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1. Introduction

Friedman [1969], Bewley [1980,1983], and Townsend [1980]
argue that the optimal monetary policy is contractionary. We show
that if buyers value consumption more than sellers by a sufficient
margin and there is some randomness in the economy, then there is
an expansionary policy that dominates all contractionary policies.

We study an environment in which two types of infi-
nitely-lived agents shift randomly back and forth between being
buyers and sellers. With each agent's type private information,
we consider mechanisms in which information is carried between
periods by the private holding of divisible tradable assets. If a
first best is achievable by such a mechanism, it is achievable
with just one asset, which we interpret as money. The mechanism
itself we interpret as a government policy. Our focus is on the
nature of mechanisms that achieve the first best. A contraction-
ary policy pays a positive rate of interest on money balances or
contracts the money supply; an expansionary policy taxes money
balances or expands the money supply. We show that if there is
some randomness in the economy, no contractionary policy can ever
achieve the first best. On the other hand, if agents are suffi-
ciently patient and the desire to trade sufficiently strong, the
first best can be achieved by a flat expansion: an expansion in
which the tax on money balances and rate of expansion of the money
supply are constant independent of time, state and history.

This result stands in contrast to Friedman's [1969]
theory of the optimal quantity of money as developed by Bewley

[1980,1983] and Townsend [1980]. A good summary of this work can



be found in Sargent [1987]. A similar result in a different but
related model can be found in Taub [1987]. They suggest that in
order to increase the real value of the money stock, a contraction
is desirable. However, when the future is uncertain, private
individuals will optimally plan to run out of money with positive
probability, preventing them from buying when it is socially
desirable that they do so. This can be prevented only by an
expansion. Moreover, unlike the Bewley/Townsend model, where the
first best requires that the marginal utility of buyers and sell-
ers be equalized, here the first best forces sellers to zero
consumption. This allows the marginal utility of buyers to be
strictly higher than that of sellers. Because of this gap, the
wedge between the marginal utility of buyers and sellers caused by
a modest rate of inflation does not reduce trade. When the first
best equalizes the marginal utility of buyers and sellers, Kehoe,
Levine, and Woodford [1987] show that there is a tradeoff between
the beneficial redistributional effect of an expansion, and the
reduction in trade due to the increased wedge between the marginal
utility of buyers and sellers.

It is important to emphasize that we do not assume that
a monetary expansion is the only source of government revenue:
indeed, we permit mechanisms in which the entire stock of consump-
tion is controlled by the government. Without private informa-
tion, the first best can be achieved simply by redistributing all
consumption to buyers: money and assets are not required. With
private information, the only incentive compatible redistribution

scheme requires some expansion. The key point is that the same



feature of the model that makes money interesting forces an expan-
sionary policy--it is not true that this redistribution could be
achieved by a mix of deflation and some other policy.

The next section of the paper describes the environ-
ment. Section three discusses assets trading mechanisms, and
shows that only one asset is needed. Section four characterizes
asset trading mechanisms as competitive equilibria with lump sum
transfers, Section five describes contractionary and expansionary
policies, and shows that no contraction can achieve the first

best, while under certain conditions a flat expansion can.

2. The Environment

There are two types of infinitely-lived agent, denoted
type 1 and type 2. There are a continuum of agents, with each
type constituting half the population. An individual agent's type
is known only to himself.

There are two possible states of the world, denoted
state 1 and state 2. These states follow a Markov chain, with =
denoting the probability that the state changes from 1 to 2 or 2
to 1, and 1 - = denoting the probability that the state remains
the same. The probability n is referred to as the probability of
reversal. The state of the world in period t is denoted Ny - The
initial state n, has equal probability of being either state 1, or
state 2.

There is a single perishable consumption good x. One
unit of this good is available per capita each period. If xi de-

notes the consumption of agent a at time t, his preferences have

the additively separable form
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where 0 < 8 < 1 is a subjective discount factor common to all
types, and E denotes the initial expectation before n is known.

The period utility function u(x?,n,.) is 0(x?) if the state n_ is
| i t t

the same as agent a's type, and g(xi) if not. We always assume:

(A.1) ﬁ(xi), g(xi) are bounded, increasing, concave and contin-

uously differentiable.

