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1. Introduction

It is now well established that economic models with a finite number
of goods have equilibria that are generically determinate; a specification of
preferences, endowments, and technological opportunities almost always (in a
sense that can be made precise) determines a finite set of equilibrium out-
comes that can be observed. In models with an infinite number of goods,
however, equilibria can be indeterminate. For example, Kehoe and Levine
(1987) provide a simple example of an overlapping generations model‘(uithout
fiat money) that has a continuum of equilibria. This continuum is robust in
the sense that it persists even when the basic parameters of preferences and
the technology are altered, and it arises in a model that is otherwise well
behaved. It has no cycles and no chaos; in fact, all of the equilibria con-
verge asymptotically to the same stable stationary state. All of the equilib-
ria are pareto efficient; the value of the aggregate endowment is finite; and
the price sequences lie in the dual space of the commodity space. More
strongly, Kehoe, Levine, Mas-Colell, and Zame (1986) show that robust indeter-
minacy can arise when the price and commodity spaces are the same Hilbert
space.

Models with indeterminacy are undesirable from a scientific point of
view. Starting from the fundamentals of the economy, a theory based on this
kind of model offers little guidance about should be observed. Nor is it
possible to condition on the equilibrium values that are observed and do a
comparative staties analysis; small changes in the underlying parameters can
lead to large and discontinuous changes in the observed outcomes. Indetermi-
nacy is especially troublesome in dynamic models because it undermines the
interpretation of these models in terms of an equilibrium where agents trade

in spot markets and form expectations about the future. If there is indeter-



minacy concerning the equilibrium that obtain in the present, there also is
indeterminacy in the equilibria starting from future dates, and this makes
expectation formation problematic.

In this paper, we extend the class of dynamic models that are known
to have a finite number of locally unique equilibria and clarify the sense in
which finiteness is important for this result. As noted above, models with a
finite number of goods are generically determinate, but this is of no help for
the study of infinite horizon dynamic models. Moreover, we know from examples
that a finite number of goods is not necessary for determinacy. A model with
a single representative agent is determinate regardless of the number of goods
in the model; the equilibrium quantities are solutions to a concave maximiza-
tion problem, and under mild strict concavity assumptions they, are unique.
The Kehoe-Levine overlapping generations example shows that indeterminacy can
arise in a model with both an infinite number of goods and an infinite number
of individuals. What the results presented here suggest is that this kind of
double infinity of goods and consumers is the crucial element in this exam-
ple. In particular, we show that what matters for determinacy in the usual
representative agent dynamic model is not that there be a single agent in the
economy. It is sufficient for the number of agents to be finite.

Proofs of determinacy in a model with a finite number of goods
proceed by examining the properties of a finite number of supply-equals-demand
equations that depend on a finite number of prices. Determinacy follows from
essentially counting equations and unknowns. Since the number of equations is
the same as the number of undetermined prices, there are almost always a
finite number of solutions to these equations. Counting equations and un-
knowns does not work when there are an infinite number of equations and vari-

ables. What we exploit is a duality relationship between goods and individ-



uals. We reduce the specification of the equilibrium to a finite number of
equations, one for each individual, that equate the value of consumption with
the value of the individual's endowment. These equations depend on a set of
welfare weights that are the analogs of prices; the weights are assigned to
individuals in a pareto optimization problem that determines consumption for
each individual by maximizing the weighted sum of individual utilities. Our
analysis of determinacy then proceeds as in the usual finite dimensional case.

Our results extend those of Muller and Woodford (1986), who consider
production economies with both finitely and infinitely lived consumers. They
show that there can be no indeterminacy if the infinitely lived consumers are
sufficiently large. Their results are local, however, and concern only equi-
librium that converge to a particular stationary state. We prove a global
theorem: for a given starting capital stock, there are only finitely many
equilibria. (We do not, however, permit an infinite number of finitely lived
consumers, as do Muller and Woodford.)

We assume that markets are complete and that the technology and
preferences are convex. Consequently, the behavior of equilibria in our model
can be characterized by the properties of a value function. This is because
the second theorem of welfare economics holds: any pareto efficient alloca-
tion can be decentralized as a competitive equilibrium with transfer pay-
ments. If the preferences of consumers can be represented by concave utility
functions, then an equilibrium with transfers can be calculated by maximizing
a weighted sum of the individual utility functions subject to the feasibility
constraints implied by the aggregate technology and the initial endowments.
Showing that an equilibrium exists is equivalent to showing that there exists
a vector of welfare weights such that the transfer payments needed to decen-

