The Transactions Demand for Money
in a Three-Asset Economy

by
Preston J. Miller
March 1976
Working Paper #: 57

Rsch., File #: .268.1



THE TRANSACTIONS DEMAND FOR MONEY IN A

THREE-ASSET ECONOMY

by
1/

Preston Miller—

Submitted 2/75

Revised 3/76

l/Senior Economist, Federal Reserve Bank of Minneapolis. The author
is grateful to Neil Wallace, Leonid Hurwicz, John Kareken, Leonard
Shapiro, and an anonymous referee for their helpful comments and advice.
All views expressed in the paper are the sole responsibility of the
author and should not be Interpreted as representing those of the
Federal Reserve Bank of Minneapolis or the Federal Reserve System.



Introduction

This study seeks to derive a dynamic theory of demand for
money from individual optimization behavior. A model is constructed
which includes essential features of both inventory-theoretic and
necoclassical time preference models. The model extends the inventory
framework developed by Baumolgj and Tobingj in two respects:

1. Transactions in both commodity and bond markets are
assumed to incur costs; in the Baumol-Tobin model com-—
modity market transactions are assumed costless. Models
construc£ed by Feige—Parkingl and Perlmanél also have
assumed costs to transacting in both markets.

2. The individual's objective function permits desired
consumption in current and future periods to change as
initial conditions change; in the Baumol-Tobin model
consumption in the current period is taken as fixed.

The individual's objective in this model is to maximize his
satisfaction, a function of level consumption during the period ("con-
sumption”) and wealth at the end of the period ("terminal wealth"). A
period is defined as the time elapsing between noninterest income receipts,
and terminal wealth is taken as a proxy for future consumption.

Satisfaction maximization guarantees that the individual will

choose a consumption-terminal wealth pair on the boundary of his attainable

ngaumol [11.

é/Tobin (17]3.

ﬁ-/Feige and Parkin [4].

é-/Perlma.n [16].



set. This boundary, dubbed the consumption-terminal wealth frontier,
gives the greatest feasible rates of consumption for given stocks of
terminal wealth, and vice versa. Attainment of a point on the frontier
is a problem in dynamic inventory control.

The model can be described as follows: In a world of perfect
certainty an individual is able to hold stocks of commodities, bonds,
and money. Commodities diminish from consumption and depreciate physi-
cally in storage. The price of commodities is expected to change at a
constant rate over the period. Bond holdings earn interest. Exchanges
in the bond and commodity markets incur costs which are independent of
transaction size. Money can be exchanged for either bonds or commodities,
but relative magnitudes of market transaction costs ensure that bonds
and commodities are not exchanged directly for one another.

The individual's control variables are the times of transactions
and the quantities of goods exchanged; a specific setting for the control
variables defines a market strategy. An efficient market strategy is
one which allows the greatest rate of consumption for given terminal
wealth and vice versa. When an efficient strategy implies nonsynchroniza-
tion in timing of bond and commodity transactions, positive money holdings
result.

The overall satisfaction maximization problem is sclved in two
steps. First, a consumption-terminal wealth frontier is constructed for
given values of six parameters: initial wealth, physical depreciation
rate, interest rate, expected rate of commodity price change, and com-
modity and bond market transaction costs. Second, the individual selects

the point on the frontier which maximizes his level of satisfaction.



Average holdings per period of commodities, bonds, and money
correspond to each point on the frontier. Asset demand functions
indicate average holdings of these assets corresponding to the satis-
faction maximization point. Thus, for given preferences over the con-
sumpt ion-terminal wealth space, asset demand functions depend only on
the values of the six underlying parameters which determine the location
of the frontier in that space.

As the description of the model indicates, the individual will
hold bonds only if it is profitable to de so. TFor low enough values of
the interest rate or high enough values of the bond market transaction
cost, the individual's asset portfolio will be composed of only com-
modities and money. This is treated as a special case of the general
model, and it bears some resemblance to Harris's model of household
behavior.gj There seem to be two major differences in the models. First,
for given end-of-period wealth, individual objective functions are
different. 1In Harris's model the individual maximizes an accumulated
flow of utility, where utility at a point in time depends only on the
current rate of consumption. In the present model the individual maxi-
mizes a level rate of consumption over the period. Second, transaction
cost functions are different, 1In Harris's model transaction costs are
incurred in a flow, and the amount of the costs varies with the rate of
real expenditures. In the present model, transaction costs are incurred
whenever a transaction is made, and the costs are independent of the

amount of goods exchanged.

élﬁarris [8].



In judging the reasonableness of the alternative assumptions,
it is helpful to keep in mind the differences in their implications.
Harris's objective function is more general in permitting consumption to
vary over time, but it causes the optimal consumption pattern over time
to depend on the assumed depreciation process. The type of depreciation
process we each assume leads the individual maximizing Harris's objec-
tive function to consume most heavily jmmediately after a shopping trip
and to steadily reduce consumbtion until the next trip. This type of
pattern allows the indiyidual to reduce the loss from depreciation. 1In
the present model, the individual consumes the same quantity no matter
how much time has elapsed from his last shopping trip.

Harris's transaction cost function implies an infinite cost to
exchanging stocks at a point in time, while that in the present model
implies an infinite cost to making expenditures in a flow. Harris's
assumption implies the individual will continually be in the market
exchanging money for commodities in a flow, while the present model's
assumption implies the individual will make a finite number of trips to
the market at discrete points in time to exchange stocks of commodities
and money.

