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ABSTRACT .
We present a model of vintage human capital. The economy
exhibits exogenous deterministic technological change. Technology
requires skills that are specific to the vintage. A stationary com-

petitive equilibrium is defined and shown to exist and be unique,
as well as Pareto optimal. The stationary equilibrium is
characterized by an endogenous distribution of skilled workers
across vintages. The distribution is shown to be single peaked and
there is diffusion of technology in the sense that there is a lag
between the time when a technology appears and the peak of its
usage. An increase in the rate of exogenous technological change
shifts the distribution of human capital to more recent vintages
and increases the relative wage of the unskilled workers in each

vintage.



Section 1. Introduction.

Neoclassical models of growth have proved to be useful in both
theoretical and empirical analysis. The key source of growth in per
capita output in such models is exogenous technological change which
is often assumed to be disembodied. Casual empiricism suggests that
actual technological change is embodied in very specific types of
skills as well as specific types of physical capital. The Schum-
peterian notion of "creative destruction’' relies heavily on capital
specificities. In a world characterized by such specificities we
would expect that new, more productive technologies will advance
more slowly than they would in a world where all capital is cost-
lessly transferable.

In this paper, we construct a model in which we consider the
polar extreme of costlessly transferable capital. Indeed we assume
that decisions on investment are irreversible. The first model of
this kind of ‘putty clay' capital was by Solow (1960) who examined
situations where the types of capital could be aggregated and
economy wide output represented by a single production function.

Our interest is to develop a model in which we can analyze the
interaction between capital specificities and the rate of advance of
new technology. It is undeniable that dramatic advances in techno-
logy (the invention of computers and word processors comes to mind)
do not achieve large scale soon after invention. Even today we f{ind

the abacus or the typewriter useful for some purposes. In addition,




as Mansfield (1968) points out "it took 20 years or more for all of
the major firms [in several industries] to install centralized
traffic control, car retarders, byproduct coke ovens and continuous
annealing.” None of these inventions were patentable by their
users.

Clearly, the fact that the capital goods have already been
produced implies that, in general, it would not be rational simply
to destroy them. We are interested, however, in going a step
further. We wish to examine circumstances under which even though
in a sense newer technologies are superior, resources are used to
create capital which is specific to older technologies. Continuing
with our earlier example we want to understand not only why type-
writers are used but why they continue to be produced.

One possible explanation for this phenomena is that an impor-
tant component of capital is in the form of human capial. The
skills involved in a production process are sometimes transferable
only to a limited extent to new production processes,. In addition,
it is often true that these skills are acquired only by partici-
pation in the production process itself.

These considerations prompt us to develop a model of human
capital which is acquired in the process of production and is
specific to the particular technology of production. In order to
focus our attention on this problem we abstract from physical
capital entirely. In addition, the learning of new skills or the
transfer of existing knowledge presumably occurs largely from older

workers to younger workers.



We use an overlapping generations model in which a new gene-
ration is born in each period and lives for two periods. There is a
single commodity produced in each period. At the beginning of each
period, a new technology becomes available which is more productive
than any of the preexisting technologies. We assume that this exo-
genous technical change is deterministic and that the new technology
is more productive by a constant factor v than the technology that
became available one period earlier.

Young workers must decide which vintage of technology they
should enter. Once they have entered a particular vintage, by wor-
king in that vintage they acquire skills that are specific to that
technology at the end of the first period of their lives. All wor-
kers who work in a given vintage acquire the same skills. The state
of the economy is described by the distribution of skills across
vintages. The hiring decisions of firms and the entry decisions of
young workers implies a distribution for succeeding periods. The
existence of complementarities in production between skilled and
unskilled workers will attract unskilled workers to vintages that
have skilled workers. Thus in equilibrium old technologies continue
to be used.

We establish that, for such a model, a unique stationary com-
petitive equilibrium exists and is Pareto optimal. The stationary
equilibrium is characterized by an endogenous distribution of
skilled workers across vintages. This distribution is single-
peaked. Under fairly general conditions we show that there is a lag

between the time that a technology appears and the peak level of



output from the use of that technology. The wage rates for un-
skilled workers increases monotonically with the age of the vintage
while the wage rates for skilled workers declines monotonically with
the age of the vintage.

We also examine the effect of a change in v, the rate of exo-
genous technological change. In a stationary state, v is alo the
growth rate of the economy. We show that an increase in this growth
rate shifts the associated stationary distribution to more recent
vintages. Furthermore, it reduces the time lag between the intro-
duction of new technologies and the peak of their usage. In other
words, in faster growing economies new technologies diffuse more
rapidly.

We also show that an increase in the growth rate causes wage
profiles over time for any given generation to become flatter. In a
sense, therefore, the return from investing in human capital by wor-
king in newer vintages where current wages are lower falls for each
individual. However, since the distribution of skilled workers also
shifts to newer vintages in which future income is larger the effect
on overall investment in human capital is ambiguous.

Jungenfelt (1986) develops a related model in which capital
specificities arise solely because of the fact that workers must be
trained to produce new products. The key variable in his model is
the length of training time. He shows that an increase in this
variable leads to an increase in the number of old products which
continue to be produced. Since there are no complementarities in
his model it cannot generate the result that resources are invested

to create capital which is specific to old technologies.



We present the model in Section 2. In Section 3 we prove that
a stationary equilibrium exists and is unique. In section 4 we cha-
racterize the equilibrium and prove some comparative steady state
results. In section 5 we show that the stationary competitive equi-
librium is Pareto optimal. Some concluding remarks are contained in

section 6.

Section 2. The Model

We consider an overlapping generations model of agents who live

for two periods. The set of agents born in each period is given by
the interval [0,1] with uniform distribution. Our structure has the
following features: i) There is an exogenous technological change
whereby new technologies appear each period. 1ii) Agents can make

investments specific to a vintage so that the new technologies are
diffused by the optimal decisions of agents. In our model, these
investments take the form of human capital.

A new technology appears in every period. This technology is
given by the production function

~YE(N.2)

where t denotes to the period in which the technology ap-

peared, N is the input of unskilled workers and Z is the input of

experienced workers.



(A.1) The following assumptions are made on the production function.
i. f has constant returns to scale
it f(N.O):wON where uOZO

iii. £(.,Z) is strictly concave for each Z>0.