Boundedness is a technical assumption insuring "eontinuity at
infinity" in the sense of Fudenberg and Levine [1987] that the
future does not matter too much; monotonicity and concavity are
standard. Differentiability is convenient for notational simplic-

ity. One special case of some importance is the case of a linear

environment: for some ¢, n, n > 0, ﬁ{xz) = ﬁxi, and g(xi) = Hx:
for 0 < xi <2 + e. Since when all agents of a given type are

treated equally no agent can consume more than 2, this means that
the utility functions are linear in the relevant range. Notice
that since they are bounded above, u and u cannot be linear glob-
ally.

As the economy shifts back and forth between states, the
two types of agent shift back and forth between the period utility
functions u and u. When a type has utility u, we refer to them as
buyers, when the utility is u, we refer to them as sellers. To

justify this terminology, we assume

(A.2) DA(2) > Du(0),



where Du, Du represent the derivatives of u and u respectively.
This says that when all of the single good is shared equally among
buyers (each receiving two units, and each seller none) the mar-
ginal utility of a buyer is never-the-less greater than that of a
seller.

Because both types are equally likely to begin life as a
buyer, there is a unique efficient allocation mechanism in which
all agents of a given type are treated equally. We refer to this

as the best allocation, and from (A.2) it consists of dividing all

of the single good equally among the buyers, each receiving two
units, and each seller none.

As we shall show in the next section, the best alloca-
tion is not always incentive compatible. However, using it as a
benchmark substantially simplifies our analysis: it is easier to
check whether or not the best allocation is incentive compatible

than it is to calculate the constrained optimum.

3. Asset Trading Mechanisms

In this section we define mechanisms and asset trading
mechanisms. We give necessary and sufficient conditions for the
best allocation to be implementable. We show that trading con-
strains mechanism design by replacing nonmarginal decisions with
marginal ones. Finally we show that in our environment only one
asset is required. The nature of mechanisms that implement the
best allocation are discussed below.

Our notion of implementability is that of open-loop Nash
equilibrium in an anonymous decentralized game form. Let I be an

abstract space of actions. An open-loop strategy is a sequence of




maps Ut(T,n1,...,nt) mapping an agents type t and the history of
states to actions. A game form is a sequence of maps
ft(n1,...,nt,o1,...,at) > 0 mapping the history of states and an

agents actions to nonnegative consumption levels. Hammond [1979]
refers to such a game form, in which an agent's consumption is
independent of the play of other agents, as decentralized., The

best allocation is implemented by the mechanism f and strategy o

if
ft[n1,...,nt,u1(r),...,ob(r,n1,...,nt)] =2, n =1

0, n_ # 1,

so that buyers get two and sellers zero, and such that for all o

(G(2)+u(0))/2(1-8)

o -1 - -
> E Et:16t ua[ft(n1,...,nt,a1(r),...,at(t,ni,...,nt)],nt}

so that the utility from the best allocation cannot be improved
upon by playing an alternative strategy c. In other words, there
must be an open-loop Nash equilibrium that yields the best alloca-
tion.

This definition of implementability is equivalent to
both Nash and subgame perfect implementability in a general anony-
mous game. Anonymity means that no agent can respond to a devia-
tion by a measure zero group of agents. Since the response to
deviations by more than one agent is irrelevant to the determina-
tion of equilibrium, this implies the relevant space of strategies

are open-loop. Moreover, because each agent is infinitesimal, an



open-loop equilibrium in which no agent reacts to another's devia-
tion is also a closed-loop or subgame perfect equilibrium: fail-
ing to respond to deviations is itself an equilibrium. Fudenberg
and Levine [1987] prove the converse: if a closed-loop equilib-
rium fails to be open-loop, then a switch from one equilibrium to
another must be triggered by the deviation of a single agent,
violating anonymity.

Given open-loop strategies and anonymity, decentraliza-
tion of the game form merely simplifies notation. Given the
equilibrium strategies of all agents, anonymity implies that any
pair of agents playing the same strategy receive the same alloca-
tion. Determination of equilibrium depends only on what happens
to an agent when he changes his individual strategy. The way in
which allocations change when the entire distribution of strate-
gies change is irrelevant and may be conveniently suppressed by a
decentralized game form.