Given these major differences in assumptions, it is somewhat
surprising that the real money demand functions derived in Harris's
model and the two-good version of the present model respond qualitatively
the same to changes in parameter values. In each model it is found that
average real money balances desired over the period increase in response

to an increase in initial money balances, an increase in the depreciation



rate, a fall in anticipated inflation, or a fall in the commodity
market transaction cost.lf

The general three-good model in the present paper is closely

related to models by Perlman and Feige-Parkin. All three models intro-
duce a physical good into the Baumol-Tobin money and bonds inventory
framework. Perlman's third good corresponds to a consumption durable;
it does not diminish from consumption. The third asset in the Feige-
Parkin model is a nondurable consunption good, making their model more
closely related to the one in this paper .§/ There are important differ-
ences, however, between the model in this paper and its two immediate
Precursors:

1. Contrel variables. 1In the present model the control
variables are the times of transactions and the amounts
of commodities or bonds purchased or sold in each trans-
action. In the previous two models it was assumed at the
outset that:

a. transactions in each market are equally spaced in
time,

b. bond market transactions are made at times of

commodity market transactions,

l/These results follow from the present model when it is
assumed that zero wealth 1s desired at the end of the period.
: §/In their model the individual is restricted to hold end-of-
period wealth in the form of physical capital. If it were possible in
their model to buy and sell physical capital and the individual were not
forced to hold this asset, he would either hold bonds or physical capital;
he would not hold both.



c. the same quantity of bonds is sold in each bond
market transaction, and

4. the same quantity of commodities is purchased in
each commodity market transaction.

Given these assumptions, the control variables in the Feige-

Parkin and Perlman models are just the number of transactions

to be made in each market. A priori, there is no reason to

believe that their assumptions are consistent with optimizing
behavior, and, as this paper shows, they aren't. Although
properties of efficient market strategies and the frontier are
derived over the set of feasible strategies in this paper, it
is necessary to restrict analysis to equal spacing strategies
in order to derive properties of asset demand functionms.

2. Objective functions. While the Perlman and Feige-Parkin
models assume the individual maximizes either current
consunption for given future consumption or vice versa,
the present model assumes he maximizes utility, a func-
tion of both variables. This generalization leads to a
division of the model into its objective and subjective
parts, e.g., the frontier and asset demand functions,
respectively. The division of the model permits impli-
cations for market behavior which depend only on efficiency
eriteria to be separated from those which depend also on
individual preferences.

3. Solution methods. Assuming la-1d makes it possible to

write consumption ¢ as a function of the number of



transactions in the commodity and bond markets, m and n
respectively, for given terminal wealth W and parameter
vector y:

¢ = E£(m,n;W;y). If la and 1b are to be satisfied,
maximizers of this function é and ; must satisfy three
integer constraints (assuming ﬁ > 0):
a. ;Eni
b. neN

A A

C. m/ne N, where )N denotes the set of positive integers.
Feige-Parkin attempt to solve this problem using
calculus maximization techniques, but this approach
clearly ignores the third integer constraint.

Perlman, on the other hand, transforms the consump-
tion function to ¢ = 5*(v,n;W;Y) = £(vn,n;W;yY),
where v =-§, and uses calculus maximization techniques

9

to solve for v and n.~ It follows, however, that

*
£ 1is not necessarily concave in v and n for ail
* -
values of W and y. Even when £ 1is concave, calculus
maximization can provide very poor approximations to

the integer solutions.lg/ Hence, Perlman's approach

is not appropriate either. 1In this paper parameter

ngerlman actually maximizes W = 5*'l(v, n; ¢; y) with respect
to v and n for given c.

lg/ln general, when the function being maximized depends on a
single variable, concavity implies that the Integer maximizer is ome of
the two integers which bracket the real number maximizer. When the maximand
is a function of two variables, concavity does not imply that the integer
maximizers are one of the four corners of the unit box which encloses
the real number maximizers. This point is discussed further in the next
section.



values are selected and specific solutions which
satisfy the three integer constraints are found to
the maximization problem.

4, Inflation rate. Both previous models assume prices are
constant over the period. The present model permits
nonzero price growth and is applied to examine the
effects of a change in anticipated inflation or deflation
on efficient market behavior and asset demand functions.

Some important implications of the present model are:

1. The individual's attainable set in the consumption-
terminal wealth space lacks convexity. Thus, preferences
must be strongly convex if, in equilibrium, an individual
desires both consumption and savings,

2. Regular timing of market transactions, which is an efficiency
condition for two-asset inventory models, does not gener-
alize to inventory models with more than two assets.
Hence, the assumption of equal spacing of market transac-
tions in the Feige-Parkin model can imply inefficient
market strategies,

3. Both commodities and bonds may be held although their
rates of return differ; hence, they are not perfect
substitutes. This implies that the nominal rate of
interest and the expected rate of inflation are arguments
in the individual's asset demand functions.

4. Asset demand functions depend importantly on individual
time preferences. Preferences between present and future

consumption in some cases can even determine the sign of



asset demand changes due to changes in the values of

parameters.

Changes in desired holdings of an asset, which result

from a given parameter change, may vary in sign depending

on initial parameter values, Corresponding changes in
aggregate asset demand functions might be expected,
therefore, to depend on values of certain variables

(e.g., interest rate) and on the distribution over

individuals of other variables (e.g., wealth).

