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Abstract

We consider the existence of deterministically cyeling
steady state equilibria in a class of stationary overlapping
generations models with sufficiently long (but, finite) 1lived
agents. Preferences are of the discounted sum of utilities type
with a fixed discount rate. Utility functions with large coeffi-
cients of relative risk aversion which generate strong income
effects (relative to substitution effects) and backward bending
offer curves are permitted. Lifetime endowment patterns are quite
arbitrary. We show that if agents have a positive discount rate,
then as agents' lifespans get large, short period non-monetary
cycles will disappear. Further, constant monetary steady states
do not exist and therefore, neither do stationary monetary cycles

| of any period. We then consider the case where agents have a
negative discount rate and show that there are robust examples in
which constant monetary steady states as well as stationary mone-
tary cycles (with undiminished amplitude) can ocecur no matter how

long agents live.




I. Introduction

In this paper we investigate the occurrence of short
period deterministic cycles in stationary overlapping generations
(hereafter, OLG) models with long lived agents. Grandmont's
[1985] discussion shows how monetary cycles can arise due to
strong income effects (relative to substitution effects) which
lead to backward bending offer curves.t  He argues that such
endogenous cycles can be consistent with some observed business
cycle relationships and that monetary policy can be effective in
eliminating cycles, However, all of Grandment's discussion is in
the context of a two period lived agent OLG model and hence all of
the cyecles in this model have periods greater than the agents'
lifespans. This has prompted the comment (Sims [1986]) that
observed business cycles have periods much shorter than agents'
lifespans and that short period cycles would either be unlikely to
exist or be quantitatively insignificant in amplitude in OLG
models with long lived agents. The argument for this is presum-
ably based on the incentive (due to conecave utility functions) and
the opportunity (as agents live many more periods relative to a
cycle and hence will overlap with many other generations) to avoid
fluctuating lifetime consumptions,

The above argument, however, does not seem entirely
convineing. It is true that agents who face a constant interest
rate and fluctuating incomes would wish to have smooth consump-
tions. But, when interest rates themselves are fluctuating, they
would not choose to smooth consumption, even when incomes are
constant. It is, therefore, not obvious that such short period

cycles cannot exist; whatever their magnitude.




This paper considers this issue, for monetary as well as
non-monetary c¢ycles in a class of stationary pure exchange OLG
economies with long lived agents. The method used is similar to
that in Aiyagari ([1986a]. We construct a sequence of such OLG
economies with longer and longer lived agents. Preferences are of
the discounted sum of utilities type with a fixed discount rate
and lifetime endowment patterns are quite arbitrary. We fix
attention on cycles of a given period and consider what happens as
lifetimes become large, The discussion is restricted to cycles of
period two for simplicity but as will be seen the method carries
over for cycles of any period. In addition, and again for sim-
plicity, we initially take the utility function to be of the
constant relative risk aversion type. We believe that this brings
out most clearly the reason why such equilibria may or may not
exist., It will be seen, however, that this simplification, too,
can be dispensed with.

We first consider the case when agents have a positive
discount rate. A result from an earlier paper (Aiyagari [1986a]),
reproduced here, shows that constant monetary steady states do not
exist for any large length of life (denoted T). It is an immedi-
ate implication that monetary cycles of any period cannot exist
for any T large. Therefore, for this case, we focus on short-
period non-monetary cycles and show that these, too, must disap-
pear (i.e., do not exist) as soon as T becomes large. Note that
this is stronger than asserting only that the amplitude of cycles

goes to zero as agents live longer.



Since much of the discussion of cycles has taken place
in the context of monetary equilibria, we need to allow for the
existence of (at least) constant monetary steady states when
agents have long life-times. This leads us to consider the case
where agents have a negative discount rate. In such a case, we
show that it is possible to construct robust examples such that
both constant monetary steady states as well as cyclical monetary
equilibria (with undiminishing amplitude) exist no matter how long
agents live. Thus, the intuition referred to earlier seems valid
for the case of a positive discount rate but not so when the
discount rate is negative.

The above result may also have implications for the
existence of stationary "sunspots" equilibria. Spear [1984] shows
that these too arise due to stréng income effects. Azariadis and
Guesnerie [1986] show that such (two-state) sunspots equilibria
arise if and only if there are (two-period) deterministic ecy-
cles., This connection, however, is not pursued here due tc the
difficulties inherent in analyzing stochastic steady states in OLG
models with more than two period lived agents (Aiyagari
[1986a]).g/ Another implication would be for endogencus fluctua-
tions in asset prices, The analysis suggests that in positive
discount rate OLG economies, sunspots equilibria and endogenous
cyelieal fluctuations in asset prices unrelated to dividend fluc~
tuations would not occur.

In section II, we lay down the model and exhibit the
result for the case of a positive discount rate. A discussion of

monetary cycles when the discount rate is negative is contained in




Section III. Section IV concludes. Appendix A shows that con-
stant monetary steady states {(and therefore, monetary cycles) do
not exist when the discount rate is positive, but can exist when

it is negative.