In every period there are two generations of workers who live
for two periods each, the experienced (old) and the unskilled
(young). Young workers can choose to work in only one vintage.
Experience is acquired by working in a firm in a particular vintage
as an unskilled worker when young and is specific to the vintage
corresponding to the firm's technology. The amount of expertise
acquired by two young agents working in a firm of the same vintage
is exactly the same. This will simplify the decision problem of
young agents -as will be detailed later- who will just have to
choose which vintage to enter on the basis of the wage offered and
the valuation that the market will give to their specific expertise

in the following period. We also assume that

(A.2) Old agents have zero productivity in the unskilled tasks.
This is an assumption of convenience. It simplifies the ana-

lysis and the most relevant results obtained hold also when old

agents are allowed to perform the tasks of young, unskilled workers.

Agents have preferences defined over the two periods where they

live given by utility function



u(c,;,cr)=c,+fc, where 0{B<1.

As usual in growth models some bound on the rate of techno-
logical change must be given. The following assumption plays a key

role only in the issue of the optimality of the equilibrium:

(A.3) Br<1,

As we mentioned earlier, when young, agents can work in only
one vintage. In the following period, they will have acquired
experience in that vintage. Hence in each period there is a
distribution of old agents' exper-ience across existing vintages.
To make this precise, it will be convenient to introduce the
following notation:

The letter 't' will index time and the letter “T' will index
the vintage of the technology, with the following interpretation:

When referring in period t to technology of vintage 7, we will
be referring to the technology that appeared T periods before. For
example 7=2 indicates the vintage that appeared in t-2. Notice also

that the same vintage in period t+1 will have v=3.

Let o be the distribution of experience of old agents across
vintages 1¢{0,1,2,...}. Thus UL(T) indicates the number (more pre-
cisely mass) of old agents with experience in vintage 7. These are
the old people who when young worked in the vintage that appeared in
t-7. Since there are no experienced workers in the °just born’
vintage, pt(O)zO for all t. We will often refer to H as the state

of the economy.




The existence of constant returns to scale makes irrelevant the
number and distribution of property rights of firms in each vintage.
For simplicity, and without loss of generality, we will assume that

each old agent ‘runs’ a firm and competitively hires young agents.

Let w(t.T.ut) indicate the minimum wage needed to attract un-
skilled workers to vintage T at period t when the state of the econ-

omy 1is o 0ld agents with skills 7 solve the following problem:

(1) v(t.T.ut)z max v T f(n‘i)—w(t.T,ut) n
n>0

As a consequence of (A.l1) there is a unique solution to the above

problem which will be given by n(t.T,ut).

We will now analyze the decision problem faced by young agents
born in period t. If they decide to enter vintage 7, their earnings
in the following period will be
{29 v(t+1,7+l,pt+1}.
since in the following period they will be skilled in vintage 7+1..
Young agents will be assumed to have perfect foresight on the
returns to experience in each vintage. Since they maximize dis-

counted earnings, for them to be indifferent as to which vintage to

enter the following must be satisfied:



Wt 1op )+Bv(e+1.2,p  )=w(t.0.u J+Bv(t+l, 1, )

w(t.2.pt)+ﬁv(t+1.3,ut+1)=w(t.l.ut)+ﬁv(t+1.2,ut+i)

(89 w5 55 5o 3 § § SEEET § § 73

W(t.T.ut)+ﬁV(t+l.T+l.pt+1)xw(t.T“l.ut)+ﬁv(t+l,T,u

t'.-i-l)

Let yD(t.ut) denote the mass of entrants in the new vintage at

period t when the state of the economy is u Since f(O.l):mo, out-

¢
put and consumption for a young agent that enters this vintage is
given by ﬁtwo. Thus there will be no incentives to enter the new
vintage unless

vt 2w(t,0,un )

o~ t
where w(t_O,ut) is given by equation (3).

In order to complete the description of the environment, we
will assume that at period O there is a set of old agents indexed by
[0,1] with uniform distribution. We assume also that they have ex-
perience on a set of existing technologies and that the correspon-
ding distribution of expertise is given by Ko Thus uO(T) is the
mass of those workers experienced in vintage -1, i.e. the vintage

: . . i 78
with production function » "f(n,z).
We can now define an equilibrium for this economy.

Definition: A competitive equilibrium for this economy is:

a. a wage function w(t,T,ut)

b. an employment function n{t,T,ut) and new vintage entry function

Voltim, ).



c. a sequence of distribution functions {ut}
such that:
i. n(t.T.ut) is an optimal response to w(t,r.ut). i.e.it
satisfies (1).
ii. w(t,T.ut) makes young agents indifferent as to which vintage
to enter, i.e. w(t,T.ut) satisfies equation (3) and

L
w(t,O,pt)zw ©
[e3]
iii. 2 n(t,T.ut)ut(T) o l—yo(t.pt).
t=1
t i 3 - —
where ~ w0<w(t.0.ut) implies yo{L.ut)_O.

iv. pt+1(T):n(t.T—l.nt)pt(rul) for 722 and ”t+1(1)ﬁy0(t‘“t)‘

Conditions i. and ii. state that agents make their decisions
optimally. Condition iii. is the labor market clearing condition.
Condition iv. states that the law of motion for Mo is precisely the

one generated by the optimal rules described.

In the rest of the paper we will concentrate our attention on

the stationary equilibrium, i.e. a competitive equilibrium with the

additional condition:

V. PR qTH for all t.

We will establish that a stationary distribution exists and is
unique. Then we will analyze the properties the economy has if it

were at a stationary equilibrium.

10



Section 3. Existence of a Stationary Equilibrium.

We will first establish some necessary and sufficient cond-
itions for the existence of a stationary equilibrium. Then we will
show that under the assumptions made, these conditions are satisfied
by a unique set of equilibrium values. Since in the stationary
equilibrium o is constant, we will supress B, @&s an argument to the

functions defined above.

- - = -
Proposition 1 Suppose w (.). n (.). yo(.) and ¢ is a stationary

equilibrium. Then
*
1. n (t,7) is independent of t.
2= n*(t,T)>0 implies n*(t.T'))O for all +'<7.
- 0 y:(t) is independent of t and y_>0.
*

4. W (t.7)=7"w (0.7) for all t and w (0.0)=w_.

5. V*(t.T)ZTtV*(O,T) all t.

Proof. 1. Since u(T+1)mu(T)n*(t.T) for any t, n*(.) must be inde-

pendent of t.

