-.0786 .000464
7 12.24 1 11.24 .0873,-.0873 9.0×10−5
8 8.70 1 7.70 .0517,-.0950 8.7×10−6
9 5.94 1 4.94 .0237,-.1016 5.8×10−7
10 4.34 1 3.34 .0061,-.1072 1.6×10−8

Table 8: Robustness, lower B̂ with exogenous liquidity differences

I report how the results change if the share of GDP produced by traded “trees” is in fact larger,

say 0.45. (Recall that the gross value added of the nonfinancial corporate business sector as a

share of GDP, i.e., the upper bound on the relevant target, is about 0.5.) Table 8 corresponds

to the economy with κ = 2/9 and B̂ = 0.6658, which imply that tradeable trees produce 45% of

GDP and that the average bond to GDP ratio is 0.3 (as in the benchmark) and θ = 0. For this

parametrization, the liquidity constraints start binding for σ = 4. The equilibrium for lower

values of σ (and hence all entries in the table) are just as in Mehra—Prescott. If we compare

Table 9 with Table 3, it is apparent that liquidity constraints are tighter in the economy with
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lower κ.41 First, they start binding for lower values of σ (i.e., 4 as opposed to 8), and second,

they are tighter when they both bind. (This is evident from comparing the magnitudes of the

Euler equation wedges in Table 9 to their counterparts in Table 3.) Tighter liquidity constraints

imply that equity and bond returns are uniformly lower in this economy than in the one with

higher κ. For σ = 9 or larger, agents are so eager for liquidity that they are willing to hold

bonds even though their measured return is negative on average (bonds still sell at a discount

in the high state).

Table 10 reports the results for the model with exogenous liquidity differences. For σ = 3

and lower, the first four columns are the same as those of Table 4. But for each value of σ,

the implied values of θ are uniformly lower in Table 10, the case with smaller κ. For σ = 6 the

liquidity needs are so severe that there is no positive θ that can induce a risk-free rate as high

as 1%. To summarize, the liquidity mechanism is magnified in parametrizations with smaller

values of κ. This implies that somewhat smaller values of θ are needed to account for the equity

premium.42

Higher values of κ tend to relax the liquidity constraints, and in fact, they will bind in at

least some state of the world iff κ < κ, where

κ =

"
1− (1 + �)1−σ

(σ − 1)mini,j
¡
Bi/γj

¢# 1
σ−1

.

Given that the rest of the parameters and data targets are as in the benchmark, I found that

for targets of the share of GDP produced by trees with tradeable equity that are less than 35%,

there are no liquidity needs in any state.43

41With CRRA preferences, the difference u [(1 + �)κ] − u (κ) is decreasing in κ for σ > 1. This difference is
essentially what determines the size of the right-hand side of the inequalities that appear in the definitions of
the sets Ω and Ωθ in (20) and (21). Thus, the liquidity mechanism is stronger for smaller κ.
42The volume bounds do not appear too sensitive, e.g., those corresponding to σ = 3 are now [.69, 20].
43 If this target is set slightly higher–at 36%, for example–then the liquidity constraints are slack in all trades,

even those where only bonds can be used, up to σ = 7. For σ = 8 and σ = 9, setting θ = 1 is not enough of
a liquidity advantage on bonds to bring their return down to 1%. With σ = 8 and θ = 1, the risk-free rate is
11.27%, virtually as high as in the Mehra—Prescott economy. With σ = 9 and θ = 1, the risk-free rate is 6%,
half of what it would be for Mehra—Prescott, but still high. With σ = 10, setting θ = 0.7 induces a risk-free rate
of 1%, and the return on equity is 15.79%, essentially the same as in Mehra—Prescott. (With σ = 10, θ = 0.7
implies [υ, υ] = [9, 62].)
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σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 0,0
2 4.58 4.30 0.28 0,0
3 6.27 5.79 0.48 0,0
4 6.33 5.58 0.75 .0003,-.0149
5 3.15 2.13 1.02 .0006,-.0584
6 2.29 0.96 1.33 .0008,-.0790
7 2.10 0.43 1.67 .0011,-.0926
8 2.08 0.04 2.04 .0014,-.1036
9 2.12 -0.31 2.43 .0016,-.1133
10 2.18 -0.67 2.85 .0019,-.1219

Table 9: Robustness, lower κ with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