II. Deterministically Cycling Steady States

The model used is a simplified version of Aiyagari
[1986a] without any intragenerational heterogeneity. Consider a
stationary OLG economy with one representative agent per genera-
tion who lives for T periods. At any given date there are T
agents of different generations indexed by their current age s
which runs from 1 (for the newly born) to T (for the about to
die). If we let c{(s) be the consumption of an agent at age s,

then a newly born agent has preferences given by,

T s-1
) 87 u{c(s))
s=1

where 0 < 8 < 1 and U(e) = E__:_i_l, a > 0. Lifetime endowments

are given by {ws,s=1,2,.,T}. These endowments are viewed as
truncations (at T) from a given infinite sequence [ws}s:1 which is
taken to be bounded and bounded away from zero. As we increase T,
we get a sequence of OLG economies with longer and longer lived
agents.i/

We let ryy Toy gy Toy oas. be a two-period cycle in

interest rates with ry > ra. Correspondingly Y1r Y21 Yq: Yoo

is the two-period cycle in discount factors where

Y1=1+r'1




and obviously Y4 < Yp- Due to stationarity and the focus on
steady states we only need to consider two types of agents. Let
Agent 1 be the one who faces the sequence rqyy ro, ... over his
life and let 01(5), s =1, 2, ..., T be his lifetime consump-
tions. Agent 2 faces the sequence rsy rq, ... and let cz(s), s =
1, 2, ..., T be his lifetime consumptions.

The agents solve the following optimization problems.

Agent 1:

T 5-1 1
(1) max ) 8~ U(c'(s))

5=1
s.t.

01(1) + 7101(2) + 717201(3) + 7?7201(4) + ...
= W, o+ YW, F Y YW, 727 W, +
1 172 1'27°3 17274 T

Agent 2:

z 1.7 2
(2) max 3 8> 'U(c"(s))

5=
s5.t.

1)+ 1,0%(2) + v,1,0°(3) + Yoy, cf(H) + ...

_ 2
= Wy o+ Y, YoYqWg * YoYgHy + ...

Market clearing: Again, due to stationarity it is enough to look

at market clearing at two consecutive dates as shown.
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1 2 1 2 1 2 1 2
oty Ji3y <Jw e
(1) 22y &3 AW Pf5) Ae)
iy < Jd3y T clis
These yield:®/
(3) el + '3 + el (5) + ...+ 2(2) + 2(l) + c2(6) + ..
(4) e2(1) + ¢23) + 2(5) 4 ... + e (@) + (W) + ' (6) + ...

Utility maximization now implies that for any agent i,

x, if r

1 g ° T

(5) ci(s+1) . 1

el(s)

x2 if rt r2
and that X4 > Xg. Note that ry is the interest rate from t to
tt+1). This follows because the FONC for max yields
U'(c;)
=1+ rt
)

i
1
8U (cs+1

which implies,

Therefore,



At this point we assume that T is an odd number. The case when T
is even is considered after this. Using (5) in the market clear-

ing conditions (3) and (4} we have

(6) c1(1)[1+x132+(x132)2+ .“+(x1x2)(T+1)/2]

+ X c2(1)[1+x X +(x1x2)2+(x1x2 (T-T)/E] = z W

2 172 s

(7) c2(1)[1+x1x2+(x132)2+...] + x1c1(1)[1+x1x2+(x1x2)2+...] = ] -

Let,
- (T+1)/2
4 =1+ XXy + ou. + (x1x2)
- (T-1)/2
B=14+ Xqdgy + oon (x1x2)
and,
A=A - x]sze : 82 - B(A-1) = A(A<B) + B > 0.
We then have,
1
(9) ¢ (1)/] g = (A-x,B)/A
P -
(10) ¢“(1)/] w, = (A-x,B)/A
1 2 B{x,~X.)
c (1) - e (1) _ 172
(11) Z - = A > 0.
3
1 2 X c1(1) - X 02(1) {(x,-x.)A
x .
L v L ¥
It then follows that
1 2 B(x,-x,)
¢ (s) - e (s) _ (s-1)/2 172
(13) = (x1x2) —— >0

L vg




if s is odd and

(x,-%

¢ (s) - c(s) (s-2)/2 A¥7%5)
A

L vy

(14) >0

= (xlxe)

if s is even. In general, we conclude
1 2
(15) e {s) >c"(s) Vs

i,e., Agent 1, who is born when the interest rate is high, must
have a uniformly higher lifetime consumption profile as compared
to Agent 2.

When can this happen? We now illustrate the role of a
high risk aversion coefficient (high a} in generating large income
effects (relative to substitution effects) and backward bending
offer curves which can lead to the desired effect on the consump-
tion profiles of the two agents. For this purpose, it is conve-
nient to rewrite the optimization problems of the two agents in

the following manner which takes advantage of separability.