tralize the resulting pareto efficient allocation are zero. This approach has



been pioneered by Negishi (1960) and applied to dynamic models by Bewley
(1980,1982). Using this approach, Kehoe and Levine (1985a) have considered
the regularity properties of an infinite horizon economy without production.
In general, calculating the transfers associated with a given set of
weights requires the complete calculation of equilibrium quantities and pri-
ces. In a dynamic model with an infinite number of commodities, this can be
awkward. To simplify the calculation, we adopt an alternative strategy based
on the simple geometrical observation that any convex set in R" can be inter-
preted as the cross section of a cone in R, 1o exploit this fact, we add a
set of artificial fixed factors to the economy and include them as arguments
of the weighted social value function. These factors are chosen so that the
augmented utility and production functions are homogeneous of degree one.
Thus, the usual problem of choosing a point on the frontier of a convex util-
ity possibility set is converted into a problem of choosing a point from a
cone of feasible values for utility. This extension has theoretical advan-
tages analogous to those that arise when a strictly concave production func-
tion is converted into a homogenecus of degree one function by the addition of
a fixed factor. When the technology for the firm is a cone, profits and
revenues are completely accounted for by factor payments. Analogously, making
the social value function homogeneous of degree one simplifies the accounting
necessary to keep track of the transfers associated with any given pareto
efficient allocation. The present value of income and expenditure for each
individual can be calculated directly from an augmented list of endowments and
from the derivatives of the augmented social value function without explicitly
calculating the dynamic paths for prices or quantities. This is the framework
for studying multiagent intertemporal equilibria developed by Kehoe and Levine

(1985b).



In such a setting, equilibria are equivalent to zeros of a simple
finite dimensional system of equations involving the derivatives of the social
value function and the endowments. Intuition says that, since the number of
equations and the number of unknowns in this system are both equal to the
number of agents, equilibria ought to be determinate. To do the usual kind of
regularity analysis, however, we require that the functions involved in the
system of equations that determines the equilibria be continuously differenti-
able. Because these functions involve derivatives of the social value func-
tion, they are continuously differentiable if the value function is twice
continuously differentiable, Thus, we show how to reduce an equilibrium
problem to a problem in growth theory: how smooth is the value function?
Roughly, the result is the same as in the finite case: if the economy (in
this case, the value function) is smooth enough, equilibria are generically
determinate, Unlike the finite horizon case, however, we have no simple and
general assumptions on preferences and technology that guarantee that the
economy is smooth enough.

In our basic model, a one sector neoclassical growth model, smooth-
ness of the value function may be deduced from a global turnpike theorem.
With multiple capital stocks, twice continuous differentiability of the wvalue
function is not known to follow from smoothness of utility and production
possibilities, except in special cases. If the discount factor is suffi-
ciently close to one, then Araujo and Scheinkman (1977) show that the value
function must be twice continuously differentiable; if the discount factor is
sufficiently close to zero, Boldrin and Montrucchio (1987) show that the value
function must be twice continuously differentiable. In the latter case, a
global turnpike theorem is not true, and Boldrin and Montrucchio (1986) and

Deneckere and Pelikan (1985) have shown that both cycles and chaos can occur



with small discount factors. In fact, Boldrin and Montrucchio describe a
general method for constructing examples with C* smoothness and chaos. Conse-
quently, determinacy does not rest on a turnpike theorem, but on the rather
different assumption of a twice continuously differentiable value function.

In the case of intermediate values of the discount factor relatively
little is known. Boldrin and Montrucchio (1988) provide some conditions
sufficient for a C2 value function. In addition, Kehoe, Levine, and Romer
(1987) show that regardless of the discount factor, there are at most finitely
many equilibria that converge to a nondegenerate steady state. Moreover, our
general methods apply to stochastic as well as deterministic complete contin-
gent claims economies (see Kehoe and Levine 1985b), and results due to Blume,
Easley, and O'Hara (1982) imply that a small amount of the right kind of
uncertainty leads to smooth value functions. This can provide an alternative
direction for proving determinacy results,

