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These pages describe and partially analyze a set of models that are

designed to help understand a variety of issues about commodity money systems,

and to highlight the aspects of technologies and preferences which determine

the answers to a number of positive and normative questions about how commod-

ity money systems operate.

We Dbegin with a list of questions, not all on the same level of

abstraction.

2.

Are commodity money systems generally inefficient--i.e., is it gen-
erally possible to Pareto dominate them with an alternative system
using a well managed fiat currency? (Friedman seems to suggest so in

A Program for Monetary Stability, Chapter 1.)

Does the degree of inefficiency depend on the particular commodity
"chosen" for the currency? (Friedman seems to suggest that it does
not.) What assumptions about technologies determine this?

In what sense is there a choice about the commodity to be used as the
commodity money? In the absence of legal restrictions does one
commodity or bundle of commodities "emerge" as a natural commodity
money because of its conditions of production, physical depreciation
characteristics, and so on? What sorts of legal restrictions or
government open market operations or fiscal policies does one have in
mind when one speaks about the government choosing a standard? (Note
that by '"technologies" and "conditions of production" we include
objective randomness.)

What kinds of technologies and preferences give rise to models in
which "Gresham's law" holds, there being a natural or market-deter-
mined rate of exchange between gold and silver, which the government

cannot influence through open market operations without some legal
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restrictions? What is the role of legal restrictions, e.g., monopoly
of coinage, in permitting there to be discrepancy between the "mint
price" and market price of gold relative to silver?

Be Are there technologies-preferences for which bimetallism is poten-
tially feasible? If so, what kinds of government actions could be
used to influence the rate of exchange between gold and silver?

6. In what sense does adopting a commodity standard impose fiscal dis-
cipline?

T Can seignorage be raised under a commodity money system?

8. How do the answers to (6) and (7) interact with the question of
efficiency of a commodity money standard? That is, in the alterna-
tive fiat money regime, is seignorage being raised through the force
of legal restrictions, or by exploiting the natural role for a fiat
money in an economy prone to capital or gold overaccumlation?

9. Does the quantity theory of money apply under a commodity standard?
If so, what aspects of technology-preferences does it depend on?

10. How would adoption of a commodity standard influence the "Phillips

curve?"

These notes present parametric versions of overlapping generations
models designed to highlight features of commodity money standards. For the
first set of models, there is a single nonstorable consumption good.
Let wz(;) be the endowment of the s-period consumption good of agent h born in
period t. There is no uncertainty. Let ci(s) be the consumption of the s-
period consumption good of agent h born in period t. We assume that each
individual h maximizes

Ry
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subject to the intertemporal budget constraint

P(e+1) W (t+1)
h(t) % t < h(t) % 7
St R(t) b R(t)

where R(t) is the maximum attainable (nonstochastic) gross real rate of return
on saving between dates t and t + 1, measured in units of t + l-period good

per unit of t-period good. This gives rise to the saving function

h

w, (t+1)
h h h t
Wt(t) - (‘.‘t(t) = {Wt(t) —W} / 2e
We'll call the nonstorable consumption good "bread." 1In generation t, there

exist N(t) young people.

We shall consider several alternative models, which differ with
regard to the technologies for transforming bread into storable "metals,"
which while not in people's utility functions, are potentially valued as
stores of value.

The economy starts at time t = 1 and continues forever. At t =1
there are N(0) old people, endowed in the aggregate with various metals, as
detailed below. At each date t > 1, N(t) young people are born. People of

each generation live for two periods.
Model 1: A Reversible Gold Technology

In addition to bread, there exists "gold," which can be converted
into bread and back at constant costs. In particular, one unit of bread
produces ¢ units of gold, and one unit of gold produces ¢‘1 units of bread.
Gold is perfectly storable between periods, and neither appreciates nor depre-

ciates physically. Let p(t) be the bread price of a unit of gold, measured in
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units of bread per unit of gold. Evidently, if both bread and gold are to be
produced in period t, we must have p(t) = ¢. Note that p(t) is the reciprocal
of the "price level."

Assume there is an initial stock of gold of G(0) units, all held by
the current old at time t = 1. For t 2 1, we assume that the young of genera-

; ; h h ; - h
tion t are endowed with [wt(t),wt{t+l)) units of bread, where ) wt(t)
h

> E w: (t+1) > 0 establishing a motive for generation t as a whole to save at
h

a gross rate of return of unity. As in Wallace | ] and Sargent and
Wallace | ], this condition still permits there to be individuals for
whom wh(t) < Wh(t+1) who prefer to borrow at a gross rate of return of

t t

unity. Below we will sometimes comment on the different preferences of bor-
rowers and lenders as among alternative monetary regimes.
In this set-up, the only store of value is gold. It's gross rate of

return is

R(t) = p(t+1)/p(t).