An alternative view of this type of mechanism is pro-
vided by Roberts [1984]. He points out that we may strengthen the
equilibrium concept to dominant strategies, provided that we
require the mechanism yield socially feasible allocations only in
equilibrium. In this context Hammond [1979] shows that with a
continuum of agents decentralization does not limit the alloca-
tions that can be achieved.

In general, a game form must keep track of the entire
history of play of all agents. To maintain such records centrally
is expensive: this leads us to focus on mechanisms in which

record keeping is decentralized. An asset game form consists of a




finite number k of assets and a sequence of maps

a k+1 . .
Ft(n1,...,nt,Mt_1,ct) € R+ mapping the history of states, and an
a k
a1 € R+ and
; . Ma : a " ;
action o to pairs ( t,xt), with Mt B R+ final asset holdings and

Xy € R+ consumption. For notational convenience, we let Mg be the

agent's vector of revealed initial asset holdings M

null symbol. In other words, at time 1 agents are issued consump-
tion and k different kinds of certificates. In subsequent peri-
ods, the mechanism depends on the history of an agent's actions
only through the certificates he was given at the end of the
previous period. Since these certificates are viewed as physical
entities, they must be issued and held in nonnegative quanti-

ties. We shall always assume

(A.2) Free disposal: If 0 <y < Ft(n1""’nt’M2-1’°t)’ then

4 1 4 oy L
there exists of with y = Ft(ni""’ﬂt’ﬁi-1’at)'

In particular, agents cannot be prevented from discarding certif-
icates; they must be held voluntarily.
Our first theorem shows that there is no loss in re-

stricting attention to asset mechanisms. Define the constant

&n

(3.1) 5ﬁ = T—:—ET?:;T.

This is the expected present value of a unit of utility received

after the next reversal.



Proposition 3.1: The best allocation can be implemented by a

mechanism if and only if it can be implemented by a single asset

mechanism if and only if

(3.2) H > 5;1.

Proof: If the best allocation is to be implemented, it is clear
from anonymity that initial buyers and sellers must prefer the
plan of receiving 2 when a buyer, 0 when a seller, to misrepre-
senting as the opposite type and getting 0 when a buyer and 2 when
a seller. We may assume without loss of generality the initial
state is n, = 1. A simple calculation shows that the expected

value to an agent receiving utility u, in state 1 and u, in state

2 is
(s, /(1-82))(u,+6 u,).

Consequently, it must be that u(2) + § u(0) 2 u(0) + § u(2) for
initial buyers and u(0) + 6“6(2) 2 u(2) + aﬁﬁ(O) for initial
sellers. Because 0 < § < 1 and by (A.2), the former inequality
is true if the latter is; that is initial buyers do not wish to
misrepresent if initial sellers do not. Rewriting the constraint
for initial sellers yields (3.2).

It remains to construct a single asset mechanism that
implements the best allocation when (3.2) holds. Consider the
strategy space in which each agent may announce either that he is
a buyer, or a seller. Suppose without loss of generality
ny = 1. Whenever n_ = 1 agents who announce they are buyers get 2

t
units of consumption, sellers get 2 certificates. Whenever
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n, = 2 agents with 2 certificates get 2 units of consumption and 2

£
certificates; agents who do not have 2 certificates get nothing.
Each agent faces four possible states: he holds either
2 certificates or none; and L is either 1 or 2. The only choice
is what to do when in state 1: take 2 units of consumption or 2
certificates. In state 2, noncertificate holders can get nothing,
and free disposability implies certificate holders should take the
full amount offered. With finitely many states and choices, and
discounting, dynamic programming shows an optimum exists and is
stationary. The only stationary plans are to get 2 in state 1, 0

in state 2 or viece versa. But we showed above that if (3.2)

holds, both types prefer to consume when they are buyers. [

In general, an asset mechanism can prevent agents from
trading assets. To the extent that the mechanism is nonlinear,
agents will have an incentive trade with each other. Following
Townsend [1987] and Hammond [1979], we assume that preventing
trade is prohibitively expensive. In addition to assuming that

assets are infinitely divisible, two assumptions are involved:

(A.3) Ex post trade: for each t and Nys =ees Mg there exists a p
¢ Rf” such that if z € R<', p -z=0 and
Ft(n1,...,nt,Mi_1,ot) + 2z 2 0 (and in particular represents

a feasible plan) then there exists cé such that

a , a
Ft(”1""’nt’Mt—1'°t) 2 Ft(n1""’”t’Mt*1’°t) + Z.
In other words, there is a price p such that agents can trade

assets and consumption. Consequently, the mechanism must promise



- 1] -

to deliver at least as much as agents could obtain through
trade. A careful discussion of the way in which side-markets lead
to this conclusion can be found in Hammond [1979].

