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James Tobin's '"q theory" is one of the most prominent current
macroeconomic theories about firms' demand schedule for a flow of invest-
ment. According to that theory, there is at most times a discrepancy
between the price of existing capital goods, say as reflected in the
bond and equity markets, and the price of newly produced capital goods.
Tobin calls the ratio of these two prices q. Tobin posits that q is an
important argument of firms' demand schedule for investment. 'The rate
of investment--the speed at which investors wish to increase the capital
stock--should be related, if to anything, to q, the value of capital
relative to its replacement cost,'" [20, p. 21]. Such a theory must
necessarily stem from a model in which "frictions' are present that
prevent the price of existing capital from being driven equal at all
times to the price of newly produced capital. For example, in ''putty-
putty" versions of one-sector growth models, q is always unity. Further-
more, in such models firms have no investment demand schedule, a point
emphasized by Tobin [18, 19].

A simple model possessing the friction necessary to permit g
to diverge from unity is the putty-clay version of the one-sector growth
model. In this model, newly produced goods can either be consumed or
used to augment the capital stock. But once in place, capital cannot be
consumed. The irreversibility of investment is the friction that permits
q to diverge from unity and which makes it possible for aggregate invest-
ment to be positively correlated with q. However, the population regression
of aggregate investment on q is in no sense an "investment demand schedule,"
instead being a mongrel relation that reflects all of the parameters of
the model. An econometrician studying such an economy would have no

cause to fit such a regression if it is the economy's structure that he
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is after. Among other things, there is a massive "simultaneity problem."
Not only does q, taken as a random process, influence investment decisions,
but investment decisions influence q as a random process. But it is not
merely a purely econometric simultaneity problem. There are serious
theoretical questions about the precise sense even in which agents that
can legitimately view q as exogenous exhibit investment behavior that
can be described as a function mainly or solely of q. Indeed, the model
in this paper exhibits a feature that probably characterizes virtually
any model that possesses the friction necessary to make q diverge from
unity: the very same source of friction that makes q diverge from unity
also converts agents' decision problem into a nontrivial dynamic one,
the solution of which will in general not assume a "myopic" form such as
a simple contemporaneous demand schedule relating current investment to
current q. Instead, investment decisions will necessarily be functions
of agents' views about the future, the current state of which cannot in
general be summarized by a single variable such as q.

This paper uses a putty-clay version of the stochastic one-
sector growth model as a vehicle for making some observations about the
q theory of investment. We are attracted to the stochastic one-sector
growth model because it is perhaps the simplest coherent general equilibrium
model available in which one can discuss the mutual determination of
investment and q. The one-sector stochastic growth model has been well
studied (see e.g., Mirman [15], Brock and Mirman [6] and Mirman and
Zilcha [16]), so there is nothing analytically original here. However,
because we are discussing a putty-clay version of the model, rather than
the putty-putty (existing capital can be consumed) version that is
extensively discussed in the literature, we have to spend some time

discussing the nature of corner solutions in which the constraint that
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existing capital can't be consumed is binding. It is at best at this

point that there is any analytical novelty.

2. A Market Interpretation of the Model

Production is governed by

Vg, = Bk I8,
where y is output per man, and kt is capital per man at t; et is a
positive, independently and identically distributed random variable. We

assume that f(+) is twice continuously differentiable and satisfies
£'(k) > 0, £"(k) < O

EV(Q) oy £ (o] come O

All consumers are alike and have bounded one-period utility
function u(ct,gt), which we assume is twice continuously differentiable.
Here c. is consumption per man and € is a random shock to preferences.

We assume that e is independently and identically distributed. We

assume
u(c, ¢) < M for all e¢,¢ for some M > 0
uc(c,g) > 0, uCC(C’E) <0
ucg(c,s) >0

UC(OQE) = o, uc(myﬁ) = 0.
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We assume that the random processes et and e, are distributed
independently of each other at all dates. We assume that the joint
process (et,gt) has a continuous joint probability density function with

cumulative distribution function

F(g,e) = Prob{etie,etia}

for all t. We assume that there exist numbers 6 > 6 >0and £ > e>0
such that Prob{8 < 8 <8, ¢ <€ <€} = 1. We assume that F(8, ¢) has

a strictly positive density on the rectangle {6 < 6 < 0, € < e < g}.

We assume that in a given period, all agents draw the same
(et,et). Since all agents are assumed alike in the sense that they have
the same utility functions and have access to the same technology and
market opportunities, we shall assume that there is a single represen-
tative consumer. The consumer views himself as a perfect competitor and
views economy-wide outcomes as independent of his own actions. This
means that we must distinguish between the economy-wide state, which the
consumer takes as given, and the consumer's own state variables, the

evolution of some of which are a matter of choice to the consumer. In
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equilibrium, the economy-wide state variables equal the representative
consumer's state variables, but the consumer is assumed to ignore this.l
The state of the economy at time t can be characterized by the
values of (Kt,et,gt) where Kt is the economy-wide capital-labor ratio at
the beginning of period t, 0, is the random shock to productivity realized
in period t and €4 is the random shock to preferences realized in period
t. The state of the individual consumer at time t is characterized by
his stock of capital at the beginning of t, kt’ and also the same shocks
€ and et that affect all agents' preferences and opportunities. The
consumer's supply of labor is identically one, so that kt also equals
his capital-labor ratio. At time t, the consumer can rent his capital
to firms at a competitively determined rental ro measured in output per
unit capital per unit time. Furthermore, during period t the consumer

can buy or sell claims to existing capital to be carried into period

(t+1) at a competitively determined relative price pK(t) measured in

units of new output per unit of capital. According to one possible
interpretation, the relative price pK(t) is precisely Tobin's q. During
period t households also buy newly produced output, consuming an amount
cy and carrying an amount it into next period as capital. The relative
price of newly produced capital goods in terms of consumption goods is
unity. Finally, the consumer inelastically supplies one unit of labor
and is paid a competitively determined real wage L measured in output

per unit labor.

The consumer's problem is to maximize
(1) E, I 8%ule,,e.), 0 <
0 ule,e ), 0<8<1,
t=0
where EO is the mathematical expectation operator conditional on information
available at time 0, subject to the sequence of budget constraints for

t=0; 1; 25 5 & s
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d
+1i < -
c, + pKtkt Syt + rtkt + (1 G)pKtkt

d . .
kt+l = kt + lt’ ¢ 2 "

where

8 = rate of depreciation of capital, 0 < § < 1.

c. = consumption per unit labor.

ki = amount of old capital held at end of period t.
it = amount of newly produced goods to be used as capital.
kt = amount of capital per unit of labor at beginning of period t.