θ∗

1 2.83 2.70 0.13 0,0 –
2 4.58 1 3.58 .0316,-.0316 .0260
3 6.27 1 5.27 .0453,-.0453 .022×10−1
4 6.33 1 5.33 .0430,-.0576 .011×10−2
5 3.15 1 2.15 .0110,-.0687 17×10−7
6 2.29 0.96 1.33 .0008,-.0790 0

Table 10: Robustness, lower κ with exogenous liquidity differences

In the baseline calibration, I use � = 0.8. Now suppose � = 0.5, and keep all other parameters

as in the benchmark. Tables 11 and 12 are very similar to Tables 3 and 4, so the key results

appear robust to lowering ε. The volume bounds implied by the values of θ corresponding to

σ = 5, 4, and 3 in Table 12 are [.05, 3], [.3, 8], and [3, 43], respectively.

Next, consider the parametrization with � = 1, and keep all other parameters at their

benchmark values. The results for the case with θ = 0 and for the one where θ is chosen so that

the risk-free rate is 1% are reported in Tables 13 and 14, respectively. The results do not seem

to be altered much by increasing � away from its benchmark value. For example, in Table 14,

the volume bounds implied by the values of θ corresponding to σ = 5, 4, and 3 are [.007, 2.4],

[.05, 5.75], and [.39, 16], respectively.
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σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 0,0
2 4.58 4.30 0.28 0,0
3 6.27 5.79 0.48 0,0
4 7.89 7.18 0.71 0,0
5 9.42 8.45 0.97 0,0
6 10.88 9.62 1.26 0,0
7 12.24 10.67 1.57 0,0
8 9.13 7.09 2.04 .0009,-.0405
9 6.11 3.69 2.42 .0013,-.0777
10 4.41 1.57 2.84 .0017,-.1021

Table 11: Robustness, � = 0.5 with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

θ∗

1 2.83 2.70 0.13 0,0 –
2 4.58 4.30 0.28 0,0 –
3 6.27 1 5.27 .0453,-.0453 .218
4 7.89 1 6.89 .0576,-.0576 .060
5 9.42 1 8.42 .0687,-.0687 .020
6 10.88 1 9.88 .0786,-.0786 0.06×10−1
7 12.24 1 11.24 .0873,-.0873 0.02×10−1
8 9.13 1 8.13 .0555,-.0950 3.49×10−4
9 6.11 1 5.11 .0252,-.1016 4.20×10−5
10 4.41 1 3.41 .0067,-.1072 2.38×10−6

Table 12: Robustness, � = 0.5 with exogenous liquidity differences

The choice of � has implications for consumption inequality. In the benchmark calibration

with � = 0.8, the variance of the log of total (i.e., including general goods and fruit in both sub-

periods) per capita consumption is 0.013, and the variance of the log of per capita consumption

in the first subperiod (which is the only source of consumption inequality in the model) is 0.67.

The parametrization with � = 0.5 used to generate Tables 11 and 12 implies that the variance

of the log of total consumption equals 0.005, whereas the variance of the log of consumption in

the first subperiod equals 0.156. (See footnote 22.)
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σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

1 2.8301 2.7038 .1262 0,0
2 4.5842 4.2973 .2868 0,0
3 6.2722 5.7905 .4817 0,0
4 7.8871 7.1774 .7097 0,0
5 9.4238 8.4542 .9696 0,0
6 10.8780 9.6180 1.260 0,0
7 12.2454 10.6663 1.579 0,0
8 8.7428 6.6923 2.0506 .00100,-.04400
9 5.9525 3.5163 2.4362 .00138,-.07924
10 4.3440 1.4950 2.8489 .00170,-.10280

Table 13: Robustness, � = 1 with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

EE Wedges
ωe, ωb

θ∗

1 2.83 2.70 0.13 0,0 –
2 4.58 1 3.58 .0316,-.0316 .1693
3 6.27 1 5.27 .0453,-.0453 .0467
4 7.89 1 6.89 .0576,-.0576 .0140
5 9.42 1 8.42 .0687,-.0687 .037×10−1
6 10.88 1 9.88 .0786,-.0786 .083×10−2
7 12.24 1 11.24 .0873,-.0873 1.62×10−4
8 8.74 1 7.74 .0520,-.0950 1.57×10−5
9 5.95 1 4.95 .0238,-.1016 1.02×10−6
10 4.34 1 3.34 .0061,-.1072 2.71×10−8

Table 14: Robustness, � = 1 with exogenous liquidity differences

A.5 Generalized Nash bargaining

So far, in the determination of the terms of trade in decentralized meetings, I have focused on the

formulation in which the buyer (the agent with the low endowment) makes a take-it-or-leave-it

offer. Here I show how to generalize the theoretical analysis to the case where the terms of

trade are instead determined according to the Nash bargaining solution with bargaining power

η ∈ [0, 1] for the buyer and 1− η for the seller. At the end of this section, I also report how the

baseline quantitative results of Section 4.2, which assumed η = 1, depend on the value of η.