In this model, there is a unique equilibrium in which

p(t) = ¢

R(t) 13

Letting G(t) be the stock of gold stored between t and t + 1 by generation t,

we have that G(t) is determined by

1]
(]
—
ct
el
a=a

- h h
w (t) = ) w (t+1)} / 2
(I vis) - I i)
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The reason that p(t) = ¢ is that the endowments have been rigged so that each
generation wants to consume bread at t (which implies that p(t) < ¢) and to
store gold at t (which implies that p(t) > ¢).

In this model, the amount of resources denoted to "mining" new gold
is determined by the above equation. It depends on (a) the saving (port-
folio?) preferences of agents, and (b) the economy's rate of growth. In terms
of bread, the amount of resources denoted to mining gold does not depend on
b (The left-hand side of the above equation is independent of ¢.) This is

consistent with the statements of Milton Friedman (A Program for Monetary

Stability, p. 4-5.)

The equilibrium in this model is inefficient.
Model 2: Reversible Gold and Silver Technologies

We modify model 1 by now assuming that there are two metals, gold
and silver. One unit of bread produces ¢g units of gold. One unit of bread
produces ¢s units of silver. Both gold and silver are perfectly physically
storable with neither physical appreciation nor depreciation occuring. Both
technologies are reversible. We let pg(t) be the price of gold measured in
units of bread per unit of gold, and ps(t) be the price of silver measured in
units of bread per unit of silver. Preferences and endowments are as in model
1. The current old at t = 1 are in the aggregate endowed with S(0) units of
silver and G(0) units of gold.

The model has a unique equilibrium with pg(t) = g p(t) = ¢, R(t)
= 1, and aggregate gold storage at t, G(t), and silver storage at t, S(t),

determined by

(wi(e) = JwP(es1)) /2= ¢ (olt) + 32 s(t)).

n " g ¢
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This equilibrium has a common gross rate of return of 1 on gold and silver.
The model cannot determine the equilibrium amounts of G(t) and S(t) sepa-
P
rately, but only the total G(t) +-‘—£—S—S(t). Thus, for t » 1, there is one
g
equilibrium with 8(t) = 0 for t > 1, another with G(t) = 0 for t > 1, and a
continuum of intermediate equilibria with both S(t) > 0 and G(t) > 0 for t >
1.
This model provides an example of Friedman's assertions that:
"Interestingly enough, the amount of resources required
to provide for growth does not depend on the commodity or
commodities used as the standard but only on the cash
balance preferences of the public and on the rate of

growth of the economy." (A Program for Monetary Stabil-
1557, Do 54

"The commodity in question might be gold or silver or
copper or bricks or some combination of these or of other
goods in fixed proportions, as under any of the variety
of symmetallic or commodity reserve standards that have
been proposed. The amount of the commodity in use as
money would depend in its cost of production relative to
other goods, and on the fraction of their wealth people
want to hold in the form of money; additions to the stock
of money could come from production by private enter-
prise; changes in the rate of production would reflect
changes 1in the relative wvalue placed on the monetary
commodity and other goods or in the relative costs of
producing the one and the other." (A Program for Mone-
tary Stability, p. 4-=5.)

In this model, Gresham's law obtains, with money that is overvalued
at the mint driving out money that is undervalued at the mint. Suppose that
the government imposes a 1legal restriction that states that only metals
stamped as "dollars" can be stored. (Evidences of private indebtedness, how-
ever, are permitted to be held.) The government sets up a mint, which oper-
ates costlessly, and issues (or stamps or mints) dollars according to the
following rules. It offers freely to coin dollars out of silver that is
brought to it at the price of dg dollars per unit of silver, and freely to

coin dollars out of gold at the price of dg dollars per unit of gold.
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Such an ostensible attempt by the government to set up a bimettalic
standard will only have the effects of defining a dollar and of determining
which one of the two metals is stored as money. If dg/dS > Pg/Ps = ¢g/¢s,
then silver is '"overvalued at the mint" and only silver will be minted and
stored. Only if dg/ds = Pg/Ps is the indeterminancy about which metal will be
stored preserved.

In this model, so far as concerns the consumption allocations, the
institution of "bimetallism" in this form is innocuous and has no effects.