The consumer seeks to maximize (1) with respect to the choice of stochastic

processes for s i and ki given the information he has at each period

t,
and given the constraints that he faces. To make the consumer's problem
well posed, we suppose that the equilibrium relative prices in the

system can be expressed as continuous functions of the economy-wide

state variables, so that

T, = B0 0
(2) Pxe = pK(Kt,et,St)
Ve T w(Kt’et’Et)'

We assume that the representative agent in the economy knows the three
functions listed in (2) and that at time t he knows the values of et’
Ers and the economy-wide capital stock Kt. We also suppose that Kt

follows the law of motion

(3) K S h(Kt,e )

e
t+1 £t

where h is a continuous function. We assume that this aggregate law of



= =

motion is known to the representative agent and is perceived by the
agent to be independent of his own decisions. Let us denote the four
functions in (2) and (3) as f.

For a given selection of the four functions in (2) and (3),
the household's problem is equivalent with finding an optimal value

function J(k,8,e;K,f) which solves the functional equation

(4) I, 0,6K,8) = max  {u(w()+r(kk(1-8)p, (Vk-py (k-1 €)
1>0, k450

B st(kd+i,a‘,a';h(K,e,a),f)dF(e',a')}.

Here the functions w(+), r(-), and pK(-) have as arguments (K,6,€). For
a given selection of the functions in f, it is possible to prove that
the functional equation has a unique, continuous bounded solution
J(k,e,a;K,f);g/ The right side of (4) can be shown to be uniquely

3/

attained by continuous functions—

e
|

= i(k,0,e3K,f)

= c(k,0,e;K,f)

(¢]
I

K% = 5%k, 0,85%,0) .

It can also be proved that J(+) is strictly concave in k and that J has

4/

a continuous and bounded partial derivative with respect to k.—

The first-order necessary conditions for the maximization

problem on the right side of (4) aregf

(5) 2 ~u, (e, )Py (K, 8,€) + Bka(kd+i,9',E';h(K,B,e),f)dF(B',ﬁ')

<0,=0if k4 >0
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(6) I —uc(c,E) + Bka(kd+i,8',€';h(K,8,a),f)dF(B',e') <o,
=0 if 1 > 0.

The partial derivative of J(*) with respect to k can be calculated from

4) to be?

) 3, (k, 8,65, £) = u_(c(k,8,¢3K,£),€) [r (K,0,6)+(1-8)p, (K,0,¢) ]
Conditions (5) and (6) tell something about the sense in which

there is a "q theory'" of investment in the present model. Use (7) to

write (5) and (6) as

(8) (0 o B P (K0 00 87, )
+Bfu (e ey PR 0y e HI=OR (K 00406 D IAF(8 0640 <0,
=0if k¥ >0
j =t
(9) —uc(ct,at)

+ Bﬁ‘c(ctﬂ' o) [T R 15 0gy s S ) F (L8P (K 1150 1oy )1AF (B, g6 4g) < 05

0 if it > 0.

Now in equilibrium, kg must exceed zero, so that (8) will be satisfied
with equality. It then follows that pK(K,G,E) < 1. The marginal condi-

: 5 g S _ 8 o = 9.
tion (9) shows that i, will be >0 only if Pre pK(Kt, it t) 1
However, notice that the marginal conditions (8) and (9) necessarily
involve the agent's perceptions of the distribution of one-period-ahead

values of the rental r = r(K ) and the relative price

t+1 4120 e41°% 11

). In general, the agent's choice of i

- 0
Pretl = PR Rer12% 1% 041 t

depends on all of the current state variables that help determine the
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conditional distribution of future values of Pk and r. In a limited
sense, the first-order conditions (8) and (9) do provide some foundation
for the '"q theory'" of investment demand. But it is really the function

pK(K,G,g) or put differently, as a stochastic process, and not only

Px
the current realized value of Pre that influences investment at time t.
The marginal conditions (8) and (9) make it clear that some

carefully spelled out view about the stochastic processes (law of motion)

of must be attributed to agents in order for the

Kt+]_’ Tev1? - Pre+1
decision problem to be well specified. The restriction that we have
imposed, that agents' perceptions of those laws of motion are accurate,

is the hypothesis of rational expectations.

We can think of production as being determined by competitive

firms which rent capital and hire labor to maximize profits
n = ndf(k) - w(')nd - r( )k - nd

where f(k) is output per man, k is the capital-labor ratio of the
representative firm, and nd is the employment level of the representa-
tive firm. The first-order necessary conditions for a maximum of profits

are
£'(k) = r(X,0,e)
f(k) - kf'(k) = w(K,0,¢).

We can now give a definition of equilibrium.
Definition: An equilibrium is a five-tuple of functions

r(K,0,e), pe(K,8,e), w(K,0,e), h(K,0,e), and J(k,0,e;K,f) such that--

i. The functional equation (4) is satisfied with the right-hand
side being attained by the continuous policy functions

1(k,0,63K,£), c(k,0,e;K,£), and k3(k,0,6;K,£).
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i1, (16 = k3K, 9, 5K, £) .

111, K, = 1(K,9, &K, £) + K9k, 8, &K,f) = h(K,6, ).

iv. The marginal conditions for firms are satisfied with
f'(K) = r(K,9,¢
£(K) - KE'(K) = w(K,0,¢€).

Condition (i) says that consumers are maximizing expected utility, given
the random processes they are facing, which includes the Markov process
(law of motion) for the economy-wide capital labor ratio K. Condition
(ii) says that the market for existing capital clears at the end of each
period, so that when the representative agent starts a period with a
capital stock of K, he ends up demanding exactly (1-6)K units of exist-
ing (old) capital to carry into the next period. Condition (iii) says
that the consumer's perceptions of the law of motion for the aggregate K
turn out to be correct; that is, those perceptions are implied by the
representative agent's solution of the maximum problem on the right side
of (4). Condition (iv) states that firms are on their demand schedules
for factors and that the factor markets always clear.

We shall follow Lucas and Prescott [l4] by studying the
equilibrium of the model only indirectly by studying the planning prob-
lem that reproduces the competitive equilibrium. In the next section we
study the version of the Cass-Koopmans planning model that is isomorphic
with the market model of this section and which generates as a shadow

prices for capital the correct function pK(K,B,E).



= 11 =

3. The Planning Model
The planning problem is to choose a contingency plan for It
which maximizes
B b
€
(10) EOtZOB u(C,,€.)

subject to

c, + I, <f(K)e,

K 5 = (1-—6)1{t + It

t+
where
Ct = consumption per man.
It = gross investment per man.
Kt = capital per man.