As it will become clear below, having η < 1 introduces the possibility that buyers may
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be better off not bringing all the assets they own to the bargaining table. For this reason, I

generalize the model to allow agents to choose which part of their portfolios to bring into a

meeting. For j = h, l, let V̂j (a, s) = maxâ≤a Vj (â, s), where Vh (a, s) and Vl (a, s) are as in

Section 2, and â = (âb, âs) is the portfolio that the agent chooses to bring into the random

matching round. (The timing is that the agent chooses â right before the bargaining takes

place, but after having learned the realization of the aggregate shock, his individual endowment

realization, and the type of match he will be in.) Explicitly,

V̂h (a, s) =
α̂

2

X
i=1,2

θimax
â≤a

[

Z ©
u
£
(1 + �)κd− qi (ã, â)

¤
+W

£
a+ pi (ã, â) , s

¤ª
dG (ã)]

+(1− α̂

2
) {u [(1 + �)κd] +W (a, s)}

V̂l (a, s) =
α̂

2

X
i=1,2

θimax
â≤a

[

Z ©
u
£
(1− �)κd+ qi (â, ã)

¤
+W

£
a− pi (â, ã) , s¤ª dG (ã)]

+(1− α̂

2
) {u [(1− �)κd] +W (a, s)} .

The value of an agent who enters the centralized market holding portfolio at in a period when

the aggregate state of the economy is st, namely, W (at, st), is still given by (1), but with

V (a, s) = 1
2 [V̂l (a, s) + V̂h (a, s)]; i.e.,

V (a, s) = α
X
i=1,2

θimax
â≤a

[

Z ©
u
£
(1− �)κd+ qi (â, ã)

¤
+W

£
a− pi (â, ã) , s¤ª dG (ã)]

+α
X
i=1,2

θimax
â≤a

[

Z ©
u
£
(1 + �)κd− qi (ã, â)

¤
+W

£
a+ pi (ã, â) , s

¤ª
dG (ã)]

+ (1− 2α) [ū (d) +W (a, s)] .

Consider a meeting of type i in the decentralized market between a buyer who owns portfolio

a and brings â ≤ a to the meeting, and a seller who owns ã and brings ã0 to the meeting.
The terms of trade [qi(â, ã0),pi(â, ã0)], for i = 1, 2, are determined by Nash bargaining. Let

ub (q) ≡ u [(1− �)κd+ q] − u [(1− �)κd] and cs (q) ≡ u [(1 + �)κd] − u [(1 + �)κd− q]. Then,

for i = 1, 2, the terms of trade (qi,pi) maximize£
ub(q

i) +W (a− pi, s)−W (a, s)
¤η £−cs(qi) +W (ã+ pi, s)−W (ã, s)

¤1−η
61



subject to p1 = (pb, 0) and pb ≤ âb if i = 1 (matches where only bonds can be used as means

of payment), or subject to p2 = (pb, ps) ≤ â if i = 2 (matches where both bonds and shares

can be used for payment). In an unrestricted match, the agent cannot spend more than all the

assets he chooses to bring into the meeting. And in a restricted match, he cannot spend more

than all the bonds he brings into the meeting. Let

q (z;κd) =

½
�κd if z ≥ gη (�κd)
qη (z;κd) if z < gη (�κd) ,

where

gη (q) =
ηu0b (q) cs (q) + (1− η) c0s (q)ub (q)

ηu0b (q) + (1− η) c0s (q)
, (29)

and qη (z;κd) denotes the q that solves gη (q) = z. For i = 1, 2, the bargaining solution in

period t is qi(ât, ã0t) = q(λitât;κdt), where λ
1
t ≡ (λbt , 0), and λ2t = λt. Intuitively, q (z;κd) is the

quantity of coconuts that get traded in a meeting in which the buyer brings portfolio with real

value z to the bargaining table, during a period when the aggregate endowment of coconuts is