In the next section, we set up a simple one sector, multiperson
economy. Section 3 characterizes equilibria as social optima without transfer
payments. Section 4 analyzes properties of the savings function of the econ-
omy. Section 5 shows how differentiability of the savings function implies
determinacy of equilibria. Finally, Section 6 discusses extensions to multi-

sector models,

2. The Basic Model

Consider a simple m person neoclassical growth model. The prefer-
ences of each consumer take the usual additively separable form, discounted by
the common factor 8, 0 ¢ 8 < 1. Consumption of the single perishable good by

consumer i at time t is denoted by c;,. The utility function for consumer i,

o

i=1, ..., m is then Zt-o

Btui{cit)' The initial endowment of capital, the

single reproducible productive factor, is EO > 0, and 9i > 0 is the share



owned by consumer i. Obviously, z?=191 = 1, and BiEO is the endowment of
consumer i. The economy also has X > 0 units of labor in each period, a per-
ishable productive factor; ¢i > 0 is the share of total labor owned by con-
sumer i. Again, ZT=?¢1 = 1, and ¢i§ is the endowment of consumer i. If Q¢
denotes the output of consumption, and ke and xg inputs of capital and labor,
the technology is described by an aggregate production function qp + ki 4 =
G(ky Xy -

We next specify the properties assumed for the preferences and

technology. The assumptions concerning continuity, monotonieity, and concav-

ity are standard.
Assumption 1: For 1, ..., m, uj R, >Ru {-»} is concave, strictly increas-

ing, and continuous. On the strictly positive orthant, R__, u; 1is smooth

(infinitely many times continuously differentiable) and aui/ac > 0,

aaui/azc < 0. Moreover, lim aui(c)/ac = +o,

e+0
In the statement that uy is continuous, we are using the natural
topology on R v {-=}, that is, the one generated by adding open intervals of
the form [-=,a) to the usual topology on R. For example, the functions u(c) =

In ¢ and u(e) = (c°~1)/o, p < 1 all satisfy the conditions of this assumption.

Assumption 2: The production function G: RE - R+ is homogeneous of degree
one, concave, and continuous. On the striectly positive orthant, Rf+, G is
smooth, and 3G/3k > 0, 3G/sx > O, 326/3k2 < 0. Moreover, G(0,x) = 0,

lim 3aG(k,x)/3k = +=, and lim sup G(k,x)/k < 1.
k+0 K+

In what follows, smoothness plays an important role. To ensure that
it holds, we need know not only that the relevant functions be smooth, but

also that production and consumption plans are strictly interior. This fol-



lows from the infinite steepness conditions, aui(O)/ac = +=, and
3G(0,x)/3k = «=. Finally, by assuming lim sup G(k,x)/k < 1, we ensure that the

K+
capital stock must remain bounded.

3. Characterization of Equilibrium

A competitive equilibrium for this model consists of a sequence Pos
Pysy «.., Of prices for the consumption good, a price r for the initial capital
stock, a sequence Wy, Wy, ... of prices for labor, a consumption allocation
Cigr Ciqr +-- for each consumer i, a sequence of capital stocks Kq» k1, ceey @
sequence of labor inputs x,, ¥4, ..., and a sequence of outputs of the con-
sumption good Qgs Qg9 +ee - Given the prices p, W, and r, the consumption

allocation c¢;, must solve the utility maximization problem for consumer i:

° .t
max Jy_o8 uj(ce)

sub ject to
Lo-PeCip < 037Kg * 05 LeogWeX-

Furthermore, given the prices p,, the production plans Ky X¢, Qg must maxi-

mize profits:
max )¢ o(Pydy-Hgxy) - Tk,
sub ject to
q, + kt+‘| < G(kt’xt)’ E 20, 1y eew s

Finally, demand must equal supply for the consumption good and labor in every

period and for the initial capital stock:

m - -
i1 = Ggr €205 1,



As is usual in such capital theory problems, the construction of a
competitive equilibrium is accomplished by solving a social optimization
problem. The necessary conditions for this problem guarantee the existence of
a set of shadow prices that satisfy certain properties. It is then a trivial
matter to show that these prices, along with the optimal quantities, satisfy
the sufficient conditions for the optimization problems of the consumer and
the firm.

Consider the social planning problem of determining a pareto effi-
cient consumption allocation and production sequence. Given nonnegative

welfare weights (a .,am), we maximize a weighted sum of the individual

11900

consumers' utilities subject to feasibility constraints:
max ). _.a.V> 8%, (c. )
i=1716t=0" "i'7it
subject to
Em c., + k < G(k,,x. ), £t =0, 1
f=1"1¢ - B s B

£ 22, £=20; 9,

k. 20, t =0, 1,

Using results that are analogous with the Kuhn-Tucker Theorem for finite
maximization problems, we can express the necessary conditions for this prob-
lem as a set of intertemporal optimization conditions and a transversality

condition at infinity. Let Pt be the Lagrange multiplier applied to the
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constraint on output in each period, let Wy be the multiplier on the con-
straint on x., and let r be the multiplier on the initial stock of capital.