Solving the planning problem is equivalent with solving the following

functional equation in the optimum value function v(K, 6, €)

(11) v(K,0,e) = max{u(f(K)6-I,e)+8[v((1-8)K+1,08',e')dF(8",e")}.
I>0

The solution v(K,8,e) gives the maximum value of (10) starting from

state (K,8,e) at time 0. Associated with the functional equation (10)

is the operator T defined by

(12) TS(K,SgE) = max{u(f(K)9_19€)+8Ig((l_6)1{+1,6l9€l)dF(8':E‘)}'
>0

3+ . . . 3+ .
Let L~ be the space of bounded continuous functions mapping R into
the real line. Then it is readily verified that T maps bounded functions

into bounded functions. Application of the "maximum theorem" of Berge

[3, p. 215, 216] shows that T maps continuous functions g into continuous
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functions Tg. Therefore, T is an operator on the space of bounded
continuous functions L3+, mapping bounded continuous functions into
bounded continuous functions.

As a norm on L3+, take

||&,-8,|| = sup |g,(K,0,e)-g,(K,6,¢)]
1. =2 1 2
»0,€

3+. With this norm, the space (L3+, l

where glaL3+, gL |) is complete,
so that the contraction mapping theorem is potentially applicable.zj
It can be verified that the operator T satisfies Blackwell's

[5] pair of sufficient conditions for T to be a contraction operator:

i. T is monotone, i.e., if gl(K,e,a) Z_gz(K,e,g) for all (X,0,¢c) R3+,

3+
then Tgl(K’a ’3) > ng(K!SQE) for all (KSB)E)ER .

ii. For all constants y and all ggL3+, T(g+y) = Tg + By.

By virtue of Blackwell's [5] theorem 5, satisfaction of (i)
and (ii) implies that T is a contraction mapping. Therefore, applica-
tion of the contraction mapping theorem proves:gf

Proposition 1: The functional equation v(K,8,e) = Tv(K,8,¢)

has a unique continuous bounded solution v(K,9,¢). Furthermore, given

any VOEL3+, lim T" ., » v where the convergence is in the sup norm. This

0
Il
implies that the convergence is uniform.

It is also possible to prove:

Proposition 2: The value function v(K,0,e) is strictly concave

in K for each fixed pair (g,¢).
This follows because T maps concave functions into strictly
concave functions.

We also have:
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Proposition 3: The value function v(K, 8, €) is uniquely

attained by the single-valued policy function I = I(K,8,e). The func-
tion I(K,6,e) is continuous.

Uniqueness of the maximizing value of I is implied by the
strict concavity of u(+) and v(+*). Continuity of the policy function
I(*) is implied by the "maximum theorem'" of Berge [5, p. 215-216].

Now choose VO(K,B,E) to be nondecreasing in K, strictly concave
in K, and continuously differentiable in K. Define vj+l(K,8,e) = ij(K,B,E).
We shall show that vj+l(K,B,e) is continuously differentiable in K for
each fixed (0,e), provided that vj(K,B,e) is continuously differentiable

in K for each fixed (6,e). Consider

(13) VJ+1(K,B,E) = max {u(f(K)B—I,E)+BIVJ((1—6)K+IJ,6',&')dF(B',€')}
150

and assume that VJ(K,B,e) is nondecreasing in K, concave and continuously

differentiable in K for each fixed (6,c). The first-order necessary

9/

condition for the maximum problem on the right-hand side is—
(14) —uc(f(K)e—Ij,e) + vag((l—G)K+Ij,6‘,5')dF(6',e‘) <0,
=0 if 10 > 0.

Let ij = éj(K,B,e) be the solution of (14) with equality replacing the
inequality, so that éj(K,e,e) would be the optimal rate of investment
given terminal reward function vj(-) if the inequality constraint 1] >0
were not present. Then the optimum rate of investment Ij implied by

(14) is

1 = t(k,0,e) = max(0,g7 (x,8,¢)).
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That IJ(K,6,€) is continuous is implied by the maximum theorem of Berge.

We consider three sets for (K,0,e):
i. the set of (K,8,e) such that 17 > 0.
ii. The set of (K,8,e) such that I3 = 0 and g (K,0,¢) < O.

iii. Points (K,8,e) such that gl (K,8,¢) = O.

On the first set of points (K,8,e) such that > 0, Benveniste and

J

+1 i ¥ g
Scheinkman's [2] theorem implies that Vv (K,6,e) is differentiable

in K with derivative given by

j+1

(15) Vg

(K, B, E) = U.C(f(K) B‘IJ (K,G,S) 5E> [f' (K)e+(l_6) ] .

On the second set of points (K,8,¢c) such that IJ(K,B,E) = 0 and éJ(K,e,E)
< By IJ(K,G,e) is differentiable in K with derivative zero. Then direct
calculations on (13) show that VJ+1(K,B,€) is differentiable with respect

to K and that
(16) vy E,e,e) = u (E)6,0)E (KD
+ B(1-6) [V ((1-8)K+TI (R,8,6),0 5" )AF (8" e ).

Now consider the third set of points (K,8,e) such that Ij(K,S,e) =0 =
;j(K,G,e). At such points Ij(K,e,a) has a right-hand derivative with
respect to K. The argument used for set (ii) implies that Vj+1(K,8,e) is
differentiable from the right at points in set (iii), with right-hand
derivative given by formula (16). We now undertake to show that vj+1(K,B,€)

is also differentiable from the left in set (iii) and that the left-

hand derivative is also given by (16).



- 15 -

First note that in region (i) since ) > 0, the first order
necessary condition (14) holds with equality. Substituting (14) with

equality into (15) yields

K, 0,0) = u (F@)6-T) (K,8,6),6) " (K6

(17)

+ B(1-6) [v] ((1-6)K+T7T (K,8,€),0",€")dF (8" ,€") .

Thus, (17) holds for sets (i) and (ii) and also gives the right-hand
derivative on set iii. We wish to show that the left-hand derivative of
Vj+l(K,8,€) exists at points in set (iii) and also equals (17). Let
(K,0,e) be in set (iii), and let A > 0. We know that vj+l(K,8,€) is
continuous on the closed interval [K-A,K] and is differentiable on the
open interval (K-A,K), each point of which is in set (i). By the mean
value theorem for derivatives, there exists a point £ belonging to

the open interval (K-A,K) for which

k0.0 - VT R-D,0,6) | i+l
A K

(€,0,€) .