2. If n(t.7')=0, then pu(7)=0 for all T>r'. But then
1tmo)1t_T'w0 and so young people will not enter vintage 7T'. Hence
n*(t,T'):O.

3. Since u(l):yo(z), y, must be constant. If y,=0. then

u{r)=0 for all 7. But if that is the case, yoml.
4. Note that

n(t,T)

argmax ?tf(n.l)uw(t‘T)n

argmax f(n,l)—[w(t.T)/wt] n

11



Since f{..,1) is strictly concave, if n>0 then it is strictly de-
creasing in w. But then for n(t,T) to be independent of t it must
be the case that n{(t,7)=0 or that w(t,’r}/‘rt is independent of t.
Hence w(t.T):Wtw(O.T) for all t. If w0>wo then y0=0 which we just
proved cannot be true.

5: v{t,1) = max wtf(n.l)—th(O,T)n

+ 'max f(n,1)-w(0,7)n

YLV(O,T).

As a consequence of the above proposition, we can simplify con-

siderably the notation employed from now on. We have supressed the
B, arguments and we can now supress the t arguments from the func-
tions used. This leaves us only with 'v' as the only argument. We

will thus define:

n_ = Fl e, Tat)

w_ o= w(t,7,2) and
Vi, = vt )

o o= k(7).

Given these facts it is now possible to rewrite equation (3).
It will be convenient to write the profit v, as a function of the
wage w_. Then using equation (3) and Proposition 1 we have that a
necessary condition for a stationary equilibrium is that there exist

sequences {wT} which satisfy:

12



1+B-rv2(w2) = wo+ﬁ1v1(w1)

w2+ﬁwv3(w3) = w1+31v2(w2)
' T [ S T S
WT+BTVT+1(WT+1) W__tBv (w_)
subject to WT20.
where vT(w) = max 7_Tf(n.l)—wn
n
Lo
Suppose for the moment we could find a sequence {wT}T_1 that
satisfied equation (4) with W, E0, - This would imply a sequence
0 . -7 . . )
{n_r}_l_=1 given by n_= argmax < f(n,1) w.n o, the optimal input
decision if there are specialized workers in vintage 7. Market

clearing requires that

(5) EnTpT=l—yo

Using the fact that Koy =H D and Hi=Y, o given ¥y (or ul) we obtain

=}
by induction the whole sequence {uT} by setting p(T7) =ty n n_..
T'=1
Then
| T
(6) uTnTz(pl g nT)n =My q n_.
1 T i)

13




1f uI:O the left side is equal to zero and the right side equals

one. If p_ equals one then the right side equals zero. The left

t

side is continuous and nondecreasing in p, and the right side is

1

strictly decreasing. Hence as long as equation (7) is well defined,

then given {nT} there exists a unique My consistent with this equat-

ion. As will be shown in the appendix, n_ decreases monotonically
to zero. Hence there is a T such that nt<1 and so
@ T T T T 0 T
i 2 Fn,. =p: 2 On_ + p.OTn_ 3 I n
17:1 =17 1?:1 =17 TT'=1T7=T+1 T =T+1 '
T T T B
< p, = OI'n + p.Tn_ 2 n
]T=1 e TT':ITT:O i
{ w

so that equation (7) is well defined.

This suggests the following procedure for finding an equili-
brium:

Step 1. Obtain a solution to equation (4).

Step 2. Find the corresponding input demands {nT)

Step 3. Find i, from equation (7).
This is summarized in the following proposition.

- - * -
Propositon 2 w (.), n (.), yo(.) and p is a stationary equili-

brium if and only if there exist {wT}‘ {nT} and My such that
u*(T) is given by equation (6)
n*(tnr,u):n_r for all t

»*
y (t)=p,

14



»*
W (t.T.p):?th for all t
{wT} satisfies equation (4) and w o=w_ ., n_ are optimal input

decisions given W and Hy and {nT} satisfy equation (7).

Proof. That these conditions are sufficient can easily be checked.
o * t o

By Proposition 1, w (t,7,p)=y w (0,7,12). Hence we can set Wy =

%

w (t,7,1) and also by Proposition 1 LFC I The construction above

shows that the rest of the conditions follow from this one 0.

The next proposition states the existence and uniqueness of a

stationary equilibrium.

Theorem 1. There exists a unique stationary competitive equili-

brium.

Proof. Follows immediately from Proposition A.1 in the appendix and

Proposition 2.

Section 4. Properties of the equilibrium:

The first question to be asked is about the distribution of
skilled workers across vintages. We show in the appendix that the
wage rate of unskilled workers, W is increasing in the age of the
vintage and that the wage paid to skilled workers, v is decreasing
in the age of the vintage. Since productivity is decreasing with

the age of the vintage it follows that n, is decreasing in 7. We

15



show in Proposition 3 below that if an Inada condition is satisfied

then all vintages are used in a stationary equilibrium.

Proposition 3. If f,(0,1)=* then pT)O for all 7. Otherwise there

exists some T such that uT>O if and only if +<T.

Proof. Let T be the smallest number such that uT:O. Recall that in
-1

a stationary equilibrium Ho=H I n_. and K=Y - We have already es-
e ]

tablished that yo)O. Consequently if uT=O then uT.=O for Ll 2%

and n_ =0. If £,(0,1)=» then for any finite w n 20.

=1" e=1" "=l
On the other hand, suppose that f,(0,1)<®. A necessary con-

-T

dition for an equilibrium is that if n_>0 then g fi(nT,l)<

W_Tfi(O.l). Consequently W_ must converge to zero. However since

w_ is an increasing sequence it must be bounded away from zero 0.
Clearly, the first part of Proposition 3 depends critically on

assumption A.2. If old agents could work as unskilled workers in

any vintage then the wages of unskilled workers cannot exceed the

wages of skilled workers. Therefore we would need to impose the
condition that szwT. for all r,7". In this case the number of vin-
tages will be finite. Other than that, none of our results change.

It is of interest to examine the shape of the distribution of
skilled workers as well as the distribution of output. We establish
below that employment of skilled workers will rise and then fall

with the age of the vintage.