Model 2a: Reversible Gold and Silver Technologies
With a Trend in Productivity

We modify model 2 by now assuming that ¢ has a downward trend over
time, so that at time t one unit of bread produces ¢S(t) units of silver, with
the process being reversible and with ¢.(t+1) < ¢_(t). All other aspects of
the model remain as they were, including the assumption that the gold tech-
nology parameter ¢g is constant over time.

The equilibrium of this model has Pg(t) = ¢, P (t) = ¢3(t). The

g’
gross rate of return in gold is unity, but now the gross rate of return on
silver is P (t+1)/Pg(t) = ¢s(t+l)/¢s(t) < 1, so that gold dominates silver as
an asset. Therefore, only gold is stored, with the equilibrium condition that
determines the amount of gold stored at t being
I (wp(e)=wl(e+1))/2 = ¢_ G(t).
h g

Now suppose that the government institutes the kind of bimetallic
coining scheme that we described above. The government requires that the only
metals that people can store are those stamped dollars, which it stands ready

to coin at the rate of dj dollars per unit of silver and/or at the rate of dg

dollars per unit of gold. The mint prices dS and dg are constant over time.
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We assume that dg/ds < Pg(l)/Ps(l) = ¢g/¢s(1), so that initially silver is
undervalued at the mint implying that only gold is minted and stored. We
assume that there is a finite T > 1 such that dg/ds < ¢g/¢s(t) for t < T but
that dg/ds > ¢g/¢8(t) for t > T. For t < T, only gold is stored. For t < T,
the institution of bimetallism is innocuous since agents would freely choose
to store gold anyway since it dominates silver in terms of its rate of
return. For t 2> T, only silver is stored, since from T on 1t becomes over-
valued at the mint due to the results of the fall over time in ¢S(t). For t 2
T, the institution of bimetallism makes a difference, since lenders would like
to store gold but are prevented from doing so by the legal restriction requir-
ing that only minted coins be stored. The gross rate of return on loans and

¢S(t+1)

s e—— st -
money now becomes R (t) = « The equilibrium condition determining the
¢S(t5

amount of silver stored and minted is, for t 2 T,

h b5 (t) h
{g Wt(t)- E;TE:IT % Wﬁ(t+1)]/2 = ¢s(t) 8(%)s

We note that borrowers are better off after silver displaces gold,
since both loans and silver bear a lower rate of return than when gold is the
standard. There is an inflation after "silver drives out gold."

In this setup, after ¢s has fallen enough by date T to make silver
cheap enough to function as money, there is a force which hitherto had not
been present for lenders and holders of money to evade or agitate against the
institutions surrounding coinage that operate to depress the rate of return on
assets. In the United States, the lenders foresaw this situation and perpetu-

ated the "Crime of '73."
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Model 3: An Irreversible Gold Technology

The model is identical with model 1, except that bread can no longer
be converted into gold. One unit of gold can still be converted into ¢_1
units of bread, but the technology is irreversible. As before, the current
old at t = 1 are in the aggregate endowed with G(0) units of gold. All suc-
ceeding generations are endowed with bread in the patterns (wi(t),w}tl(t+l)].
This set-up is designed to represent the notion of a perfectly inelastic stock
supply of gold together with the existence of an "industrial" use for gold.

The equilibrium condition for this model is
(1 w200 - 28 [ wper1) /2 = Glo)e(s)
where p(t) » ¢ is the bread price of gold and R(t) = p(t+l)/p(t). We require
that for t » 1 p(t) > ¢, or else some of the gold would be converted into
bread and eaten. Dividing both sides of the above equation by p(t) and rear-

ranging gives the difference equation

h
% = 2 G(0) E s : 1 )
p(t ~ p(t+1) °
Libe) L)

The nature of the dependence of prices on G(0) depends on the magnitude of
G(0), ¢, and the endowment patterns. For example, specialize the model by

assuming

Ew*tl(m) .
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where n > 1 and %—< 1. Then we have

1 _ 2 6(o) 1

The solution of this difference equation is

1 ___ 24¢(0) i
p(t) W(l)(l— %Jnt

This equation can be rearranged to be of the quantity theory form

G(0)p(t) = Wn® (1- 2).

If this equation implies that p(t) > ¢ for all t > 1, then it gives the unique
solution of the model. Note that it is then the unique solution of the dif-
ference equation for which p(t) > ¢ for all t.

However, if the above equation implies p(1l) < ¢, then the equili-
brium is given by p(1) = ¢, with G(0) < G(0) gold being stored from time 1 to

2 where

~

G(0) ¢ = w,n (1- %) .