The signs of changes in asset demands due to changes in

the expected rate of inflation w depend on both individual

time preferences and initial parameter values. Although
an increase in m increases the yield on commodities
relative to the yields on money and bonds, it has other
effects in the model:

a. A rise In ™ requires more initial wealth to be
allocated to investment purposes in order to attain
the same real terminal wealth.

b. Since nominal transaction costs grow at the same
rate as commodity prices, an increase in m raises
the cost of transactions over time.

c. A rise in 7w alters the distribution of commodity
payments for a fixed number of commodity market
transactions. Under the assumption of equal spacing
of market transactions, purchases of commodities

over time have the same real value. Hence, a rise
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in 7 increases the nominal value of a purchase made

late in the period relative to one made earlier.
Because of the pervasive effects of inflation in this
model, the change In asset holdings to a change in © is

generally unpredictable in sign.
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THE THREE-ASSET INVENTORY MODEL: A MATHEMATICAL STATEMENT

I. Notation

f0,1]

M{t)

B(t)

c(t)

p(t)

wW{c)

M(07)
B(0 )

C(0 )

=i

=B

H]

time period, where 0 = current point in time and 1 = end
of period.

stock of money held at time te{0,1].

dollar value of bonds held at time te[0,1].

stock of commodities measured in physical units held at
time te[0,1].

expected and actual price of commodities at time te{0,1];
p(0) = 1.

%%%%—+ %%%%—+ C(t) = constant—-dollar wealth at time te[0,1];

W=W(1l).
initial money holdings.
initial bond holdings.

initial commodity holdings.

The individual's initial endowment is assumed to be in the
form of money:

Qu(07), BOT), ¢ =MD, 0, 0>><0, 0, O .

No income other than flows from wealth are received

during the period.

1l
f M(t)dt = average money holdings per period.
0

1
f B(t)dt = average bond holdings per period.

0
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c = flp(t)-C(t)dt = average dollar value of commodity holdings
pgr period.
P(t) = dollar amount of bonds purchased at time te[0,1].
S(t) = dollar amount of bonds sold at time te[0,1].
G(t) = physical amount of commodities purchased at time te{0,1].
H(t) = physical amount of commodities sold at time te[0,1].
c(t) = physical rate of consumption per period at time te[0,1].

The physical rate of consumption is assumed to be constant
over the period and is denoted by c: c(tl) = c(tz)
(tl, tze[O,l]).
§ = rate of physical depreciation per period [0,1], O < & < 1.
r = rate of interest per period [0,l] paid on bonds, r 2 0.
dp

dt , rate of expected and actual price change per
p(t)

period at time te(0,1]. The rate of price change is

w(t)

constant over the period and is denoted by w: n(tl) =

n(ty) (t;, t,el0,11), Thus, p(t) = e"" (te[0,1]), and

it is assumed - % <7 < S.Al/

a = constant-dollar cost per transaction in the commodity
market, a > 0.

b = constant-dollar cost per transaction in the bond market,

b > 0.

II. Market Constraints and the Individual's Objective

Definition: A market strategy o is a vector of functions *<G,H,P,i> s

each function having domain [0,1] and range [0,).

>
ll/The case of T = § might be considered hyperinflation,

because the individual would never want to hold money. This could be
treated as a special case in the model, but it is not examined due to
space limitations., The restriction = > ~1/2 is a sufficient condition
to rule out bond purchases after t=0.
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For a given ¢ the following characteristic functions are defined:

0 if G(t) = 0 and H(t) = 0O
XC(E) = (ta[o,l])
1 if G(t) > 0 or H{(t) > O
0 if P(t) = 0 and S(t) =0
(tel0,1])
xB(t) =
1 1f P(t) > Q or 5(t) > O

For a given market strategy o the following rules on market trans-

actions must be satisfied:

[}

T.1) G(t)*H(t) = 0 and P(t)-S(t) 0 (tef0,1]); commodities are not
both purchased and sold at the same time, and bonds are not both

purchased and sold at the same time.

]
1]
I

T.2) xz(t) = 1 => B(t) B(t ) and M(t) = M(t ) (te[0,1])

C(t-) and M(t)

L}

1 => C(t)

L]
[

xg(t) M(e ) (tel0,11),
the stock of any asset held at the time of a transaction is the
amount held immediately before the transaction.

T.3) B(t+) = B(t) + P(t) - $(t) (te[0,1]); bond holdings change at a
point in time from a purchase or a sale of bonds.

T.4) C(t+) = C(t) + 6(r) - H(t) (te[0,1]); commodity holdings change at
a point in time from a purchase or a sale of commodities.

T.5) M(tD) = M(t) - [P(e)-S(E)] - p(r) - {x5(t) b + [G(£)-H(E)] + x(t) *a}
(te[0,1]); money holdings are diminished by net purchases of bonds
and commodities and by payments of transaction costs.

A traditional budget constraint is implied by T.5 and nonnegativity of M:

M(t) = [B(O=S()] + p(e) ~{xa(t)*b + [G(E)-H(E)] + (1) -a} (te[0,1));

money on hand at a point in time must be enough to cover net purchases

of commodities and bonds made at the time plus transaction costs incurred.
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T.6) §§é£l I = rB(tO) (tOE(O,l]); interest is compounded continuously

t= tO

and payable at any point in time. (For arbitrary te(0,1)
XB(t) = 0 => B is differentiable at t. If XB(t) = 1, the deriva-

tive of B at t is defined to be the left-hand derivative).

dC(t)
dt ‘

i

T.7) —6C(t0) ~c (toe(O,l]); the stock of goods held at a

t=t

0
point in time diminishes from depreciation at a percentage rate
independent of the stock held and from consumption at a percentage
rate which 1s the ratio of consumption per period over the stock
of goods held. (For arbitrary te(0,1) xc(t)=0 => £ is differ-
entiable at t, 1If xc(t)=l, the derivative of C at t is defined

to be the left~hand derivative.)

The consumer's objective is to maximize U(c,W) subject to
given parameter values and market constraints. The utility
function U is assumed to be strictly concave.

A necessary condition for<<£,ﬁ> to be a maximizer is that it
be a point on the consumption-terminal wealth frontier (i.e., ; maximizes
c for W=w and & maximizes W for ¢ = g). Moreover, if it is a point on
the frontier, it must have been generated by an efficient strategy.