For fAgent 1:
Let
(16) VT[e1(1)) = max ) 85—10[01(3)]
8 odd
5.6,
s odd
(17) el @) = max  § 6% %u(c!(s))
S even

3.t.
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I G872 6l = el(2)

S even
(18) max V. (e'(1)) + 8v,(e'(2))
s.t.

e (1) + v,e (2) = 51 + Y1ﬁ2
For Agent 2:

Same except replace c1(s), e1(1), e1(2) by cz(s), e2(1),

e2(2) and in the last step

2 2
(19) max VT[E (1)) + svz[e (2))
s.t.

2 2 - -
e (1) + Y58 (2} = Wy o+ YW,

~ {s-1)/2
(20) W, = (Y Y ) W
17 gdd 172 s
-~ -2)/2
I N S O LSRN
S even

Obviously, we need only consider the two-period optimization

problem
(22) max Uj(el) + BV2(92)
s.t.

i IRRA Tt B

hecause this yields
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(e1(1),e1(2)]

It
1

(e1,62)lv Y,
{23)

[92(1),e2(2)]

(81,82)IY Yo

The requirement on consumption profiles derived earlier in {158)

then implies that we must have -

el > (1)
(24)
el2) » 2(2)

from (16) and (17) and the correspending problems for the second
agent,

Looking at (22) and (23), and keeping in mind that vy, <
Y, We see that this can only happen if the offer curve is posi-

tively sloped and ey is a gross complement for 855 i.e., ey falls

as y rises in the relevant neighborhoed. This in turn requires

that excess demand for good 2 be positive (e2 - W, > 0) and that

2

the risk aversion coefficient for V2(-) be greater than one, so

that the situation is as shown in Figure 1 (all figures are at the

end).

Formally, it is easy to verify that
(25) de, ) Vé[1-a2(92—w2)/e2]

dy A’

de2

—< - ! o - 1
(26) 3 V.|[1+ct1(w.| 91)/91]/86
(27) de, Vil 1eay Giy-ey) /e |

de, ~

1 8V fayle,miy) /e -1]

where




A= VI8 - VY, a2 -

The parameters ay and a, will be inherited by V1(-) and
V,5(-) respectively from U{-) via (16) and (17). In fact, for the
case of constant relative risk aversion it is easily seen that ay
= a5 = a. As is also obvious from the picture, to get ey - W, >

2

0, we need W, to be significantly larger than @ This, together

1 2°
with an a suffiiciently larger than one, may generate cycles.

It is possible to get a rough idea of magnitudes as
follows. We have from {(22) and (23) that

1 2
vife (1) vile (1)
(28) _lE_____l_ S S i )

SVé(e1(2)] IRTIR P BVé(eg(2)].
First, it is not difficult to show (along the lines of Aiyagari
[1986a]) that as T gets large both vy and y, converge to 8.2/
Further, the functions VT(') and V2(-) are nearly identical for
large T. The only reason for any difference between them is that
we took T to be an odd number so that the definition of V,(-)
contains one additional term as compared to V,{-). But this
difference will tend to zero for large T.é/ It then follows from

(28) that as T gets large,
el(1) = el(2)
(29)
e2(1) = e2(2).

Therefore, we get from the budget constraint (22) that

(30) €. & el
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Plugging this in (25} we get our condition as:
1 - a(ez—w2)/e2 <0

(31) v, < (2=h)e
2 1

and approximately we have

~ g-1
W, = 2 8 W
! s odd s
~ 5-2
WA = Z B ws.
5 even

This requires (in addition to a > 1) that endowment streams be
larger in odd pericds of life as compared to even periods in the
above (present value) sense, As an example, if a = 2 and B = 1,
we need ﬁz < 1/3 51. Such a requirement may not seem odd in the
context of a two-period lived agent OLG model. It does seem a
little strange in the context of a many period lived agent OLG
model. This consideration in itself may be deemed sufficient to’
make cycles seem unlikely. We will show, however, that cycles can
be ruled out independently of the pattern of lifetime endowments
as well as the risk aversion parameter.
Looking at {11) and (12}, and in view of footnote 5, we

see that,

el(n) - fy | B/A + 1as T a,
cl(2) - 2(2)

It must then follow from (16) and (17) that

(1) - (1)
e'(2) - e2(2)

+ 1 as T + =,
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Looking at Figure 1 and noting that Y1 Yp * B we con-

clude that the slope of the offer curve at v = 8 is

862
_E;IY=B +1as T+ =,

[= ]

This can be seen to be impossible because at y = 8,

aB(w1-w2)
1 + = -
iﬁg Wy + BW, . 1+ 8
8, y=8 a(it, -ii) a4 =ii,)
B{————— -1} g{——— -1
w1+sw2 w1+8w2
Therefore
et
3e, y=8

is strictly greater than and bounded away from one,
We now briefly look at the case when T is even. Equa-

tions (6} and (7) become

[c1(1)+x202(1)){1+x1x T/E] =

[
-~
2
@

2+...+(X1x2)

T/2)

[02(1}+x1c1(1)][1+x Ryt eo ot (X,%,)

172

The above two equations imply that, e1(1) + x202(1) = c2(1) +
x1c1(1) and hence, c1(1)(1-x1) = 02(1)(1-x2). Therefore, either