The Lagrangean for this problem is

_tm @ { -
£ = Limqoy Leaof Uileyy) + r(kg-ky)

@ - m
+ LooolWg (Boxp)epy (Glk xp )k o= T eqi )]

Since the optimal qualities c;., ki, X, are strictly positive, the intertempo-

ral optimization conditions follow by setting derivatives of £ equal to zero:
t ; )
uia aui(cit)/ac = Py = 0, i=1, ..., my £t =0,1,

DOBG(kO,XD)/ak -z @,

“py_y + Pg3G(k,x.)/3k = 0, t = 1, 2, ...
ptaG(kt,xt)/ax - W = Q; E2 0, 1; aw
xtzi

E(0=ko.

The transversality condition at infinity is

iif Pekeyq = 0
See Weitzman (1973) or Romer and Shinotsuka (1988).

The sufficient conditions for the problem of the consumer and the
problem of the firm can be derived analogously. Let li denote the multiplier
on the budget constraint for consumer i, when faced with prices p. The

sufficient conditions for an optimal consumption sequence are

t . »
8 aui(cit)/ac - APy = 0, & =0, 1,
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combined with the requirement of overall budget balance,

Le-oPeCie = 0o + 0 Le.owe¥-

Notice that the left hand side of this expression, expenditure on consumption,
is strictly decreasing in li and that the right hand side is given, so that
this expression can be thought of as determining xi.

Let He denote the Lagrange multiplier associated with the constraint
faced by the firm. Sufficient conditions for the firm's maximization problem
are once again a set of intertemporal conditions and a transversality condi-
tion at infinity. Using once again the fact that the optimal quantity choices
are interior, we can derive the intertemporal conditions by setting deriva-

tives of this expression equal to zero:

-r + uoaG(ko,xO)/ak =0

U _q *+ utac(kt,xt)/ak =05 £ = 1, 2; sz

_wt + utaG(kt,xt)/ax = 0, | Pl 0, 1, P

The transversality condition is

iiﬂ Bekeyy = 0

These conditions can be simplified to

aG(kO,x)/ak0

aG(kt,x)/akt

1]
or
1]
—
n
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& We
BG(kO,X)/BX z=—, £t=0,1,
Py
1 = 0.

tff Pk

Comparing the necessary conditions for the weighted social optimiza-
tion problem with the sufficient conditions for the consumer and firm prob-
lems, we observe that the quantities from a competitive equilibrium are pareto
efficient. They solve the social optimization problem when the weights a, are
chosen to satisfy a; = 1/11. This is simply the first welfare theorem for
this economy. Notice too that for any arbitrary weights a, the quantities
from the social optimization problem can be decentralized as a competitive
equilibrium with transfers. All that is required is to adjust the multiplier
ki representing the marginal utility of income for each individual so that it
equals that individual's weight a;; as we have remarked above, li for each
individual varies monotonically with the income allocated to individual 1i.
This is, of course, the second welfare theorem for this economy. The appro-
priate transfer to each individual is that amount that just allows the indi-
vidual to afford the consumption stream allocated by the social optimization
problem. Thus, for given weights a = (a1,a2,...,um), the required transfers

are
Lg-oPg(@)ejela) - oyr(a)ky - oy JU qui(a)E, 1 =1, ...\ m.

For this economy, a competitive equilibrium in the usual sense corresponds to
a set of weights a such that these transfer to zero.

In principal, this gives all we need to consider the regularity
properties of this economy. By equating the transfer payments for each of the
m consumers to O, we have m equations in the m unknowns, (01,a2,...,a ). In

m

practice, this is not a useful system of equations to work with because the



=419 »

equations require the calculation of the infinite set of quantities cit(“) and
an infinite list of price, pt(“)' wt(a) for each choice of the vector a. One
could attempt to explicitly characterize the dependence of these infinite
dimensional vectors on a; in the next section, however, we show how this step
can be avoided by the use of a suitably chosen value function. Of course the
infinite dimensional nature of the problem does not disappear. Rather, it is
embodied in the properties of the value function, which is the result of
solving the social planning problem, an easier infinite dimensional problem

than the original equilibrium problem.

4. The Savings Function

Let us now develop a characterization of solutions to the social
planning problem, and of competitive equilibria, in dynamic programming
terms. Given an aggregate endowment of capital k,, a labor supply x, and a
vector of nonnegative welfare weights a, we define a value function V(ko,x,u)

as the maximum of
m @ £
zi:1ai Leof Uyleg.)
subject to the constraints
It e, +k . SG(k,x), t=1,2
i=1 it t+1 ~ .~ W =

The envelope theorem allows us to treat the derivative au(ko,x,a)/ako as the
price for capital r and use it to calculate the value of the capital endow-

ment eiEO for each individual. Similarly, we can show that

aV(ky,%,a)/3% = zt:OHt’
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so we can calculate the present value of the labor endowment ¢ii for each
individual. To calculate the transfers associated with these weights, we must
also calculate the expenditure of each individual.