Thus, solution to the overall optimization problem and analysis of asset
demand functions can be executed in sequential stages:

1. Determine properties of efficient strategies. In this

stage principles of inventory management are derived

which are required to attain a point on the frontier.
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Determine the nature of the frontier. Given the results
from the first stage, properties of the frontier as a
whole are investigated in this stage.

Derive properties of asset demand functions. Given the
results from the second stage, asset demand functions
which depend only on underlying parameters and consump-
tion~terminal wealth preferences, are examined in this

stage.
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Properties of Efficient Strategies

Definition:
The six parameters of the model are written in vector motation
- >
as y = <M(0 ), 8, r, W, a, b>. For given y and ¢ = 0, the set of
feasible market strategies is denoted by A[c]. Then, a strategy o =
<b, H, P, S>-_1§ feasible if and only if each function in the vector
<M, B, C> implied by o is nonnegative at every point in [0,1], i.e.,

aeAlc] <=> a => <M, B, C> > 0.

Definition:
For given o the sets of times of transactions in the commodity

and bond markets, T and Z respectively, are:

]

T

!

With fixed market transaction costs, an infinite number of tramsactions

{tef0,1] : xc(t) = 1}

It
il

{te{0,1] : xB(t) 1} .
in either market would imply infinite costs over the period and is

clearly not feasible.

Lemma 1:—]—'-2/

For arbitrary y and c 2 0, acAle] => T and Z are finite sets;
o is feasible only if a finite number of transactions are made in each
market.

In view of Lemma 1 and the propositions which follow, it
becomes convenient to provide notation for the total number of trips and

times of trips to each market.

-]l-glProofs of mathematical propositions can be found in Miller [15].
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Definitions:

For given ¢ and geAl[c] let:

m = number of "transactions in" (or equivalently "trips to")
the commodity market in [0,1]
n = number of "transactions in" (or equivalently "trips to')
the bond market in [0,1]
T(k) = the point in time when the kth trip is made to the
commodity market, t(k)e[0,1] k=1, ..., m (defined for
m = 1)
o(k) = the point in time when the kth trip is made to the bond

market, a(k}e{0,1] k = 1, ..., n (defined for n 2 1)
Given a value for the depreciation rate, the amount of commodities
held after a commodity market trip must be enough to support consumption
until the next trip. This amount can be computed directly from T.7 and

is

cir @)’ 2 clog i=1, ..., m,

8
ST

where Py T and t(m#+l) = 1.

While the previous lemma and definitions refer to all feasible

strategies, discussion now turns to properties of efficient strategies.

Definition:

A strategy oacAlc] is efficient if there does not exist a

v

strategy ReA[c] which implies greater end-of-period wealth, i.e., W&
WS (BeAlc]D).
It is apparent that for an efficient strategy o, t(m) < 1 and

g(n) < 1; no transactions are made at t = 1. If a transaction were made
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at t = 1, a transaction cost would be incurred with no offsetting
increase in agset return. For efficient strategles we can define
T(m+l) = 1 and o(nt+l) = 1.

Since commodities earn a negative rate of return, only the
minimal amounts necessary to support consumption are ever held. Thus,

commodities are never sold.

Lemma 2:

For arbitrary v and ¢ 4 0, aeAfc] => H(t) = 0 (te[0,1)).
Definition:

Al[c] = {aeAfc] : n = 1}

A lcl = {asAlc] : n 2 2}

Restricted to a feasible strategy subset Al[c] or Az[c},
market transactions required for efficient consumption (e.g., those
which minimize amount of money which must be set aside at t=0 to finance
c--call this MO) are independent of market transactions required for
maximum investment return on M(O_)—MO. The investment decision is
simply a choice between holding money or holding bonds over the entire
period. The independence between consumption and investment decisions
in a given strategy subset permits derivation of relationships between
consumption rates, terminal wealth, and parameter values.

If ¢ = 0, end~of-period wealth is maximized by investing the
entire initial money holdings at the beginning of the period in the
asset with the highest return. Thus, an efficient strategy in A[0] is
to:

purchase bonds at t = 0 if (M(On)—b)er > M(0")

hold money over the period if (M(0 )-b)e® = M(07).
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Hence, if ¢ = 0, maximal end-of-period real wealth ﬁ is simply: ﬁ =
max {(M(O-)—b)er_ﬁ, M(O_)eﬁﬂ}, and <ﬁ, W> ==<O, ﬁ>>is one point on the
consumption-terminal wealth frontier. For the remainder of this section
it is supposed that ¢ > 0. The following three lemmas state properties

‘of efficient strategies in A[c] for arbitrary o and ¢ > O.

Lemma 3:
G(t) > 0 <=> ¢(t) = 0 (te(0,1)); commodities are purchased if

and only if the stock of commodities on hand is zero.

Lemma 4:
1) =t(3) = 1/6-1n (1 + 9i§§%ll> 521, e, ms

given a consumption rate and depreciation rate, there is a one-to-one
correspondence between the amount of commodities purchased at any time

and the length of time which elapses until the next purchase.

Lemma 5:
;eAz[c] =>
a) (1) = O; the first dealing in bonds is a purchase made
at t = 0,
b) P(t) = 0 (te(0,1]); no bonds are purchased after t = 0.

c) Z C T; all bond market transactions occur at times of

commodity purchases (note 2 = T is not being excluded),

Corollary 1:

n .
p0)e’- ¥ S[o(§)]ert179(3)]

W= =2 ; real end-of-period wealth is

p(1)

the price deflated value of bonds held at t = 1.
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Corollary 2:

P(0) = M(O—)-G(0)~a—b—M(O+); the value of bonds purchased at
the beginning of the period is by T.5 equal to the initial money endow-
ment, less the value of commodities purchased, less the transaction
costs incurred, and less any money still held.