Xqy % < 1 or X1y, X5 > 1. Further, we have
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01(1) ) 1 - X,

b (T/2)+1
) W 1 - (x1x2)
02(1) 1 - x1

Ja, - (x1x2)(T/2)+1'

Consider what happens if x4, x5, > 1. Then,

1 2 X, - X
e (1) - " (1} ] 2
(32) T T in (172 <0
s 172
1 2 T X c1(1) - X c2(1) X, - X
z w - z ; - 1 - (x.x )(T/2)+1
s S 172

and, in general, 01(5) < c2(s) ¥ 8. From {16) and (17) we then
see that this requires e1(1) < e2(1), e1(2) < 62(2) and note that

vy < yp < 8 and Vi(-) Vo(-). In terms of the offer curve pic- -

ture the situation must look like that in Figure 2 (dashed budget
lines).

This will again require that the offer curve be posi-
tively sloped in a neighborhood of y = 8 as shown. This will take
a high a and a low ﬁ1 relative to ﬁ2; i.e.,, endowments should be
relatively larger in even periods of life compared to odd pe-
riods. However, the same consideration that was used previously
can be appealed to again to eliminate these c¢ycles for all suffi-

ciently large T. From {32) and {(33):

() -l |
2(2) - cl(2)
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This will require

e2(1) - e'(1)
92(2) - e1(2)

+ 1as T+ =

which cannot happen since the offer curve (this time) will have a
slope that is strictly less than and bounded away from one as T
gets large.

Lastly, consider the case x,, x, < 1. Then we have
(1) - (1) = eM(2) - ¢2(2) > 0 and this time, ¢'(s) > c¢®(s) ¥
s. From (16) and (17) this will take e'(1) > e2(1), e'(2) > e2(2)
and this time, v, > vy, > B and V1(-) z Vz(-).

The offer curve picture must look as shown in Figure 1
(solid budget lines).

Again, the same argument as used before (namely the
slope of the offer curve at y=8) will lead to the elimination of
these cycles,

Thus, in all cases, cycles cannot survive large T.

Extension to k-period Cyeles:

The above analysis extends to cycles of any fixed period
k. One can demonstrate that in the limit (as Te+®) there is an
inconsistency between the requirements of market clearing and
properties of the demand functicns. It follows that for each k,
there is a T, finite such that for all T exceeding Ty, there
cannot be cyclic equilibria with period k. An important, but
unanswered question is: Is there a % such that for all T exceed-
ing % there are no cycles with periods less than some fraction

(possibly one) of T?
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Extension to Other Utility Functions

For simplicity we restrict attention to two-period

cycles. Following Aiyagari [1986a] we assume that the risk aver-
sion coefficient is bounded and bounded away from zero.l/ We let
T be even so that there are an equal number of odd and even peri-

ods in an agent's life, This makes the functions V1(-) and Vz(-)

in (16) and (17) identical. Utility maximization now implies
that,
ut(e'(se1)) _ur(e2(se) "
1V (al - 8
v [c (s)] s odd v [c (3)] 5 even
U (e (se1)) U (B(s+ 1)) T2
' 1 B ' 2 g
v [C (s)] s even U [c (s)] s odd

It is easy to see that either Yyr Yo both exceed 8 or that they

are both less than 8. For, suppose to the contrary that

Y, <8< Yoo Then, it follows from above that,
1 1 1 1 1 1
e (1) < e (2), ¢ (3) < e (#), c{(5) < c (6) . ete, and
e2(1) > e2(2), e2(3) > e2(4), ¢°(5) > c°(6) ... ete.

The ahove are inconsistent with the market clearing conditions (3)
and (4},
Next, it is easy to see that either c1(s) > cz(s) for

all s or that c1(s) 4 ce(s) for all s. This follows because,

ur(eliss2))  ur(cP(ss2))  T1Y2

U'[e1(s)] ) U‘[c2(s)] e

for all s.
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If 01(1) > c2(1) then c1(3) > 02(3), c1(5) > 02(5) and so on. We
cannot have c1(2) < 02(2) because this will imply, c1(4) < cz(ﬂ),
c1(6) < 02(6) and so on, which is inconsistent with market clear-
ing. Therefore, we must have, cq(s) > 02(3) for all s. Simi-
larly, if c1(1) < c2(1) then, c1(s) < 02(3) for all s.

It follows from (16) and (17) and the analagous problems

for agent 2 that we must have, either

e'(1) > €2(1) and e'(2) > e%(2)
or
e'(1) < e2(1) and e'(2) < e(2).

From (22} and (23) this leads to the conclusion that the offer
curve must be positively sloped. This leads to four possible
situations as shown in Figures 1 and 2 (solid or dashed budget
lines).