16




Proposition 4 (Single peakedness). There exists T such that for all

T<T 1 2”7—1 and for 72T uTguT_ Furthermore, if m0=0 and

T 1°
By < £,(1.1) then T>2.
fa(1,1)
Proof. We have established that n_ is decreasing in 7. Let T be
the smallest T such that n_<1. Recall that p_=p n . Con-
T T Tr=1r=1

sequently, for 7T uTzuT_ and for T>T uTgu

1

We have from equation (4) and wo=0 that

1

Brvy(wy)=w, +Brvso(ws).
By the definition of v(.) and the fact that w1=1_1f1(n1,1) we
have that
BLE(n:.1)-f4(ny.1)n,] 2 ~F,(n,.1).

Therefore

(6) Erfplail), g

The numerator of this inequality is increasing in n, and the deno-

minator is decreasing. Hence, if

() pv s Pl

then n,>1 O.

We have established that under mild conditions the peak of the
distributions of skilled workers will occur for some T>2. In order
to obtain sharper results about the peak of this distribution as
well as results about the peak of the distribution of output we
consider a particular production function. Assume that the pro-
duction function is Cobb-Douglas: f(n.z):nazl~a. It is plausible to
assume that a1/2. Inequality (9) which guarantees that T»2 can
then be written as Qliélﬁlgl. In Proposition 5 below we strengthen

this condition to ensure that T>3 and the peak of the distribution

of output occurs at vintage 7122.




o

Proposition 5. If ElLé:El + w[glLl:gl]IAag 1 then T»3 and the peak

of the output distribution occurs at a vintage 722.

Proof. It follows from inequality (8) that n,2a/Bv(l-a). Since a<l,

nianlg[a/ﬁw(l—a)]awl. From equation (4) we have that walw +Bvva(wsy).

Hence using the fact that WT:T—Tfi(nT.l) we have that
ng_1$1n?_l+éllé:glﬂg.

It follows that

1_
(10) ng-lsw[ﬁwiiwa!] a+ngl—a!ng.

(84
Suppose that ny<l1. Then the right side of inequality (10) is at
most 1. Hence ng“lgl SO ngrl.
Note that output at vintage v is given by W*Tf(uTnT,uT).

Therefore output at vintage 2 is greater than output at vintage 1 if

and only if

-1
(11) ~ " f(pzna,mo)>f(ping . pq).

-1 &, =1

Since p,=pu,;n,, inequality (11) is satisfied iff ~ "ny>n; ~. Recall
=1 _#~-1 a—1

however that w,2w;. Hence av "n, " 2an, ~. But n,>1. Therefore

1“1ng>n?*l 0.

It is of interest to examine the effect of a change in the rate
of technological change on the stationary distribution. Our main
result is that when v'>y then the distribution corresponding to the
higher growth rate, say p', will be dominated in the sense of stoch-
astic dominance by the original distribution. In other words, when

the growth rate increases the distribution of skilled workers is

18




concentrated among more recent vintages. This also implies that the
rate of diffusion of new technologies change is higher if the

economy grows more rapidly.

Proposition 6. Consider two economies with v'>y. Let p',u denote
the respective stationary distributions. Then p stochastically
dominates p', i.e.
t t
. €< Zu' for all t.
i H
T=1 T=1
Proof.

In Proposition A.2 in the appendix we prove that

n{(7,u"')<n{7.,n). Hence if p'(1)<p(1) then pu'(7)<u(7T) for all 7>1 and
o

henceTflnTuT<1—u1 and thus pu 1>u

E Let T={min t:p'(t)<p(ct)}. Then

t t
T22. For t<T, 2 p'(7)> 2 u(t). Since n(t,u’')<n(t,nx) for all t and
g it | e

n' (T)<u(T)., by construction p'(t)<u(t) for all t>T. But then for

any: t£2>T,

3 3

t
Zp'(r) =1 -3 u'(r)y >1 -2 p(r) =3 p(1),
= 1

T=1 >t T2t o

which establishes the result 0O.

Our next result shows that the earnings profile becomes flatter
as the growth rate of the economy increases. As shown in Proposi-

tion A.2 of the appendix

w2 [2] weew.

vé(w):mix w'"tf(n)wwn < [l.]t[w_tf(n)—wn]g[1.]tvt(w)

9



Since ~'>7,

(12) TV (M) ¢ Vi1 (Vi)

w = w
T

e

This establishes that the earnings profile becomes flatter with
a higher growth rate. One measure of investment in human capital is
foregone earnings. If an individual joins a sufficiently old vin-
tage we have shown that future earnings will be close to zero and
current wages will be high. This individual would then be making
very small investments in human capital. The present value of
income is equated across vin-tages. Hence individuals who join new
vintages will be making large investments in human capital. These

can be measured by the ratio of future earnings to the wage that

implies no investment. Of course the latter equals the present
value of earnings. Inequality (12) implies that this measure of
investment in human capital declines. However, note that aggregate

investment in human capital does not necessarily fall since the
distribution of skill levels shifts to vintages with higher rates of

investment.

Section 5. Optimality of the Competitive Equilibrium.

In this section, following a standard approach in overlapping
generations(OLG) models, we will construct an Arrow-Debreu economy
that corresponds to the OLG environment. We show that the
stationary equilibrium of the OLG economy is a competitive equili-
brium for the Arrow-Debreu economy and that it is Pareto optimal.

In our specific problem there is an additional complication to the

20



standard case. There is not only an infinite number of goods and

agents but also infinite technology sets, one for each vintage.

The commodity space will be

Lo Jldeydy_, » (30,

0 3
o {z—k}k:l) where (ct,nt.z_k)eR }

. . 53
The commodity space is the linear space of sequences in R™.
There will be one agent for each generation indexed by
i€[-1,0,1,...@). For i20, i indexes the generation born at t=i and
i=-1 corresponds to the old at t=0. For each i, the con-sumption

set will be a subset of L of the following form:

o ® o i .
Xi & {({Ct}t=0 y {_nt}t:o {—z_k}kzl) with ¢ 20, n =0 for t#i and
-1¢-n <0}

with the following endowments

i ; 4 i :
z .=pn, for all k if i=-1 and z , =0 otherwise.
-k "k ~T
Note that we follow the usual convention of denoting consumers'’

inputs by positive numbers and their outputs by negative numbers

while the reverse criterion is used for firms.
Preferences must be assigned which are consistent with the ones

agents have over consumption in the two periods they live in the OLG

economy. This is done by setting

21




Uj(Heed) = o4+ Feyyg

We will assume that one firm operates each vintage. Naturally

we have to restrict firms operations to those periods where its vin-

tage has already appeared. With this proviso, the technology sets
will be:
Y, = {({q } {-n: }.{ z k}) with —nggo for j<t and nﬂzO if j>t.
qg = g (nd ,ng 2} if j<t and t>0
qi = 0 if j>t
0 0
q, = f(nO.O
Jo_ ] b iE 2
q; = 7 f(no.z_j) if j<O.

where j ranges over the set of negative and positive integers.

