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Abstract

We use a massive, matched employer-employee database for the United States to ana-
lyze the contribution of firms to the rise in earnings inequality from 1978 to 2013. We find
that one-third of the rise in the variance of (log) earnings occurred within firms, whereas
two-thirds of the rise occurred between firms. However, this rising between-firm variance
is not accounted for by the firms themselves: the firm-related rise in the variance can be
decomposed into two roughly equally important forces—a rise in the sorting of high-wage
workers to high-wage firms and a rise in the segregation of similar workers between firms.
In contrast, we do not find a rise in the variance of firm-specific pay once we control for
worker composition. Instead, we see a substantial rise in dispersion of person-specific pay,
accounting for 68% of rising inequality, potentially due to rising returns to skill. The rise
in between-firm variance, mostly due to worker sorting and segregation, accounted for a
particularly large share of the total increase in inequality in smaller and medium firms
(explaining 84% for firms with fewer than 10,000 employees). In contrast, in the very
largest firms with 10,000+ employees, 42% of the increase in the variance of earnings took
place within firms, driven by both declines in earnings for employees below the median
and a substantial rise in earnings for the 10% best-paid employees. However, because of
their small number, the contribution of the very top 50 or so earners at large firms to the
overall increase in within-firm earnings inequality is small.
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1 Introduction

The dramatic rise in U.S. earnings inequality from the 1970s to today has been well

documented (see Katz and Autor (1999) and Acemoglu and Autor (2011) for detailed

reviews). It is well known that the change in inequality at the bottom (or below the me-

dian of the distribution) has been “episodic”—expanding in the 1980s and subsequently

contracting and plateauing—whereas the rise in inequality above the median (all the way

up to the very top earners) has been persistent throughout this period (e.g., Piketty and

Saez (2003) and Autor et al. (2008)). An enormous body of theoretical and empirical

research has been conducted over the past two decades in an attempt to understand

the causes of these trends. Until recently, the analysis of the role of employers has

been absent from this literature, chiefly because of the lack of a comprehensive, matched

employer-employee data set in the United States covering the period of rising inequality.

A long literature in economics has recognized that some firms pay workers with similar

skills more than others (e.g., Slichter (1950), Dickens and Katz (1987), Krueger and

Summers (1988), and Van Reenen (1996)). Controlling for differences in the composition

of observed and unobserved worker characteristics between firms, an increasing number of

studies have shown that these differences in firm pay premiums contribute substantially

to the distribution of earnings (e.g., Abowd et al. (1999), Goux and Maurin (1999),

Abowd et al. (2002), Gruetter and Lalive (2009), and Holzer et al. (2011)).1

An important question is to what extent the differences in firm pay premiums have

widened, and to what extent this can explain the observed increases in earnings inequal-

ity. In a recent paper, Card et al. (2013) show that a rise in the dispersion of firm pay

premiums has contributed substantially to recent increases in wage inequality in Ger-

many. They also show that inequality rose in equal measure because of large changes in

worker composition—high-wage workers became increasingly likely to work in high-wage

firms (i.e., sorting increased), and high-wage workers became increasingly likely to work

with each other (i.e., segregation rose).

Similar phenomena of changes in firm pay premiums and worker composition could

1For the clarity of the discussion in this paper, it is important to distinguish this notion of “firm
pay premium”—how much a firm pays a hypothetical worker with average observable and unobservable
characteristics—from what we will call “firm average earnings”—which is simply the average of the labor
earnings of all employees in a given firm. (When we write about “between-firm inequality,” we refer to
the variance of firm average earnings, while “within-firm inequality” refers to the variance of earnings
from that average.) While firm average earnings are easily measured in the data, its value depends on
both the hard-to-measure firm pay net of worker characteristics, as well as the actual composition of
the workers who are employed at the firm. This distinction will be important throughout the paper.
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also explain some of the shifts in inequality in the United States, which has experienced

a stronger and more persistent increase in inequality than has Germany (as well as

most other continental European countries). Indeed, as we discuss below, many of the

mechanisms considered in the U.S. literature on inequality have potential implications

for the contribution of firms and worker sorting to inequality, but these have not been

evaluated so far. The firm dimension is also particularly interesting because it may help

us to better understand the rise in earnings at the very top, which many attribute to an

increase in executive compensation, a within-firm phenomenon. Recent findings in Barth

et al. (2016) suggest that compensation differences among firms and changes in worker

sorting may indeed play an important role in understanding U.S. earnings inequality.

Using data from several U.S. states from 1992 to 2007, they document an important

rise in the variance of earnings between establishments, which they partly attribute to a

change in the composition of observable worker characteristics.

In this paper, we study the contribution of firms and the role of worker flows in the

rise in earnings inequality in the United States using a longitudinal data set covering

both workers and firms for the entire U.S. labor market from 1978 to 2013. Our data

set has several key advantages for studying firms and inequality: it is the only U.S. data

set covering 100% of workers and firms for the entire period of the rise in inequality, it

has uncapped W-2 earnings capturing a large share of earnings even at the very top, it

has no lower earnings limit, and it has information on firms rather than establishments.

Using this data set, in a first step we analyze the overall contribution of a rise in the

variance of earnings between firms in explaining the evolution of U.S. earnings inequality

from 1978 to today.

Our first main result is that the rise in the dispersion between firms in firm average

earnings accounts for the majority of the increase in total earnings inequality. We show

that the 19 log point increase in total variance between 1981 and 2013 is driven by a

13 point increase in the between-firm component and a 6 point increase within firms.

This between-firm component captures all three components of firm-related changes in

inequality—changes in firm pay premiums, worker composition, and sorting. The impor-

tance of increases in between-firm inequality in explaining pay and worker characteristics

is also seen in very fine industry, location, and demographic subsets of the economy and

is robust to different measures of inequality. Using a counterfactual decomposition, we

find that changes in the distribution of firm average earnings explain almost all of the

rise in inequality below the 80th percentile, while changes in the within-firm distribution

explain some of rising inequality above that point.
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Three factors could account for the rising variance of firm average earnings. First,

the dispersion of firm pay premiums could increase; that is, high-paying firms would

pay more, adjusting for worker composition, and the opposite would be true for low-

paying firms. We refer to this as a rising variance of firm fixed effects. Second, a rise

in sorting between high-earnings workers and high-pay firms (which we will refer to as

“sorting”) could be a contributor. Third, similar workers could be increasingly likely to

work together (which we will refer to as “segregation”). Although a rise in segregation

by itself does not raise earnings inequality (because of a corresponding reduction in

within-firm inequality), it leads to a higher contribution of firms in explaining earnings

dispersion in a descriptive sense and could reflect important underlying economic forces.

To distinguish among these factors, we follow the modeling approach of Abowd et al.

(1999) [AKM] and Card et al. (2013) [CHK] to estimate unobserved permanent worker

and firm components of each worker’s annual earnings. Using this approach, we can de-

compose rising overall inequality into the portion due to the changing dispersion of worker

effects, the changing dispersion of firm effects, and the changing covariance between the

two.2 Our second main finding is that the rising variance of worker effects—potentially

due to rising returns to skill—explains 68% of rising inequality, while the rising covari-

ance explains 35%. In contrast, the third component, the variance of firm effects, declined

slightly during this time, making a small, negative contribution to rising inequality.

Although this last finding may appear surprising in light of our first result—that

the rising dispersion of firm-wide average earnings explains more than two-thirds of the

rise in the variance of total earnings—the two results are perfectly consistent, which is

our third main finding: using the estimated worker and firm fixed effects, we can show

that the rise in between-firm inequality can be completely explained by changes in the

composition of workers between firms. Increases in sorting and segregation explain the

entire increase in between-firm inequality in our data. Rising returns to skill, absent any

firm-level changes, can account for about half of rising segregation but almost none of

rising sorting.

Our fourth result is that, of the 31% of the increase in the total variance of annual

earnings that occurs within firms, most comes from large firms. The increase in the

within-firm variance of log earnings in firms with 10,000+ employees (a group comprising

750 firms that employ about 23% of U.S. workers in 2013) is 58% between firms and 42%

2We estimate this set of results separately for men and women for computational reasons. Results
reported here are for men only, with similar results for women only. All other results—those that do
not follow AKM and CHK—include data on both men and women.
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within firms (whereas the change in the variance of log earnings in firms with 20 to 1,000

workers is 92% between and 8% within firms). This rise in within-firm inequality in

large firms comes from substantial changes at the bottom and the top of the within-firm

earnings distribution. For example, between 1981 and 2013, median workers at 10,000+

employee firms saw their earnings fall by an average of 7%, those at the 10th percentile

saw an average drop of 17%, and those at the 90th percentile saw an average rise of 11%.

Overall, we calculate that the bottom half of the distribution is responsible for 35% of

the rise in within-firm dispersion from 1981 to 2013 in large firms. Changes in the 90th

percentile and above explain 46% of the rise in dispersion.

We also find that in these largest firms, the very top 50 managers have seen robust

earnings increases. For example, the average 50th highest-paid manager in large firms has

seen earnings rise by 47% between 1981 and 2013, while the average top-paid employee

(presumably the chief executive officer) has seen earnings rise by 137% over the same

period. However, because there are few of these top-paid employees relative to the size

of employment at these large firms (about 35,000 of them versus about 20 million total

employees in these firms), we find that rising top executive earnings explain little of the

increase in the variance in overall earnings. For example, the top 50 employees account

for about 3% of the total increase in the within-firm dispersion of earnings from 1981 to

2013 at 10,000+ employee firms, whereas the top 5 employees account for less than 1%

of the increase. Turning to smaller firms, those with less than 10,000 employees, we find

that top-paid employees have seen their earnings rise more in line with the rise in the

average earnings at their firm. Consequently, the contribution of top executives to the

rise in overall inequality during this period was limited.

To summarize, our findings imply that the large rise in earnings inequality in the

United States can be decomposed into three equally important forces—a rise in the seg-

regation of higher-paid workers to the same firms (segregation), that these high-paid

workers are typically moving into higher-paying firms (sorting), and a rise in earnings

inequality within larger firms. These findings highlight several potential mechanisms

underlying rising earnings inequality. For example, it has long been hypothesized that

persistent differences in firm pay premiums reflect rent sharing (e.g., Dickens and Katz

(1987), Katz and Summers (1989), Abowd et al. (1999)). Our finding of increasing sort-

ing suggests that the distribution of rents may have become increasingly skewed, with an

increasing share going to high-wage workers. Another explanation could be a rise in do-

mestic outsourcing and temporary work (e.g., Weil (2014), Abraham and Taylor (1996),

Segal and Sullivan (1997)). Indeed, Katz and Krueger (2016) and U.S. Government Ac-
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countability Office (2015) find that contingent workers, such as independent contractors

and freelancers, make up an increasing part of the workforce. Similarly, Goldschmidt

and Schmieder (2017) show that domestic outsourcing in Germany can explain both a

rise in sorting and a rise in inequality. These alternative work arrangements could help

explain rising segregation and sorting, as a previously diverse workforce splits into a

homogeneous lead firm and a range of homogeneous suppliers and service providers.

Our results are consistent with a substantial literature documenting that technological

changes have increased inequality by shifting the demand for different skill groups (e.g.,

Katz and Murphy (1992), Juhn et al. (1993a); see Acemoglu and Autor (2011) for a recent

survey). Rising returns to skill, even with a stable distribution of skill across firms, could

mechanically lead to increased sorting and segregation if more skilled employees tend to

be clustered together in typically higher-paying firms. Then rising returns to skill would

cause top workers to have even higher-paid coworkers (which we would see as part of

higher segregation) and top firms to have even higher-paid employees (which we would see

as part of sorting). Although this point is relatively straightforward, it is an important

one in light of the empirical evidence on rising returns to skill during this period, so we

discuss it further in Section 5.1. Finally, the reduction in earnings for low-wage workers

within large firms that we document corroborates the view that low-wage workers may

have experienced a decline in access to high-paying jobs for institutional reasons, such

as a decline in unionization or a change in company culture.