To calculate individual expenditures, we must introduce an account-
ing device. We first show that strictly concave utility functions can be made
homogeneous of degree one. In production theory a decreasing returns technol-
ogy can be converted into a constant returns technology by introducing a fixed
factor to act as an accounting device to keep track of producer surplus--the
difference between revenue and expenditure (see, for example, McKenzie
1959). A similar factor can be used to account for consumer surplus --the
difference between utility and expenditure. Introduce an additional, person
specific fixed utility factor y,; for each agent, and endow agent i with the
entire aggregate supply of one unit of factor i. (For simplicity, we make no
distinction in the notation between the individual's holdings of factor y; and
the aggregate endowment.) As in production theory, for y; > 0, define an
augmented utility function Uj(e,y;) = yiui(e/y;).  We now define a value
function V(ko,x,y,u) as the maximum of the weighted sum of the augmented
utility functions subject to the augmented technology.

If we let c;, denote the optimal consumption of agent i at time t,

the first order conditions from the maximization imply the equality

t
8 uian(cit,y )/3c = B “jauj(cjt'yj)/ac'

As a result, weighted discounted marginal utility for any consumer can be used
as a present value price for consumption at time t. The only difference from
the usual representative consumer framework is that the weights a convert the
individual marginal utility prices into a social marginal value price. We can

then evaluate the expenditure of consumer i in period t as cj, multiplied by
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this price. Using the properties of homogeneous functions, we can decompose
period t utility for consumer i into the sum of a term of this form and an

analogous term involving the added utility factor:
Ujlegpryy) = egdUs(eypnyy)/ae + 3330 (e 03¢ )/3y.

If the term involving the utility factor is interpreted as a measure of con-
sumer surplus, expenditure on goods in period t is simply utility minus con-
sumer surplus. Using the envelope theorem, we can then calculate the present
value of consumer surplus for agent i as the derivative of the social value

function v(ko,x,y,u) with respect to y; multiplied by the endowment ¥it
o t
y;aV(ky,%,y,a) /3y, = zt:OB a,y;3U, (¢, ,y,)/3y,.

Similarly, we can calculate the discounted sum of utility for consumer i,
measured in social value units, as the derivative (we show below that V is
differentiable) of the social value function with respect to a; multiplied

by a;:
. §® gt
uiaV(kO,x,y,u)/aai 2 Zt:OB aiUi(cit,yi).
Then the present value of expenditure by agent i is simply the difference
uiw(ko,x,y,a)/aui - yiaV(kO,x,y,u)/ayi,

The transfer to agent i necessary to support this equilibrium is zero if and
only if this expenditure is equal to the time zero value of the agent's endow-

ment,

aikﬂav(ko,x,y,u)/ak + @iiaV(ko,x,y,u)/ax.

0
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Formally, equality of these two expressions can be interpreted in
terms of an augmented economy where trade in the utility factors y; actually
takes place. In this case, this equality can be interpreted as a requirement
that the value of the augmented endowment for agent i, eiEOaV/akO + ¢i§3V/&x +
yiav/ayi, equals the amount of social utility purchased, uiaV/aai =
o5 Tra08 ;-

It is useful to define a net savings function S; for consumer i as
(* si(ko,e,¢,u) = eikoaV(kO,§,1,a)/ak0 + ¢i§av(k0,§,1,a)/ax
+ yiav(ko,§,1,u)/ayi - uiav(ko,ﬁ,1,u)/aai.

For a given set of welfare weights a, the transfer for each individual needed
to support the social optimum as a competitive equilibrium is the negative of
the net savings for that individual. A competitive equilibrium is therefore
equivalent to a vector of weights a such that the vector s(E0,9,¢,a) = 0.

To calculate equilibria, we need to analyze the savings function.

Our goal is to prove the following results:

Proposition 1: Under Assumptions 1 and 2:

(a) s(ko,e,¢,u) is homogeneous of degree one in a.
m
(b) Zi=1si(ko,3,¢,a) = 0,

(e¢) For each kg, 8, ¢, lim si(k0,9,¢,u) > 0.
a.+0
i

(d) s is continuously differentiable. It is affine in both 8 and ¢ and Des

is diagonal and nonsingular.