Note that this environment corresponds to the case where firms
pay a wage in period t to the young people hired at t and use the

labor in periods t and t+1; heuristically this is a ‘slave economy’

In the OLG economy each generation consists of a measure space
of agents. Technology is given by a function mapping measures of
skilled and unskilled workers into output of the consumption good,
and workers can only be assigned to one vintage. To establish the
correct connection with the OLG environment, we can think of the
time a person born in period i allocates to vintage j, nij e[0,1]

in the Arrow-Debreu economy, as the fraction of people assigned to
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that vintage in the OLG setting. By the same token, the consumption
allocation of this agent can be interpreted as the sum of the con-

sumption of members of the corresponding generation..

We will now define feasibility for this economy and a com-
petitive equilibrium. We will slightly modify the consumption
allocatons for the OLG economy considered above, while leaving labor
supply allocations unchanged . The modified allocations will give
each young worker the average consumption of his cohort in the first
period of their lives. Each worker will receive the average con-
sumption of his generation when old. Obviously these allocations
are feasible and yield the same utilities as those of the stationary
equilibrium.

We will show that these modified allocations together with a
price system are a competitive equibrium for the Arrow-Debreu
economy . Furthermore, we will show that the first welfare theorem
applies to this economy and hence that the competitive equilibrium
thus constructed is a Pareto optimal allocation. Since these mod-
ified allocations yield the same utilities as the ones corresponding
to the OLG economy, the equilibrium of the OLG economy is also

Pareto optimal.

A feasible allocation for this economy is a pair

({xl}“;___1 . {yJ}?_MW} with the following properties:
i) xleXi for all i
ii) yJeYj for all j
1 . & s
iii) S yd - = x} = 0 if t>0
. t . t
J== i=-1
w = m - o0
-i i
and ‘2 : ‘E £ = (O'O'{uk}k:o)
3=0 fm—]



It can easily be verified that the technology described has

constant returns to scale. Hence given a set of prices any profit

J has to yield zero profits. As a consequence,

maximizing vector y
there is no need to take into account the distribution of profits of

firms, thus justifying the following definition.

A competitive equilibrium for this economy relative to a price

system ({pt}T:O : {mt}fxo , {w?k}zzl) is a feasible allocation which

satisfies:

iv) profit maximization:

o

(24
J J J o
y* = argmax 2 (p,qi-@ n:. ) - 2 w_,z"

tog Tttt feest k™-k

for any ({aj}.{-n}}.{-2z] }ev .

Note that the technology sets described imply that zik=0 F

j#-k, and that ni:O if t{j. Thus for j>0 the above objective can be

o«
written as 2 p qJ—w nY and for j<t it becomes
g G £t
t=]
w - - -
J_ Jd y_0 ,J
tfo(ptqt @ ny ) w_jz_j.

v) utility maximization:

x'= argmax U(cl)

w0 o
. y i o i
subject to Z P.C < ;n, + 3 @1 % )
t=0 k=1
Note that since zik=o for i#-1 the above constraint specializes
m = m - w -
to 2 ptci £ W, ny if i#-1 and to 2 prcz < 2 w?kzik for i=—1.
=0 t=0 - k=1
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We will now construct a competitive equilibrium by assigning
allocations to agents similar to those of the OLG economy. The
first step is to assign consumption allocations. Recall that in the
OLG economy. the consumption allocations to members of generation t
who worked when young in the vintage that appeared in period j is

given by
¢

: 1 2 t
~ (cT . cT} = oy (wT , 7VT+1).

where 7=t-j.

Consider the consumption allocation

[e3] i)
i i t 1 2 . .
(ct. ct+1) 5 (T_E_Oc_ruTnT .TfocTuT+1) -which is the sum of con

sumption allocations corresponding to members of generation t, for

0<i=t and ci =0 for t<i and t>i+1. For the agent born at t=—1, the
1 o (5]
consumption allocation will be ¢ "= 2 v z = Z V_§
8] T  p
T F=]
[e4)

;- i
Let ¢ = {ct}t=0

i 2 : .
Let nt=—1 if t=i and O otherwise.

Let z—1: -1 and 2'=0 otherwise.

Let x* = (ci.nl.zl)

We will now construct the input allocations consistent with

those of the OLG economy. For t>j let ng = p_n_ where 7=t-j and let
: . i_ ; _ ) _ o -
nj = K- Let zj_pj when j<0. Recall that B = Bo_B__4= NL_y when

T>1. Hence

F o gdpiaid 20 5 o ad = S0 R
q, = f(nt.ntwl) = f(uTnT.uT) = pr(uT,l)

whenever j<t and



I_rrad B53y—nd J -
qt_f(nt.O)-1 @ Ny when j=t.

set yI=({al}. {nd}. {23, 1)

Finally let X:{xi}?:_l and y={yj}

j=-o"

We now state the main proposition of this section.

Proposition 6. There exist prices such that the allocation (x,y) is

a competitive equilibrium for the Arrow-Debreu economy.

Proof. The allocation considered is clearly feasible. Consider the

following price system:

0 =(7B) "[wy +Brv (v )]

02, =v, (W ).

We must show that conditions (iv) and (v) of the definition of com-
petitive equilibrium are satisfied. We will first establish profit
maximization.

profit maximization:

The profits of a firm of vintage j can be written as

[51]
Jiudy = J d =3 - J
(13) #¥(nY) _tfoptw f(nt'nt—l) w.ni.

where niI:O if j20 and nf1=zij if j<O0.