The second assumption concerning tradability is

(A.4) Ex ante trade: For all t, n,, ..y My, ut,oé and all
a ,a' k a a'
Mt' M ¢ € R+, x € R such that kMt + (1-A)Mt > 0, there
exists a cg such that
AF (n n M2 6,.) + (1-0)F (0 n Ma'c‘)
= I s A i IR LA P
& - a'
= Ft[n1,...,nt,m‘:+(1 MM, 0t ).

a
t

Townsend [1987] discusses this type of assumption at length. It

In other words, the dependence of F,_ on M_ is linear affine.
follows from allowing agents to trade initial assets before turn-
ing them in for final assets and consumption. If the F  schedule
is not convex, agents with different asset holdings will pool
them; if it is not concave, agents with the same holdings will
redistribute them unequally. Consequently F, must be both concave
and convex: that is, linear affine. The difference between this
assumption and assumption (A.3) is that the trade in (A.3) in-
volves simultaneous exchange of equal value; the trade in (A.4)
involves trading assets before the mechanism operates for goods
and assets later. One way to discourage this type of trade is by
refusing to honor such contracts. Never-the-less, as a matter of
practice, people will engage in some trade to avoid nonlinear tax
schemes or price discrimination schemes (which are what (A.4)

rules out), and some costs will be incurred in the process.
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Assumption (A.4) is an extreme assumption, but probably no worse

than the other extreme assumption--that no ex ante trade is possi-

ble.
Finally, we assume
(A.5) Closedness: If y" = Ft(n1,...,nt,Min,cg) and y" » vy,
an a .
Mt - Mt' then there is a ct € I such that

y = Ft(nl,....nt,Mi,ct).

This says that the set of achievable allocations is closed. Since
any allocation that can be supported can still be supported when
we take the closure of the set of achievable allocations, this is
a technical assumption. It insures that individual optima exist.
When (A.3) to (A.5) are satisfied, we refer to the

mechanism as an asset trading mechanism. The force of this re-

striction is given by Proposition 3.2.

Proposition 3.2: The best allocation can be implemented by an

asset trading mechanism if and only if it can be implemented by a

single asset trading mechanism if and only if

Du(2) w1
(3.3) Bu(0) 268 .

Proof: Follows from Lemmas 3.3 and 4.3 below. O

Condition {3.3) is similar to condition (3.2) in Propo-
sition 3.1, except that average utility is replaced with marginal
utility. When utility is linear, Proposition 3.2 implies the best

allocation can be implemented by an asset trading mechanism if and
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only if it can be implemented by some mechanism. Roughly, trading
prevents the mechanism from exploiting the concavity of utility by
forcing nonmarginal decisions.

From Proposition 3.1, we know that (3.3) is necessary
for implementability of the best allocation in the linear case.

In a nonlinear environment, we may define a corresponding linear

environment in which the utility function are linear for 0 < xi <
2 + ¢, and the slopes are n = Du(2) and n = Du(0). The necessity

of (3.3) then follows from

Lemma 3.3: If an asset trading mechanism implements the best
allocation it does so also in the corresponding linear environ-

ment.

Proof: Let F, o be the asset trading game form and strategy
implementing the best allocation, and suppose it does not imple-
ment the best allocation in the corresponding linear environ-
ment. Then there must be a strategy o that does better than o.
Let X2 denote the consumption plan achieved by playing o using the
game form F, and let x> denote the best allocation. Recall that
U(x®) denotes the expected present value in the original (nonlin-
ear environment). Let UL(xa) be the expected present value in the
corresponding linear environment. By hypothesis UL(ia) >
UL(;a). We will construct an allocation xi, achievable by means
of a strategy N such that U(x?) > U(;a), contradicting the fact
that F and o implement x°.