Our findings also complement a growing body of work that documents that the vari-

ance of firm earnings or wages explains an increasing share of total inequality in a range

of countries, including the United Kingdom (Faggio et al. (2010), Mueller et al. (2017)),

Germany (Card et al. (2013)), Sweden (H̊akanson et al. (2015)), and Brazil (Helpman

et al. (2017), Alvarez et al. (2018)). In the United States, Davis and Haltiwanger (1991)

were among the first to draw attention to the fact that rising inequality among workers

was closely mirrored in rising inequality among establishments. However, these papers

lacked data on wages within firms, which limited the scope of their analysis to between-

firm data. The earlier finding was confirmed by Barth et al. (2016), who also find that a

large share (about two-thirds in their analysis) of the rise in earnings inequality can be

attributed to the rise in between-establishment inequality, concentrating on the period

1992 to 2007 for which they have both worker and establishment data for a subset of

U.S. states. Our matched worker-firm data include information back to the 1970s and

post-2007 for all workers in the United States. As a result, we can consistently examine

the contribution of firms throughout the entire earnings distribution—including for the
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top end of the distribution that has attracted a lot of attention—for the entire period of

key changes in inequality.

A smaller but growing literature has linked increases in between-firm inequality to

changes in worker composition. H̊akanson et al. (2015), Alvarez et al. (2018), and Card

et al. (2013) document that changes in observable worker characteristics can account

for an important share of the rise in the between-firm component in earnings inequality.

Our approach follows that of Card et al. (2013), who use AKM’s method and find that

changes in unobservable worker characteristics across firms can explain an important part

of rising earnings inequality in Germany. Our analysis is the only implementation of the

AKM methodology for the entire U.S. labor market, which allows us to document the role

of sorting and segregation for the full relevant period of increasing inequality. Barth et

al. (2016) and Card et al. (2013) also note the important distinction between sorting and

segregation and document its importance. Direct evidence on the role of occupational

segregation across industries and firms in the United States that is consistent with our

findings is provided by Kremer and Maskin (1996) and Handwerker (2015), respectively.

Abowd et al. (2018) also use AKM’s methodology with a smaller sample from the United

States and find that workers in high-pay firms see faster earnings growth; that could lead

us to understate the importance of sorting, since we would not observe most of the higher

lifetime earnings received by high-pay workers who increasingly sort into high-pay firms.

Our results also speak to studies analyzing the sources of earnings inequality at

the very top of the earnings distribution. Absent data on the distribution of wages

within firms, a popular hypothesis has been that inequality at the very top of firms’ pay

distribution is a driving force leading to an increase in overall inequality (e.g., Piketty

(2013), Mishel and Sabadish (2014)), based on the earnings of about the top 5 earners

within each firm from Execucomp data. Other research by Smith et al. (2017) has looked

at the role of business owners’ business income, but does not connect it to the earnings of

other employees at that firm. (As discussed below, our data do not include this business

income, but the trends found by Smith et al. (2017) may in fact amplify the between-firm

results we find.)

The paper is organized as follows. Section 2 describes the data set and the construc-

tion of the matched employer-employee data set and presents summary statistics from

the sample. Section 3 presents the main results. Section 4 decomposes the change in

earnings inequality into components related to changes in firm average earnings, worker

sorting, and worker segregation. Section 5 provides additional discussion on the sources

of increases in within- and between-firm inequality, and Section 6 concludes.
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2 Data

The main source of data used in this paper is the Master Earnings File (MEF),

which is a confidential database compiled and maintained by the U.S. Social Security

Administration (SSA). The MEF contains earnings records for every individual that

has ever been issued a U.S. Social Security number. In addition to basic demographic

information (sex, race, date of birth, etc.), the MEF contains annual labor earnings

information from 1978 to (as of this writing) 2013. Earning records are derived from

Box 1 of Form W-2, which is sent directly by employers to the SSA. These earnings data

are uncapped and include wages and salaries, bonuses, tips, exercised stock options,

the dollar value of vested restricted stock units, and other sources of income deemed as

remuneration for labor services by the Internal Revenue Service.3 Because of potential

measurement issues prior to 1981 (see Guvenen et al. (2014a)), we start most of our

analysis in 1981, although results back to 1978 look similar. All earnings are converted

to 2013 real values using the personal consumption expenditures (PCE) deflator.

Because earnings data are based on the W-2 form, the data set includes one record for

each individual, for each firm they worked in, for each year. Crucially for our purposes,

the MEF also contains a unique employer identification number (EIN) for each W-2

earnings record. Because the MEF covers the entire U.S. population and has EIN records

for each job of each worker, we can use worker-side information to construct firm-level

variables. In particular, we assign all workers who received wage earnings from the same

EIN in a given year to that firm. Workers who hold multiple jobs in the same year are

linked to the firm providing their largest source of earnings for the year. Many workers

have multiple W-2s, but few have multiple W-2s consistently: in 2013, 30.5% of workers

had multiple W-2s, but only 4.3% had multiple W-2s every year from 2009 to 2013.

The resulting matched employer-employee data set contains information for each firm on

total employment, wage bill, and earnings distribution, as well as the firm’s gender, age,

and job tenure composition.

Although the MEF contains much data that are essential for answering questions

posed in this paper, these data have several limitations. First, our data only include

labor earnings, not capital or self-employment income. Because those other types of

income are not generally connected to a particular firm, it is beyond the scope of this

3The MEF has previously been used by, among others, Davis and Von Wachter (2011) and Guvenen
et al. (2014b), who describe further details of the data set. Kopczuk et al. (2010) use the 1% Continuous
Work History Subsample (CWHS) extract of SSA data to conduct an extensive analysis of long-run
trends in mobility.
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Figure 1 – Cumulative Distributions of Annual Earnings in the SSA Data
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Notes: For each percentile, statistics are based on the minimum earnings among individuals in that
percentile of earnings in each year. All values are adjusted for inflation using the PCE price index. Only
individuals in firms with at least 20 employees are included. Only employed individuals aged 20 to 60 are
included in all statistics, where “employed” is defined as earning the equivalent of minimum wage for 40
hours per week in 13 weeks. Individuals and firms in public administration or educational services are not
included.

study on firms and inequality.4 Second, there are several worker- and firm-level variables

that could be useful but are not available to us—for example, individuals’ education and

occupation, or firm profits. Third, we observe only total earnings in a year without data

on hours or weeks worked, so we cannot measure wage rates. As discussed in Section

2.3, we only include workers earning above a minimum threshold to minimize the effect

of variation in hours worked.

In Figure 1a we plot the earnings distribution in 1981 and 2013. Looking at 2013,

we observe a wide distribution of individual labor income—ranging from about $9,800 a

year at the 10th percentile, to $36,000 at the median, $104,000 at the 90th percentile,

and $316,000 at the 99th percentile.5 Comparing the 1981 and 2013 distributions, we can

also see the increase in inequality as the 2013 distribution is increasingly pulling away

from the 1981 distribution in the upper income percentiles, most notably for the top 1%

in Figure 1b. These patterns have been studied extensively in the literature on earnings

inequality. Here, we focus on the role of employers in accounting for these changes.

4An exception is the research by Smith et al. (2017), discussed elsewhere in this paper.
5These figures are somewhat lower than what has been reported by Piketty and Saez (2003), pri-

marily because they pertain to individual earnings rather than household earnings (studied by Piketty
and Saez); see Figure A.7.
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2.1 What Is a Firm?

Throughout the paper, we use employer identification numbers (EINs) as the bound-

ary of a firm. The EIN is the level at which companies file their tax returns with the

IRS, so it reflects a distinct corporate unit for tax (and therefore accounting) purposes.

Government agencies, such as the Bureau of Labor Statistics, commonly use EINs to

define firms.6 They are also often used in research on firms based on administrative

data.

An EIN is not always the same, however, as the ultimate parent firm. Typically,

this is because large firms file taxes at a slightly lower level than the ultimate parent

firm.7 Although it is unclear what level of aggregation is appropriate in order to define a

“firm,” we follow much of the existing literature and view the EIN as a sensible concept

reflecting a unit of tax and financial accounting. An EIN is a concept distinct from an

“establishment,” which typically represents a single geographic production location and

is another commonly used unit of analysis to study the behavior of “firms” (e.g., this is

the definition used by Barth et al. (2016), who study inequality using U.S. Census data).

Around 30 million U.S. establishments in the Longitudinal Business Database in 2012

are owned by around 6 million EIN firms, so an establishment is a more disaggregated

concept. As Figure A.4 shows, 84% of the increase in cross-establishment inequality can

be accounted for by firms, so firms are an appropriate unit of analysis.

2.2 Benchmarking the MEF against Other Data Sets

Key statistics from our sample align quite well with their counterparts from aggregate

data as well as from nationally representative data sets. In particular, when compared to

the Current Population Survey (CPS), the SSA data match the changes in the variance

of log annual earnings quite closely; see Figure A.2.8 We also checked a range of other

statistics. For example, aggregating wages and salaries from all W-2 records over all

6See U.S. Department of Labor, Bureau of Labor Statistics, “Business Employment Dynamics Size
Class Data: Questions and Answers,” http://www.bls.gov/bdm/sizeclassqanda.htm, questions 3 and 5.

7For example, the 4,233 New York Stock Exchange publicly listed firms in the Dunn & Bradstreet
database report operating 13,377 EINs, or an average of 3.2 EINs each. For example, according to
Dunn & Bradstreet, Walmart operates an EIN called “Walmart Stores,” which operates the domestic
retail stores, with different EINs for the Supercenter, Neighborhood Market, Sam’s Club, and On-line
divisions. As another example, Stanford University has four EINs: the university, the bookstore, the
main hospital, and the children’s hospitals.

8Although the change in variance is comparable, the level of variance is higher in SSA data. This
may be because SSA data are not top coded and because those with lower incomes may not report them
in the CPS. For reference, Figure A.3 shows the cumulative distribution of earnings in the CPS data,
which is comparable to Figure 1a for SSA data.
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individuals in the MEF yields a total wage bill of $6.8 trillion in 2013. The corresponding

figure from the national income and product accounts (NIPAs) is $7.1 trillion, so these

numbers are very close; see Figure A.1a for the two series over time. While the level of

employment is higher in the MEF than in the CPS, the trend in the total number of

individuals in the MEF who received W-2 income in a given year (our measure of total

employment) also closely tracks total employment in the CPS (see Figure A.1b).9 There

are 6.1 million unique firms (EINs) in the MEF in 2013, each associated with at least

one employee. This number is similar to the 5.8 million firms (with employees) identified

by the Census Bureau’s Statistics of U.S. Businesses data set in 2015. In addition, as

shown in Appendix Figure A.1c, the trends in each of these data sets are similar over

time (at least since 1988, when the Census data begins).

2.3 Baseline Sample

For our descriptive analysis in Section 3, we restrict our baseline sample to individuals

aged 20 to 60 who were employed, where “employed” is defined as earning at least that

year’s minimum wage for one quarter full-time (so for 2013, 13 weeks for 40 hours at $7.25

per hour, or $3,770). These restrictions reduce the effect on our results of individuals who

are not strongly attached to the labor market. We also restrict to firms (and workers in

firms) with 20+ employees to help ensure that within-firm statistics are meaningful. We

exclude firms (and workers in firms) in the government or educational sectors because

organizations in those sectors are schools and government agencies rather than what

economists think of as firms. This yields a sample of, on average, 72.6 million workers

and 477,000 firms per year, rising from 55.5 million and 371,000 in 1981 to 85.2 million

and 517,000 in 2013, respectively. None of our results are sensitive to these assumptions.

Although there is some variation, the results look similar using all ages, all firm sizes, all

industries, and minimum earnings thresholds up to full-time (2,080 hours) at minimum

wage. Some statistics describing the sample are shown in Table 1. More details about

the data procedures are discussed in Appendix B.