κd. Differentiation implies
∂q (z;κd)

∂z
=

1

g0η (q)
,

where

g0η (q) =
ηc0s(q)[u0b(q)]

2
+(1−η)u0b(q)[c0s(q)]2+η(1−η)[c00s (q)u0b(q)−u00b (q)c0s(q)][ub(q)−cs(q)]

[ηu0b(q)+(1−η)c0s(q)]
2 . (30)

Using the fact that W [a + pi (a, ã) , s] = W (a, s) + λpi (a, ã) and the bargaining solution,

the expected value of search can be written more compactly:

V (a, s) =W (a, s) + α
X
i=1,2

θimax
â≤a

Γb(λ
iâ) + αΓs + ū (d) , (31)

where

Γb (z) ≡ ub [q(z;κd)]− gη [q(z;κd)]

is expected gain from trade when the agent acts as a buyer and carries a portfolio with real

value z into the bilateral match, and Γs ≡
P

i=1,2 θi
R ©−cs[q(λiã;κd)] + gη[q(λ

iã;κdt)]
ª
dG (ã)

is the expected gain from trade when he acts as a seller.
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Consider the problem maxz Γb (z), i.e., the unconstrained version of the maximization prob-

lems in the second and third terms of (31). First, notice that according to the bargaining

solution, Γb (z) is constant for all z ≥ gη (�κd). Moreover, note that as z approaches gη (�κd)

from below,

g0η (q)→ u0 (κd) + η (1− η)
−4u00 (κd)
u0 (κd)

½
u (κd)− u [(1− �)κd] + u [(1 + �)κd]

2

¾
.

Thus, limz↑gη(�κd) Γ
0
b (z) = η (1− η) 4u

00(κd)
u0(κd) {u (κd) − u[(1−�)κd]+u[(1+�)κd]

2 } ≤ 0, with strict in-

equality unless η = 1. Therefore, maxz≥0 Γb (z) = max0≤z≤gη(�κd) Γb (z). Since the objective

function is continuous and the choice set compact, a solution z∗b exists for this problem. Given

z∗b , let q
∗
b be defined by gη (q

∗
b ) = z∗b . Intuitively, q

∗
b is the quantity traded that maximizes the

buyer’s gains from trade in the bilateral meeting, and z∗b is the real value of assets needed to

purchase this quantity.

The previous reasoning implies that z∗b < gη (�κd) and q∗b < �κd for η ∈ [0, 1), but q∗b = �κd if

η = 1. Thus, the solution to maxâ≤a Γb(λiâ) takes the following form. If λia ≥gη (q∗b ), then the
buyer only brings a portfolio â ≤ a such that λiâ = gη (q

∗
b ) to the bilateral match, and purchases

q∗b from the seller. (If η = 1, he brings any portfolio â ≤ a such that λiâ ≥ u [(1 + �)κd]−u (κd)
and purchases �κd from the seller.) Conversely, if λia <gη (q∗b ), then the buyer brings all the

assets he owns into the bilateral meeting, and he purchases qη(λia;κd) < q∗b .
44 Let

qb (z;κd) =

½
q∗b if z ≥ gη (q

∗
b )

qη (z;κd) if z < gη (q∗b ) .

Intuitively, qb (z;κd) is the quantity of coconuts that get traded in a meeting between a seller

and a buyer who owns portfolio with real value z. This is to be contrasted with q (z;κd), which

was the quantity of coconuts that get traded in a meeting where the buyer brings portfolio

with real value z to the bargaining table. Thus, for i = 1, 2, the bargaining solution in period

44This second part presumes that Γb (z) is nondecreasing on [0, z∗b ], as will be the case in the parametrizations
I will consider. Otherwise the agent may sometimes prefer not to bring all the assets he owns into the bilateral
bargain, even though λia <gη (q∗b ). More generally, the statement is that if λ

ia <gη (q
∗
b ), then the buyer brings

into the bilateral match a portfolio â ≤ a such that λiâ = z̃b, where z̃b = argmax0≤z≤λ ia Γb (z), and he purchases
qη(z̃b;κd) < q∗b .
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t, taking into account the buyer’s choice of which portfolio to bring to the bargaining table,

implies that–in a period when the aggregate endowment of coconuts is κdt–the quantity

traded between a buyer who owns portfolio at and any seller is qb(λitat;κdt), where λ
1
t ≡ (λbt , 0)

and λ2t = λt.