First observe that because of discounting, the plan x%,
equal to 52 if t < T, and equal to 0 if t > T satisfies UL(x;) >



< 4l o

UL(xa) for some sufficiently large T. Fix such a T. By free

disposability there exists a strategy o, such that F yields x%

T

when O is played.
a

T
it follows from (A.3) and (A.4)

Next, suppose 0 < A < 1. Since x> and x> can be

achieved by strategies ¢ and O

% can be obtained by playing some strategy

a

that x? = (1-2)x2 + ax
a,- Since the plans x and x; are uniformly bounded over time and

state, Taylor's theorem applied to u(xi,nt} implies
a - SR, | L, a
U(x{) - U(x7) = U (x7) = A" (xp) + o(R),

where o{(A)/x + 0 as A » 0. But then UL(xa) - UL(x?) < 0 implies
U(xi) - U(xa) < 0 for all x small enough, the desired contra-

diction. O

The sufficiency of a single trading mechanism when (3.3)

holds is proven below as Lemma 4.3.

4, Single Asset Trading Mechanisms

One aspect of both Propositions 3.1 and 3.2 is that they
show that no more than one asset is needed. From consideration of
market completeness, such as those of Arrow [1974] or Duffie and
Huang [1986], we see that no more assets are needed than states
(two). On the other hand, since assets may be tailored to indi-
viduals, we would also expect that no more assets are need than
people (two). However, we have shown that we can eliminate one
asset: roughly, we can tailor assets to all except one type, and

give that type whatever is left over.
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Assets are expensive: they are costly to issue, and
verification is required to avoid forgeries. Moreover, the mar-
kets in which they are traded are not costless to operate. Be-
cause of these transactions costs, it is desirable for asset
trading mechanisms to use as few assets as possible. For this
reason, we now focus on the case of a single asset, which we refer
to as money. Throughout the rest of the paper, then, Hi will be a
scalar denoting agent a's holdings of money at t. Our ultimate
goal is to partially characterize single asset trading mechanisms
that can support the best allocation. We do so in terms of
whether or not they are contractionary or expansionary--that is,
whether the per capita money supply increases or decreases, Our
goal is to show that no contractionary mechanism can support the
best allocation, but that an expansionary mechanisms sometimes
can.

We first characterize single asset trading mechanisms

that can implement the best allocation.

Proposition 4.1: The best allocation can be implemented by a

single asset trading mechanism if and only if there exist nonnega-

tive prices pM(n1,...,nt), px(n1,...,nt), q(n1....,nt) and lump
sum subsidies L(n1,...,nt) such that each agent a, when faced with
initial asset holdings of Mg = 0 and the sequence of budget con-
straints
a a

(4.1) pM(n1,...,nt)Mt + px(ni,...,nt)xt

3l [ € . n M .+ L(n n.)

B Ll - foees tfig
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finds it optimal to consume 2 units when a buyer and 0 when a

seller.

Proof: Supposing that the best allocation is in fact optimal for
each agent given Mg = 0 and the sequence of budget constraints
(4.1), we can design a game form in which each agents strategy o
is to announce a desired ratio of final money to consumption
(possibly infinity), and in which F, assigns the unique pair
(Mi,xi) consistent with this ratio that satisfies (4.1) with exact
equality. Together with the strategy of announcing truthfully,
this mechanism clearly implements the best alleccation.

Conversely, for a mechanism to implement the best allo-
cation, it is clear that the plan of consuming 2 when a buyer and
0 when a seller must be optimal in the set of all consumption

plans that can be generated by playing different strategies. From

ex post tradability, (A.3), the set of final money holdings Mi and

consumption x: that are feasible for an agent a with initial money
holdings Mi_1 have the form
a
(8.2)  Pylgrecs W IME & (e J2E
< max p(n1,...,nt)Ft(n.l,«--,ﬂt,Mt_Iaot)!
ctez

where p = (pm,px) is the nonnegative price vector whose existence
is asserted in (A.3) and the existence of a maximum is assured by
(A.5). Moreover, from ex ante tradability, (A.4), the right hand
side of (4.1) is a linear affine function of Mi_1, and we may

write
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a
(H.B) max p(ﬂ.[,...,nt)Ft(ﬂv---;ﬂt:Mt_1,Ut)

otez

= q(n,l,...,nt)Mi_1 + L(n1,...,nt).