Corollary 3:

S[o(1)] = MIo(D)™] + plo(i)] {Glo(d)] +a +b} 1=2, .., n
bonds are sold only when holdings of money are depleted to zero and a
commodity purchase is immediately forthcoming.

Corollary 4:

Mio(D) '] = I p(6)-[G(8) + a] =1, ...,
i

It

where Ei {te(o(i),o(i+1)): xc(t) =1} ;
money on hand following a bond dealing is precisely enough to cover
planned commodity purchases and commodity market transaction costs until
the next bond sale,

From the definitions and results developed thus far, it
follows that given a consumption rate c and parameter vector y, an
efficient strategy can be identified by times of commodity market trans-
actions {t(1), ..., t(m)} and the subset of commodity market transactions
which are accompanied by bond market dealings {ml, ceey mn} (defined to
be the null set if n=0, where r(mi) = g(i) and m, = T_l[c(i)] i=1l, «.., n).

For strategies with n=0, it follows from T.5 and Lemmas 2, 3, and 4 that

(1) W= [M(O )-a I)i-l ewr(i)]_e—'n_ [ rf em(i)-(e‘sh(iﬂ)'f(i)]_l)].e‘ﬂ,g
6
i=1

i=1

fi(r(l), ceey T(M); €5 Y.
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For strategies with n 2 1, it follows from T.5, Lemmas 2, 3, and 4 and

Corollaries 1-4 of Lemma 5 that

oot )y -FT(m,), =(n-r)
2) W= (M0)-J [a( 7 "ty pemtimy)ymrrlmy)y m(rer
i=1 j=mi
1 Ty e (5)] s -re () = (D)
- ST O] TP TR T e TR
i=1 j=mi

_ ¢B (1), vov, T(M), Mys wevs W5 C5 ¥) .
m,n

A straightforward approach to solve for an efficient strategy seemingly
would be to apply maximization theory three times in succession (essen-
tially Tobin's technique):

. B .
First, for fixed values of m and n maximize fg and fm 0 with

b

say M

respect to the control variables (1), ..., t(m) and mi, N

~

Express the maximizers (1), ..., t(m) and m sees W in terms of ¢, v,

l,
m and n. This would enable a single function to replace each countably

infinite family of functions:
N N, % 2
Frm; e; v) = £ G(D)y +ovy (@) ¢5 y) and

B
f7(m, n; ¢; y)

1l

B P : - - - -
fm’n("f(l)a veuy T(m)s ml’ L} mn! < 'Y)-

Second, maximize each of the two resulting functions with respect to m

and n. Let WN and WB be the values of the functions at their maxima:

=
]

fN(ﬁ; c; vl

=
i

B ~ ~
f'(m, nc; vy).
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Third, determine the maximum W for given c and v by W =
max {WN, WB}. An efficient strategy for given ¢ and y can then be
determined from the maximizing values of m, n, (1), ..., t(m), Wy ooy

m_.
11}

If equal spacing of trips to each market were an implication
from the first stage of maximization, the proposed solution routine
would be greatly simplified. For arbitrary c and vy and for strageties
with n=0, equal space requires that for any given m the maximizers of

N . .
fm are given by:
" -1 .
T(i) = m =1, ..., m.

For arbitrary c and vy and for strategies with n 2 1, equal spacing
requires that two conditions be satisfied:
(a) Given m and n such that n|m (m is an integer multiple of n),

, B .
the maximizers of fm , 2re siven by:
]

2 i-1
i. (i) = =y i=l, ..., m
. " ., 4. M . .
ii. nﬁ =1+ (J—l)VE j=1, ..., n
.. . ji—1 .
(1. and ii. =>0o{j) = J;rﬂ j=1, ..., n)
(b) Given m and n such that nfm, the maximum of fg n is no greater

>

than that provided by a strategy having properties described in (a).
The following result is a sufficient condition for equal
spacing to be a property of efficient strategies given the assumptions

13/

of this model.—/

13/

~—~'This result should not be confused with Tobin's. Tobin's
result states that bond market trips should be equally spaced in time to
finance a steady expenditure stream. This result states that commodity
market trips should be equally spaced in time to minimize the cost of
financing a level flow of consumption. Tobin assumes a simple interest
rate and transaction costs which are payable at the end of the period.
This result assumes a depreciation rate with continuous compounding and
transaction costs which are payable when incurred.
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Theorem 1. Let ¢ > 0 be arbitrarily given and let y be given such that
n=0. For arbitrary m the maximizers of fz(r(l), cees t(m); c3 y) and

B .
fm,l(T(l)’ rves T(m), m3 ¢ y) are given by:

.. _ i-1 .
(i) = = i=1, «.., m

(m1=l if n=1 by Lemma 5).

It is straightforward to show by means of a counterexample
that Theorem 1 need not hold when 7 # 0. It seems likely, however, that
equal spacing is "close" to efficient for strategies with n 21 as long
as ¢ is "close" to zero.

Neither requirement of equal spacing for strategies with n zZ2
((a) nor (b)) need be an efficiency property given any value of j.
Again, by use of counterexamples it can be shown first that if n divides
m (nlm) and n is greater than one, equal spacing.ig_ggg efficient and
second that strategies for which n|m do not dominate strategies for
which nfm. The first finding is not very damaging, because when nlm the
deviation of efficient spacing from equal spacing can be expected to be
minor. If it were assumed, as Feige and Parkin did, that interest,
depreciation charges, and transaction costs are paid at the end of the
period, that the rate of interest and depreciation involve no compounding,
and that m=0, equal spacing for strategies with n[m would be efficient.