Taking the limit as A goes to zero proves that the left-hand derivative
of vJ+l(K,8,E) at (K,0,e) exists and equals the limit of the derivatives

At

X (£,8,e) as £ approaches K from the left. From (15) or (17), we

know that this latter limit exists since the right-hand side of (15) or
(17) is continuous in K. Therefore, we have that the left-hand deriva-
tive of vj+l(K,8,€) at K exists and equals the right side of (17), as
does the right-hand derivative. In summary, it follows that for (K,0,€)
in all three regions, the partial derivative of vj+l(K,8,E) with respect

to K exists and is given by (17).
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We have now proved:

Proposition 4: Choose vO(K,e,g) to be nondecreasing and concave in K with

bounded and continuous partial derivative in K. Generate the sequence
vJ(K,B,e) = TJVO(K,B,E). For all j > O, vJ+l(K,6,E) is continuously

ol B

differentiable with respect to K with a partial derivative v

(K,0,e)
satisfying equation (17).
Now choose VO(K,G,e) so that it has a continuous bounded

partial derivative in K for each (8,e). Consider the mapping S associated

with (17), namely,
(18) (58) (K,6,) = u_(£(K)O-T7 (K,0,¢),e) ' (K)®
+ 8(1-8) [g((1-6)K+TJ (K,6,6),0 ", ")AF(8",e") .

The mapping S is an operator that maps bounded continuous functions
g(K,f,e) into bounded continuous functions (Sg)(K,8,e). Further, we
have:
i. S is monotone, i.e., if for every (K,6,e), gl(K,S,s) >
g,(K,0,¢) where gleL3+, g25L3+, then (Sg,)(K,0,¢) >
(ng)(K,e,s) for every (K,0,e).
ii. For every constant y and every gEL3+, S(gty) (K,8,e) =
(Sg) (K,8,¢) + B(1-8)v.
Application of Blackwell's theorem 5 then shows that S is a

contraction mapping. We therefore have proved

Proposition 5: Suppose VE(K,B,e) is continuous and bounded.

Then vﬂ(K,B,e) exists for all j > 1 and the sequence of functions

V%(K,S,E) = SJVE(K,G,E) converges uniformly (i.e., in the sup norm) to a

bounded, continuous function VK(K,B,E).
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From the uniform convergence of Vj(K,B,E) to v(K,8,e) and the
uniform convergence of vi(K,e,g) to ;K(K,e,e) we immediately have (see
Apostol [1, p. 238-239]),

Proposition 6: The value function v(K,8,c) is continuously

differentiable in K with VK(K,e,a) = ;K(K,e,g). The partial derivative

obeys the equation
(19) v (K,0,) = u (£(K)O-I(K,0,€),e)£" (K)O
B(1-8) v, ((1-8)K+I(K,8,€),0",e")dF (0" ,e").

Proposition 6 implies that the first-order necessary condition

for the maximum problem on the right side of (11) is

(20) -u_(£(K)0-L,e) + vaK((l—G)K+I,B',E')dF(3',6') <0,

=04if I > 0.

Proposition 6 implies that obvious candidates for the equilibrium

price functions r(K,0,e), pK(K,B,E), and w(K,0,e) are

£ (K)®

r(K,6,c)

]

(21) w(K,8,e) = £(K)O - KE'(K)®
pK(K,B,E) = {uc(f(K)G—I(K,G,a),a)}—l.

sva((l-a)x+I(K,e,s),e',s')dF(e',a').

It can be verified that with these price functions and with h(XK,0,€)

taken to be given by

(22) h(K,0,¢e) = (1-8)K + I(K,9,€)
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the market model of Section 2 is in equilibrium with the representative
cousumer's choice of i(K,8,e; K,f) equaling I(K,6,c) the planner's
investment plan, and with the representative consumer's choice of c(K,8,¢;
K,f) equaling £(K)6 - I(K,0,€). This can be verified by noting first

that with (21), firms' marginal conditions are satisfied. Second, note
that with (21), (22), and the proposed choices of i( ) and c( ), the
marginal conditions for the representative agent in the market problem
exactly match the planner's marginal condition (20). For example, with

the suggested substitutions condition (9) becomes
—uc(f(Kt)et_I(Kt’et’et)'Et)

B (E R )84T 50y1 5041 2B

-1
- ' —
[£' (K10 4+ (1=8)u (ER )0 =T (150, 499E049)2€ 1)

-ijK((l—G)Kt+l+I(K ),0 )dF (6 )11

412 0412 Cea1? O e t+2° 5 t+2

dF (0 ) <0

t+l’€t+l

with equality if I(Kt,et,at) > 0. But notice that from (19), the term

in braces simply equals VK(K Therefore the above

417064171 -

inequality becomes
_uc(f(Kt)et_I(Kt,et’Et)’Et)

+ Bfv (K )dF (0 ) <05 =04if I_> 0.

H&’t+F€H¢ t+1° S t+1

This is equivalent with (20), as claimed.
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Martingale Properties

From (17) and the first-order necessary condition (20) we have

Vi (Kio8paey) = vK((1"5)Kt—1+1(Kt—l’et—l’et—l)’et’Et)

> [£'(R )0, +(1-8) 18[v, (1-8)K HL(K )dF (s

£200fe) Ce100 e t+1°Ee+1)

with equality for I(Kt,et,gt) > 0. Integrating both sides with respect

to dF(Bt,gt) gives

BIV((1_6)Kt_l+I(Kt_l:et_1sEt_l)’etsﬁt)dF(etsEt)

> B[IE' (R0 +(1-8) 18 v (-8R +T(K, 10,580 ) 504750041 dF(0 y5e 4y
or
u (C(K ,8 5 E ),E )
(23) Ppr_q > E _{[QQ-6)+£'(K )6 ]-Bp cohER e e e 3
Kt-1 t-1 B g Kt uc(c(Kt_l,Bt_l,st_l),gt_l)

where c(K,8,e) = f(K)g - I(K,0,e). Expression (23) shows that even
adjusted for "dividends'" and time preference, the relative price of
existing capital is not a martingale, for essentially the same reason
that the martingale property fails to hold in the models of Lucas [11] and
Danthine [7]: the presence of corners, making (23) an inequality, and the
presence of risk aversion, which is reflected in the failure of uc( )

to be constant as a functlon of consumption. The same message emphasized

)dF(Gt, E".1
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by Lucas and Danthine is carried by the present model: failure of the

relative price Py to be a martingale does not reflect on whether or not

markets are in equilibrium.

Restrictions on 'Slopes'
The evolution of the aggregate capital stock is governed by

the stochastic difference equation

~
]

4l = (1=8)K, + T(K.,0,.¢,)

b(Kt’st’gt).