9In 2013, for example, the MEF measure contains 155 million workers, while the CPS indicated that,
on average, 144 million individuals were employed at any given time. The difference is likely because the
CPS is a point-in-time estimate; if people cycle in and out of employment, they may be missed in the
CPS data but will be included in the MEF (which is an aggregate measure over the year). Furthermore,
the CPS excludes the institutionalized population, whereas the MEF includes them.
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Table 1 – Percentiles of Various Statistics from the Data

Year Group Statistic 10%ile 25%ile 50%ile 75%ile 90%tile
1981 Firm Earnings (Unwgt) 12.6 16.6 23.8 32.5 41.9
1981 Firm Earnings (Wgted) 15.2 21.5 30.6 43.2 52.1
1981 Firm Employees 22 26 38 73 169
1981 Indiv. Earnings 9.46 18.2 31.9 51.7 73.8
1981 Indiv. Earnings/Firm Avg 0.43 0.724 1.05 1.45 2.06
1981 Indiv. Employees 42 127 1153 12418 62718
2013 Firm Earnings (Unwgt) 13.8 19.3 30.5 43.8 61.4
2013 Firm Earnings (Wgted) 15.3 21.4 35.8 52.1 73.6
2013 Firm Employees 22 26 39 79 189
2013 Indiv. Earnings 9.82 19.2 36 63.2 104
2013 Indiv. Earnings/Firm Avg 0.421 0.681 1.03 1.5 2.22
2013 Indiv. Employees 45 157 1381 14197 78757

Notes: Values indicate various percentiles for the data for individuals or firms. All dollar values are in
thousands and are adjusted for inflation using the PCE deflator. Only firms and individuals in firms with
at least 20 employees are included. Firm statistics are based on mean earnings at firms and are either
unweighted or weighted by number of employees, as indicated. Only employed individuals aged 20 to 60
are included in all statistics, where ”employed” is defined as earning the equivalent of minimum wage for
40 hours per week in 13 weeks. Individuals and firms in public administration or educational services are
not included.

3 Earnings Inequality within and between Firms

3.1 Rising Inequality in Average Firm Earnings

Our first key result—that a substantial part of the rise in earnings inequality took

place due to a rising dispersion in earnings between firms rather than within firms—can

be seen graphically in a number of ways. First, we start with a simple variance decompo-

sition. We then look at earnings percentiles; this includes focusing on key percentiles of

the earnings distribution and looking at long-run changes in earnings—between 1981 and

2013—for each percentile by worker and their firms. Finally, we perform a counterfactual

analysis that analyzes how the entire distribution of inequality would have changed if

only within-firm inequality had varied or only inequality in average earnings between

firms had widened. As will become clear, all four approaches show the same substan-

tive result: rising earnings inequality in the United States has been strongly associated

with rising inequality in average firm earnings. Until Section 4, we make no distinction

between changes in the variance of firm pay premiums, net of worker composition, and
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changes in worker composition between firms, both of which could be driving our findings

in the descriptive analysis that follows.

3.1.1 Simple Variance Decomposition

One straightforward approach is to decompose the overall (cross-sectional) variance

of log earnings into within- and between-firm components. In particular, let yi,jt be the

log earnings of worker i employed by firm j in period t.10 This can be broken down into

two components:

yi,jt ≡ yjt +
[
yi,jt − y

j
t

]
, (1)

where yjt is the firm average earnings for firm j, enabling us to simply define the decom-

position of variance:

var(yi,jt )= varj(y
j
t)︸ ︷︷ ︸

Between-firm dispersion

+ var(yi,jt |i ∈ j)︸ ︷︷ ︸
Within-firm-j dispersion

. (2)

This equation provides a straightforward way to decompose the total earnings dis-

persion in the economy into (i) between-firm dispersion (in firm average earnings across

firms) and (ii) the within-firm dispersion in employee earnings. The latter is computed

for each firm and averaged by weighing each firm by its employment share.

The components of equation (2) are plotted separately in Figure 2a. Of the 19 log

points rise in overall variance of log earnings between 1981 and 2013, about 13 log points

arise from the between-firm component and 6 log points from the within-firm one. Hence,

by this simple metric, 69% of the rise in earnings inequality happened across firms.

3.1.2 Coworkers of Individuals in Select Percentiles

While the variance decomposition is a useful (and widely employed) tool, it can mask

differential trends in inequality across the earnings distribution. To obtain a different

perspective on rising between- versus within-firm inequality, we begin in Figure 3a by first

plotting selected percentiles—99th, 90th, 50th, and 25th—of the overall (log) earnings

distribution in each year, expressed as a deviation from their 1981 values. Our baseline

sample covers about 55 million workers in 1981 and 85 million workers in 2013, for an

average of 70 million over the sample period, so each one of these percentiles contains

around 700,000 workers per year. These percentiles clearly spread out over time, both

confirming the rise in inequality revealed by the variance analysis and showing that it

reflected a pervasive phenomenon across the income distribution.

10For notational convenience, we suppress the dependence of the subscript j on worker i.
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Figure 2 – Decomposition of Variance in Annual Earnings within and between Firms:
All, Smaller, and Larger Firms

(a) Overall decomposition

.2
.4

.6
.8

1
V

ar
ia

nc
e 

of
 L

og
(E

ar
ni

ng
s)

1980 1990 2000 2010
Year

Total Variance

Between−Firm

Within−Firm

(b) Workers at Firms with 20 to 10,000 employees

.2
.4

.6
.8

1
V

ar
ia

nc
e 

of
 L

og
(E

ar
ni

ng
s)

1980 1990 2000 2010
Year

Total Variance

Between−Firm

Within−Firm

(c) Workers at Firms with 10,000+ employees
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Notes: See variance decomposition in equation (2). Only firms and individuals in firms with at least 20
employees are included. Only employed individuals aged 20 to 60 are included in all statistics, where
“employed” is defined as earning the equivalent of minimum wage for 40 hours per week in 13 weeks.
Individuals and firms in public administration or educational services are not included. Firm variance
is calculated using mean log earnings and weighted by number of employees. Within-firm variance is
calculated based on the difference between individual log earnings and firm mean log earnings.

Next, in Figure 3b we plot the average earnings per worker of employers of workers in

each percentile of the worker distribution as a deviation from its value in 1981 (shown in

Figure 3a).11 So, for example, the 99th percentile point reports the increase in average

earnings per worker for the colleagues of the individuals in the 99th percentile line of

11For each percentile of the worker distribution, we average over all firms employing workers in that
bin. Clearly, a firm will appear as many times across various percentiles as its number of employees.
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Figure 3 – Change in Percentiles of Annual Earnings within and between Firms Relative
to 1981

(a) Individuals
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(b) Their Firms
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(c) Individuals/Their Firms
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Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. Firm statistics are based on the average of mean log earnings at the
firms for individuals in that percentile of earnings in each year. Data on individuals/their firms are based
on individual log earnings minus firm mean log earnings for individuals in that percentile of earnings in
each year. All values are adjusted for inflation using the PCE price index.

Figure 3a.12 What is apparent from Figure 3b is that the rise in firm average earnings

across percentiles is almost parallel to the changes in the corresponding percentiles of

the earnings distribution. This close correspondence indicates that workers’ earnings

12That is, the line shows δfirmq ≡ E[ȳj2013|i ∈ Q2013,q]− E[ȳj1981|i ∈ Q1981,q], where Qt,q is the set of
individuals in the qth percentile in year t, and j refers to the employer of worker i.
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and the average earnings of their employer broadly tracked each other in terms of their

ranking within the economy.

The flip side of the same conclusion is that the gap between the earnings of workers

and their colleagues (i.e., within-firm earnings dispersion) displayed little change over

time. This is shown in Figure 3c, which plots the gap between each worker’s earnings

and the firm average earnings at the worker’s employer for each percentile of the worker

distribution. While the earnings distribution has spread out over time, the earnings of

each worker has been tracked closely by the earnings of the worker’s colleagues. So, for

example, although the 99th percentile has seen a 51 log point rise in earnings during the

whole period, the colleagues of these workers have on average seen a similar rise of 49 log

points; thus, the gap between these workers and their colleagues has increased by only 2

log points.

3.1.3 Coworkers of Individuals across the Entire Distribution

Figure 4 provides information similar to Figure 3 but follows Juhn et al. (1993b) and

many related papers in showing the change between 1981 and 2013 for each percentile

in the earnings distribution. It is important to realize that this graph, unlike Figure 5 in

the next section, is not a counterfactual analysis; instead, it shows how the relationship

between individual earnings and coworker earnings changed at different points in the

earnings distribution. Understanding the average earnings of coworkers is important for

understanding how workers might perceive inequality, among other reasons, but it cannot

tell us, for example, how inequality would have been different if between-firm differences

in average earnings had been unchanged.

We start with the blue line marked with diamonds (labeled “Indv Total Earnings”),

which shows the increase in log earnings between 1981 and 2013 within each percentile

of the earnings distribution.13 So, for example, we see that between 1981 and 2013, the

50th percentile of earnings has increased by 12 log points (13%) from about $31,500 to

$35,600. The upward slope of the individual line highlights the rise in individual earnings

inequality—earnings at higher percentiles have risen at a faster rate, and this rise grows

steadily as you move up the income percentiles.14

13This graph is closely related to the difference between the 2013 and 1981 lines in Figure 1a, which
shows percentiles of earnings in each year. The only difference results from the fact that Figure 1a shows
the minimum earnings within each percentile, while Figure 5 is based on average log earnings in each
percentile.

14This measure does not use any of the panel structure of the data; individuals in the 50th percentile in
1981 are almost certainly different from those in the 50th percentile in 2013. In Section 4, we undertake
a type of panel analysis pioneered by Abowd et al. (1999) and reveal that not only has inequality
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Figure 4 – Change in Inequality of Annual Earnings across Percentiles from 1981 to
2013
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Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. Firm statistics are based on the average of mean log earnings at the
firms for individuals in that percentile of earnings in each year. Data on individuals/their firms are based
on individual log earnings minus firm mean log earnings for individuals in that percentile of earnings in
each year. All values are adjusted for inflation using the PCE price index.

To assess how average earnings per worker of employers of workers in each percentile

of the earnings distribution has changed, we repeat an exercise similar to that for Figure

3b. For a given percentile, we take firm average earnings and average it across all the

employers of workers in that percentile separately in both 1981 and 2013, and then take

the difference between the years (shown in Figure 4 as a red line marked with circles,

labeled “Avg of Log Earnings at Firm”). The upward slope of this red line indicates

that the firms of high-earnings individuals now have higher average earnings than firms

of high-earnings individuals in 1981, while firms of low-earnings individuals had roughly

the same average earnings as firms of low-earnings individuals in 1981.

Finally, the green line marked with squares (labeled “Indv Earnings/Firm Average”)

reports changes in the ratio of own log earnings to firm average log earnings for those

at different points in the individual distribution.15 Particular care should be given to

increased in the cross section, but the inequality of the persistent worker component of earnings has
also experienced a substantial increase.

15Note that this “Individual/Firm” line will be mechanically equal to the difference between the
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the interpretation of this line, which is almost flat across all percentiles. Taken together,

this graph indicates that although highly paid individuals are now being paid much

more than highly paid individuals were in 1981 (as evidenced by the blue line), they

are also at firms where their coworkers are being paid better (the red line). Thus their

earnings relative to that of their coworkers has barely changed since 1981. (For poorly

paid individuals, own earnings and their firm’s average earnings changed little in the

past few decades, so the ratio is also mostly unchanged.)

3.2 A More Formal Decomposition

Figure 4 allows one to make statements about how the average earnings of an indi-

vidual’s coworkers has evolved throughout the earnings distribution. However, Figure 4

does not allow us to make a statement on how the distribution of earnings would have

evolved, had there been only a rise in the dispersion of average firm earnings. To make

such counterfactual statements, we estimated a counterfactual for the entire distribution

of earnings shown in Figure 5 using a straightforward simulation exercise. This exer-

cise is based on standard techniques in the inequality literature developed by Machado

and Mata (2005) and Autor et al. (2005) but is adapted slightly for our purposes. The

approach is described in detail in Appendix Section D, but we briefly explain it here.