Since [ is continuously differentiable, the Euler equations
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J J

J 3 4 J _ v
(14) P fl(nt,nt_l) t Py f2(nt+l‘nt) L < 0 t=0,1,...
where nil=0 for j20 and nilzzij for j<O.
= J J Jdy_.0 ié i
{15) P, f2(no’zj) wj < 0 if ji<0.
are necessary for the sequence nd to give a maximum. As shown in
Lemma 4, these conditions are also sufficient. We will show that

when these wages are the ones defined above, the labor inputs given
by the allocation constructed above are a scolution to equations (14)
and (15) so that they maximize profits.

Equation (14) can be conveniently written as

J t..—{T*l) J Jy _
’ntml) + Py ¥ fg(n ) w, <0

J
(n t+1°' ¢

) et
(16) P f ¢

1
t=j,j+1.,.... where T=t-j

and given the definition of prices we obtain
=T s g -(7+1) J J
(17) ~ fl(nt'ntwl) + Bax f2(nt+l‘nt) < [wo +51v1(w1)]

Recall that

i i .
) fl(anT,p )=~ fl(HT'Z) = w_ for 720

T
and
=T -7 1
i f2(uTnT'uT) = B HTF{“THT'pT) fl(“TnT'uT)nT
& W v f(n_,1) - w = v_ for 121
T 1 T

]

Thus, replacing ny in the left side of equation (17) as defined

in the constructed allocation, we obtain for t2j

=T —-{ 7+1) :
(18) ~ f1(“Tn‘r‘“?) * B f2(“T+ln~r+}_'“-r+1) Vo * BWVT+1



+ = +
But W Bv © Brv

, so that the defined allocations sat-
T+1 1

isfy equation (18) and thus also satisfy equation (14).

For t<j, f(nt.ntﬁl)mo so f1=0 and f2:O. so equation (14) is

satisfied. As for equation (15), for j<O let k=-j and then
J J Iy .7k
P Toln .2y )=y " (umy . i)

0
=W

=l 0
= f2(nk.l)_vk~w_k_ 5

Utility maximization

For any wage, the supply of labor will always equal 1.

We must show that the consumption allocations maximize utility
subject to the budget constraint.

Consider first the agent born at t»0. The rate at which he can
substitute consumption between the only two perioods of his life he

cares about, namely t and t+1, is equal to the rate of time pref-

p
- T
erence, i.e. = = E. Hence the consumer is indifferent between
t+1

spending his budget between period t or t+1.
Hence we only need to check that budget constraints are
satisfied with equality. The consumption allocations of the agent

born at t are
3 @ p 0
i ot i
(19) C = 2 W n_ and B oyi= 2 v
T=0 T=0

Then
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(20)  PC* Pry1ie1 = Py

T TnT ¥ pt+17 T+1“T+l

o
=
i
<

=
g1l M 8
=
f

L.t

I
™=
2
v

) (wT+B?vT)u

0

since n =
T+1 Bl ™ e

T

I

(4]
@, T
T=0

' _ _ t
The above follows because wT+ﬁ7anm0+51vl, mtﬂ(wﬁ) [mo+ﬁwvl] and

=@
T+1 t

[e:]

Z = 7.
T=0 T+l

But then equation (20) states that the consumption allocated to this

agent strictly satisfies his budget constraint.

The agent i=-1 supplies inelastically all his human capital z".

Since

L] o

c = I v (w)z__ =3 woz_
0 g1 7T T ket k7-k

his budget constraint is also satisfied with equality 0O.
As a final step. we need to show that this competitive equili-
brium is Pareto optimal. This is established in the following

proposition, with the proof following the First Welfare Theorem.

Proposition. The competitive equilibrium is Pareto optimal.

Proof. The proof mimics Debreu(1959). Suppose there exists another

allocation (X'l.y'd) such that X'lle for all i with strict pref-

L] o
erence for some generation i. Then py'= 2 ﬂ'3§ py= 2 7 and
j=—e j=—e
- 0 0 -
px'lsz1 » with strict inequality for agent i. Let x= 2 x! and
i=0
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o

y= X yJ. and define x' and y' similarly. Note that since output

j==

each period is bounded by th(l.l). the value of total ocutput

o
py< 2 Btwtf(l.l}. From the above it is the case that px'>px and
t=b)

py '{py. and thus px'>py'. But then p(x'-y')>p(x-y) and since x-y=(
it cannot be the case that x'-y'< ( so (x'l.y'J) is not a feasible

allocation.

Section 6. Concluding Remarks.

We have presented a model of investment in technology specific
human capital. The central result is that such specificities lead
to a lag between the time that a new technology becomes available
and the peak of its usage. In that sense, this model is consistent
with the slow diffusion of new technologies. It is certainly true
that slow diffusion can be a consequence of the fact that consumers
must learn how to use new products. Our focus, however, is on the
fact that producers must acquire the skills necessary to produce the
new product cheaply. In our model the marginal product of invest-
ment in such human capital is high when older workers already pos-
sess the required level of skill.

Our main result is that an increase in the rate of change of
technology implies an increase in the rate of diffusion. We also
show that the wage profiles over time are flatter in older
technologies than in newer ones. In that sense, the value of inves-
ting in a newer technology is higher and our model is one of human
capital accumulation. The equilibrium we describe is Pareto

optimal.
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An obvious extension of our model would be to allow for uncert-—
ainty in the rate of technological innovation. We conjecture that
in such a case, a technological innovation which is substantially
better than average will attract a large number of young workers and
lead to larger than average investment in the newest technology.
Since this capital is specific to the technology, in subsequent
periods relatively few young workers will be attracted to even newer
technologies. These technologies will then be adopted and diffused
at a slower rate than average.

The assumption of exogenous technical change obviously does not
do justice to the reality of the process of innovation which
requires the use of resources. In addition, it would be of interest
to examine a model where technological innovation as well as
adoption are jointly and endogenously determined. One possible
modification of our model would be to let the productivity of the
newest vintage relative to the previous one, 7, be determined by the
number of workers who enter the newest industry. In such a case
workers in the newest vintages can be thought of as engaging in
innovative activity.

The existence of this externality may well cause the equili-
brium not to be Pareto optimal. The effects of various policies to
remedy this externality could then be examined. In any case, we
conjecture that an exogenous improvement in the technology of in-
novation will lead, as in this paper, to an increase in the rate of
diffusion. The earning profiles will also likely get flatter with

such an improvement.
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APPENDIX.