An implication of this proposition is that the functions si(a}/ui satisfy the
same formal properties as the excess demand functions of a static pure ex-
change economy with m goods. This observation leads immediately to the con-

clusion that an equilibrium exists.
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In proving Proposition 1, notice that in part (d), the dependence of
s on 8 is obvious from the definition of the savings function (*): s is
affine in 8 and Des is a diagonal matrix with diagonal entries
kOaU(k0,§,1,u)/akD. Moreover, since utility and production are strictly
monotone and endowments strictly positive, these entries are strictly posi-
tive. Similarly, s is affine in ¢.

The proof of the remaining parts of the proposition follows by using
dynamic programming to characterize the value funetion. To solve the social

optimization problem, we first solve the problem in period t for given ke and

Ki,q- Let the vector of weights a be fixed. Defined w(C,y,a) as the maximum
of
m
max J;_ja;U;(e;,y;)
subject to
E? a, = €.
el 2

The following result follows immediately from Assumption 1:

Lemma 2: The function w is concave in (C,y) convex in a, strictly increasing

in C and a, and continuous. On the strictly positive orthant w is smooth

and aw/3C > 0O, azw/aC2 < 0. Moreover, 3aw(0,y,a)/3C = +=, The function w is

homogeneous of degree one in (C,y) and separately in a.
Using the function w, we can write social value in period t as
v(kt,kt+1,x,y,u) = N[G(kt,x)-kt+1,y,a].

The social present value function V then satisfies the dynamic programming

relationship
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V(kt,x,y,u) = max v(kt,kt+1,x,y,u) + 8V(kt+;,x,y,a).

kt+T

Proof of Proposition 1: Notice that v is concave and homogeneous of degree

one in (kt,kt+1x,y) and convex and homogeneous of degree one in a. It follows
directly that V shares these same properties. An argument of Benveniste and
Scheinkman (1979) implies that it is also continuously differentiable. Ex-
amining (*), we see that s; is made up of terms where a constant is multiplied
by aV/3z, for arguments z other than a, and of a term aiBV{aai. In either
case, each term is homogeneous of degree one, since V is homogeneous of degree
one in a. This proves part (a) of the proposition. Moreover, since V is
continuously differentiable, homogeneity of V of degree one in kt, X, and y

and ziei = %y zi¢i = 1 imply that the terms

GikOaV/akU + ¢ixaV/ax + yiaV/ayi

add up to V(kt,x,y,a) homogeneity of V of degree one in a implies that the
terms aiaV/aai do as well. This proves part (b).
Next, let a£ be a sequence in the interior of the positive orthant

converging to a point a such that a; = 0and a, # 0. If c* and c* denote the

J i J
corresponding optimal consumption choices in the definition of w, infinite
steepness on the boundary of the utility functions implies that ci and cg are

striectly positive and that the equality

[} ) % 2
“iaui(ci)/aci = “jaujtcj)/acj

holds for all 2. By an application of the maximum theorem (see, for example,
Hildenbrand 1974), since the mapping that sends a to the vector of optimal
consumptions is single valued, it is a continuous function. From the defini-

tion of w, it is clear that the optimal value for ¢y is 0 since @, = 0. By
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> 0 clearly implies e = 0. Using

J

continuity, e: converges to zero while ag

J
the equality noted above, this implies that

lim u?e.au.(c%)/ac. = {,
R i T | i

g+
That is, the expenditure on consumption goods allowed consumer i goes to O as
his weight in social utility goes to O.

By the envelope theorem, we know that the last term in the defini-
tion of s is simply the product of the utility weights times the present
discounted utility for each consumer. Using the homogeneity of the augmented
utility function Ui(c,yi), we can combine the last two terms in s and express

Si as

Si(k0’°’¢’“) = aikoaV(ko,§,1,u)/ak + ¢iiaV(k0,§,1,a)/ax

0
- B 2” stc au.(c., )/ac
i ~t=0 it 41t it*

By the argument above, the last term in this expression goes to 0 as a? goes
to 0; from the definition of w and the envelope theorem, the first and second
derivatives of V can be expressed in terms of the marginal utility of agent ]

and hence is continuous as ¢ » =. Therefore, s approaches
Bikoav(ko,x,1,a)/ak0 + ¢iaV(k0,x,1,w)/ax.