The second finding is important, and it applies both to the
present model and the Feige-Parkin model. There are values of parameters

and consumption rates for which strategies with nlm imply greater end-
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of-period wealth than do strategies with nlm.lﬁf Because Lemma 5
indicates that for any efficient strategy times of bond market trans-
actions will coincide with times of commodity market tramsactions, an
efficient strategy with n/m cannot have equal spacing in both markets.
This finding implies that for some parameter values the equal spacing
assumption n|m is overly restrictive and that the integer maximizers to
EB(V, n; c; y) = fB(vn, n; ¢; y) can be very distant from the real
number maximizers. These results are explained intuitively as follows:

Suppose the depreciation rate and commodity market transaction
cost are relatively higﬁ and the Interest rate and bond market transac-
tion cost are relatively low. In such a case the timing of commodity
market transactions is relatively more important in terms of efficiency
than is the timing of bond market transactions.lé/ Suppose that a
prime number of trips to the commodity market, say m=1l7, is best for
managing commodity inventories. Restricted to equal spacing strategies,
the only feasible values of n are then n=0, 1, or 17. With a=17 the
constraint n,m might imply the efficient equal spacing strategy for the
assumed parameter values is <m, n>>= <l7, i>. However, assuming it is
profitable to deal in bonds, a strategy having m=17, n equal to say 5,

1 10

W) = {5 AL, .., 17, and o) = 0, o(2) = 37 o) = L o(4) =13,

4 gor (07, 8, t, 7, a, b =<10,000, .250, .004, .005, 20.0,
l.0>’and W = 2000, the efficient equal spacing strategy is m=7, n=7,
and implies ¢=7708.,27. However the nonequal spacing strategy with m=7,
n=3, (i) ='i§~l i=1, ..., m, o(1) = 0, 6(2) = —3: 5(3) = % implies ¢ =
7709.00. 1In this example, ¢ is maximized subject to W = 2000. The
superiority of a nonequal spacing strategy would still hold if W were
maximized subject to c¢ = 7709.0.

lé/That is, a change in the timing of commodity market trips
has a larger impact on end-of-period wealth than does a similar change
in the timing of bond market trips.
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a(5) =-I7, deviates only slightly from equal spacing and can be expected
to do better than the efficient equal spacing strategy. Now, if f (v,

n; c; Y) were maximized with respect to v and n for these parameter

values, the real number calculus maximizers should turn out to be close

to ;=3.4, ;=5 (implying £=l7). Supposing for concretemess that S turns

out to be marginally greater than 5, it would seem that the integer
maximizers should be one of the four corners on the unit box which

encloses <G, ;>, i.e., <ﬁ, n> € {<§, 5>; <ﬂ, 5>, <3, é>, <4, 6)}.

However, none of these pairs imply m=17, which was by assumption optimal.
The function ?B has a steep ridge along v.n=17, and these pairs lie off

of the ridge. Since the efficient equal spacing strategy <i7, ﬁ) is not
even close to one of the four corners around <;,'ﬁ> , calculus maximization
would in this case provide a very poor approximation to the integer
solution.

Because equal spacing is not a necessary property of efficient
strategies, the proposed solution routine proves unworkable. For arbitrary
m and n, it is not possible to solve explicitly for TEl), vees sz) and
;1, eeas ;n in terms of m, n, ¢, and y, and thus it is not possible to
determine for<:m‘, n'>>#*<m, n>>whether fi,n(Tzl), cens sz), él’ cees
&n; ¢ y) > fB ,(T(l), ey r(m Y, m eees én'; cy Y)' In the next
section explicit expressions for efficient strategies are not needed to
prove that the individual's opportunity set lacks convexity. Im the
final section, however, the search for efficient strategies is restricted
to the class of equal spacing strategies in order to derlve properties
of asset demand functions for specific sets of parameter values. The
constraint n|m proves not to be effective for many sets of parameter

values, and, thus, the computed asset demand functions for these sets

are consistent with individual optimizing behavior.
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Properties of The Consumption - Terminal Wealth Frontier

By results of the previous section, terminal wealrh can be
written as a function of feasible strategies, consumption, and para-
meters: W = g(a, ¢, Y). Let ;(c, Y) = max g{e, ¢, v). The set of

~ aeAle]
efficient strategies which generates g(c, y) need not be unique. The
consumption-terminal wealth frontier can be written as the set
{<@, ﬁ)gi 0: W= ;(c, Y)}. The location of the frontier in the c-W
space depends only on values of the parameter vector Y.

The first result of this section states for arbitrary parameter
values é is strictly monotonically decreasing with respect to consump-
tion. This implies an efficient strategy not only provides maximal W
for given ¢, it must also provide maximal ¢ for given W. Thus, the same

frontier results whether W is maximized subject to a ¢ constraint or ¢

is maximized subject to a W constraint.

Lemma 8:

Let vy be arbitrarily given, let ¢, > 0, and let ¢, be chosen

1
0. Suppose A[cll # ¢. Then,

2
2
such that cl > c2 =

g(cl, ¥) < g(cz, Y).