As in the case of constant relative risk aversion, here
too it is not difficult to show that y,y, » 8> and hence that

Yir Yo * g (the latter follows because either v, { vy, < B or

2

B <y, < 72). Therefore, each of the el(s) » e* = (ﬁ1+8ﬁ2)/(1+8)
where,
ﬁ1 = E BS_1W
s odd S
~ = s-2
w2 = Z B8 ws.
s even

The offer curves in the diagrams are therefore drawn in a small
neighborhood of e*, As before, the important fact about the offer

curves is the following.
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In Figure 1, EEg > 1 where as,
' 1]e*
de2
in Figure 2, T <.
1|e*
These follow from {27) because at e*, V% = Vé and a, = a,. Con-

sider, first, the situation in Figure 1. We have that for ail T

sufficiently large,
e'(2) - €2(2) 2 (1+e) (e'(1)-e2(1))

for some e¢ positive. In view of (16) and (17) and the analagous

Problems for agent 2 we have that,
el(2) - c%(2) > ¢ (1) - A1)
ctiwy - 2wy > 13 - A3

and so on. These inequalities are inconsistent with market clear-
ing because when we subtract (4) from (3) and rearrange terms, we

get
c'(1) = c2(1) + ¢ (3) - ¢%(3) + c'(5B) - ¢2(5) - - =
el(2) - c®(2) + ') - c2(8) + c'(6) - 2(6) + - -.

The situation in Figure 2 is exactly the opposite be-

cause it implies that for all large T,
e2(2) - e'(2) = (e2(1)-e'(1))/(1+8)
for some § positive. This will imply that,

c?(2) - ¢ (2) < (1) - e (1)
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e2(l) - ¢ (4} < ¢°(3) - ¢ (3)

and so on, which again contradiets market clearing.
Thus, such two-period cycles cannot persist as T gets

large and must disappear.

Discussion. There are (at least) two possible objections to
viewing the results of this section as reflecting negatively on
Grandmont [1985]. One is that Grandmont [1985] is concerned with
monetary cycles whereas the set up in this section rules out a
constant monetary steady state for all large T which is a prereg-
uisite for obtaining monetary cycles {see footnote 5, (¢}). Thus,
the cycles analyzed in this section are non-monetary cycles. Of
course, to the extent that one regards the assumption of a posi-
tive discount rate in this section as reasonable, one could con-
clude that it does not matter that monetary cycles {of any period)
do not exist because a constant monetary steady state does not
exist. However, there is an asymmetry with non-monetary cycles
because a constant non-monetary steady state always exists for
every T whereas (as we have just shown) non-monetary cycles of a
fixed period do not exist for any large T.ﬁ/ We will, in the next
section, discuss the existence (and robustness) of monetary steady
states, both constant and cyelical. Be that as it may, we think
that it is of interest that short period cycles {of either vari-
ety) do not exist in this class of OLG models with long lived
agents who discount the future. This also suggests that the
neglect of cyeclical steady states in Aiyagari [1986a] is not of

much consequence.
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A second objection relates to the specification of
preferences here because the period utility funetion U{-)} is the
same in every period. Grandmont's [1985] discussion is in terms
of the risk aversion coefficient being relatively high for old
agents, Quite aside from how to separate the young from the old
when people live many (as opposed to only two) periods, our speci-
fication with identical U(-) across periods and constant relative
risk aversion may not capture this. Even if the risk aversion
coefficient were varying instead of being constant, this may not
help because consumption at every age converges to the same value
i.e., permanent income (see footnote 5). Thus, in the limit, risk
aversion coefficients would be equalized across any two (fixed)
periods.ﬂ/

One possible way of handling this is the following.
3till focﬁsing on two-period cycles, supbose Wwe alter preferences

as follows. For i = 1, 2, agent i maximizes

: -Q
) 85-1{[01(5)] 1-1}/(1-a1)
s odd

1-a

+ ) 33"{(ci(s)] 2-1}/(1~a2).
5 even _

Thus, agents have different risk aversion coefficients in odd as
opposed to even periods of life., It then follows from (16) and
(17) that,

1=a 1-a

(35) V1(e) = K1(T)e 1/(1-a1), Vz(e)'= K2(T)e 2/(1-0.2).
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Equations (22) and (23} now indicate the sense in which this is
comparable to a two-period lived agent problem with different risk
aversion coefficients for the young and the old. The young in one
generation face Y9 while those in the next face Yo and so on. In
fact the analogy can be made a lot closer. The market clearing

conditions (3) and (4) can be written,

1 2,01 )
(36) e (1)4,B, + ()48, = | w_
"(37) e®(1)a,B, + e (248, = J w
171 272 s
where, ‘
5_1 (3-1) '1
2,2 2a,
Ay = Y (vivo) = (87/v4v,)
s odd
s-2 (2;2) o
2 2 2
Ay = Z (Y1Y2) (8 /7172)
s even
s=1 5-2
2a 2a
2 1 2
B, = 3 (B/v,v,) ,By= | (8y,v,)
1 s odd L 2 5 even 172

These follow because from utility maximization we have,

Ql—-

ol(s+2)

ci(s)

(62/7172) 1 for s odd

Ql—'

1t

(82/7172) 2 for s even.
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Further, we can directly solve problems (16) and (17) to see that,

el(1) = A1ei(1) and ci(2) = A.el(2).