Notice that this last term is simply the value of consumer i's endowment of
capital and labor. By assumption, Bi' ¢i > 0. Since G and uj were assumed to

be strictly increasing, every component of aV/3k. is strictly positive and s;

1

0

is greater than 0.
It remains to show that s is continuously differentiable. From (%),
it clearly suffices to show that V is twice continuously differentiable. In

this one dimensional example, c2 differentiability of v follows from basic
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properties of the social optimization problem. Given 6, ¢, and a, the maximi-
zation problem is a standard one sector growth problem with period objective
function w. By Lemma 2, this satisfies standard properties. It is well known
that such a problem satisfies a global turnpike property and has no unit
roots. See, for example, Harris (1987, pp. 34-45), or Cass (1965). In addi-
tion v is strictly concave in (kt'kt+1) and

2 2

3V 3 W ¢ aG
AV ek x,y,a) 2 -2 (Gl 005k L, 7ve) 2B Gk,x) 5 0.
Bktakt+1 £ t+1 302 t t+1 akt t

Notice that azv/aktakt+1 could be negative if there was joint production. The
implications of this possibility are discussed in Section 6. In a situation
where it is positive and there is a global turnpike with no unit roots, Araujo
and Scheinkman (1977) show that V is twice continuously differentiable with
respect to kt and 8. A straightforward extension of their argument shows that
it is also jointly twice continuously differentiable with respect to k., x, y,
and a. Let k denote the infinite vector (k,,k2,...) in L s the space of
bounded sequences. The optimal path can be characterized by first order
conditions E(k,ko,x,y,u) = 0 where 5(-,k0,x,y,c): 2+ %_. Under the stated
conditions Araujo and Scheinkman show that { is continuously differentiable in
k and k,; the Appendix of Kehoe, Levine, and Romer (1987) shows that this
extends in a straightforward way to cover other parameters such as x, y, and
a. Araujo and Scheinkman also show under the stated conditions that the
derivative of £ with respect to k is nonsingular; it follows from the implicit
function theorem that the optimal k is a continuously differentiable function
of ko, X, ¥, and a. Finally, observe that the first derivatives of V are, by
the envelope theorem, continuously differentiable functions of Kk, kO' 2, ¥,y
and a. The twice continuous differentiability of V then follows from the fact

that the composition of continuously differentiable functions is continuously

differentiable. 0O
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5. Determinacy of Equilibria

By considering savings functions s, we have reduced the problems of
finding an equilibrium to the problem of finding an m vector a that solves the
m equations s(ko,9,¢,a) = 0. In this section we use that fact to prove that
for almost all endowments, there are a finite (and odd) number of equilibria.

m
S

: ., = 0. Conse-
i=z17 1

From property (b) of Proposition 1, we see that )
quently, it suffices to solve the system s™® - (si,sg,...,sm_1), with one

equation deleted. Moreover, by property (a), we may restrict a to lie on the

: ’ . m . _ m-1
unit simplex. Since Zi=191 = 1, we may simply set Bm =1- Zi=191' and let
8™ = (o .,8_ .). (Recall that 8, is consumer i's share of the total stock

e i
of capital.) From property (d), we see that for fixed ko and ¢ we may solve

m=-1

0 to find

s”‘*‘(ko,e,¢,a)

-m

] f(a)

where f is continuously differentiable. Indeed,
£.(a) = —[¢i§a‘J(Eo,§,1,u)/ax+yia‘J(E0,§,1,u)/3yi-aia‘l(§0,i,1,a)/aai]/
(EOaV(kO,E, 1 ,a}/akOJ.

Notice that, for some values of «, some components of § may be negative.
Indeed, from property (c), we see that if a; is zero, Bi is always negative.
Of course, no such a can arise in equilibrium.

For a two person economy (m=2), we sketch f in Figure 1. In this
case, the existence of an equilibrium for each 0 < 6, < 1 follows from f < 0
when a4 = 0 and f > 1 when a4 = 1. In the general case, existence follows
from Brouwer's fixed point theorem as, for example, in Varian (1984).

Let us call an equilibrium a regular if the (m-1) x (m-1) dimen-

sional derivative matrix of f with respect to a, Daf(a), is nonsingular. We
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call a value 8 ™ regular if every corresponding equilibrium, a, characterized
by 8°" = f(a), is regular.

For fixed e-m, can there be a sequence of equilibria a” *a converg-
ing to a regular equilibrium a? Clearly, (a"-a)/1(a"-a)l has a convergent
subsequence, converging to a vector d with wunit Ilength. Moreover,
f(a") = f(a) = 8™ implies that the directional derivative Daf(a)d equals 0.
This contradicts the fact that Daf(a) is nonsingular. Consequently, every
regular equilibrium has a neighborhood in which there are no other equilib-
ria. This, together with the compactness of the simplex and the continuity of
the equilibrium conditions, implies that, if o™ is a regular value, there are
only finitely many corresponding equilibria. Because of the boundary condi-
tion (e¢) it follows from in Proposition 1, index theory that the number of

equilibria is odd (see, for example, Varian 1974).



ws PR

Figure 1: The Equilibrium Map
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In the two person case illustrated in Figure 1, the horizontal
line 91 = 1/2 illustrates a typical regular endowment. The slope of f does
not vanish where this line is crossed. Consequently, there are finitely many
equilibria, and, since both the initial crossing of the line and the final
crossing are from below by the boundary condition, it is clear that the number
of equilibria is odd.