The final result of this section states that the individual's
opportunity set lacks convexity, a result implied by the assumption of
fixed market transaction costs. It follows if positive amounts of both
¢ and W are desired at the utility maximum, the individual's preferences
must be strongly convex. Lack of convexity of the individual's oppor-

tunity set would seem to have implications also for general equilibrium
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theory in an economy with transaction costs, but these implications are

not explored here.lé/

Theorem 2:

> 0, and let ¢, be

Let ¥ be arbitrarily given, 0 < XA < 1, ¢ 2

1
0. Suppose A[cl] # @¢. Then,

>

chosen such that ¢, > c2

1

. . - R
g(kcl+(l—l)cz,v) = ?«g(cl,Y) + (l-l)g(cz.v), equality <=>

there exist efficient strategies aeA[cl] and BEA[CZ] for which times of

transactions are identical.

l—()-/Implicat:ions of transaction costs in general equilibrium

models can be found in Hahn [7], Heller [9], and Heller and Starr {10].
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Properties of Asset Demand Functions

Because the location of the consumption-terminal wealth frontier
in the c-W space depends only on v, the utility maximizing c-W pair
will, for given U, also depend only on Y. Average holdings per period
of money, bonds, and commodities correspond to the utility maximizing
point on the frontier and can be expressed as functions of Y for given

U:

Fl(MCO-)a é, r, w, a, b),

M=

- 2 -

B=F (M), & r, m a, b), and
C = F3(M(0“), s, r, m, a, b).

‘The asset demand functions Fl, F2, and F3 are well defined only over
values of y for which the utility maximizing c-W pair is generated by
precisely one strategy.

Partial asset demand functions are constructed in this section
which describe how desired asset holdings change due to a change in the
value of a single parameter for given values of the other parameters.

To generate points on a partial asset demand function an initial, or
"bagic," parameter vector Yo is specified. Next, a point <ﬁ0, Wd> on
the frontier restricted to equal spacing strategies is designated as the
utility maximizing consumption terminal wealth pair. Finally, a single
parameter is varied, and poipts on the shifted consumpqion—terminal
wealth frontiers are chosen by assuming that the individual either
maximizes ¢ for W=W0 or maximizes W for e=cq. Average asset holdings

per period are computed at each point.

Given an arbitrary utility funection, an "equilibrium path for

T

Y, can be generated in the c¢c-W space by varying a parameter Yi(iE{l: ceey 61
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over a continuum of values. For given values of the other parameters
Y(i)o = (Ylo, ey 72—1’ Yg+l’ cens Yg)' this path defines the locus of
utility maximizing pairs <c*, w%) traced out by varying \Th Wk = mi(c*,
Y(i)o) i=1, ..., 6. (See figures 1 and 2, p. 28a.) Equilibrium paths
can be considered short-hand representations for individual preferences.
Given initial parameter values, the intersection of an equilibrium path
with the frontier is the individual's utility maximizing consumption-—
terminél wealth pair.

An equilibrium path constructed from a general utility function
and going through the péint <c0, w0>>can be approximated by the linear
function: (l—e)(c*—co) - e(W*—WO) = 0., It seems reasonable to assume
o s 8 s 1; that is, a change in parameter values which permits the
individual to have both more consumption and more end-of~period wealth
will not cause him to choose less of either at the new equilibrium.

Thus, assuming the individual maximizes ¢ for w=w0 (the objective function
assumed by Johnson [12] and Feige-Parkin) is equivalent to assuming the
individual moves along the equilibrium path with g=1. Assuming the
individual maximizes W for c=C, (the objective function assumed by

Baumol and Tobin) is equivalent to assuming the Iindividual moves along

the equilibrium path with 8=0. In general, 9 represents the individual's
relative prefereuce for consumption over terminal wealth; if he receives
an extra dollar at the beginning of the period, he will desire approxi-
mately §+(51) extra consumption and (1-8)}-($1) extra terminal wealth.

Partial asset demands are constructed and plotted in this
section only for the two extreme equilibrium paths 6=0 and 6=1., It is
claimed that, in general, partial asset demand functions are monotonic

<
in 8; that for any asset and given 0 = 91 < 92 < 63 = 1, the partial
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asset demand function for the 62 equilibrium path will fall between the

demand functions for the g, and §., paths. Thus, partial asset demand

1 3

functions for general utility functions will in general fall in between

the demand functions for the =0 and 6=1 equilibrium paths. In addition,

the change in partial asset demand functions as g increases from 0 to 1

gives the direction of change in desired asset holdings as the individual's

relative preference for consumption over end-of-period wealth increases.
The assumption of equal spacing makes it possible to derive

algebraic expressions for end-of-period wealth and average asset hold-

ings per period as functions of m, n, ¢ and y. For each set of

parameter values, an exhaustive sampling technique is employed to solve

for the values of m and n vwhich maximize W for c = ¢, (when 8=0), or which

0
17/

maximize ¢ for W = W, (when 6=1).

0
For each basic parameter vector Yo and for each initial
utility maximization point on the frontier for YO, one set of partial
asset demand functions is generated for g=0 and another for g=1. This
process is repeated for two basic parameter vectors and two initial

utility maximization points on a frontier for a basic parameter vector.

Values of the two parameter vectors are specified in the table below.

Basic Parameter Set 1 Basic Parameter Set 2
M(0 ) = 1,000 M(0") = 10,000
§ = .250 § = .250
r = .004 r = .004
7 = 005 m = .005
a=2,0 a=2.0
b=1.0 b=1.0
Figure 3
17/

—'A detailed description of the sampling technique can be
found in Miller [15].
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The values of parameters in the first set were chosen to resemble real-
world data. The time period is implicitly assumed to be a month. The
initial money endowment of $1,000 is interpreted as a monthly paycheck
of the like amount. The nominal rate of interest and rate of inflation
translate to annual rates of roughly 5 percent and 6 percent, respec-
tively. The depreciation rate of 25 percent per month may be of the
right magnitude if commodities are construed to be groceries. Values of
transaction costs were specified somewhat arbitrarily, but together with
the other specifications they produce reasonable results. One implica-
tion of this parameter set, for instance, is that with nominal consump-
tion expenditures of roughly $150 to $450 per month the cptimal spacing
of commodity market trips is about once a week. Another implication is
that between $200 and $250 has to be deposited in a savings account (a
bond purchase) before a trip to the bank (bond market) becomes profit-
able. It also follows that it is never profitable to deposit money in a
savings account (purchase bonds) with the intention of withdrawing money
(selling bonds) in the same month.