I can now write (31) as

V (a, s) = α
X
i=1,2

θiSb(λia; d) +W (a, s) + αΓs + ū (d) , (32)

where Sb(λia; d) = ub[qb(λ
ia;κd)] − gη[qb(λ

ia;κd)]. Then, focus on the agent’s maximization

problem in the centralized market, i.e., (1). The optimal choices of ct and nt still satisfy (24)

and (25). The portfolio choice, at+1, satisfies (26), but now,

∂V (at+1, st+1)

∂abt+1
=

⎡⎣1 + α
X
i=1,2

θi

Ã
u0b
£
qb(λ

i
t+1at+1;κdt+1)

¤
g0η
£
qb(λ

i
t+1at+1;κdt+1)

¤ − 1!
⎤⎦λbt+1,

∂V (at+1, st+1)

∂ast+1
=

∙
1 + αθ2

µ
u0b [qb(λt+1at+1;κdt+1)]
g0η [qb(λt+1at+1;κdt+1)]

− 1
¶¸

λst+1,

are obtained by differentiating (32). These conditions, together with λ1t = (λ
b
t , 0), λ

2
t = (λ

b
t , λ

s
t),

λbt =
At
wt
, and λst = (φ

s
t + dt)λ

b
t , imply that the Euler equation U 0 (ct)φit = βEt

∂V (at+1,st+1)
∂ait+1

can

be written as

U 0 (dt)φst = βEtU
0 (dt+1)Ls

t+1

£
φst+1 + dt+1

¤
(33)

U 0 (dt)φbt = βEtU
0 (dt+1)Lb

t+1, (34)

with

Ls
t+1 = 1 + α (1− θ)

(
u0b
¡
qb
£
U 0 (dt+1)

¡
φst+1 + dt+1 +Bt+1

¢
;κdt+1)

¤¢
g0η
¡
qb
£
U 0 (dt+1)

¡
φst+1 + dt+1 +Bt+1

¢
;κdt+1)

¤¢ − 1) (35)

Lb
t+1 = Ls

t+1 + αθ

½
u0b (qb [U

0 (dt+1)Bt+1;κdt+1])

g0η (qb [(U 0 (dt+1)Bt+1;κdt+1])
− 1
¾
, (36)

where I have let θ ≡ θ1 to simplify the notation. Note that (33)—(36) generalize (2)—(5) to the

case of an arbitrary bargaining power η ∈ [0, 1].
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Now suppose that U (c) = u (c) = c1−σ
1−σ , with 0 < σ < ∞. For this parametrization,

qb (z;κdt+1), i.e., the quantity of coconuts traded in a meeting where the buyer can pay from a

portfolio of end-of-subperiod real value z when the aggregate dividend is dt+1, is given by

qb (z;κd) =

½
q∗b if z ≥ gη (q

∗
b )

qη (z;κd) if z < gη (q
∗
b ) .

where q∗b = argmaxq [ub (q)− gη (q)], and qη (z;κd) is the q that solves

gη (q) = z, (37)

but with gη (q) specialized to

gη (q) ≡ η[(1−�)κd+q]−σ
η[(1−�)κd+q]−σ+(1−η)[(1+�)κd−q]−σ

n
[(1+�)κd]1−σ

1−σ − [(1+�)κd−q]1−σ
1−σ

o
+

(1−η)[(1+�)κd−q]−σ
η[(1−�)κd+q]−σ+(1−η)[(1+�)κd−q]−σ

n
[(1−�)κd+q]1−σ

1−σ − [(1−�)κd]1−σ
1−σ

o
.

I again specify that the government chooses the stock of bonds according to a policy rule

Bt+1 = f (dt, xt), where f (dt, xt) = B̂E [dt+1| (dt, i)] if xt = γi, and with B̂ ≥ 0. Thus, if

dt+1 = xt+1dt, with xt = γi and xt+1 = γj, we have Bt+1 = Bidt =
Bi
γj
dt+1. As before,

I focus on equilibria that are stationary in growth rates, with share prices homogeneous of

degree one in d, so that φs (d, j) = φsjd, where φ
s
j is a constant. Also, this implies that φ

b (d, i)

is independent of d, so I can write φbi = φb (d, i). Now consider a period t + 1 in which

dt+1 = xt+1dt, with xt = γi and xt+1 = γj. In such a period, the quantity traded in bilateral

meetings is min {qη (zt+1;κdt+1) , q∗b}, with zt+1 = (1 + φsj +
Bi
γj
)d1−σt+1 in unrestricted matches

and zt+1 =
Bi
γj
d1−σt+1 in restricted matches.