This figure illustrates why indeterminacy could arise for a measure
zero set of initial values for 91. Nothing rules out the possibility that f
is constant over some interval of a's. If the economy happened to start with
a value for 91 equal to the value that f takes on in this range, then there
would be an infinite number of nearby solutions to the equations f(a) = 81.
It is intuitively clear, however, that almost all of the possible choices of @
do not correspond to a flat in f.

This intuition is made precise by Sard's theorem. It says that if a
function f that maps an open subset of pE-1 (corresponding in this case to the
interior of the simplex for a) to R-1 s continuously differentiable, then
the set of regular values o™ has full measure. In other words, for almost
-m

all B'm, Daf(a) is nonsingular for every value of a with f(a) = 8 In the

example in the figure, qu(u) is nonsingular if f'(a) = O.

Since the set of regular endowments o™ has full measure for each
fixed ko and ¢, it follows from Fubini's theorem that the set of all 6, ¢, and
kO for which 8" is a regular value also has full measure. Our arguments can

be summarized in the following result:

Proposition 2: Assumptions 1 and 2 imply that, for almost all 6, ¢, and ko,

there is a finite (odd) number of equilibria. Furthermore, the equilibrium
weights a vary continuously with 6, ¢, and k, in some neighborhood of each

equilibrium.
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Moreover, since Duf(a) is nonsingular at each such equilibrium, the implicit
function theorem allows us to solve locally for a as a function of 6, ¢, and

ky to do comparative statics.

6. The Multisector Model

To what extend does the determinacy of equilibrium depend on the
special features of the one sector growth model? Although the notation and
assumptions can be stated more simply in the one sector case, the reduction of
finding equilibrium in a production economy with finitely many consumers to
finding zeros of finitely many savings functions requires only that markets
are complete and that the first and second welfare theorems hold. This,
however, is true in a much more general settings. Moreover, the conclusion
that equilibria are determinate for generic endowments is based only on the
fact that the savings function is cl. The important use of the one sector
assumptions has been in proving the stronger proposition that the value func-
tion is C2. Consequently, it is sufficient for the study of determinacy in a
production economy to study the c? differentiability of the value function for
that technology.

To what extent is the value function C2 in a multisector model?
Araujo and Scheinkman (1977) show that if the technology itself is suffi-
ciently differentiable, a €2 value function follows from a global turnpike
theorem. In other words, if all socially optimal paths converge to a unique
stationary state (which may, however, depend on the welfare weights), and
suitable technical conditions are satisfied, equilibria are generically deter-
minate. This, indeed, is the basis of the result in the one sector case. In
a multisector model, a global turnpike theorem generally requires that the

discount factor be close to one: see McKenzie (1983,1986).
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On the other hand, if the discount factor is small, and suitable
technical conditions are satisfied, Boldrin and Montrucchio (1988) have shown
that the value function is C°. This is true despite the fact that Boldrin and
Montrucchio (1985) and Deneckere and Pelikan (1986) have shown that with the
same small discount factors not only may optimal paths cycle, they may'be
chaotic. In other words, a c2 value function (and determinacy) do not require
a global turnpike theorem.

This leaves one important gap: there is an intermediate range of
discount factors for which it has not been shown that the value function is
ce. Moreover, there are no known counterexamples that do not violate condi-
tions (such as strong concavity) that are part of the sufficient conditions
for C2 differentiability of the value function with a finite horizon.

Given this gap, it is important to ask to what extent c? differen-
tiability of the value function is actually needed. First, is c! differenti-
ability of the savings function needed? Certainly, if the savings function is
CO, robust examples of indeterminacy exist: see Kehoe, Levine, Mas-Colell,
and Zame (1986). If the savings function is Lipshitz continuous in the util-
ity weights a, however, Santos (1987) has shown that this suffices for deter-
minacy. The argument is that of the previous section: Sard's theorem re-
quires only Lipshitz continuity. On the other hand, Montrucchio (1986) has
shown that the value function is C' Lipshitz in initial capital stocks under
relatively general conditions. Although this is promising, the remaining gap
is to show that the value function is also C' Lipshitz with respect to parame-
ters such as a. Again, neither a positive result nor a counterexample is

available.
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