We start by calculating two sets of statistics each for 1981 and 2013. First, we

obtain the percentiles of the distribution of firms’ average log earnings, weighted by firm

size; second, within each percentile of the distribution of firm average log earnings, we

calculate 500 quantiles of the distribution of the difference between individual earnings

and average earnings in that firm-based percentile. These two sets of bins are then used

to produce the counterfactual distributions shown in Figure 5 in the following way.

The red “Between-Firm Effects Only” line calculates the counterfactual individual

earnings distribution if the firm percentiles had changed to 2013 values but the 50,000

quantiles of deviation within each firm-based percentile (500 quantiles within each of 100

firm-based percentiles) had remained at 1981 levels. Conversely, the green “Within-Firm

Effects Only” line displays the counterfactual earnings distribution with 1981 values for

firm-based percentiles but 2013 values for the distribution of earnings within quantiles.

As before, the blue line (labeled “Full 2013”) shows the basic change in average earnings

from 1981 to 2013 for a given percentile (and is the same as the line labeled “Indv Total

Earnings” in Figure 4).

“Individual” line and the “Firm” line. Also, the green line’s average taken over all percentiles must be
zero.
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Figure 5 – Counterfactual Rise in Inequality with between- or within-Firm Effects Only
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Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. Each point shows the difference in average log earnings within that
percentile between actual earnings in 1981 and another distribution. The “Full 2013” line shows the 1981
distribution to the distribution of earnings in 2013. The red “Between-Firm Effects Only” line (green
“Within-Firm Effects Only” line) compares the 1981 distribution to the distribution that would have
prevailed if the distribution of firm average log earnings (within-firm distribution of earnings) had changed
to 2013 levels but the distribution of within-firm earnings (distribution of average firm log earnings) had
stayed at 1981 levels, as simulated using the counterfactual procedure discussed in Section 3.2.

The results of this counterfactual calculation in Figure 5 are striking. Holding within-

firm changes in earnings constant, the rise in the dispersion of average firm earnings (the

“Between-Firm Effects Only” line) can explain the majority of the rise in inequality

across almost all earnings percentiles. This confirms our first main finding from our

variance decomposition (Figure 2) that a rise in the dispersion of average firm earnings

can explain a substantial part of the rise in earnings inequality. However, consistent with

the findings of the variance decomposition, increases in the dispersion of earnings within

firms do explain some rising inequality above the 80th percentile, with more explained

at higher percentiles. In fact, by this decomposition, about half of the rise in earnings

among the top 1% is due to changes in within-firm variance.

The difference between the results of Figures 5 and 4 points to another core result

of the paper. As discussed in detail in Section 4, the fact that the average earnings of

coworkers throughout the distribution has increased proportionally to the rise in indi-
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vidual earnings is partly explained by the fact that higher-wage workers are increasingly

working at higher-wage firms and are increasingly working with other higher-wage work-

ers.

3.3 Inequality at the Top of the Earnings Distribution

3.3.1 The Top 1% of Earners, Relative to their Firms

Much of the recent policy and media attention around inequality has focused on the

rising share of earnings going to the top 1%. One interesting question in this context is

to what extent these very top earners have pulled away from their coworkers in the same

firm as opposed to experiencing rising earnings together with the rest of their firm (i.e.,

the between versus within question). To shed light on this question, in Figure 6 we plot

the analog of Figure 4, but this time focusing entirely on the top 1% and splitting it into

100 quantiles of 0.01% each. (With about 70 million people in the full sample per year,

each 0.01% represents about 7,000 people on average.)

We see in Figure 6 that up until about the 99.5% point—which is an earnings thresh-

old of around $450,000 in 2013 (see Figure 1b)—increases in individual earnings from

1981 to 2013 within each percentile point have been matched almost fully by the in-

creases in earnings of their coworkers. However, in the top 0.5% and particularly the

top 0.1%, there is such a steep increase in earnings between 1981 and 2013 that these

rises have outpaced those of their colleagues. For example, the 99.95th percentile reveals

individual earnings growth of 102 log points (178%), while the firms these employees

work for have increased their average earnings by 73 log points (107%), generating a

30 log point gap.16 Thus, according to this metric, earners in the top 0.5% have seen

substantial earnings increases over and above those of their colleagues. This group likely

includes the chief executive officers of some very large companies, but also a far wider

group of individuals including physicians, finance professionals, lawyers, and engineers,

among others (Guvenen et al. (2014a)).

3.3.2 Top Earnings Share

In fact, our data allow us to speak about the share of earnings going to individuals at

the top of their firms. Piketty and Saez (2003) describe the increasing fraction of income

that is going to the top few percentiles of the income distribution. In this section, we

16Most of this divergence between top workers and their firms occurred between 1981 and about
1988; since then, earnings of even those at the top of the top 1% have risen similarly to their firms’
earnings.
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Figure 6 – Rise in Inequality of Annual Earnings between 1981 and 2013 among Top
1% of Earners
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Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. Firm statistics are based on the average of mean log earnings at the
firms for individuals in that percentile of earnings in each year. Data on individuals/their firms are based
on individual log earnings minus firm mean log earnings for individuals in that percentile of earnings in
each year. All values are adjusted for inflation using the PCE price index.

Table 2 – Percentage of Top 1% Earnings in the Economy Going to Those at the Top
of Their Firms

1981 2013
Top-paid person at firm 23% 17%
Among top five at firm 42% 37%
Among top 1% at firm 55% 50%

Notes: Statistics are reported for all people who are in firms with at least 20 employees. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. Statistics show, of all earnings going to the top 1% overall, how
much went to the top-paid person at firms; those who are among the top five top-paid employees at their
firm; and those who are among the top 1% at their firm.

note that, while those at the top of their firms are earning a greater fraction of earnings

in the overall economy, their share within the top 1% and top 0.1% of economy-wide

earnings has changed little in the past three decades.
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Table 3 – Percentage Who Are Top-Paid Person at Firm

1981 2013
All individuals 0.71% 0.62%
Top 1% 18% 11%
Top 0.1% 36% 20%

Notes: The percentage of people who are the top-paid person in their firm, among all individuals in firms
with at least 20 employees. Only employed individuals aged 20 to 60 are included in all statistics, where
”employed” is defined as earning the equivalent of minimum wage for 40 hours per week in 13 weeks.
Individuals and firms in public administration or educational services are not included. Rows show the
fraction who are top paid among all individuals; those who are in the top 1% of top earners; and those in
the top 0.1% overall.

People at the top of their firms in 2013 generally receive a greater share of economy-

wide earnings than those at the top in 1981. In firms with at least 20 employees, the top

1% within each firm took home 8.4% of total earnings, an increase from 4.7% in 1981.

(In firms with at least 10,000 employees, the top 1% took home 7.1% in 2013 and 4.7%

in 1981.) However, these gains generally match those of other high earners, as shown

in Table 2. For example, of all earnings that went to those in the top 1% overall, those

who were the top-paid person at their firm (most likely the CEOs) earned 23% in 1981

but only 17% in 2013.

Indeed, high earners are now less likely to be the top-paid person at their firms, as

shown in Table 3. The fraction of the top 1% who were the top-paid person at their firm

declined from 18% in 1981 to 11% in 2013, while the fraction of those in the top 0.1%

who were the top-paid person declined from 36% to 20%. This decline is only partially

due to the increasing size of firms: for comparison, the total fraction of people who are

the top-paid person at their firm decreased from 0.71% to 0.62%. Rather, it is because

highly paid employees are more likely to work with other highly paid employees.

These results mirror those found by Bakija et al. (2012). Using IRS tax data, they

found that, although nonfinancial executives, managers, and supervisors in the top 1%

and 0.1% earned an increasing fraction of overall income, their total income relative to

others in the top 1% was mostly flat.

3.4 Robustness of Results

The results above show that, perhaps rather surprisingly, the majority of the increase

in earnings inequality among workers is associated with a rise in the dispersion of mean

earnings among firms and their employees. To investigate the robustness of these results,
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Table 4 – Robustness Checks on Variance Decomposition

Total Var,

1981

Between-

Firm Var,

1981

Total Var,

2013

Between-

Firm Var,

2013

Total Var

Increase

Frac

Increase

Between

Baseline sample 0.652 0.222 0.846 0.357 0.194 0.694

20-10k workers 0.651 0.206 0.835 0.36 0.184 0.837

10k+ workers 0.552 0.164 0.873 0.348 0.32 0.577

Demean: county 0.611 0.181 0.8 0.311 0.189 0.687

Demean: 4-digit SIC 0.517 0.088 0.705 0.216 0.187 0.684

Demean: gender 0.564 0.166 0.819 0.337 0.256 0.668

Demean: person year of birth 0.568 0.186 0.695 0.26 0.127 0.578

Age 20-29 0.556 0.178 0.62 0.241 0.063 0.993

Age 30-39 0.601 0.219 0.72 0.316 0.119 0.807

Age 40-49 0.631 0.255 0.791 0.348 0.16 0.583

Age 50-60 0.617 0.253 0.789 0.338 0.173 0.491

Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. “Total Var” indicates total variance of earnings in a given year,
and “Between-Firm Var” indicates total between-firm variance in that year. “Total Var Increase” denotes
the increase in variance between 1981 and 2013, while “Frac Increase Between” denotes the fraction of
that increase in variance accounted for by an increase in between-firm variance. Statistics in rows labeled
“Demean:” include earnings that are demeaned within a given group—firm’s county, firm’s 4-digit SIC
industry, individual’s gender, or year of birth—before all variances are calculated. Statistics in rows
showing numbers of employees are limited to individuals in firms with that number of employees.

we reran the analysis in Section 3.1.1 in several different ways. The basic result—that

the rise in the variance of average firm earnings accounts for most of the rise in earnings

inequality—remains true for each such analysis. Results for some breakdowns are pre-

sented in Table 4. Results for a much larger set of breakdowns are presented in Appendix

Tables A.1 and A.2.

First, given the different trends in rents and amenities identified by Moretti (2013)

and Diamond (2016), could this increase in between-firm inequality simply reflect regional

variation? To investigate this question, we reran our analysis of earnings variance by first

subtracting the mean of earnings within each county; any remaining variation represents

within-county variation. As can be seen in Table 4, most of the increase in variance

still occurred between firms. Another possible driver could be variations by industry;

perhaps differential trends arising from trade, technology, or other industry factors are

driving the firm results (e.g., Autor et al. (2013) and Pierce and Schott (2016)). However,

the results are similar within narrow 4-digit SIC categories. In case these trends reflect
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changes in demographics, we demean by year of birth and by gender, with again more

than half of the increased variance being accounted for by increasing dispersion between

firms. (Because somewhat less of the rise in variance is between-firm when demeaning

by year of birth, we also present results in Table 4 for each decade of age; the rise in

within-firm variance seems to be higher for older workers.)