2

Now, consider the case, Yy = 82 and w(s) = wy for s

T2

odd and w(s) = Wy for s even. Then the market clearing conditions

reduce to:

1 2 ~ -
(38 e (1} + e“(2) = Wi o+ W,
(39) (1) +el(2) = i, + iy

Together with (22) and (23) this is exactly analagous to a two-
period lived agent model. However, such a two-period cycle cannot

exist because it requires ¥ Yy = 1 to support it, which is not the

1
case.
However, it may be possible to get non-monetary cycles

With Y1yé - 82 and a, # ay. In this case, eguations (36) and (37)

reduce to:
el (1) (lim 28./T) + e2(2) (lim 2B./T) = w. +
— 2 1% ¥
e2(1) (lim 28./T) + el(2) (lim 2B,/T) = G, + i,

because,

2
Ay, By v (1-87).

1!
However, since a, * ap, it need not be the case that,

lim(2B1/T) = lim(ZBg/T)

and hence,



-23-

e'(2) - &2(2)
el (1) - e2(1)

need not converge to one,

Thus, in this case having a, = ay may permit such cycles

1
to persist (but, with amplitude going to zero) even as T tends to

infinity.

III. Monetary Cycles: Appendix A shows that neither constant nor

cyclical monetary steady states can exist for any large T if the
discount rate is positive (i.e., 8<1). It also shows that con-
stant monetary steady states can exist for all large T if the dis-
count rate is negative. Here, we will exhibit robust examples of
monetary cycles when B8 > 1. In a two-period monetary cycle,

Yy 1 and therefore (36) and (37) reduce to (38) and (39) where

W, o= Y w(s) and Wy = b w(s).
s odd S even
This happens because A1B1 = A282 = 1. Note that we do not require
Ww(s) to be constant over s odd (or s even). If a, = ay =a and T

is even, then the functions Vy(-) and V,(-) are identical (see

footnote 6) and utility maximization implies,

1 1 1

e1(2)/e1(1) = (8/71)0, e2(2)/92(1) = (S/Yz)a = (671)0.

Hence, equating (38) and (39) we have,

1 1

e1(1)[1-(e/y1)“ ) = e2(1)(1-(sv1)°].
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Since, 8 > 1> Yqr it follows that

B>ﬂ1 >1>Y1.

Further, the budget constraints are,
e1(1) + ¥ e1(2) =W, + Y, W
1 1 172
(1) + y]
Multiplying the second by Y, and adding the two we have,
(e'(+e®(@) + v (e'(@)+e%(1) = 1y M+,

It follows that one of (38) and (39) is redundant. It is
straightforward to compute the demand functions for e1(1) and

e2(2) and use (38) to obtain,

Wyt Y, (By,) (W +y, W,)

T 1

(1+BGY1 ¢ ) [1+B Yy ¢ ]

Positive solutions for ﬁ1 and ﬁz will exist provided,

1112
1-71 < BQ[Y‘}aﬂyi a] < 83(1_]'1)-

This requires an a of at least 2. In fact, it requires

Q|-
-
| —

< 8% (1- 2)
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and therefore, 8 > (1-2/a)7%, This implies incredibly large
values of either a or 8 or both. For example, if ¢« = 3, B8 > 27 or
8 > 7.39 even if a = =, However, robust examples of cycles (for
all large T, even) do exist. For instance, pick a = 10, B =
20, v, = .99, Y;1 = 1.01, w(s) = .097 for s odd, w(s) = .903 for s
even. This is a stationary monetary cycle that persists with
constant amplitude for all large T (even). Graphically, the
situation is as shown in Figure 3 with (ﬁ1,62) increasing along a
ray through the origin as T increases.

One reason why such large values of a and 8 are required
may be that we imposed a, = a, = a. If we allow a, and oy to
differ, then there is an extra degree of freedom which may expand
the set of robust examples.lg/ It should be noted that in these
monetary cycles with 8 exceeding one, the offer curve is posi-
tively sloped but consumpticen in even periods [e(2)] is a gross
complement for consumption in odd periods [e(1)]. This requires
(From {(25}-(27))} a sufficiently small w, relative to W, and a

1 2

sufficiently large a This happens because we took T to be even.

1
If T is odd, then the functions V1(-) and Vz(-) are not
identical because, as noted earlier, the definition of Vl(-) con-

tains an additional term in the budget constraint than Vz(-).

Since, Y, = 1 and 8 > 1, we see from footnote (6) that,
v, (e}
A 1
V (e) = k(T) g 2.
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As the discussion on page 10 shows, we require the offer curve to
be positively sloped and e(1) to be a gross complement to e(2).
From (25)-(27) this requires a large §1 relative to ﬁz and a

large ay. From utility maximization we have,

7;1 for agent 1

Va(e1)/8Vé(e2)

Yy for égent 2.

Hence, we have,
1 1
e'(2)/e'(1) = (8k(T)/y,)%, e®(@17ef(1) = (8k(T)v )%

This  together with market c¢learing then requires that

92(2) < e2(1) and e1(2) < e1(1) so that we want,

gk(T) < Y, < 1< yf.