The first observation is that just as in the case with η = 1, the quantity traded when the

buyer is unconstrained, i.e., q∗b , is linear in the aggregate dividend, d. To see this, notice that

choosing q to maximize ub (q)− gη (q) is equivalent to choosing Q to maximize

[(1−�)κ+Q]1−σ
1−σ −

η[(1−�)κ+Q]−σ
½
[(1+�)κ]1−σ

1−σ − [(1+�)κ−Q]1−σ
1−σ

¾
+(1−η)[(1+�)κ−Q]−σ

½
[(1−�)κ+Q]1−σ

1−σ − [(1−�)κ]1−σ
1−σ

¾
η[(1−�)κ+Q]−σ+(1−η)[(1+�)κ−Q]−σ ,

where Q = q/d. Let q̄∗b denote the solution to the latter problem. Then, q
∗
b = q̄∗bd.
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The second observation is that also as in the case with η = 1, the quantity traded that

solves (37) is linear in the aggregate dividend, d, both in restricted and in unrestricted matches.

Consider restricted matches; i.e., set z = Bi
γj
d1−σ in (37), and divide both sides by d1−σ to get

η[(1−�)κ+Q]−σ
½
[(1+�)κ]1−σ

1−σ − [(1+�)κ−Q]1−σ
1−σ

¾
+(1−η)[(1+�)κ−Q]−σ

½
[(1−�)κ+Q]1−σ

1−σ − [(1−�)κ]1−σ
1−σ

¾
η[(1−�)κ+Q]−σ+(1−η)[(1+�)κ−Q]−σ =

Bi

γj
, (38)

where Q = q/d. This equation implies that Q is independent of d, or equivalently, that the

quantity traded in restricted matches is min{q̄1ij , q̄∗b}d, where q̄1ij is the Q that solves (38), which
is independent of d. A similar argument implies that in unrestricted matches, the quantity

traded is min{q̄2ij(φsj), q̄∗b}d, where q̄2ij(φsj) is the Q that solves

η[(1−�)κ+Q]−σ
½
[(1+�)κ]1−σ

1−σ − [(1+�)κ−Q]1−σ
1−σ

¾
+(1−η)[(1+�)κ−Q]−σ

½
[(1−�)κ+Q]1−σ

1−σ − [(1−�)κ]1−σ
1−σ

¾
η[(1−�)κ+Q]−σ+(1−η)[(1+�)κ−Q]−σ = 1+φsj+

Bi

γj
,

which is also independent of d. In other words, qη[(1+φsj+
Bi
γj
)d1−σ;κd] = q̄2ij(φ

s
j)d in unrestricted

matches, and qη(
Bi
γj
d1−σ;κd) = q̄1ijd in restricted matches.

Since qb[(1+φsj +
Bi
γj
)d1−σ;κd] = min{q̄2ij(φsj), q̄∗b}d and qb(Bi

γj
d1−σ;κd) = min{q̄1ij , q̄∗b}d, (35)

and (36) become

Ls
t+1 = 1+ α (1− θ)

(
u0b(min{q̄2ij(φsj), q̄∗b}dt+1)
g0η(min{q̄2ij(φsj), q̄∗b}dt+1)

− 1
)

(39)

Lb
t+1 = Ls

t+1 + αθ

(
u0b(min{q̄1ij, q̄∗b}dt+1)
g0η(min{q̄1ij , q̄∗b}dt+1)

− 1
)
, (40)

where u0b(qd) = [(1− �)κ+ q]−σd−σ and g0η(qd) specializes to©
η∆1(q)[(1 + �)κ− q]−σ + (1− η)∆2(q)[(1− �)κ+ q)]−σ + η (1− η)Ψ(q)

ª
d−σ

for k = 1, 2, with

∆1(q) =
n

[(1−�)κ+q]−σ
η[(1−�)κ+q]−σ+(1−η)[(1+�)κ−q]−σ

o2
, ∆2(q) =

n
[(1+�)κ−q]−σ

η[(1−�)κ+q]−σ+(1−η)[(1+�)κ−q]−σ
o2

and

Ψ(q) =
( σ
1−σ ){[(1+�)κ−q]−σ−1[(1−�)κ+q]−σ+[(1−�)κ+q]−σ−1[(1+�)κ−q]−σ}

{η[(1−�)κ+q]−σ+(1−η)[(1+�)κ−q]−σ} ×
{[(1−�)κ+q]1−σ+[(1+�)κ−q]1−σ−[(1−�)κ]1−σ−[(1+�)κ]1−σ}