In studying the "stability'" of this difference equation, we will need
information about the slopes of b with respect to K, 8, and ¢. The
following argument is taken from Lucas.ig/ Rewrite the functional equation

(11) as

(24) v(K,8,e) = max {ui{ (1-8)K+£(K)o-y,e]
y>(1-8)k

+ BIV(YQB'nE')dF(e')E')}
where the right-hand side is uniquely attained by

b(K,e,a}

]
]

I(K’B,E) & (1_6)K'

Let us choose vO(K,e,g) to be continuous, bounded, strictly concave,

and twice differentiable in K. Then it follows that for all j > 1,
vj(K,a,g) = TjVO(K,B,g) is twice differentiable in K (almost everywhere).
This property is useful in establishing restrictions on the "slopes'

of b(K,8,e). To establish this property, assume the VJ(K,e,e) is almost
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everywhere twice differentiable in K. Let bj(K,B,a) attain vj+l(K,8,a).
Then off corners, the first-order necessary conditions for the maximiza-
tion of {u[(1—6)K+f(K)8—y,E]+BIVj(y,e',a')dF(B',a')} are satisfied with

equality. Differentiating the first-order condition shows that off

corners, bJ(K,e,a) is differentiable with

j u_ < [(1=8)+£'(K)e]
(25a) :E - RE >0
ucc+ﬁfv%K(y,8',E')dF(e',E')
3 u
(25b) 32 . s <0
ucc*'ﬁfVKK(Y,e 'se')dF(0";e")
] G 7 679
(25¢) gg = e > 0.

u, HB[VR (756", )AF(8" e ")

The terms fv%K(y,a‘,g‘)dF(e‘,g') are well defined by the assumed (almost
everywhere) twice differentiability of Vj, and the assumption that F(8,¢)
has a continuous density function and so assigns zero probability to points
where vj(K,e,a) is not twice differentiable. Where bj(K,G,a) = (1-6)K

and gj(K,e,g) <0 (i.e., in our region ii), bj(K,e,g) is differentiable
with abj/aK = (1-8), abj/ae = abj!ae = 0. In region (iii), which is a

set of Lebesque measure zero, bj(K,a,g) is not differentiable. Now write

(17) as
R, 0,6) = u (F(R)o+(1-6)K-bI (K,0,6) ,e) £ (K)o
+ 8(1-8) [v3 (b3 (K,0,¢),0",¢")dF (8" ") -

Differentiating with respect to K gives
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j+l

T Ry0,) = u_ £' (K08 [£' (K)0+(1-8)-b] (K,0,¢) ]

V.
+ 8(1-6) v (63 (K,0,6),0 "6 NAF(8 " 16 ) bR (K,0,€) + u_£'" (K)o.

Since the right-hand side exists almost everywhere, so does the left.

So we have established that if vj(K,G,e) is twice differentiable (a.e.) in
K, then SO is vj+1(K,e,g). It follows that iterating with T on a
VO(K,B,E) that is continuous, bounded, strictly concave and twice differ-
entiable in K gives rise to a sequence bj(K,G,e) of approximate policy
functions each member of which satisfies (25) off corners.

j+l

Notice that where VKK

(1-8)X so that (25) applies, we have

(K,8,e) is attained with b](K,B,E) >

j+l = e
VKK (K,0,€) ucf (K)e +

u
[ o

j ] L]
u 8 v dF(8 ")

uccf'(l()e[f'(K)B—i-(l—é)— ((1=8)+£'(K)6) ]

u
ccC

+ 8(1-8) [v] dF(s",c") - ((1-6) + £'(K)®)

j 1 ) ¥
uCC+BIVKKdF(a sE )
or

B[V dF (8" se")
(K,6,6) = ——=— Cuy e Q=9+ )617 + u £ ()0
U B[V dF (6" e")

j+1
KK

v

It follows that off corners

(26)  veel®,0,0) 2u  + (-4 (6] + u £ @0

"On corners,'" i.e., when vi;l(K,e,g) is attained where bj(K,e,a) =

(1-§)K, we have
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V_]+l

(27) KK

(K,0,6) =u__ * [£'(K)8]% + u 11 ()6
+ B(1-8) 2wl ((1-6)K,6",e")dF (0" ,e").

Evidently, (26) and (27) imply that fvix(bj(K,e,a),8'33')dF(9',E')
is uniformly (in j and K) bounded in absolute value on the compact interval
[Ke’ Ku], where Ku > Ke > 0.
The boundedness of fv%KdF(e',a') together with (25a), (25b)
and (25c) imply that off corners for K in the compact interval [Ke’Ku]’ Ku>Ke>O,
the derivatives abj/BK, abj/ae, Bbjlae remain uniformly strictly bounded
away from zero in the directions given by (25).
The differentiability of bj(K,B,E) does not necessarily carry
over to the pointwise limit function b (K,8,e). However, the restrictions
that the derivatives in (25) impose on the finite differences of bj(K,B,a)

do carry over to b(+,+,+). In particular, we have that off corners

b = B 2
(KZ,B,E) (Kl,e,e) > al(K2 Kl) » 0g > 0

Kl, Kza[Ke,Ku]
b - b -
(K,Bz,e) (K,el,e) < a2(62 81)

oy <0

IS

- - a_ > 0.
b(K,8.e,) - p(K,0,e0) < aj(e,~e,), 370

These restrictions are used in the appendix, where we discuss how to
adapt Mirman or Lucas's proof of the stochastic stability of the difference

equation K = b(Kt,Bt,Et).

t+1
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4. Sample Economies
The preceding section shows that aggregate investment It and

the relative price of existing capital Pg, can each be expressed as
continuous functions of the aggregate state (Kt,e

€
&2 t)

PKt = PK(Kt’et,Et)

It = I(Kt’et’gt)'

It was shown that each of these functions reflects all of the parameters
of the economy. In particular, the forms of both pK(-) and I(+) depend
on (i) the form of the utility function u(c,e), (ii) the form of the
production function f(K)&, and (iii) the nature of the distribution of
random shocks F(et,gt). Thus, while the model can be seen to imply a
pattern of covariation between It and PKt’ the nature of that covaria-
tion reflects consumers' preferences, technology, and the probability

distribution of the shocks 6§ and ¢.

To make this point more formally, let
1 - 1 :
P(K'|K) prob{kK_,, <K |1<t K}
= [ dF(s,e)
A(K',K)

where

A(K',K) = {(0,e): (1-8)K+I(K,0,e)<K"}.
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/the stochastic kernel
Here P(K‘|K) defines a first-order Markov process for capital per man.

Let
?O(K) = Prob{KojK}

be given. In the appendix, it is proved that the Markov process for K
possesses a unique stationary distribution ¥(K) which is approached by

iterations on

¥ KD = [PR[K)AY (K)

1 =
where ¥ (K") Prob{Kt+

- <K'}. The stationary distribution ¥(K) uniquely

l_
solves

Y(K') = [P(K'|K)dAY(K).

Since (&,0) is a serially independent process, it follows that

(K,8,e) are mutually independent contemporaneously. Therefore, the

stationary moments of Py and I can be calculated, for example, by
E(L+pp) = [[pe(K,0,€) * L(K,0,€)dF(8,)du(K)
2 2
E(py) = [[pg(R,8,)dF(8, e)dv(K).