Since k(T) is converging to 1/8° and g exceeds one the situation
is as graphed in Figure U4, which is similar to the case for a two-
period lived agenf model. It is clear that robust examples of
cycles corresponding to figure 4 can easily be constructed. It
should be noted that the offer curve in this case crosses the 45°
line at a gross interest rate equal to 8 {and not 3'1) because
Vi(e)/Vé(e) is converging to g2,

What is interesting is that the type of endowment pat-
terns that generate cycles (of period two) for T even do not
generate cycles for T odd and vice versa., The former requires the

total endowment in odd periods to be much smaller than that in

even periods while the ceonverse is required for the latter.
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The most important aspect of the examples is clearly
that monetary cycles can persist with undiminished amplitude,.
There is no tendency towards damping as there is for the case of a
positive discount rate.

IfAthe specification of a negative utility discount rate
for agents seems odd, one alternative would be to adopt the scen-
ario in Aiyagari [1986b]. There, the discount rate was taken to
be positive but population growth was allowed for. It was shown
that a constant monetary steady state exists if and only if the

discount rate is less than the growth rate, provided the risk

aversion coefficient is small. The proviso, clearly works against

the possibility of getting monetary cycles.

IV. Conclusions: The main results are,

{i) In stationary no growth OLG models where agents have a posi-
tive discount rate (8<1), short-period cyclical non-monetary
steady states cannot exist. Constant monetary steady states
do not exist for any T suffieciently large and consequently
monetary cycles of any period cannct exist. Non-monetary
cycles may exist and persist if agents exhibit systematically
oscillating (say, over odd and even periods of life) patterns

of risk aversion coefficients and endowments.

(ii) If agents exhibit a negative discount rate (8>1), then con-
stant monetary steady states exist for all T sufficiently
large and cyclical monetary steady states alsc can exist and
be undamped given suitable preferences and life-time patterns

of endowments. An example in which a two-period cyele can
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arise would be one in which agents exhibit a systematically
oscillating pattern of endowments (and, possibly, but not

necessarily, of preferences) as in (i) above.

Thus, the comment of Sims [1986], referred to in the
introduction, seems reasonable when agents have a positive dis-
count rate but not so, otherwise. We conclude that the case for
deterministic cyecles (and possibly also for stationary "sunspots"
equilibria) is weak in a class of OLG models with sufficiently

long lived agents, who discount the future positively.
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Footnotes

Yas he notes, this observation goes back to Gale

[1973].

2/These are similar in spirit to Spear [1985].

3/That cycles can arise in this framework is easily
shown by examples. A two-period cycle with two-period lived

agents occurs when, a = 3, 8 < 1/27, H1 = 1, W2 = 0. This cycle
is characterized by interest rates ry, and r, where, (1+1r~])'1 =
-1 1/ 1/3,2
B/X?, (1+r2) = B/xg, and, Xy, Xy = {[1-8 3]1[(1_3 3) -
2/331/2 R .
Ug ] }/2. Note that this is a monetary cycle; non-monetary
cycles do not exist in this two-period lived agent set up. How-

ever, if we have four pericd lived agents, then a two-period non-

.04,

monetary cycle occurs when, a = 10, 8 = .95, W; = 0l1, W,

Wy = .259, Wy = .66. This is characterized by, (1+r~1)”1 = .055

1t

and (1+r’2)'1 .059. A two-period monetary cycle can occur when,
o = 28.35, B = .00U4225, Wy = L9544, Wy = W3 =0, Wy = .0456. This
is characterized by, (1+r~1)'1 = 42345, (1+r‘2)'1 = 2.3616. Any
resemblance of these examples to reality is purely coincidental!
H/Even though the market clearing conditions are stated
only in terms of the commodity markets we also require that in
addition asset markets satisfy the condition that aggregate de-
sired assets be nonnegative., It can be shown that (following Gale

[1973]) if vy Yy # 1 then commodity market clearing implies asset

1

market clearing 1i.e., aggregate desired assets will be zero.

If Y, = 1 then aggregate desired assets may be positive or

T2
negative. If it turns ouf to be positive it can be suppeorted as a

monetary equilibrium with a fixed positive quantity of valued fiat
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money. However, if aggregate desired assets are negative when
V1Y = 1, it cannot be supported as an equilibrium (in our defini-

tion) and the only equilibria are those with Yy #+ 1 (i.e., non-

T2
monetary equilibria, following Wallace [1980]). Aiyagari [1986a]
shows that constant monetary steady states do not exist for any T
sufficiently large because aggregate desired assets when
Yy =Y T 1 diverge to minus infinity.

3/1n Aiyagari [1986a] attention was restricted to non-

cyclical steady states (Y1=72=y) but within generation heterogene-

ity was allowed. It was shown that,

a) every sequence of equilibrium y's converges to 8 as T gets
large, '

b) consumption at any fixed age s, converges to permanent income
evaluated using 8,

e) monetéry steady states do not exist for any T sufficiently

large.