{η[(1−�)κ+q]−σ+(1−η)[(1+�)κ−q]−σ} .
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Notice that u0b(qdt+1) = u0b (q)d
−σ
t+1 and g

0
η(qdt+1) = g0η(q)d

−σ
t+1, so the liquidity factors L

s
t+1 and

Lb
t+1 in (39) and (40) are independent of dt+1.

From (29) and (30), and (33)—(36), it is clear that as η → 1, the equilibrium reduces to

the one studied in Section 4. Conversely, as η → 0, g0η(q)→ u0b (q), and therefore L
s
ij → 1 and

Lb
ij → 1 for all i and j. If buyers have no bargaining power, assets have no value in exchange,

and consequently, their value stems only from the streams of dividends they yield.

Table 15 reports the average equity return (ER), bond return (BR), and equity premium

(EP) for η = 0, 0.25, 0.5, 0.75, and 1, and values of σ ranging from 1 to 10. Table 15 generalizes

Table 3, which assumed η = 1.

η = 0 0 .25 0.50 0.75 1

σ ER BR EP ER BR EP ER BR EP ER BR EP ER BR EP

1 2.83 2.70 0 .13 2.83 2 .70 0 .13 2.83 2.70 0 .13 2.83 2.70 0.13 2 .83 2.70 0.13

2 4.58 4.30 0 .28 4.58 4 .30 0 .28 4.58 4.30 0 .28 4.58 4.30 0.28 4 .58 4.30 0.28

3 6.27 5.79 0 .48 6.27 5 .79 0 .48 6.27 5.79 0 .48 6.27 5.79 0.48 6 .27 5.79 0.48

4 7.89 7.18 0 .71 7.89 7 .18 0 .71 7.89 7.18 0 .71 7.89 7.18 0.71 7 .89 7.18 0.71

5 9.42 8.45 0 .97 5.27 4 .27 1 .00 6.95 5.94 1 .01 9.25 8.27 0.98 9 .42 8.45 0.97

6 10.88 9.62 1 .26 3.09 1 .80 1 .29 3.69 2.40 1 .29 4.59 3.30 1.29 10 .88 9.62 1.26

7 12.24 10.67 1 .57 2.37 0 .75 1 .62 2.57 0.95 1 .62 2.88 1.26 1.62 12 .24 10 .67 1.57

8 13.52 11.60 1 .92 2.17 0 .20 1 .97 2.23 0.26 1 .97 2.33 0.36 1.97 8 .80 6.76 2.04

9 14.70 12.41 2 .29 2.14 -0.21 2 .35 2.16 -0.19 2 .35 2.19 -0.16 2.35 5 .97 3.54 2.43

10 15.79 13.10 2 .69 2.17 -0.58 2 .75 2.18 -0.57 2 .75 2.19 -0.56 2.75 4 .35 1.50 2.85

Table 15: Bargaining power in the baseline economy with θ = 0

First, note that as discussed above, η = 0 implies that assets provide no liquidity services,

i.e., that Ls
ij = Lb

ij = 1 for all i and j. Thus, for every value of σ, the asset returns corresponding

to η = 0 are identical to those of the Mehra—Prescott model reported in Table 2. Second, note

that the asset returns in the column labeled η = 1 correspond to the returns in Table 3. For

relatively low values of σ, e.g., σ ≤ 3, the equilibrium is independent of η. In particular, the

trading constraints are slack in every state of the world for these values of σ (i.e., Ls
ij = Lb

ij = 1

for all i and j), so asset returns for σ = 1 through 3 in Table 15 are the same as in the
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Mehra—Prescott economy of Table 2.45

Recall that in Section 4.2 I reported that for σ ≤ 7, the returns in the economy with η = 1

were the same as in Mehra—Prescott. Table 15 shows that this is not the case for η < 1. For

example, consider the economy with σ = 5. Note that asset returns are indeed the same for the

Mehra—Prescott economy (e.g., η = 0) and the economy of Section 4.2 (η = 1). However, the

equity and bond returns are U-shaped, and the equity premium is hump-shaped with respect

to η. For example, the implied equity premium is 0.97% if η = 0, 1% if η = 0.25, 1.01% if

η = 0.5, 0.98% if η = 0.75, and again 0.97% if η = 1. The reason for this nonmonotonicity is

that a reduction in η has two opposing effects.