Moreover, by free disposability of assets, q is nonnegative.

Combining (4.2) and (4.3) yields (4.1). O

Incentive compatability forces the price of goods to be
strictly positive, so we take goods to be numeraire. We can then

rewrite (4.1) as

a a -1, a
(4.4) p M + X < pt(Rttbt )mt—1 + Et

where if ﬁt denotes the per capita money stock, mi H Mi/ﬁt is
agent a's share; where Ry = qM(n1,...,nt)/pM(n1,...,nt) is the
gross nominal interest payed on initial money holdings; oy =
[pM(n1,...,nt}/px(n1,...,nt)]Mt+1 is the real value of the final

money stock; ¢, = Ht+1/ﬁ is the gross growth rate of the money

7 t
stock, and &, = L("1'""nt)/px(“1""’"h) is the real value of

t
the lump sum subsidy.

To prove that asset trading mechanism of various types
exist, we must give examples of price systems such that the hy-
pothesis of Proposition 4.1 are satisfied. To check for optimal-
ity, it is convenient to use first order conditions. To do so, we
must introduce notation to distinguish between the two states that
can occur next period., If Vi is a time t realization, let y, , be

the realization of time t+1 if the state is the same at t+1 as at

t, and let §t+1 denote the realization if a reversal occurs.
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Lemma 4.2: Given budget constraints of the form (4.4) it is
sufficient for the best allocation to be optimal that there exist
a budget feasible contingent plan for money holding mi, and non-

negative contingent marginal utilities of consumption ua and a

£
constant B so that the first order conditions
(4.5) ui = Du(2) if a is a buyer at t
> DE(O) if a is a seller at t
w20, 2 8[(1-7)p Ju? (R, 8- )i |
£tk T t+ 1 t+1 t+1 t+1” t+1 t+1 t+1 t+1
(= if m: > 0)

and the transversality condition
a

(4.6) WPy S B,

are satisfied.

We will not prove this lemma here: proofs may be found
in Levine [1986] or Bewley [1980], and are a straightforward
extension of the results of Weitzman [1973] to the stochastic
case. We merely observe that if n(n1,...,nt) is the probability

of the history Mgy wees 70 then (4.5) are the first order condi-

t!
tions that follow from forming a Lagrangean by associating the

multipliers th(n1....,nt)u2 with the budget constraint after the

history n,, ..., n The transversality condition (4.6) requires

£
that the marginal utility of a share of the money stock must be

bounded.
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We can now complete the proof of Proposition 3.2 as

1

Lemma 4.3: If Dﬁ(z)/DL_J(O) > 6; , then there is a single asset

trading mechanism that implements the best allocation.

Proof: Suppose, without loss of generality, that Ny = 1. At the

end of every period assign type 1's entire money stock, so that if

% = 2. In periods in which type 2's are
-1

buyers, L (1-n)6“/n, Rtwt & 1/ot, and L, = 0. In periods
(including the initial period) in which type 2's are sellers, 0 =

1 Rt¢;1 = -1 and zt = By A check shows that (4.4) is satis-

fied. It remains to give marginal utilities of expenditure for

a is a type 2 at t, m

sellers. When type 2's are sellers, set “2 : 6“06(2). When type

1's are sellers, set ui = DE(O). The transversality condition
(4.6) is obviously satisfied. A calculation shows that if

Du(2)/Du(0) 2 s;’ (4.5) is as well. Notice, incidentally, that
this is essentially the same mechanism used in the proof of Propo-

sition 3.1. DO

5. Expansionary and Contractionary Policy

A given mechanism must be enforced; it is natural to
think of the enforcement agent as the government. The mechanism
can be enforced either through government policy--the rate at
which the money supply grows; or through government enforcement of
private contracts--the enforcement of the payment of interest. If
no interest is payed on money, (so Ry=1) a policy is expansionary
if o > 1, so that the money supply grows, or contractionary if

¢ < 1. In light of the fact that (4.4) impiies that agents care
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only about Rt¢;1, this motivates the following distinetion between

mechanisms: A mechanism is expansionary if ¢tRE1 > 1 for all

times and histories; a mechanism is contractionary if ¢tRE1 <1

for all times and histories.
Qur goal 1is to characterize mechanisms ability to
achieve the best allocation. In the case of contractionary mecha-

nisms

Proposition 5.1: If 0 < » < 1, then no contractionary mechanism

can implement the best allocation.