Proposition A.1. There exists a unique sequence {w{} that solves

equation (4).

Proof. To establish this result we will first show that if we trun-
cate the system at any T and impose VT:O. then there exists a unique
solution to the truncated problem. Then we will show that the se-
quence of solutions to the truncated problem converges and that the

limit is a solution to the original problem. Finally we establish

that there is no other solution to equation (4).

Step 1: Truncated problem.

Consider the problem
w1+57v2(w2):w0+57v1(w1)

(4') w2+87v3(w3)=w1+67v2(w2)

subject to wtzﬂ.

Alternatively, this is equivalent to
wT:w0+Bwv1(w1)

wT:wl+ﬁwv2(w2)

subject to wtzo‘

We will now show that the set of W such that the W induced by

backward induction in equation (4') which are all nonnegative is



nonempty. We will proceed by induction. Notice that

WTMIZWT_Bva(wT) and the right side is increasing in w,. and goes to

T

infinity as wTém. Hence there exists some W that makes wT_lzo.
Suppose that for a given W and for all 7v27' the induced w_ is
nonnegative. If Wop increases, then LA inecreases and inductively
w_ increases for all 72>7'. Thus, as W, Wy given by

W_. =W—Brv_,(w_,

T'=-1""T P T ( T )
also goes to ® and thus there exists some W such that W g is non-
negative. Hence there exists some W such that the induced sequence

m - *

w is nonnegative.
{v.}i-0 g

Suppose Wi is such that all w_ are nonnegative. Then
WT_I:WT—ﬁWVT(wT)ng. By induction we will show that W, is

increasing in 7. Assuming ngwT+1 we have that

WT_1=WT"ﬁWVT(WT)iWT—BWVT(WT+1)ng—ﬁ7VT+1(wT+l)sz_

Hence w_ is increasing in 7.

Suppose that in the above case, wo(wT)>O. Start decreasing W
For any O(e(wo(wT) at some point some w_ =e. But in that case the
corresponding W, will be no greater than e. Hence there exists some

w such that if W =W then wT(E)QO and wo(wT)ng. As w_-% we already

have shown that wo(wT)Mm.

We just need to establish that the mapping WO(WT) is @omti-
nuous. We will proceed by induction. Far 75T+,
W =W,.—fBrv a Since v is continuous, w W is a continuous
T =g PV W) T . a e (¥
function. Suppose AN is a continuous function of W Then

wT:wT—ﬁwVT+1(wT+}) which is a continuous function of w_ and by

+1

composition of L
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The above implies that for any w0>0 there exists a solution to

problem equation (4'). Furthermore, since wo(w is strictly

1)

increasing, there is a unique solution to this problem.

Step 2: Convergence of the truncated solutions

We proceed to show that these solutions converge. More pre-

cisely, letting w,_ be the unique solution to the truncated problem

t

we establish that ﬁr%ﬁ<m.

We will first establish that &tgﬁ Suppose, to the contra-

eby

ry, that ﬁt>; We will first show that this implies that

t+1

wl(wt](wl(wt+1). If this were not the case, then
wt:w0+{3"rv1(w1(wt))§m0+ﬁ7vl(w1(wt+l))=wt+Z

so that wl(wt)<w1(wt+1)

We now show that the contradiction hypothesis implies that
wT(wt)<wT(wt+I) for all 7<t. Suppose wT(wt)<wT(wt+1) and that

(ﬁt)zw Then repeating the argument used above for w

Yo+l r+1(Feap) 1

we obtain a contradiction. Hence for all <t wT(ﬁt)<wT(§ ) and in

t+1

particular, wt<wt(wt+1)<wt(wt+l)+ﬁwvt+1(wt+l):wt+1. This proves
that wt+12wt. as desired.

We now turn to the other side of the inequality. Suppose, to

the contrary, that §t<wt(; Then

t+1)'
wi—l(Gt+l)=;t+l—ﬁ7vt(wt(§c+1))>Gtuﬁxvt(;t)zwt—1(at)'

By the same argument if wT(§r+1)>wT{;t) the same will be true for

all v'<Tt. Hence by induction, mo(wt+1)>mo{wt)>mo'

4



We have thus established that wt(wt+1)(wt<wt+1. As a conse-

quence the following inequality holds

th+l—wt|§|wt+1—wt(wt+1)|=Bwvt+1(wt+i).

But as can easily be checked, Yévy ) so that

TR T (e
- = —t _ - —t
[wt w1|§w [ﬁwvl(wt)]$7 Bwvl(wo).
This implies that {Gt} is a Cauchy sequence so it converges.
Denoting the limit of {;t} by w. we now proceed to show that

the solution to equation (4) induced by w from equation (4') is well

defined. We will proceed again by induction.

L u0+57v1(w1) gives W

w o= w1+5wv9(w2) gives Wo - In order for this to be well defined, we
need that §>w1. Suppose, to the contrary, that ngl. Since %Lgﬁ

for all t wl(ﬁt)zwl{ﬁ) and so the above would imply that @tgwl(ﬁt),
a contradiction. Suppose wT(E) is well defined. Then
Esz(§)+ﬁva+1(wT+1) and we thus require that §>wT(G}. Suppose to
the contrary that ﬁng(i). Since ;r was assumed well defined it is
easy to see that wT(ﬁt)sz(ﬁ) and so the above would imply that
%tng(ﬁt)+51vT+1(wT+l(ﬁt)). and hence WT+Z(;t) would not be well de-
fined. This proves that the sequence wT(ﬁ) is a well defined solu-

tion to equation (4).

Step 3: This is the only solution.

Suppose w' is another equilibrium. We will denote by w+ the

wage induced for vintage T by w'. We will first show that w')w



Suppose to the contrary that w' < w. Then there exists some t such

' g 0 - ey == . it )
that L < w " ﬁwv{+l(wt+l) w' < L where L corresponds to the

truncated solution at t. By the inductive argument used in step 2,

wi(wl(ﬁt). But this implies that

w'o= w0+§¢vz(wi) 2 mo+B1vi(wl(wt)) = W, which yields a

contradiction. This establishes that w' 2 W.

We now show that w' < w . which will complete the proof. Sup-

pose to the contrary that w' > w. Then there is some t such that

W'D wé > W ﬁt‘ This implies that wi > wl(;t) and hence that

= |

=wo+ﬁ1vl(w1)§w0+ﬁvvl(w1(wt)):w , which yields a contradiction O.