It is then clear that, for example, the regression coefficient of I on
Pg> is in general a function of all of the parameters in the model.
Further, the strong law of large numbers for Markov processes stated by

Doob [8] tells us that sample moments such as

, etc.

=1

1915 1752, 175
Db, toHe? T4 Pxef TL PRE

converge with probability one to the corresponding moments of the stationary

distribution EIpK, Ebé, EpK, etc., respectively.
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We carried out some calculations designed to illustrate how
the regression of 1 on Py depends on various parameters. We assumed

that the distributions of e and Bi were concentrated on two points with

Prob{9=91} =P
Prob{e=82} = l-pl = p,
Prob{e=e,} = q;
Prob{e=52} = l-ql = d,

Prob{e=si,e=aj} = piqj’ i=1, 2; j=1, 2.
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We specified a grid of admissible points along the capital-labor axis,
restricting the planner to choose among this finite set of feasible

points, call it K. The functional equation for the optimal value func-

tion is
(28) V(Ka,ﬁi,sj) = T?E {u(f(Ka)ei_I’Ej)+B£ £V((1-6)Ka+1,es.zm)psqm}
I+(l:G)KaéE

where Kaaf. Notice that next period's capital stock I+(1—6)I{a is required

to belong to the set K. The grid of feasible points K was chosen as

=

follows. Where the grid contains n points and K was chosen as the highest

capital-labor ratio in the grid, we chose

= - j/m . oA 1=
Kh—j+l (1-6) K j=1,

where m is a positive integer. Notice that the grid is chosen so that
-

the "corner points" (1-8)K are included. 1In practice, K and m were

chosen so that the grid at least covered the set of ergodic states for

the capital-labor ratio.

We solved the functional equation (28) by in effect iterating
on the "T mapping" described in the discussion of Proposition 1. 1In
practice we used an algorithm described by Bertsekas [4, pp. 237-241] to speed up
the convergence. We are constrained to consider variations in the
investment rate of A where A is the distance between adjacent points in
K. The necessary condition for the maximum problem on the right side of
(28) is that for I optimal

u(f(Ka)Gi—I,Ej) + sg Ev((l—ﬁ)Ka+I,BS,Em)psqm

> u(E(R)0,-(I+8) e ,) + BE E"(“‘ﬁ“‘a’“‘“‘”'es=€m“’s‘*m



- 28 -

for all A > 0 and for all I+ A > 0 or A > - I, where I + (l—é)KaaE
and I + A +(l-6)Kasf. The optimizing I thus satisfies the condition
that it is the largest value of I for which

u(f(Ka)ei-l,Ej)—u(f(Ka)ei-(I+ﬂ),ej)

(29) ry

BY L (v((1-8)K +I+A,0 e )=v((1~8)K +I,0 ,e )P q

> s m

A
for all admissible & > 0. For the smallest admissible A, we take the

left side of (29) as our estimate of uc(c,ej), while we take the right



- 29 -

side as our estimate of *u (c,e). We form our estimate of p (K ,0
Px c K

12€9)
by dividing the latter by the former. The optimum policy function
I(Ka,Bi,aj) is obtained as a by-product of solving for the optimal value
function.

We generated the stochastic matrix associated with the Markov

process for K from

P.. = Prob{K_,.=K,|K =K.}
ij LV g

t+1

Prob{I(K,,8,e)+(1-8)K. =K.}
il J 1

! pa
s,meT

where T = {(s,m): I(Kj,es,em)+(l—6)Kj=Ki}. An (nxn) stochastic matrix

P with elements Pij was formed, with n being the number of points in the

set of admissible capital stocks K. Then the stationary distribution of

K was determined by taking any column of lim pt (in the limit the columns of
-0

t s 5 . : . .
P~ are all the same, if P possesses a unique stationary distribution).

For the stationary distribution of Kt we denote
Prob{Kt=Ki} = m;, K €K, 1=1; wsss s

We calculated the population moments of I and PK from, e.g.,

o

EI(K,8,e) = ) Z ZI( 9. e)‘rrpq
h=1i=1j=1 Kh a1

n 2 2

EL(K,0,6) * p (K,0,¢) = hghgljillckh 8558 )P (K505 ,€)m P ds
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Table 1
u(ec) =g+1ln ¢ § = .05
£R) = k2 B = .95

Economy 1 (64 points in K)
P{g=.9} = .5, P{g=1.1} = .5

P{p=.9} = .75, P{p=1.1} = .25

cov(I,py)
—— = 1.5798

var pp

COV(I,pK)

= ,4213
Vvar T.var Py

cov(L,p,)
—— K = 03

var 1

Economy 2 (64 points in-ﬁ)

P{p=.9} = .5 P{p=1.1} = .5
P{e=.9} = .25 P{p=1.1} = .75
cov(I,py)

e = .8653

K
cov(l,p.,)
2~ = .09%%
VVar I.var py
cov(I,pK)
——— = .0101

var 1



Economy 3

P{6=.9} = .5 P{6=1.1} = .5
P{e=.9} = .5 Ble=1.13 = 8§
(32 states in K) (48 states in K) (64 states in K) (80 states in K)
COV(I,PK)
— = 1.31913 2.1889 2.5057 2.7491
var py
cov(I,py)
= SRS .4572 .4933 .5261
Vvar L=var pK
cov(I,p.)
— = L0735 .0955 .0971 .1007

Table 1 gives examples for an economy in which u(c) = €lnc and
f(K) = K'ZS, B= .95, and § = .05. The set K included sixty-four states,
except where otherwise noted. For the parameters of economy 3, we have
calculated the sample moments for alternative K's including 48, 64, and
80 states. These calculations for increasingly fine grids on K are
interesting if one views these finite economies as approximations to the

continuous-state economy analyzed in previous sections. From the behavior
of these moments with increasingly fine grids, our grids are evidently

not yet fine enough to approximate the corresponding continuous-state
economies very well. An alternative way to view these calculations is

not as giving approximations but exact evaluations of the population

moments of the indicated finite-state economies. The three economies are

identical except that they are characterized by different distributions
of the shock to preferences {e}. Notice the effects of alterations in
the distribution on the population values of the regression coefficient

of T on Pys given by cov(I,pK)/var Pys and on the correlation coefficient
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between I and Py> given by cov(I,PK)ﬁVvar Ievar Py The table illustrates
how, in the jargon of macroeconomists, shifts in the distribution of the
consumption function cannot be expected to leave the regression of I on

Py unaltered. Graph 1 depicts the population discrete density function

giving the unique stationary distribution associated with economy 3 with

64 states.