The old at time 1 convert G(0) - E(O) into bread. Then the price of gold for

t 2 1 is given by
§(0) p(t) = w, n¥ (1-3) .
A
won(1- 3
¢

in quantity theory fashion with small variations in the initial stock of gold

In summary, if G(0) < , the initial price level 5%57 varies

G(0). In this quantity theory case, gold is sufficiently rare that none is

converted into bread.
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In the regions of its parameter space to which the quantity theory

holds, this model is compatible with the following remarks of Paul Samuelson:

Given physical amounts of tobacco, food, ballet, etec.,
have significance in terms of the want pattern of the
consumer, but it is not possible to attach similar sig-
nificance to a given number of physical units of money,
say to a number of ounces of gold. It would be otherwise
in the case of gold which was to be used to fill teeth,
but such uses of gold in the industrial arts we purposely
neglect. The amount of money which is needed depends
upon the work that is to be done, which in turn depends
upon the prices of all goods in terms of gold. (Founda-
tions of Economic Analysis, pp. 118-119.)

Neglecting the industrial uses of gold corresponds to our assuming
that gold is sufficiently rare that its value is higher than ¢.

This eguilibrium is always inefficient.
Model 4: A Reversible Silver Technology, an Irreversible Gold Technology

This model is identical with model 2, except that the gold tech-
nology is now assumed irreversible. One unit of bread can be transformed into
¢ units of silver, and the process is reversible. One unit of gold can be
transformed into ¢;l units of bread but this process is irreversible. The
initial aggregate supplies of gold and silver, assumed to be in the hands of
the old at t = 1, are G(0) and S(0), respectively. As above, we let p.(t) be
the bread price of silver and pg(t) be the bread price of gold.

The technology in this model implies that pg(t) = ¢

¢ and that pg(t)

2 ¢g‘ There are two kinds of equilibria. First, there is a class of equi-
libria in which both silver and gold are stored and both bear a common gross
rate of return of unity. Second, there may be an equilibrium in which gold

dominates silver as an asset, and only gold is stored.
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Turning to the first class of equilibria, we seek an equilibrium in
which pg(t) is constant for all t » 1, and ps(t) = ¢, is constant for all t >
1, so that both bear a common rate of return R&(t) = RS(t) = 1. The equili-

brium condition for the model is

p_(t)
(1 Wi (6) - ) wp(641)) / 2 = p(8) (G(6)+ im s(t)).

This equation is to be solved for a constant p, = pg(t), G(t) and S(t) for t >

1. Evidently, any p_ > ¢g determines an equilibrium with G(t) = G(0), since

g

i Py > ¢g no gold would ever be converted into bread. There is a continuum
of equilibria indexed by Pg > ¢g. Given such a Pgs the above equation deter-

mines S(t). In a growing economy, an increasing fraction of the '"money

stock" [G(t)+ -I-;g— S(t)) would consist of silver as time passes. Furthermore,

s
the above equation is a version of the quantity theory equation. To take a
special example, set wz(t) =y, wi(t+l) = w, for all t and h. Then the above
equation becomes
Pg
o I i
B < g
2 Pg N(t) ’

which states that real balances per capita are a constant. In summary, in
this model, any relative price of gold per unit silver ps/pg < ¢s/¢g is an
equilibrium relative price.

However, there in general exists another equilibrium in which RE(t)
> R®(t) = 1. 1In particular, we seek an equilibrium in which no silver is

stored as an asset. The equilibrium condition is

p (

t)
[% ”:(t) & 5;%;;57 g w:(t+1)] / 2 =6(0) p_(t).
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Rearranging as in model 3 gives

Y h
1 - 2 a(0) , B st {1 :
P (t) t+1
2 % Wi (t) E W (%) e

In section 3, we found that the solution to this equation in our special case

was

1 __ 2 6(0)
Pg(t) W(l)[l— %)nt

which is the unique equilibrium if the pg(l) > ¢g. Note that in this case,
the model implies pg(t+1)/pg(t) =n > 1 in a growing economy. Thus, gold
dominates silver as required in this kind of equilibrium.

If the above equation implies that pg(l) < ¢g’ an equilibrium can be
found in which enough of the initial gold stock is converted into bread to
drive pg(l) up to ¢

We now use model U4 to consider again the institution of bimetallism
which we studied above with model 2. As above, we consider a setup in which
the government requires that only "dollars" be stored, that it monopolize the
coining of dollars, and that it stand ready freely to coin new dollars out of
silver at a rate of dS dollars per unit of silver and at a rate of dg dollars
per unit of gold.