Given basic parameter set 1, most points which were sampled on

A

equilibrium paths for Yj (3=1, ..., 6) imply n = 1. Thus, partial asset

demand functions corresponding to this parameter set are close to optimal:
they are numerically close to functions which would have been derived

had equal spacing not been assumed.

< . . m . .
When n = 1, the integer constraint €N is not operative. 1In
n
order to explore implications of the medel when there are both purchases
and sales of bonds, the first parameter set was modified by increasing

the money endowment to $1i0,000 while leaving the other parameter values

unchanged, and this modified set constitutes basic parameter set 2.
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Since the three rates seem to be of the right magnitude, a change in the
value of the scale variable M(0 ) seemed appropriate for the stated
purpose, While $10,000 is toc high to be considered a monthly paycheck,
the model can be reinterpreted to be one of a firm, so that the $10,000
could represent receipts from payments on account, for instance.

Different points on a frontier correspond to different saving

rates. Defining the saving rate SR* by SR* = w_ , the two initial
M(0 )

utility maximization points on a frontier for each basic parameter set
correspond to saving rates of .10 and .30, This choice of saving rates
is especially important for partial asset demand functions constructed
from basic parameter set 1, because at the initial utility maximization
point no dealings in bonds take place when SR* = .10, but a bond pur-

chase is made when SR* = ,30.

IV. Results of Investigation

Graphs of partial asset demand functions were plotted for each
of the three assets with respect to each of the six parameters. Two of
the more interesting sets of graphs are displayed on pages 32-33., Each
page contains four sets of graphs, each set having a graph of a partial
asset demand function for 8=0 and one for g§=1, Two sets of graphs in a
row are partial asset demand functions for the same basic parameter set
but for different initial saving rates. Two sets of graphs in a column
are for different basic parameter sets and the same initial saving rate.
A hatch mark on a line segment indicates a change in & or ; occurred
from one computed point to the next, implying a discontinuous jump in

average asset holdings (not graphed) occurred between the two points.

Finally, it is noted that except on equilibrium paths for M(0 ), m and n
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Figure 4
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Figure 5
PARTTAL MONEY UEMAND FUNCTION WRT INFLATION RATE
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are almost always independent of 8, which implies that partial asset
demand functions for arbitrary equilibrium paths almost always lie
between the functions for 6=0 and 8=1.

The importance of time preferences in determining the
elasticities of asset demands is clearly exhibited in the set of graphs
on the top row of Figure 4, p. 32. Given basic parameter set 1, the
individual's savings rate determines whether or notit is profitable to
deal in bonds. If the individual has a low savings rate and does not
deal in bonds, and his initial money holdings increase, average money
holdings over the period increase by a larger amount the greater are
his relative preferences for end-of-period wealth over current consump-
tion. This is because an increase in initial money holdings allocated
to end~of-period wealth raises average money holdings one-for-one, while
an increase in initial money holdings allocated to consumption raises
average money holdings less than one-for-one (in fact, in the limit when
commodity purchases are made in a flow, another dollar allocated to
consumption raises average money holdings by only fifty cents). However,
if the Individual has a high savings rate and does deal in bonds, and
his initial money holdings increase, average money holdings over the
period increase more the less are his relative preferences for end-of-
period wealth over current consumption. This follows because an increase
in initial money holdings allocated to end-of-period wealth goes into
bonds and does not raise average money holdings at all.

The sets of graphs in Figure 5 on p. 33 are perhaps most
interesting because they are so counter—-intuitive. Slopes of partial
money demand functions with respect to the inflation rate in the top row

of Figure 5 are of opposite signs for different values of @ and the same
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savings rate and of opposite signs for same values of © and different
savings rates. If the individual initially is not dealing in bonds and
the inflation rate rises, average money holdings given the new inflation
rate will be higher the greater the attempt to maintain real wealth at
its previous value (closer 8 is to 1). In order to maintain the same
end-of-period real wealth with a rise in the inflation rate requires
more initial wealth to be allocated to W and less to c, and as the
previous paragraph explains that increases average money holdings.

Also, for reasons given in the previous paragraph, the results reverse
when the individual initially deals in bonds.

Signs of partial derivatives of asset demand functions correspond
to the slopes of partial asset demand functions. Although the partial
asset demand functions which were plotted are not always monotonic, many
of them tend to be with only few and minor exceptions. They also tend
to have the same sign of slope for 80 or8=1. The tendencies of the
signs of slopes of the plotted functions are summarized in Figures 6 and
7 on p. 36. The partial derivatives are for nominal asset demands, but
the tables would not differ if they were for real asset demands (except
the partial of real commodity holdings with respect to 7 would become

indeterminate).




- 36 -

Signs of Partial Derivatives Taken From Tendencies on Graphs

Figure 6

From Graphs for Basic Parameter Set 1

Parameter
Nominal Asset -
Holdings M(0 ) S r ™ a b
M + + - ? - +
B + - + ? - -
c + - ? + + ?
Figure 7

From Graphs for Both Basic Parameter Sets

Parameter
Nominal Asset _
Holdings M(0 ) § r ﬂ a b
M + ? - ? - +
B ? + ? 7 -
c + - ? + + ?

+

J)

v
HA IiVL:’:
1]

o ©

? => no apparent tendency
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