2(1)

In the present context, suppose that cT(l) and ¢
remain bounded and bounded away from zero as T gets large. From
(6) and (7) this implies that A/T and B/T are bounded and bounded
away from zero. This immediately implies that x.x, » 1 and fur-
ther that (x1x2)T is bounded. Therefore, A/B converges to 1. It
must then follow from (9) and (10} that x;, %, » 1. Otherwise,
either 01(1) or 02(1) will become negative for some finite T.
Therefore, 18 and Yp converge to B.

Note that this argument only shows that the amplitude of

eycles must go to zero as T gets large. It does not bhear on

whether such equilibria can exist.
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8/pirect computation from (16) and (17) shows that,

Vy(e) = k(1) e'™%/(1-a) and V,(e) = ky(T) e\ /(1) unere,

{s-1) (s-1) o
2 2 2a
k,(T) = { {y,v,) (8/v,v,)
1 s gdd 1°2 172

L

[ . (5-2) (s-2) | o
QM =4 T Gy 2 (8 7yn) *

{S ever

Therefore, if Y95 > 82 < 1, then, kl(T), kz(T) *> (1~62)-u.

7/Boundedness above is sufficient for interest rates to
converge to (1-8)/B. Boundedness away from zero also guarantees
that consumptions converge to permanent income.

§/It would have been nice if there was some way we could
appeal to Sarkovskii's theorem - (see Grandmont [1985], p.1019,
Theoreﬁ b.3) to rule out cycles of periodicities other than two.
This does not seem possible here.

Q/The convergence of consumptions is not uniform. While
it is true that c(s) converges to y (say) for each fixed s (as T
gets large), it is not true that c¢(T) or ¢(T-1) converges to y.

lg/ﬂt the expense of a rather strange specification of
preferences alternating over odd and even periods of life, in

addition teo similarly alternating endowments.
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Appendix A

Here we show that constant monetary stzsady states
(y1=12=1) cannot ccecur for any T sufficiently large, if B is less
than cne,

Define consumption {(¢) as a function of marginal utility

{(p} by
p = U'(e(p))

and assume that the risk aversion coefficient is bounded above,

i.e.,

-cU" - c(p)
Ut~ pet(p) ~

0 < a(p) =
It then follows that,

1n c(p) + d 1n _c(xp)|- 1n a

In c(ap) dIn A A

in e(p) - ln A/c(;p)

11

where X 1is between A and one.

Therefore, we have,

Q|-

i) if X > 1 then c(ap)}/c(p)

A
>

e |-

ii) if A < 1 then e{ap)/c{p)

v
>~

With Yy =Yy ® 1, the budget constraint and the market clearing

condition are identical and give,

) els) = § w(s).

5 3
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Utility maximization implies, ps+1/ps = 3'1

where pg = U'{c(s)] or
equivalently e{s) = c(ps). An expression for the per capita

desired assets of the population is given by [Aiyagari, 1986a],
17T
ap = T } s(e(s)-w(s)).
sz

Now, suppose as in the paper that 8 < 1. Then, using (i) we have,
1

e{s+1)/e(s) < g®

and hence,

Since the sequence w(s) is bounded and bounded away from zero, the
first term above remains bounded whereas the second diverges to
minus infinity. Hence agp + - = and a constant monetary steady
cannot exist for any large T.

The proof for non-existence of cycles proceeds iIn a
similar way. For example, for two-period cycles, the expressions
for per capita desired assets in high interest rate (aT(T)) and

low interest rate [aZ(T)] periods, respectively are given by:

1

a (T) = T ) iﬁ%ll [01(3)-w(s)] + v ) % [c1(s)-w(s)]
3 odd S even
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a2(T)

5

and these will
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s odd 2 s even

e CRO O R7A) 2(02(5)-“(8”}

{ﬂ’ ] 0 emuie)) + ] 2 (el e)-us)

s odd s even

odd 2 s even

y {s+1) {02(3)-N(S)] + Y;1 Z % (02(5)'w(s)] }

tend to - = for exactly the same reason.

On the other hand, if 8 > 1, then it is easy to con-

struct robust examples where a monetary steady state exists for

all large T.

Suppose that the coefficient of risk aversion is

constant and equal to a. Then,

U (cs

Rj—

. o . _
)/8U (°s+1) = 1 implies Copr = G5 B -

From the budget constraint we have,

(s-1)

Y wis) =) e(s) =c(1) ] 8

Therefore, the

1]

expréssion for arp becomes,

(5-1)

1 1
T z 5 c(1) 8 - T Z s w(s)
(s-1)
1 (}s8 Jiuls) 1
T G-T) -T Z s wis)
)8
{s-1)
}s8 Y s w(s)
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This expression will be positive for all large T provided that
} s w(s)/T } w(s) is bounded away from one (it is always less than
one). This is because the first term in parenthesis is converging
to one. If, for instance, w(s) is constant, then the second term
converges to 1/2. This remains true if w(s) is constant sepa-
rately over odd and even s. It follows that a constant monetary
steady state will exist for all large T for a wide pattern of
lifetime endowments.

It should be noted that each of the above results car-
ries over even if the risk aversion coefficient fluctuates aver
odd and even periods. We simply have to consider separately sums

over odd and even s.
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