These examples illustrate how in such an economy, the regression
of investment on Pe does not recover the law governing the demand to
accumulate capital. The problem is not a failure to correct for simul-
taneous equation bias, say by using instrumental variables, nor is it a
failure to include enough lagged values of q. In these economies it would

be impossible to recover a structural investment schedule by pursuing

such modifications.
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It is straightforward to describe econometric procedures that
would permit recovery of the economy's structural parameters from time

series data on Yes K , and Pre It would be necessary to specify func-

e
tional forms for u(c,e) and £(K)8, as well as a form for the distribution
F(8,e). Then for each point in the space of parameters determining B,
8§, u(+,+), £(+), and F(*,*), there is a unique pair of functions I(K,9,€)
and pK(K,B,e). The likelihood function of a vector of time series on

(yt, K pKt) can then be characterized as a function of the free parameters

t?
of {B,8, u(+,+), £(+), and F(*,*)}. The method of maximum likelihood
could then be used to estimate the structural parameters of the economy.
As of now, such procedures would be very expensive even for the very
simple economy that we have described. They would be prohibitively
expensive for any 'realistic' model.

Of course, in our sample economies the least squares regression
of I on Pg is predicted to remain the same so long as the distributions
of all shocks remain unaltered. It is possible to construct examples,
as we have in Table 1, in which Py explains a large part of the variation
in investment. But one wants a structural model of investment in order
to be able to analyze interventions in the forms of alterations in
certain random processes, in particular, in processes describing various
aspects of fiscal policy. It is for analyzing such policy changes that
our analysis suggests that it will be inadequate to rely on the mainte-

nance of historical patterns between I and PK'

5. Concluding Remarks

The following two features of our model deserve brief discussion:

first, whenever p, is less than unity, the aggregate rate of investment

K

is zero; and second, it is impossible for P, ever to be above unity. It

K
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is easy to conceive of variations on the present model in which aggregate
investment is positive even when an aggregate index corresponding to

Py is less than unity. For example, consider a model with two goods, x
and y, both of which are consumed while good v can also be used to augment
the capital stock of industries x and y. Assume that new output of y

can be costlessly allocated across consumption, investment in industry x,
or investment in industry y. But once in place, capital in industries x
and y cannot be consumed. This setup will give rise to two distinct

prices of existing capital in industries x and y, say P,_ and Py

Kx v’
respectively, relative to newly produced capital. Investment in industry

x will be positive only if p is unity and investment in industry y

Kx
will be positive only if pKy is unity. But aggregate investment can
be positive when an aggregate index of the price of existing capital
relative to newly produced capital is less than unity. Conceptually,
analysis of such a model is no more complicated than the one-sector model
studied in this paper; it is only much more cumbersome notationally.

The second peculiarity of our model, the inability of PK to
rise above unity, stems from the asymmetry in the "friction" that we have
posited. That is, the technological rigidity that we have posited
impedes rapid decreases in the capital stock, but not increases. It
seems clear that general equilibrium versions of the cost-of-change
models of Lucas [12], Gould [10], and Treadway [21] which posit more or
less symmetrical costs of adjustment, could be constructed in which measures

of p, would rise above unity.

K
There is no reason to believe that modifications along either

of these lines would alter the basic message of this paper: that the

same "frictions'" or "adjustment costs" that make it possible for Py Or q
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to diverge from unity also establish a presumption that agents' investment

decisions are not expressible in any simple way as a function of Pg*



Footnotes

leucas uses a single representative consumer in exactly this
way [11].

nghe proof of this proposition exactly parallels Lucas's
[11 ] anlaogous proposition and will be omitted.

-g/The proof parallels Lucas's [11]. Actually, only the sum

i+ kd is determined as a continuous function of the state variables k,
6, €, K. This is because when pK(K,G,e) = 1, the agent is indifferent

as to the breakdown of i + kd between i and kd. Suppose we adopt the
convention that when pK(K,B,E) = 1,

= (1-6)k £ ¢ 45 O-0%

$ 154 if 19+ 1 < (1=8)k.

]

k

This convention resolves the indeterminancy when Py = 1 and makes the

: i d
resulting demand functions for i and k continuous.

i/'I'hur-: concavity of J(*) in k can be proved as in Lucas [11].
The differentiability of J(*) can be proved by following an argument
analogous to the one used below in Section 3 to prove differentiability
of v( ) with respect to K.
éfThe condition that u (0,e) = =« rules out the possibility of
; c
corner solutions with ¢ = 0.

6/

—'Calculated using the methods in Section 3 below.

Z-/Sese Naylor and Sell [17].

§/Propositions 1, 2, and 3 and their proofs mimic analogous
propositions in Lucas [11] and Lucas and Prescott [13, 14]. For this
reason, we only sketch the proofs.

nggain, corner solutions with ¢ = 0 are ruled out by the
assumed form of the utility function.

lg-/Froru lectures in his Economics 337 class.

_;%;KFF?m lectures in Economics 337.




Appendix

Proving ''Stochastic Stability"

We describe how to prove that the growth model possesses a
unique stationary distribution over K to which the system converges
starting from any arbitrary initial distribution over K. We will simply
indicate how the proof in Mirman [15] or Lucas;i/ must be modified to
account for the "corner" that is present in our problem. Let R be
the real numbers, and ( the Borel sets. Then a Markov process is defined
by the stochastic kernel P(x,A):Dx0+[0,1], where DCR. Here P(x,A) =

Prob{xt+ £A|xt=x}. For fixed x, P(x,A) is a probability distribution in

i
A, while for any interval A, P(x,A) is a Baire function in x.
We need the following two definitions:
Definition: An interval I C R is called an ergodic set if
i) Xel implies P(x,I) = 1.
ii) There is no I' C I with A(I') < A(I) such that xeI' implies
P(x,1I') = 1. (Here A(*) is Lebesque measure.)
Definition: An ergodic set I is called noncyclic if for all I'C I with
A(I') > 0, xeI' implies P(x,1') > 0.
Lucas and Mirman both use a version of Doob's
Condition D: There exists a probability measure ¢ on (R,8), an integer
n, and numbers e€,e' > 0 such that @§(A) < €' implies that Pn(x,A) e

Here P"(x,A) = Prob{xt eA[xt=x}.

+n

Lucas's proof proceeds by verifying that for the stochastic
growth model there obtain the hypotheses of the following theorem of
Doob:

Theorem: Suppose the process defined by P(x,A) has a single, noncyclic

ergodic set I and satisfies condition D. Then



i) There is a unique "invariant" probability distribution satisfying

q(A) = [ P(x,A)dq(x).
R

ii) q(I) = 1.
iii) For any g qn(-) converges in distribution to q(*) where
{qn} is generated by iterations on
q (A) = IRP(K,A)dqn_l(X).