Proof: First we show p < 3Du(2)/(1-8)bu(0) = C almost surely.
Let ;a denote the best allocation. Suppose o > C for some his-
tory hy = ("1""’nt)' One type of agent holds at least one unit
of money per capita, and can afford the consumption plan x2 equal
to ;a before t or if hy does not occur, and equal to C in period t
and zero forever afterwards if hy does occur. Consider the linear
environment defined by n = Du(2), n = Du(0). Contingent on he,
;a gives a present value of no more than 2n/(1-6) units of utility
at t; while X¥° gives 37/(1-8). Since 0 ¢ m < 1, h_ has positive
probability, and vk (&) > UL(;a). This contradicts Lemma 3.3,
showing oy £ C.

Next observe that incentive compatability implies (4.4)
must hold with exact equality. Aggregating over agents this shows

that p, + 1 = R -1 + 2, . Solving for

t Py 6 t
the buyer's budget constraint (4.4) yields

¢ and substituting inte

a

(mt

m =R¢-1

£-1 e _1-1) - 1/Dt.
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By hypothesis Rt¢£1 2 1, and we Jjust showed -1/pt > -1/C. It

follows that if mi_1 < 1 then

A

D = e,

and in particular m < 1. Since m> > 0, we see that it is impos-

a

t t

sible for an agent who has no more than the average money stock at
the beginning of a period to be a buyer more than C consecutive
periods. Unfortunately, since 0 < = < 1, this event occurs with

positive probability. This contradietion establishes that a

contractionary policy is inconsistent with the best allocation. O

The key to this argument is that agents self insure by
holding money, as in Leland [1968]. Consequently, if they have
bad luck too many times in a row, and do not get help from the
government they will no longer be able to buy. This idea can also
be found in Leijonhufvud [1973], where it is suggested that the
economy will behave "classically" as long as there 1is enough
liquidity in the system to act as a buffer. A general method of
computing equilibria of this type may be found in Kehoe and Levine
[1985]. Equilibria of this type in a similar model have also been
computed by Scheinkman and Weiss [1986], who point out a one time
unanticipated expansion can help when money balances are badly
distributed. In this model, we can prove a much stronger result.

In case @tR£1 is independent of time and history we
refer to a flat expansion or contraction. Such mechanisms are
simpler and less costly to operate. In particular a flat expan-
sion can be implemented by government heliccpters dropping a fixed

percent of the current money supply each period, and letting
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private markets take their course. We have the following strong

converse to Proposition 5.1.

Proposition 5.2: Suppose

(5.1)  Di(2)/Du(0) 2 4/sx + 26",

Then the best allocation can be implemented by a flat expansion.

-1
¢t
money p, = 1. Adding (4.4) across types shows that Ly = 1. At

the end of every period assign sellers the entire money stock, so

Proof: Let R = 1/3. In the initial period the goods price of

that if a is a seller at t, m = 2 (each seller holds twice the

t
average money stock). If at the beginning of the period buyers
hold all the money Py = o = 3/M4; if at the beginning of the period
sellers hold all the money Py =0 = 3/72. In either case aggregat-

ing (4.4) shows

(4.7) Ly = 1+ (2/3)Dt.

By Lemma 4.4, it suffices to give marginal utilities of expendi-

ture ui satisfying (4.5) and (4.6). For buyers (4.5) gives ui.

Set 1 [13/611+26;1]-1Dﬁ{2). For sellers in the initial period,
take u? = (3/4)7. In periods in which buyers initially hold all

the money, take sellers marginal utility of expenditure to

be u? = u, while if sellers initially hold all the money,
take u: = (1/2)u. Since “i takes on only the values Du(2),

(3/4)yu, u, and (1/2)u, it clearly satisfies the transversality
condition (4.6). A direct calculaticn shows that (5.1) implies

the first order conditions (4.5). O
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Observe, incidentally, that the bound in Proposition 4.3
is stronger than that in Proposition 3.2: We do not attempt to
show that the best allocation can be implemented by a flat expan-

sion whenever it can be implemented by some asset trading mecha-

nism.
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