Another possible concern would be if the increase in earnings inequality within firms

is driven by differences across establishments. Using the Census Longitudinal Business

Database (LBD), which covers all establishments in the United States, we decompose the

variance in average earnings differences across establishments into a between-firm and

a within-firm component. We see in Figure A.4 that for the same sample as our main

SSA analysis (firms with 20+ employees in all sectors excluding public and education),

the increase in the variance of the average of log earnings across establishments has been

12 log points, with the bulk of this rise (10 log points) across firms. So in our overall

sample, inequality is primarily a between-firm phenomenon (rather than a within-firm

but between-establishment phenomenon). Of course, this sample contains many smaller

firms, so it might be expected that the majority of the increase in inequality is across

rather than within firms. But in Figure A.5, we examine the sample of establishments

in firms with 10,000+ employees and find similarly that of the 15 log point increase

in earnings inequality, the large majority (11 log points) was between firms. Hence,

examining the rising inequality across firms is capturing the large majority of the rising

inequality across workplaces in the United States.17

We also considered other robustness issues around health care, self-employment in-

come, and business income. On health care, perhaps rising firm earnings inequality is

offset by an increase in the generosity of firm health care insurance that, as a flat en-

titlement to all employees, provides a progressive compensation component. In fact,

as Burkhauser and Simon (2010) show, employer-provided (but not government) health

insurance is about as unequally distributed as earnings among the bottom eight income

deciles. Kaestner and Lubotsky (2016) show that employer-provided health insurance

actually increases inequality. Higher-paid employees are more likely to be in firms offer-

ing generous health care packages, have higher firm coverage rates, pay lower premiums,

and are more likely to enroll.18

17Barth et al. (2016) and Abowd et al. (2018) come to a similar conclusion.
18The part of health care that has reduced inequality is Medicaid and Medicare, programs that

are strongly progressive and have increased in generosity (Burkhauser and Simon, 2010). However,
conditional on total earnings, this part of health care is independent of the employee-firm match itself
and does not influence our analysis.
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Regarding self-employment, the IRS Statistics of Income reports that in 2012, 16.5%

of individuals reported self-employment income on Schedule C and 1099 forms, while it

accounted for only 3.2% of all income, most of which is concentrated in employees of

smaller firms. Hence, in our 20+ employee sample, self-employment income is too small

to play a major role in shaping inequality. Additionally, because this self-employment

income is not generally connected to a particular firm, it is beyond the scope of this

study on firms and inequality. To the extent that self-employment income is connected

to particular firms—for example, in the increasing use of freelancers and independent

contractors, as discussed by Weil (2014) and others—including that income would likely

lead to higher estimates of sorting and segregation as previously diverse workforces shed

all but a core group of likely similar employees.

We also unfortunately do not have data on business income; as noted by Smith et

al. (2017), this income can be related to labor performed by firm owners and can be an

important contributor to inequality at the very top of the income distribution. However,

Smith et al. (2017) find that the firms owned by top business owners are often highly

profitable rather than just large; indeed, these may be the same firms that pay other

employees well, which would only amplify our results on between-firm inequality.

Overall, then, the basic result that the majority of increasing inequality is related to

changes in firm average earnings seems to be broadly robust. One group that is a partial

exception, as discussed in Section 3.3.2, is the top 1%. Another setting where the rise

in earnings inequality is driven to a large degree by increases in within-firm inequality is

among workers employed at very large firms. Figures 2b and 2c plot the decomposition

of variance for firms with less than and greater than 10,000 workers. We see in Table 4

that in firms with fewer than than 10,000 workers—which contain over 70% of employees

and over 99% of firms—inequality is almost entirely (84%) due to between-firm variation.

In comparison, increases in inequality in the 10,000+ worker firms—which account for

about 30% of employees and only about 700 firms—is still mostly (58%) between firms

but also has a large (42%) within-firm component. We also find that the rise in within-

firm earnings inequality among the top 1% of earners discussed in Section 3.3 is more

pronounced at very large employers. We discuss the phenomenon of rising within-firm

inequality among very large employers and its potential sources in more depth in Section

4 and especially in Section 5.
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4 The Role of Worker and Firm Effects

The rise in the dispersion in average earnings between employers we document in Sec-

tion 3 could come from two different sources. First, a “widening firm premium” story:

firms may be increasingly unequal in their earnings because some firms had become eco-

nomic “winners” and are sharing the increased profits with their workers, whereas other

“loser” firms are not. Second, a “worker composition” story: high-wage workers may

be increasingly sorted into high-wage firms, or workers may be increasingly segregating

among firms (so that high-ability workers are clustering in some firms and low-ability

workers in others). As we show below, the second “worker composition” story—including

both worker sorting and segregation—appears to jointly account for almost the entire

increase in between-firm inequality in average earnings we documented in Section 3.

4.1 Econometric Model of Worker and Firm Effects

To analyze the worker and firm movements in earnings, we follow the Card et al.

(2013) [henceforth CHK] implementation of the model introduced by Abowd et al. (1999)

[henceforth AKM] and solved by Abowd et al. (2002).19 We will divide our time period

into five seven-year periods, as discussed further below, and estimate a separate model

for each period p. The regression model we estimate in each period is

yi,jt = θi,p +X i
tβ

p + ψj,p + εi,jt , (3)

where θi,p captures earnings related to fixed worker characteristics (such as returns to

formal schooling or to innate ability), βp captures the effect of time-varying worker

characteristics (in our case, a polynomial in age and year effects), and ψj,p captures

persistent earnings differences related to firm j (such as sharing of rents or compensating

differentials). The residual, εi,jt , captures purely transitory earnings fluctuations. In

addition, the residual will also contain any worker-firm specific (match) components in

earnings, which we will denote by mi,j.

The AKM model has proven to be an empirically successful extension of the stan-

dard human capital earnings function and has developed into the workhorse model for

incorporating firm components into traditional earnings regressions. We confirm that

19To simplify notation, we leave the dependence of the identity of the firm on the worker implicit,
such that j ≡ j(i). Note that while most of the literature uses the model to analyze daily or hourly
wages, we follow an increasing number of papers that analyze earnings. We discuss the potential role of
labor supply differences below.
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the model appears to summarize a range of key patterns in our data surprisingly well.

Hence, despite well-known limitations we discuss below and in Appendix C, we believe

that there is sufficient support for the model to treat it as a useful diagnostic device to

better understand the patterns underlying the stark changes in the between-firm com-

ponent over time.

The estimates of the parameters of the econometric model in equation (3) can be used

to further decompose the within- and between-firm components of the variance. Ignoring

time-varying worker characteristics X i
tβ

p for now and variation across periods (dropping

superscript p), the standard approach to decompose the variance into components related

to worker effects and firm effects used in AKM, CHK, and related work is

var(yi,jt ) = var(θi) + var(εi,jt )+var(ψj) + 2cov(θi, ψj), (4)

where the moments in the last two components are weighted by the number of worker-

years in the respective interval.

In this decomposition, the rise in the first two components accounts for the role of

worker-related factors in explaining earnings inequality. As we further discuss below,

the variance of worker fixed effects in particular is typically associated with increases in

the variance of skills and its returns. The last two components account for the variance

of firm-related components in earnings inequality. To use our findings to assess the role

of changes in worker composition for explaining our descriptive findings pertaining to

the rise in the variance of average earnings between firms in Section 3 (“Between-firm

component”), we further rewrite the standard variance decomposition as follows:

var(yi,jt ) = var(θi − θj) + var(εi,jt )︸ ︷︷ ︸
Within-firm component

+ var(ψj) + 2cov(θ
j
, ψj) + var(θ

j
)︸ ︷︷ ︸,

Between-firm component

(5)

where the moments in the between-firm component are again weighted by the number

of worker-years.20

Equation (5) shows how the between-firm component discussed in Section 3.1.1 can be

decomposed into three pieces: a part deriving from the variance of firm effects, var(ψj),

a part deriving from the covariance of worker and firm effects, cov(θ
j
, ψj), and a part

deriving from the variance of the average worker effect in each firm, var(θ
j
).

20Note that one can rewrite the within-firm component as var(θi − θj) = Ej{var(θi|i ∈ j)}, that
is, as the worker-weighted mean of the firm-specific variances of the worker effect (and similarly for
var(εi,jt )).
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The first component is the “widening firm premium” part, measuring whether the

variance of firm pay premiums has increased. The second component reflects the “worker

sorting” story—high-paid workers are increasingly sorting into high-paying firms. The

third part is the “worker segregation” story—lower- and higher-paid workers are segre-

gating into different firms. Splitting the worker component into the sorting covariance

and segregation variance terms allows us to better characterize the role of firms in ac-

counting for earnings inequality, since sorting increases aggregate inequality, whereas

segregation does not.

4.2 Implementation of Regression Model Using SSA Data

We estimate equation (3) separately for five adjacent seven-year intervals beginning

in 1980 and ending in 2013.21 As is well known, firm fixed effects are identified by

workers moving between firms and hence can only be estimated relative to an omitted

firm. Estimation of equation (3) is done on the largest set of firms connected by worker

flows. We impose similar restrictions on the data as in our descriptive analysis, with one

major exception: because of limitations in computing power, we present worker and firm

effects only for men in the main text; results for women only, which are substantively

similar, are presented in Appendix C. All other restrictions, including restricting to firms

with 20+ total (male and female) employees; dropping workers in education and public

administration; and imposing a minimum earnings threshold, are the same as described

in Section 2.22

Although our implementation of AKM follows CHK, an important difference is that

21The choice of intervals trades off limitations in computational power and the desire to analyze
changes in the variance over time with the sampling error in estimates of the worker and firm effects
and the resulting bias in the variance and covariance terms, which depend on the number of movers
between firms. We experimented with intervals up to ten years and found that our results did not
change substantially.

22To maximize the number of observations in the connected set, when we estimate the model we
do not impose a restriction on firm size and do not exclude the education and public sector; those
observations are excluded after firm and worker effects have been estimated. (The only exceptions are
Tables A.3 and A.4, which report summary statistics based on all observations used to calculate fixed
effects.) One more minor difference between results in this section and other results is that these results
impose a minimum earnings threshold of 520 times the 2013 hourly minimum wage, adjusted for inflation
to the given year with the PCE. Other results impose a threshold of 520 times the contemporaneous
minimum wage. Results are similar with both definitions, but due to limits on the number of results
disclosures, we have had to keep this different definition. There are also two figures in the current
version with slightly different samples: Figure 7, and Figure A.13 include men who earn more than 520
times the contemporaneous minimum wage, regardless of industry or firm size. Those two figures will be
updated to match the rest of this section in the next version. For clarity, all tables and figures include
sample definitions.
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we have data on annual earnings for all workers, not daily wages for full-time workers.

This means that our estimates of worker and firm effects may capture systematic dif-

ferences in labor supply between workers and firms.23 Given the nature of our data,

such differences can arise because of variation at both the intensive margin (i.e., hours

worked) and the extensive margin (i.e., days worked in a year). In principle, these differ-

ences could affect the level and change of the moments in our variance decomposition.24

However, it is worth noting that under the plausible assumption that job moves occur

randomly within a year, there is no mechanical reason why labor supply effects should

introduce a bias into our estimates of firm effects.

We tried various ways to address the potential effects of systematic labor supply

differences in our findings. We have experimented by imposing increasingly stringent

lower earnings restrictions. Using retrospective data from the CPS, one can show that

this approach tends to eliminate part-time or part-year workers. Our results are robust

to variation in this restriction; see the “Full-time” sample in the last column of Table

A.5. Since our analysis based on the CPS also shows that more stringent earnings cutoffs

eliminate low-wage full-time or full-year workers, we use a less stringent restriction in

our main sample. CPS data do not reveal any trend in the aggregate variance of weekly

hours worked or weeks per year worked over time. Given the robustness of our findings

and the stability in trends in the variance of time worked, we are confident that our

main results are mainly driven by changes in the variance of wages, not hours or days

worked.25

Estimating the model requires a set of identification assumptions, which given the

prior literature on this, we do not discuss in detail in the paper but rather relegate to

Appendix C. Since the estimated firm effects will capture any systematic differences in

earnings of movers before and after the job move, to associate estimated firm effects with

true underlying firm-specific differences in pay, we have to assume that conditional on

23In that sense, our implementation is comparable to Abowd et al. (2018), who implement this model
using quarterly earnings. ? implement the AKM model with data on hours worked from the state of
Washington and find only moderate systematic differences in firm effects due to hours variation.

24For example, systematic differences in the propensity to take part-time jobs or to be unemployed
would load onto the worker fixed effect. If firms offer different hours packages or offer seasonal work,
this could load onto the firm effect as well. If high-hour workers (or stable workers) are increasingly
sorted into high-hour firms (or stable firms), labor supply can also affect the nature of sorting. If job
moves are partly triggered by changes in hours worked, labor supply effects could also contribute to a
failure of the conditional random mobility (CRM) assumption.

25If one compares the number of observations in our final sample with the number of workers, one
obtains that the average worker is in the sample for about five of seven years in each period. This
number is very similar to numbers reported by CHK (Table I) for full-time male workers in Germany.
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worker and firm effects, job moves do not depend systematically on other components,

in particular worker-firm specific job match effects (the conditional random mobility

(CRM) assumption). After reviewing the evidence, we join an increasing number of

papers whose results indicate that the AKM model can be estimated without too much

systematic bias (e.g., AKM, CHK, and Abowd et al. (2018)).