We will now prove some results which are used in Proposition 6.
Let ~'2>y and let ;t and ﬁé correspond to the wage for the problem
truncated at t for v and +', respectively. For simplicity we will

denote by w; and ¥, the wages for period 7 corresponding to the

problem truncated at t for ' and v, respectively.

—I ’I —
Lemma 1. W 2 [7'] L
Proof. Suppose to the contrary that ﬁ; < [%'].;t' If wé—l 2
i t=1
[:}—.] wt—l then
VT Mg FATRLANL )
9 t—1 " f=l_ 5 T
2 [?'] (g q BV (W) I [?'] wtz[?'] ¥
which is a contradiction. We will now show by backward induction

that the contradiction hypothesis implies wi(%.w

5 T 71
w'([h,] W Then if w' >[l‘] W ,
5 i

T T—1% |7 F=ei

1 Suppose that
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~ 5 T—1
w, = w. . +Bv'v (w y o0 [—.] [WT—Z+BTVT(WT)]

~

T—1 t
={l w, > |Z. | w
%" t = |~ t

a contradiction to the above hypothesis.

¥
ag = ¥ - i v s
Hence if W, <[?.] Wit then L < ToWq- But then

ai =w, + ﬁvvi(w'l) > v, * Bwvl(wl} = ;t' This establishes that
W 2 [:.] w, o

i ~
Lemma 2 Wy 2 oW
Proof. Suppose that wi(%.wl. Then

Sy ' ' ':l.... 1 =

(%) wt_w0+5¢ Vl(w1)>wo+BT 7'Vl(T'wl)“wt

¥

i
We now show that the above implies that w <[ ] W for all =<t.

4

-
Suppose that w'([l.] w_ for all 7v<T. Then if >[ ]
i ' T ey

i T=1 3 T-1 _
w = % 1+BT Vq ww! T)<[ ] [wT_1+ﬁva(wT)]:[;,] W < %y »

>
contradicting (). Hence w'(%.w implies that w;<[%,} w_ for all

1 1

T7<t. But then

t
=, : v , R . O
W, = wt_l+ﬁw vt(wt)(wtu1+57 vt([w'] wt)

t-1
5 _ -
JEN N SRRCRE P
contradicting (»). This establishes that w, > 1 w.o

P = 471

Proposition A.2 If v'2v then n(v,pn')<n(7,n) where p' and p are the

invariant distributions corresponding to ' and v, respectively.



Proof. We will show that for any truncated sequence

wiT.pn') 2 E']TW(T.M-

Since n;[(7/TI)TW]=nT(W). this suffices to prove the result.
t T
By Lemma 1 ﬁé > {%.] ﬁt' Suppose that sz{%,} L for all 72T.
We will show that

' g 3
v T—lz[?' T-1°

We will show that if this is not true then by induction (oh no...,

W

]T—l

not again!) wi(%.wl therefore contradicting Lemma 2. Hence suppose
" T—1
the contrary, that w T—1<[?'] Wp_y- Then

(A.2) w: < [}.]TEiT“1+BWVT_1(wTv1}] = [l.]T_IQt

We will now show that as a consequence of the above assumption,

r aT-2
’ Fr *
wT_2< = Wr_o Suppose not. Then
_ - 1T-2 . =i
We 2 |50 ]  DwpogtBrve g (wp_ 1 2 [?'] b
e T-3
contradicting equation (A.2). Also, if W _g s [;.} W then
_ " T-3 % T+ _
We 2 [;.] [WT_3+ﬁva_2(wT"2)} 2 [;'] W contradicting equation
(A.2). Ap-plying this same argument inductively we obtain that
w'i<%,w1 ., a contradiction to Lemma 2.
< T-1
Hence, as desired, w.,. .2 |-, w . Since T was chosen arbi-
i e 1 =1
=

trarily, this establishes that w; 2 [%.] w_ . so the proof is com-

plete 0.
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We establish here that the Euler equations for the maximization
problem of the firm in section 5 are necessary and sufficient,
together with a transversality condition that is satisfied.

Lemma 3. )=0 as T-w®,

npfo(nr . .np

But n.=»0 and v, is decreasing 0O.

Proof: an2(nT+1'nT)=nTvT' T T

J J

Let n={ni} where for notational convenience n_lzzj.

Lemma 4. If n satisfies

J J o] J J Jy_ -
P fl(nt,nt_i)+pt+17 f2(nt+1‘nt] wtgG [ [P 35 e
J d d i
v fZ(HO'nﬂl) W

<0
J

Po

J J J < : -
an2(nT+1.nT)ﬂO (transversality condition)

then n is a profit maximizing allocation.

Proof: For notational convenience we will supress the index j.

Consider an alternative input sequence n':{nt'}. For T fixed and

letting ht=nt-n T

" letting w. and Tr indicate the profits up to period

T cor-responding to plans n' and n respectively,

T ; T .
- J . : » o 8w T B )
LS 2 P f(nt'ntnl) WD wjn_] > P f(nt,nt_l won, wjn_1
t=0 t=0
T 5 5
:tioptY [f(nt+ht'nt—1+ht—l)*f(nt‘nt—l)]wwcht_wjh—l
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¥ .
i J
< 3« {ptﬁ [f(nt+aht,n

0
L +aht_1] f(nt'nt—l}]'wtht_wjhw

t-1 1
The last inequality follows from the concavity of f(.).

This implies that

b=

i_ j R ek o
By ¥y 5 ; Op:T LR fy(neamy )by yfo(ny.n, 4 )l-w. h ~weh .

i

P f
_ J J _ J »
h tfoht[pt” By(meomy ()P gl g n ) =w, Tehp [y g f ) (npa i) =W ]

oF —w©
+h_ [+ f5(n5.n_) wj}

[FaN

J B o g s
hT[qu fl(nT'nT—l) WT] = thTT {2(nT+1.nT)

e Je
(np=np)ppy iy (ng, g onp)

i

v - i j
But then by lemma 3 as T-®, 7, -7, = -p 0.7 f2(nT+1‘nT) < 0.

This proves that there is no feasible plan with strictly positive

profits, and hence the allocation {nr} is profit maximizing O.
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