First, a smaller η means that at the margin, the buyer gets fewer coconuts per unit of assets

and reaps smaller gains from trade in decentralized exchanges, which tends to reduce the value

of assets as a medium of exchange, and hence their liquidity return. But on the other hand,

there is a corresponding general equilibrium effect, namely, that since assets are less valuable

in exchange, their prices tend to be lower (agents would like to hold less of them, but they all

have to be held in equilibrium), and this tends to tighten the trading constraints, so when they

bind, assets are more valuable in exchange at the margin. The former effect tends to dominate

for low values of η, and the latter for relatively large values. Interestingly, for intermediate

values of σ, e.g., between (and including) 4 and 7, the equity premia reported in Section 4.2

for the case of η = 1 are only lower bounds relative to the premia that can be generated with

intermediate bargaining powers. Conversely, for relatively large values of σ, e.g., 8 through 10,

for intermediate values of η one finds equity premia that are smaller–if only slightly–than

those of Section 4.2. For example, 2.75% instead of 2.85% for σ = 10. From the results in Table

15, it seems reasonable to conclude that the findings reported in Section 4.2 are robust relative

to the precise parametrization of the buyer’s bargaining power.

45The equilibrium is not independent of η for σ = 4, despite the fact that the returns are the same across the
values of η reported in Table 15. For example, if σ = 4 and η = 0.05, then the equity return is 6.78%, the bond
return 6.04%, and the equity premium 0.74%. In this case, Ω (Bi) = {1, 2} for all i. There are also more intricate
binding patterns for other values of η. For instance, for σ = 4 and η = 0.08, one finds Ω (B1) = Ω (B2) = {2}.
That is, in this economy the assets yield a liquidity return only in the low-growth state.
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In terms of the binding patterns for each parametrization, for σ = 8, 9, 10, Ω (Bi) = {1, 2}
for all i and all values of η. For σ = 7, Ω (Bi) = ∅ for all i, if η = 1, but Ω (Bi) = {1, 2} for
intermediate values of η, e.g., ranging from (and including) 0.001 and 0.999. For σ = 6, the sets

Ω (Bi) of states in which the assets yield a liquidity return depend more subtly on the value of η.

Specifically, assets yield a liquidity return in all states, i.e., Ω (Bi) = {1, 2} for all i, if η ≤ 0.986.
If η is larger than 0.986 but smaller than or equal to 0.991, then Ω (B1) = Ω (B2) = {2}, i.e.,
assets yield a liquidity return only in the low-growth state. Finally, Ω (Bi) = ∅ for all i, if η is

larger than 0.991. Similar binding patterns are found for σ = 5 and 4.

So far I have explored the quantitative implications of varying η but only in the context

of economies with no exogenous liquidity differences between bonds and equity, i.e., only in

economies with θ = 0. To conclude, I report how the economy corresponding to the fourth row

of Table 4, namely, the baseline parametrization but with σ = 4 and θ = 0.0222, behaves as η

varies.

Figure 6: Bargaining power and asset returns for the baseline economy (σ = 4 and θ = 0.0222)

The first panel of Figure 6 displays the equity and bond returns, and the second panel the

equity premium, all as functions of η. Note that at η = 1 the bond return is exactly 1% and

the equity premium 6.89%, as is to be expected from the fourth row of Table 4. Bonds yield a
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liquidity return in all states of the world, i.e., Ωθ (Bi) = {1, 2} for i = 1 and 2. Equity yields a
liquidity return only for relatively low values of η, e.g., less than 0.089, but for higher values,

Ω (Bi) = ∅ for i = 1 and 2. (This is the point at which the equity return becomes flat in the left

panel.) Note that depending on the value of η, the bond return can be extremely low, almost

−30%, and as high as 1%. Accordingly, the equity premium can range from 0.7% (for η = 0)

to 36% (for η = 0.075) or 6.89% (for η = 1). From Figure 6 it seems clear that, once again,

the equity premia reported in Section 4.2 are–if anything–on the low side of the magnitudes

that can be generated by the theory if buyers have some, but not all, the bargaining power in

decentralized trades.
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