In particular, we do not find that an increasing dispersion in worker-firm match effects

plays a role in explaining rising inequality. To check whether adding a match-specific

component would substantially increase the fit of the model, we indirectly included a

match effect (mij) in the model. Although, not surprisingly, allowing for a match effect

reduces the root mean squared error (RMSE) and raises the adjusted R2, the standard

deviation of match effects declines somewhat over time. Similarly, we also find that the

goodness of fit of the model without a match component has increased over time from an

R2 of 74% (1980-1986) to an R2 of 81% (2007–2013), driven by both a reduction in the

RMSE and an increase in the variance of earnings. If the rise in the sorting of workers to

firms that we find had resulted from an increasing role of match effects, we would have

expected the RMSE to rise and the goodness of fit of the model without match effects

to decline over time (see Appendix Table A.4).26

Finally, if the model is correctly specified, on average workers changing from one

firm to another should experience earnings changes corresponding to the estimated firm

effects. To implement this comparison, we used our data to perform event-study analyses

of the effect of job mobility on earnings akin to those shown in CHK (see their Figure

VII). In Figure 7, we divided firms into quartiles according to their estimated firm effects

and recorded the mean earnings of workers moving between the four firm-type classes

in the years before and after the job change.27 On average, the patterns of earnings

changes are approximately symmetric for switches between firm groups, and there are

no signs of systematic earnings declines or increases before or after job changes, both

26Since violations of the separability assumptions in the AKM model would likely cause large mean
residuals for certain matches (say, where highly skilled workers are matched to low-wage establishments),
we directly examined the distribution of average residuals by 100 cells of estimated firm and worker
effects. For most cells, the mean residual is very small, below 0.02, and shows few systematic patterns
(see Appendix Figure A.10).

27To deal with the fact that we do not know the specific time of the move, we followed workers from
two years before the year t in which we observe the move (i.e., from year t−2 to t−1) to two years after
the year succeeding the move (from year t + 2 to t + 3). To try to further approximate the transition
between “full-time” jobs, we only look at workers who remained at the firm in the two years before and
two years after the move. Since we are following workers for six years, we adjust earnings for flexible
time trends. In Appendix C, Figure A.13, we show a version of the figure in which the four firm classes
are generated based on average earnings within the firm.
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Figure 7 – Event Study of Change in Mean Firm Fixed Effects for Job Changers

(a) Firms ranked by fixed effect: 1980-1986
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(b) Firms ranked by fixed effect: 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Men are included
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where ”employed” is defined as earning the equivalent 520 times the contemporaneous minimum wage.
For an explanation of the methodology, see Section 4.2 and Appendix C.2. For all observations, the main
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region marks the possible years of the job switch. Firm fixed effect quartiles are weighted by worker-years
and calculated in years 2 and 5. Log earnings are detrended by subtracting the time-varying observable
AKM component from each observation.

of which are consistent with the CRM assumption. Overall, despite being an obvious

abstraction from reality, we conclude that our model constitutes a useful tool for a better

understanding of trends in earnings inequality in our data.28

28In Appendix C we provide further discussion of our implementation and sensitivity analysis; among
other objectives, to assess the potential role of labor supply differences, we show that our results are
not affected by excluding the year of the move or by strengthening our restriction on earnings to isolate
full-time workers (Table A.5). We also show that the estimated firm effects are correlated over time
(Table A.11) and that there is unlikely to be differential selection between movers and stayers once we
condition on age and firm effects (Table A.10).
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4.3 Decomposing the Change in the Variance of Earnings

The main implications of our statistical analysis for understanding the role of firms

in explaining the evolution of earnings inequality are shown in Tables 5 and 6. Table 5

shows the components of the standard decomposition of variance in equation (4) for our

five periods, as well as for the change from period 1 (1980-1986) to period 5 (2007-2013).

The first variance decomposition yields two key findings. First, as found by others, in all

periods, about half of the level of the variance of men’s log annual earnings is explained

by the variance of worker effects, which at 46% to 52% is by far the biggest component.

On the other hand, firm fixed effects, and the covariance between firm and worker fixed

effects, together explain about 20% of the total variance in each period.

The second finding shown in Table 5 is that the rising dispersion of worker fixed

effects is the biggest single factor in rising wage inequality, accounting for 68% of the

rise in inequality of earnings for men from the period 1980-1986 to the period 2007-2013

(column 12). The second biggest component is the change in the covariance of worker

and firm effects, which alone explains 35%. In contrast, the contribution of the variance

in firm effects declines somewhat over time.

These changes contrast with CHK’s results from a similar exercise in Germany. CHK

found that approximately equal shares of the rise in variance were explained by worker

fixed effects (39%), establishment fixed effects (25%), and their covariance (34%). (The

larger role for a rising dispersion of worker fixed effects in the United States could have

many causes, but one potential explanation is the role of rising returns to skill, discussed

in more detail in Section 5.1.) On the other hand, it is interesting that the covariance

explains a similar proportion of the rise in inequality in both countries. Indeed, the

rise in correlation between worker effects and firm/establishment effects is similar in the

United States (.10 to .38) and Germany (.03 to .25).

To better understand these patterns and to connect them to our descriptive analysis

in Section 3, Table 6 presents results for the more detailed variance decomposition of

earnings shown in equation (5). Again, the table shows results separately for our five

periods, as well as for the change from period 1 (1980-1986) to period 5 (2007-2013). As

shown in the final column of Table 6, consistent with our results in Section 3, the sum

of the firm components explains 74% of the rise in the overall variance.29

29This number is quite close to the corresponding statistic reported in Section 3.1.1. However,
statistics in this section may differ from those in Section 3.1.1 because of differences in the sample
selection (including the fact that these statistics involve men only) and time periods analyzed.
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The main new finding of Section 4 is that the entire rise in the combined between-firm

component of the variance is due to a change in worker composition (see column 12).

This comes about equally from a rise in the variance of the average worker effect (31%)

and the covariance of worker and firm effects (35%). In contrast, the worker-weighted

variance of firm fixed effects does not rise and in fact declines early during our sample.

Hence, the entire rise in the variance of average firm earnings found in Section 3 is due to

a change in worker decomposition. Therefore, only about half of this change in worker

composition is related to firm pay premiums as we measure them here (i.e., the firm

effect).

To reveal more about the rise in the covariance of worker and firm effects, the first two

panels of Figure 8 display the joint distribution among deciles of worker and firm effects

in 1980-1986 and 2007-2013, while the third panel shows the difference between them.

The change in the pattern of sorting is striking. Over time, there has been a substantial

shift of middle-decile individuals toward middle- and lower-decile firms, whereas the top-

two-decile individuals have shifted toward top-decile firms. Hence, this increased sorting

of workers has occurred across the entire firm and worker distribution. The figure also

indicates an apparent shift in employment away from high-wage firms. This partly helps

to explain the decline in the worker-weighted variance of the firm fixed effect we found

in Table 6.

Table 7 replicates these findings by firm size, which we discuss further in Section 5

below. First, we see in columns (1) to (6) that once we drop firms with 10,000 employees

or more, the share of inequality accounted for by the between-firm component rises to

90% (row labeled “Between-firm var”). Breaking this figure down, we see that about half

of this share (37%) comes from the increased dispersion of average individual effects, and

the other half mostly comes from increased employee sorting across firms (39%), with

some small additional contributions from the covariance of individual characteristics at

the firm level (7.4% + 3.7% = 11.1% in total). If we drill down further into this group

of firms in the right panel, keeping only firms with 1,000 employees or fewer (columns 7

to 12), we find that the increase in inequality is entirely (105%) explained by a rise in

the between-firm component. This comes about equally from two sources: the increased

variance of the average worker effect (45%) and the increasing covariance of worker and

firm effects (41%), plus small additional contributions from the firm effects (4.3%) and

employee characteristics 8.5% + 5.6% = 14.1%.

Finally, Table 7 also shows that larger firms experienced more substantial growth in

inequality inside the firm (an increase of 5.6 log points with all firm sizes but a reduction
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Figure 8 – Distribution of Workers among Deciles of Worker and Firm Fixed Effects

(a) 1980-1986
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(b) 2007-2013
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(c) Change from 1980-1986 to 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Only firms and
individuals in firms with at least 20 employees are included. Only employed individuals aged 20 to 60 are
included in all statistics, where ”employed” is defined as earning the equivalent of 2013 minimum wage,
adjusted for inflation with the PCE for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included. Firm and worker fixed effects from our AKM
estimation are sorted into deciles. Since higher fixed-effect firms are larger, there are more employees in
the higher firm fixed-effect deciles. Firm fixed-effect deciles are computed with respect to the distribution
of firms. Within each firm FE decile group, worker FE deciles are ordered from left to right from 1 to 10.
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of 0.7 log points in firms with less than 1,000 employees). Given a similar absolute

increase in between-firm inequality, this implies that larger firms experienced stronger

increases in overall earnings inequality than smaller firms. (The same fact could also

be seen by comparing the panels of Figure 2, which plot the entire time series during

this period.) Interestingly, large firms initially appear to have had lower within-firm

inequality than smaller firms. This is consistent with the view that large firms may have

compressed wages, at least for the bottom end of their workforce. Yet, by the end of

our sample period, there is no difference in earnings inequality between large and small

firms (row 1).30

We also examined to what extent our main findings in Table 6 can be explained by

employment shifts between industries. While there are some interesting differences in

the time trends in the variance components across industries, our three main patterns

of a rise in sorting, a rise in the variance of worker effects, and a stagnation (or small

reduction) in the variance of firm effects occur within major sectors. Hence, most of our

findings are driven by changes within sectors, and changes in sector composition have

only a moderate effect.

Figure 9 shows the evolution of the correlation between worker and firm fixed effects

by major industries for five seven-year time periods covering the period 1980 to 2013.

Each industry generally sees strong increases in correlations beginning in the early 1980s

that are slowing down over time; an exception is education and public administration, in

which the correlation has been flat (those sectors are dropped from other analyses that

aggregate all industries). Table 8 shows the corresponding values of the correlation, the

covariance, and the variances of worker and firm effects, respectively.

We also performed a simple counterfactual exercise that recalculated the variances

and the correlation, holding constant the share of 1-digit and 4-digit industries (not

shown). Secular sectoral employment shifts cannot explain any of the increase in the

correlation of worker and firm effects at the aggregate level. The only component of the

composition of the variance in earnings that is affected by industry shifts is the rise in

the variance of the worker fixed effect, about one-third of which is explained by industry

employment shifts. This component can explain the entire impact of sectoral shifts on

the increase in the total variance of earnings that we find (not shown) and that has been

documented elsewhere.

30It is worth noting that even smaller firms experience an increase in the average within-firm variance
of worker effects. However, this is largely offset by a reduction in the variance of the residual, and in
the reduction in the covariance of worker effects and time-varying worker characteristics within firms.
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Figure 9 – Correlation of Worker and Firm Effects by Period by Major Industry from
1980 to 2013
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Notes: Only men are included in these statistics. Only firms and individuals in firms with at least 20
employees are included. Only employed individuals aged 20 to 60 are included in all statistics, where
”employed” is defined as earning the equivalent of 2013 minimum wage, adjusted for inflation with the
PCE for 40 hours per week in 13 weeks. Individuals and firms in public administration or educational
services are not included. Raw decomposition refers to the between- and within-firm variance composition
simply on log wages, rather than using the CHK components. The 7-year periods are 1980-1986, 1987-1993,
1994-2000, 2001-2007, and 2007-2013.

5 Explaining Trends in within- and between-Firm

Inequality

In this section, we first establish that increasing returns to skills alone could mechani-

cally explain part of the rise in sorting and segregation we find, but also that it is unlikely

to explain all of it. We then discuss factors that could underlie the rise in sorting and

segregation we document, and then turn to changes in within-firm inequality, especially

within larger firms.