In model L, the government is free to choose any ratio for the mint
prices dg/ds that satisfies dg/ds > ¢g/¢s. This will determine a unique
equilibrium, from among members of the first class of equilibria, in which

P.(t) = ¢ and P (t) = dg > ¢po In this equilibrium, all of the gold stock

g

will be used as money, and additional silver will be coined at a rate deter-

mined by the equation
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b
) (w:(t)-wz(tﬂ))/e =d (c(0) +d_; s(t)) «

The above equation implies that the higher the value of dg selected, the less
silver will be minted and stored.

Notice that the institution of bimetallism prevents there from being
an equilibrium of the kind described above in which R&(t) > RS(t) = 1. The
legal restriction and the offer of free coinage of both gold and silver pre-
vent R&(t) > 1 from being an equilibrium. Thus, in terms of model L, the
institution of bimetallism is a device for simultaneously eliminating the
possibility of a gold-only equilibrium and picking out a unique equilibrium
price ratio for gold and silver. In this model, Gresham's law fails to
hold. Bimetallism "works" in the sense that the government is free to name a
price for gold relative to silver and to dollars, and to make it stick. Gold
and silver coexist as money.

In this model, borrowers prefer the bimetallic regime, since they
face a lower rate of return than under the gold-only equilibrium. Lenders
prefer the gold-only equilibrium.

Model 5: A Reversible, Constant Returns, Random Technology

for Producing Gold

In this model, at time t, one unit of bread can be converted into
¢(t) units of gold, and the process is reversible. The technology parameter
¢(t) is a random variable with positive support that is distributed indepen-
dently and identically through time with cumlative distribution function Prob
(¢(t)< ¢) = F(¢). The realization of ¢(t) becomes known at the beginning of
period t. The old at t = 1 are endowed in the aggregate with G(0) units of

gold. Everything else about the model agrees with model 1.
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In equilibrium, the bread price of gold pg(t) = ¢(t). The rate of
return on gold will be varying over time. In general, the amount of gold

Bee) ull(

4 . t+1)), the

stored will depend on the form of the utility function E u(c t),u
endowment patterns, ¢(t), and the distribution F. 1In general, positive and
randomly time varying amounts of gold will be stored.

For example, take the utility function, E, {1n c:(t) + 1n ci(t+l)}.

t
Let ¢(t) have the discrete probability distribution

Prob {¢(t) = ¢;} = £; , 1 =1, «uo, I

) f5 =1, ¢4 > 0.

Let s(t,i) be the implicit price of a unit of bread at time t + 1 in state i
in terms of bread at time t (measured in units of bread at t per unit of bread
at time t + 1 in state i). Then the equilibrium prices are s(t,i) =
¢(t)/o(t+1,i). For the above utility function the individual saving function
h( h

is [wt t) - w (t+1) b ¢(t)/¢(t+1,1)] / 2. Thus, the condition that determines
i

the equilibrium amount of gold stored at t is

) [w?(t) - w:(t+1) Y oo(t)/¢(t+1,1)] / 2.
h i

Thus, the condition that determines the eguilibrium amount of gold stored at t

is

) [wz(t) - w§(t+1) Y oo(t)/e(t+1,1)] = a(t)e(t).
h i
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Model 6: Reversible, Constant Returns Random Technologies

for Producing Both Gold and Silver

This is a variant of model 2. Here one unit of bread can be trans-
formed into ¢g(t) units of gold or into ¢S(t) units of silver. Both technolo-
gies are reversible. The terms [¢g(t),¢s(t)] are independently drawn over
time from a curmlative probability function Prob[d:g(t) < q;g-, p(t) < q;s] =
F(¢g, ¢S] where F has strictly positive support. The realizations of ¢g(t)
and ¢.(t) are known at the beginning of time t. Everything else about the
model is the same as model 1, with the current ¢ld at t = 1 being endowed in
the aggregate with G(0) units of gold and S(0) units of silver.

There seem to be several possibilities in this meodel, depending on
the nature of F. It seems possible that gold might dominate silver, might be
dominated by silver, or the two might coexist for portfolio diversificaticn
reasons.

Model 7: A Reversible But Random Silver Technelogy,
an Irreversible Nonrandom Gold Technology

This model is a mtation of model 4 in which ¢, becomes a random
variable ¢g(t) with positive support. All other features of model 4 remain
intact.

This model would seem to have several possibilities. Gold might
dominate silver with there existing a unique equilibrium. There might be a
distribution functions F for which mltiple equilibria again arise, one in

which gold dominates silver, some others in which silver coexists with gold.