We have assumed that there exist numbers 6 > 8 > 0 and e >e >0

such that Prob{g<6<6, e<e<e}= 1. We have also assumed that F(6,e) has a
continuous and strictly positive density on the rectangle {Qjﬁfﬁ; Efgj}}.
Figure (1) plots b(K,8,¢) and b(K,E,E). We define K and K by

K = h( ,Q,E) and K = h(?,"{':}-,;g) respectively. The following argument,

I~

= h(K,0,e) is

=

adapted from Lucas, proves that the solution to e.g.,
unique, so that figure 1 is drawn correctly. At the steady-state values
EQQ,E the functional equation is satisfied with
v(K,08,e) = u((1-8)K + £(K)o-K,¢)
+ Bfv(K,8',e")dF(8',¢").

The definition of v(K,8,c) as the maximum attainable value starting from K

implies that
v(K,0,e) > u(£(K)6-6K,e) + B[v(K,0',e")dF(8",e").

Integrating both sides with respect to dF(6,e) and rearranging gives

1
Te

(A1) [v(K,0,e)dF(8,€) > Bfu(f(K)e—aK,a)dF(e,e).

Now since leaving the stationary point K = h(E}E}E) must lower discounted

expected utility, we have for K # K



A2)  v(K8.e) > ul(1-8)KH (K)oK,e]
+ gfv(K,8',e")dF(6",e") .
Combining (A2) with (Al) gives for all K
V(K,8,e) > u[(1-8)K+E (K)8-K, €]
+ I%E Ju(£(K)8"=6K,e")dF(8",e").
Therefore E:solves the problem

maximize{u[(l-é)ﬁ;f(?)glK,a]
K

+ Tg‘s‘ fu(£(K)O'~6K,e")AF(8",e").
The first-order necessary condition for this problem is
0=%H-= -uc[(l-a)i+f(?)§-x,e]
+% fuc(f(K)e'-ﬁK,s')(f'(K)B'-rS)dF(B',e').

We calculate

i 8

dK = cc  1-B I“CC(f(K)B'-GK,E')(f'(K)B'-G)zdF(s' e")

+ _1%3‘ Ju (£(K)8'-6K,e") E"(K)8'AF(8",e") < O.

That dH/dK < 0 implies that there is a unique K that solves H = 0. This

proves that there is a unique Ebsolving §:= h(E:gugj. Obviously, the

same argument establishes the uniqueness of the solution K to K = h(K,6,¢€).
Following the argument of Mirman [15], it is possible to show
that I = LE,‘E] is the ergodic set. Further, I is noncyclic since for

any interval E of positive length containing Ke(X,K), Prob{Kt+l€EIKt=K] >0



As in Mirman [15], it can be shown that from any initial (distribution
over) K, K will eventually remain in (E)Ea with probability one. Therefore,
we will restrict our attention to the interval (§?E3.

For the purpose of indicating how to adapt Lucas's argument,
nothing essential will be lost by assuming that E?E; so that ¢ is
nonrandom. Suppressing the argument ¢, we write the stochastic difference

equation for K as Kt+ = b(Kt,et). We rely heavily on Figures 2 and 3,

1

which depict the function Kt+ = b(Kt,et) in the (K Kt) and (Kt+l’et)

1 t+1?

planes, respectively. For Kt < K. corner solutions do not occur, while

0

for Kt > KO they do occur with some probability, but for KE[E,E] we

shall show that this probability is uniformly (in K) bounded away from
unity. This is enough to permit Lucas's proof to work.
Evidently, for each value of Kt = K, there is a wvalue of

g = g(K) such that Kt+l = b(Kt,Bt) = (l—G)Kt for Gt < G(Kt) and Kt+1 =

K <K <K

b(Kt,et) > (l—a)Kt for 6, > g(Kt). There exists a value K 0

0’

such that for Kt < Koy é(Kt) = g3 é(K) is a continuous function of K and

0
is increasing in K on (KO,E). For § > 0, 5(E) < 8. This follows because

off corners, b(K,0) is strictly increasing in 6, and b(?,e) > (1-8)K.

It follows that for all KE[E,E]

Prob{K_,,=(1-8)K|K =K} < Prob{p<6(K)}.

On our assumption that F(p) has a strictly positive and continuous density
on [g;E], it follows that the right-hand side of the above is strictly
less than unity. Therefore for all Kg[E}ij, there is a scalar

p = Prob{e>é(§)} > 0 such that

(A3) Prob{K _, ,=(1-§)K|K =K} < 1-p.

< i &

Notice that p is independent of K.



It is now straightforward to combine Lucas's results with
(A3) to show that Condition D is satisfied. Following Lucas, let J=(a,d)
be any interval in the bounded set [é,i]. Choose measure @(J) = Cl(d-a),
C. a normalizing constant. Now from section 3 we have that off corners,

1
i.e., for 6y > 67 > é(K), and for all KQ[E,E]

b(K,ez) - b.(K,el) > “(62"91)

where ¢ > 0. Notice that ¢ is independent of K. Assume first that we
are given a K and an interval I = [a,d] in which the system is off

corners, the situation in figure (4).

Define ea(K) and ed(K) by d = b(K,ed(K)), a= b(K,ea(K)). Then we have

8,00 = 0, (K) < = (b(K,0,(0), b(K,0,(K)

0 (®) - 6, (®) < T (d-a),

uniformly in K. Now choose ¢' > 0 such that (d-a) < ¢' implies

Prob{e, (K)<p<; (K)} < %

This is possible by the assumption that g has a continuous density.
We now have to consider the situation in which the interval

(a,d) includes values of Kt such that Kt+ = (l—a)Kt for some values

+1 1

of Kt = K.



It will suffice to consider the "worst" possible placement of
the interval [a,d] and choice of K depicted in figure 5, worst from the
point of view of satisfying condition D. Here d > a = (1—5)E; This is
the worst situation because evidently over all choices of Kt = K and
all positioning of intervals of length Cl(d—a), this choice maximizes

Prob{Kt+l=(l—6)K|Kt=K}. By the previous argument, we have that for (d-a)

Ei

Prob{Kt+leI|Kt=K} -

Probik,, e[a,d) |K =Ki+Prob{K _, =(1-8)K|K =K}.

t+1

<5+ (-p) = 1-

|

With the above choices of @ and €', and with n=1 and € = % > 0, Doob's
condition D is satisfied.

So Doob's condition D is verified, as are the uniqueness and
noncyclic nature of the ergodic set. Then application of the above
quoted theory from Doob establishes that the stochastic growth model
has a unique stationary distribution over K which assigns unit probability

to [E,E], and to which the model converges in distribution starting

from any arbitrary initial probability distribution over K.
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