5.1 Rising Returns to Skill, Segregation, and Sorting

We found in Section 4.3 that worker fixed effects diverged substantially over the last

three decades. A substantial literature provides evidence of a rising skill premium as a key
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driver of rising income inequality.31 The same rise in skill premium could mechanically

explain part of the observed rise in segregation and sorting. In this subsection, we

discuss how such an effect could arise and present some simple calculations to estimate

its potential importance.

Define si as individual i’s skill level, and rp as the return to skill in period p, so that

the worker fixed effect can be written as θi,p = rpsi. Suppose that the distribution of

worker skill is fixed over time, while returns to skill are allowed to vary. In that case, we

can calculate the changing return to skill between periods 1 and 5 as

r5

r1
=

√
var(θi,5)

var(θi,1)
=

√
0.476

0.330
≈ 1.20, (6)

where the values for the variances are from columns 1 and 9 of Table 5.

Now, suppose the distribution of worker skill across firms had not changed. In that

case, average worker effects within each firm would be expected to change by a factor of
r5/r1.32 Thus, if only skill prices changed, we would expect

2cov(θ
j,5
, ψj,5)

2cov(θ
j,1
, ψj,1)

=
r5

r1
, (7)

or an increase of 20%. Instead, we find that 2cov(θ
j
, ψj) increased by 227%, so rising

skill returns explain only 9% of the rise we find in sorting.

Segregation, however, is more affected by changes in returns to skill. It is straight-

forward to show that the rise in segregation (var(θ
j,p

)) is

var(θ
j,5

)

var(θ
j,1

)
=

(
r5

r1

)2

, (8)

so using the 1.20 value obtained above for r5/r1 implies a 44% rise in segregation (1.22−1)

due to rising skill returns. In the data, we found a 126% increase in the segregation

measure, implying that the mechanical effect of returns to skill can account for about

35% (= .44/1.26) of the observed increase.

Of course, these estimates are sensitive to assumptions about the unchanging dis-

tribution of skills, both in the economy as a whole and within firms. Additionally, our

31For detailed reviews of the evidence on the rising skill premium, see, for example, Katz and Autor
(1999) and Acemoglu and Autor (2011).

32To see this, note that, for firm j with size Nj ,θ
j,p

= 1
Nj

∑
i|j(i)=j θ

i,p = rp 1
Nj

∑
i|j(i)=j s

i.

41



estimates would vary if worker fixed effects do not have the simple form assumed here.

In any case, segregation driven by rising returns to skill remains economically interest-

ing, as it implies that top-paid individuals are now likely to work with even higher-paid

coworkers, which could affect firm hiring practices and affect workers’ beliefs about in-

equality. The estimates in this section, though, suggest that a substantial fraction of the

rise in segregation might be driven by changing returns to skills rather than changes in

sorting among coworkers.

5.2 Accounting for between-Firm Inequality

An important question for understanding the strong rise in inequality in the United

States is which mechanisms underlie a rise in sorting of high-wage workers to high-wage

firms. Any hypothesis should also be compatible with a stable distribution of ψj—firm

differences in composition-adjusted pay; a rise in worker sorting and worker segregation;

a relatively stable distribution of firm size (see Figure A.6—so this is not simply the

atomization of firms; in fact, firm size has grown modestly during this period); and

the fact that a rise in sorting and segregation is occurring within industries, regions,

and demographic groups. Our finding in Section 4 that the variance of the worker-

firm (“match”) component is stable over time provides additional discipline on possible

models. There are several candidate explanations, including outsourcing, changes in rent

sharing, changes in search costs, or technological or organizational innovations that arise

in worker-firm or worker-worker complementarities, but it is difficult to fit all of our facts

within any basic model.

One explanation is that rising overall inequality is driven by skill-biased technical

change, whereas rising outsourcing is constraining the impact on within-firm inequal-

ity. Likely drivers of the rise in outsourcing include falling costs of outsourcing (due

to improving information-communications technology), a desire to limit the extent of

inequality within firms due to concerns over fairness (e.g., Akerlof and Yellen (1990),

Dube et al. (2015), and Breza et al. (2018)), and a push by businesses to focus on “core

competencies” (Prahalad and Hamel (1990)).33 (Weil (2014) discusses these and other

causes of the increasingly fissured workplace.) This would lead firms to reorganize away

from full-service production toward a more focused occupation structure. This is consis-

tent with findings that occupations are increasingly concentrating within industries and

firms (Kremer and Maskin (1996), Handwerker (2015)), as shown in Figure 10.

33While the concept of “core competencies” may not be well known in economics, it is an extremely
popular idea in the business and consulting world; the Prahalad and Hamel (1990) article that coined
the term has received almost 30,000 citations as of October 2016.
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Figure 10 – Occupational Segregation Has Risen over Time
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industry in the CPS. Because of changes in the occupational classification system in 1982, 2002, and 2012,
the figure is spliced across these three years and is normalized to zero in 1981 and 1982. Only individuals
aged 20-60; who earn a positive wage income in the given year; who work at least 35 hours per week for
40 weeks; and who are not in education, public administration, or military industries are included.

The rise in outsourcing is also consistent with the increased occupational, educa-

tional, and ability segregation of employees found in Sweden by H̊akanson et al. (2015),

in Germany by Card et al. (2013)), and in the United States by Barth et al. (2016).

Goldschmidt and Schmieder (2017) examine German data, finding clear evidence that a

rise in outsourcing contributed to increasing inequality. An explanation based on out-

sourcing could also be compatible with a stable distribution of firm fixed effects and

firm size, especially in the United States, where existing low-wage firms could absorb

outsourced workers.

Of course, other possible stories can also generate sorting and segregation. One class

of models posits that firms pay different wages to workers with the same skills. This idea

has a long tradition in labor economics, going back at least to Slichter (1950) and Stigler

(1961), and lies at the heart of modern search theory. Several explanations have been

put forward for such wage differentials, including that firms share product market rents,

the presence of monopsony power in the labor market, or the presence of efficiency wage
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setting. If high-wage workers are more mobile or have a higher elasticity of labor supply,

they will be more likely to work at high-wage employers (e.g., Card et al. (2018)). At a

given distribution of firm pay premiums, a rise in relative search efficiency or elasticities

of high-wage with respect to low-wage workers will lead to an increase in sorting.

An alternative class of explanations of the presence of sorting rests on complemen-

tarities in production between high-wage workers and high-wage firms. In a competitive

market, such complementarity would cause high-wage firms to be willing to pay more

for high-wage workers than low-wage firms would be willing to pay. The market wages

of high-wage workers would then be higher than what low-wage firms would be willing

to pay, so that high-wage workers would sort into high-wage firms. This is consistent

with our finding in Section 4 that worker-firm interactions contribute to explaining the

variance of wages. A growing number of papers suggest that search frictions may prevent

the labor market from reaching its optimal allocation of workers to firms. A reduction

in search costs, perhaps due to a decline in the cost of acquiring information or a rise

in labor market intermediation, could then raise the degree of sorting. At a given type

of technology, the increase in the effective supply of high-wage workers would tend to

depress the match component, consistent with the stability of its variance we found in

Section 4.

A related set of explanations rely on the interaction of fixed technologies with a rising

dispersion of worker productivity. Kremer and Maskin (1996) suggest that complemen-

tarities in production occurred between low- and high-skilled workers. A similar version

of this explanation posits that firms need to limit within-firm inequality for reasons of

fairness or because of benefit-related fixed costs. At a given complementarity, a rise in

the relative efficiency (or relative supplies) of high- and low-skilled workers implies that

firms will hire increasingly homogeneous workers, leading to a pattern of segregation.

If firms with higher complementarity also pay higher average wages, such a mechanism

could explain an increase in sorting. A model by Acemoglu (1999) features search fric-

tions, and in this model, firms decide what type of job to open before meeting a worker.

When worker skills are similar, a pooling equilibrium emerges in which firms create “mid-

dling” jobs. With higher skill dispersion, it becomes optimal for firms to open good and

bad jobs, suitable for high- and low-skill workers, respectively, leading to a separating

equilibrium.

A closely related class of explanations relies on a process of uneven adoption of

technological innovations between firms. Insofar as innovating firms require higher-skilled

workers, this would imply a rise in the worker-firm complementarity for some firms
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and could explain an increase in either sorting or segregation. Whether such uneven

technological progress would also imply a change in firm pay premiums or a change

in worker-firm components in pay depends on the particular wage-setting mechanism.

While innovating firms may raise wages to attract high-skilled workers, they may also

differentiate themselves or the jobs they offer to high-skilled workers in terms of their

benefits. Free food, drinks, and massages at Google or tree houses at Amazon come to

mind, as do companies like Starbucks that offer free college tuition and free food (and

of course free coffee).

5.3 Accounting for within-Firm Inequality

To investigate within-firm inequality, we focus on larger firms because, as noted in

Sections 3.1.1 and 4.3, the within-firm increases in inequality have primarily occurred in

large firms. To examine why these mega (10,000+ employee) firms see this much greater

increase in inequality, in Figure 11 we plot the change in earnings for employees in various

positions in the firm, ranging from the top-paid employee down to the employee in the

10th percentile.

We see two clear differences between larger and smaller firms (here, firms with be-

tween 100 and 1,000 employees). First, large firms saw a fall in median log earnings of 7

log points (7%), while smaller firms saw an increase of 27 log points (31%). Second, in

larger firms, earnings increases at the top end were far larger: since 1981, the highest-

paid employees in larger firms saw their average log earnings increase by 86 log points

(137%), while the top-paid employees in smaller firms saw an increase of 37 log points

(45%). As a result, the top-to-median employee earnings gap widened by 94 log points

(155%) in mega firms (155%) compared with a rise of 10 log points (11%) in smaller

firms—a strikingly large difference. We now turn to examining these two changes in

large firms.

5.3.1 Stagnating Earnings for Lower-Paid Workers in Large Firms

Figure 11 shows that in firms with 10,000+ workers, median earnings has fallen by

7% in real terms between 1981 and 2013 (compared with a rise of 31% in firms with

100 to 1,000 employees). This collapse in earnings in the bottom 50% of large firms

accounts for 35% of rising within-firm variance in these firms.34 The question is, why

34We calculate this by noting that within-firm variance is defined as var
(
yi,jt − y

j
t

)
=

1
N

∑
i

(
yi,jt − y

j
t

)2
. We then define the fraction FS of variance accounted for by a subset of the popula-

tion S as FS =
∑

i∈S

(
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)2/∑
i

(
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)2
.
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Figure 11 – Change in within-Firm Distribution of Annual Earnings: Smaller and
Larger Firms

(a) Workers at Firms with 100 to 1,000 employees
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(b) Workers at Firms with more than 10,000 employees
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Notes: Only firms and individuals in firms of the listed size are included. Only employed individuals aged
20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent of minimum
wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or educational
services are not included. Statistics shown are based on the average log earnings among those at the given
rank or percentile within their firm. All values are adjusted for inflation using the PCE price index.
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Figure 12 – The Earnings Premium in Larger Firms, by Education

(a) High school or less
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Notes: Data are from the Current Population Survey Annual Social and Economic Supplement. Only
individuals aged 20-60; who earn a positive wage income in the given year; who work at least 35 hours
per week for 40 weeks; and who are not in education, public administration, or military industries are
included. “High school or less” refers to those who have no more education than a high school diploma or
equivalent. “At least some college” refers to the remainder of the population: those with at least one year
of college education. Values shown are the differences in mean log earnings among those in the given firm
size bracket, compared with those in firms with fewer than 100 workers.

have earnings fallen more in the lower percentiles of large firms compared with small

firms?35

One fact that helps to explain this inequality is that the lower percentile earnings in

large firms have converged from above with those in smaller firms. So, for example, in

1981 the median-paid employee in 10,000+ employee firms was paid 40 log points more

than its counterpart in firms with 100 to 1,000 employees, but this gap shrunk to only 5

log points by 2013.

To examine this convergence in earnings for lower-earning employees in large firms,

we used the CPS, which reports information on firm size since 1987. As shown in Figure

12, the earnings premium for low-skilled employees (high school or less) in large firms

(1000+ employees using the CPS definition) compared with small firms (fewer than 100

employees) has fallen by over half, from 36% in 1987 to 15% in 2013. In comparison,

higher-skilled employees (the rest of the population, who have at least some college

education) have seen this earnings premium fall far less, from 29% in 1987 to 23% in

35This is related to the general debate over the collapsing large-firm wage premium (see, e.g., Cobb
and Lin (2017)).
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Figure 13 – Earnings Responsiveness to the S&P 500 Returns

0
.1

.2
.3

.4
R

eg
re

ss
io

n 
C

oe
ffi

ci
en

t

500 100 50 25 10 5 4 3 2 1
Rank Within Firm

100 − 1k

1k − 5k

5k − 10k

10k+

Notes: Only employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined
as earning the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in
public administration or educational services are not included. Each data point represents a regression
coefficient; the dependent variable for each regression is the change in average log earnings from year t to
t+ 1 among those at the given rank or percentile within their firm, for firms of given sizes. The coefficient
shown is on the log change in the S&P 500 during year t. There are 35 observations in each regression,
one per year from 1979 to 2013. The regression includes controls for unemployment in year t and log GDP
growth between year t and year t + 1. All values are adjusted for inflation using the PCE price index.

2013. Hence, the earnings premium for low-skilled employees in large firms has fallen by

21 percentage points in the last 27 years (1987-2013), potentially accounting for much of

the difference in growth in median earnings between the very largest firms and the rest

of the firms in the SSA data.

5.3.2 Rising Earnings in the Top 1%

The other striking exception to the between-firm inequality result in Section 3 was

the large gap between the earnings growth of the highest-paid employees (e.g., the top

0.5%) and the rest of the employees in the largest (10,000+ employee) firms. To help

explain this result, Figure 13 plots the coefficients from regressions of the yearly change

in log earnings for top earners at different positions in firms of different sizes on the

annual returns on the S&P 500 plus controls for GDP growth and unemployment. For

example, the top right point with a triangle marker on the yellow “10k+” line indicates

that the highest-paid employees in firms with 10,000 or more employees saw their annual

log earnings change in relation to S&P 500 returns with a coefficient of 0.38. That is,
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for every 10% the S&P 500 rose, their earnings rose by 3.8%. Figure 13 shows that

the earnings of the highest-paid employees at the 10,000+ employee firms have very high

coefficients: 0.38 for the highest-paid employee (presumably the CEO), 0.3 for the second

highest-paid employee (presumably the CFO), down to 0.15 for the 50th highest-paid

employee (a very senior manager). In comparison, top-paid employees in firms of 100

to 1,000 employees saw a compensation connection with the returns on the S&P 500 of

about 0.08.

One possible explanation for these results is that 10,000+ employee firms often reward

their senior executives with stock options and stock grants. Moreover, this stock-based

remuneration (which is included in the W-2 earnings figure in the year they vest) has been

rising over time. For example, in 2014 the annual compensation of the top-five executives

listed in the Execucomp database—which spans roughly the top 1,800 largest U.S. firms

by market capitalization—was 48% from stock options and stock awards, up from 15% in

1993 (the first full year of Execucomp data). Alongside this rising stock payment to senior

executives, there has been a 19-year stock market bull run, with real returns averaging

9.5% between 1981 and 1999. As Figure 11 shows, the senior executives at the largest

firms received extremely generous compensation increases over this 1981-1999 period,

and since 2000 (a period of low stock returns), increases have moved roughly in line with

the rest of their firm. Thus, it appears that the top 50 or so executives in the largest

U.S. firms have experienced rapidly rising earnings—far outstripping their colleagues—in

part because of the rising level and generosity of stock-based compensation.36

Given this, it is perhaps surprising that the top 50 employees account for only 3% of

the increase in within-firm inequality in mega-firms. The reason is that they make up a

very small share of employment—accounting for only 35,000 of the 20 million employees

in mega-firms—so have little impact on the increasing within-firm variance of log wages.

However, the top-earning 10% of employees, a group that contains a much wider group

of managers, technicians, and other highly paid individuals in large firms, accounts for

46% of increasing within-firm inequality.

36Simply applying the magnitudes of the 680% real increase in the S&P 500 over the period 1981–1999
to the average 0.25 coefficient on the S&P 500 returns in Figure 13 yields a real cumulative earnings
increase of 170%, which is similar to the earnings gains of up to 200% that this group made over the
same period (see Figure 11). One outstanding question this analysis raises, however, is why these stock-
driven compensation rises have been permanent, rather than one-off high earnings payouts during the
years of unexpectedly strong S&P 500 performance. One recent paper offering an explanation is Shue
and Townsend (2016), who report that S&P 500 firms tend to give executives similar numbers of stock
options each year, despite these options rising in value with the firms’ stock price. Hence, historic rises
in the S&P 500 tend to get locked into future equity compensation levels.
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6 Conclusions

Using a massive, matched employer-employee database that we construct for the

United States, we documented four stylized facts. First, the rise in earnings inequality

between workers over the last three decades has primarily been a between-firm phe-

nomenon. Two-thirds of the increase in the variance of log earnings from 1981 to 2013

can be accounted for by differences in earnings between firms and only one-third by

differences between workers within firms.

Second, the distribution of firm fixed effects themselves accounts for essentially none

of the rise in inequality. Instead, over three-quarters of the rise in inequality is accounted

for by rising variance in individual fixed effects, potentially due to rising returns to skill.

The rising covariance between worker and firm fixed effects accounts for the remainder.

Third, examining the sources of the increase in between-firm inequality, we find that

it has been driven about equally by increased employee sorting (i.e., high-wage workers

are increasingly found at high-wage firms) and segregation (i.e., highly paid employees

are increasingly clustering in high-wage firms with other high-paid workers, while low-

paid employees are clustering in other firms). Rising returns to skill, which is unrelated

to firm wage setting, can account for about a third of rising segregation but very little

of rising sorting. These two phenomena also seem to be happening globally, with similar

patterns seen in every country for which detailed worker-firm earnings data are available

(i.e., Brazil, Germany, Sweden, Japan, and the United Kingdom).

Fourth, the rise in within-firm inequality is concentrated in large firms with 1000+

(and particularly 10,000+) employees. This is driven both by a fall in the earnings

premium in large firms for median- and lower-paid employees and by rising earnings for

the top 10% of employees.

These results raise the question as to what is driving this dramatic change in worker

composition across firms. While our analysis does not provide a definitive answer to

this question, a variety of circumstantial evidence indicates that outsourcing could be

playing an important role in allowing firms to constrain inequality within firms and

focus on core competency activities, spinning off nonessential activities such as cleaning,

catering, security, accounting, IT, and HR. Since firm size is only slowly growing over

this period, firms are not atomizing; instead they may be reorganizing around a more

narrow set of occupations, perhaps leading to greater cross-firm segregation by worker

skill level. Studying this and other channels is an important area for further research.
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Finally, this increase in between-firm inequality raises a question over its impact on

individual welfare. We believe increased worker sorting and worker segregation are po-

tentially worrisome for several reasons. One concern of course is that low-wage workers

appear to have lost access to good jobs at high-wage firms, increasing overall aggregate

inequality. Another concern is that firms play an important role in providing employee

health care and pensions, so rising earnings segregation could very well spill into rising

health care and retirement inequality. Indeed, over the last 30 years, as noted by the

National Academies of Sciences, Engineering, and Medicine (2015), the correlation be-

tween income and life expectancy has increased greatly at the same time as a greater

fraction of wealth for those at the top comes from benefits, including health insurance.

Moreover, given the importance of work experience for earnings growth, if employees

gain experience more rapidly by working alongside higher-ability colleagues, then rising

segregation will dynamically increase inequality.
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Figure A.1 – Comparing the SSA totals to other records

(a) Total earnings

3
4

5
6

7
T

ot
al

 In
co

m
e 

(T
ril

lio
ns

 o
f 2

01
3 

D
ol

la
rs

)

1980 1990 2000 2010
Year

NIPA

SSA total

(b) Total employment

10
0

12
0

14
0

16
0

T
ot

al
 E

m
pl

oy
m

en
t (

M
ill

io
ns

)

1980 1990 2000 2010
Year

SSA individuals

CPS total employment

(c) Total firms

4.
5

5
5.

5
6

6.
5

N
um

be
r 

of
 F

irm
s 

(M
ill

io
ns

)

1980 1990 2000 2010
Year

SSA firms

Census firms

Notes: SSA data includes all entries in the MEF. National Income and Product Accounts (NIPA)
data is from the St. Louis Federal Reserve Bank’s FRED service, series A576RC1, “Compensa-
tion of Employees, Received: Wage and Salary Disbursements.” Current Population Survey (CPS)
total employment shows the yearly average of the monthly employment numbers in the CPS. This
data is from the Bureau of Labor Statistics Table LNS12000000. Census firms shows the total num-
ber of firms reported by the Census Bureau’s Statistics of U.S. Businesses data set, available at
http://www.census.gov/econ/susb/historical data.html. All data are adjusted for inflation using the PCE
price index.
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Figure A.2 – Comparing earnings variance in SSA and CPS data
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Notes: Only employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined
as earning the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in
public administration or educational services are not included. Only firms and individuals in firms with
at least 20 employees are included in SSA data.

Figure A.3 – Cumulative distribution of annual earnings in CPS data
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Figure A.4 – Variance of log(wages) across establishments and firms - firms with 20+
workers

Notes: Plots the employment weighted variance of log wages normalized to 0 in 1980. Source Census
Longitudinal Business Database 1976-2013. All establishments and firms with positive employment and
wages. All sectors excluding education (SIC codes 8200 to 8299) and public administration (sic codes
9000 to 9899). Establishments are dropped if their average wage (defined as total wages/employment) is
above $250,000 or below $12,80 (minimum wage for 35 hours a week for 48 weeks a year) in 2013 dollars.
Establishments only from firms with 20+ employees.

B Appendix: Data Procedures

B.1 Social Security Administration Data

As noted in Section 2, this paper uses data from SSA’s MEF database. We begin with
an extract from this file that includes one observation for each year, for each individual, for
each firm that this individual worked for. (For self-employed individuals, the data set also
contains these earnings from the IRS as reported in Schedule-SE tax form by the individuals.
Because our focus is on firms with employees, we exclude these earnings from our analysis.)
For each observation, this file includes the year, a transformation of that individual’s Social
Security Number, along with the associated sex and date of birth; and the EIN, along with the
associated 4-digit SIC code and state.

The first step we take with this data is to exclude individuals who did not have a reasonably
strong labor market attachment in a given year from the analysis for that year. More concretely,
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Table A.1 – Complete Robustness Checks on Variance Decomposition - Part 1

Total Var,

1981

Between-

Firm Var,

1981

Total Var,

2013

Between-

Firm Var,

2013

Total Var

Increase

Frac

Increase

Between

Baseline sample 0.652 0.222 0.846 0.357 0.194 0.694

Any number of empl 0.691 0.272 0.852 0.387 0.161 0.71

20-10k workers 0.651 0.206 0.835 0.36 0.184 0.837

10k+ workers 0.552 0.164 0.873 0.348 0.32 0.577

Avg 5-year earnings 0.69 0.207 0.861 0.314 0.171 0.629

Min earn = 260 x min ‘wage 0.823 0.284 1.03 0.434 0.206 0.73

Min earn = 1040 x min wage 0.479 0.159 0.658 0.272 0.179 0.628

Min earn = 2080 x min wage 0.33 0.101 0.48 0.179 0.151 0.518

Min earn based on 2013 min wage 0.641 0.218 0.846 0.357 0.205 0.676

Excluding top 1% 0.607 0.21 0.771 0.323 0.164 0.694

Excluding top 1% in each firm 0.619 0.227 0.804 0.359 0.185 0.717

Excluding top 5% 0.537 0.183 0.664 0.265 0.127 0.644

Excluding top 5% in each firm 0.577 0.23 0.744 0.36 0.167 0.776

Excluding top-paid person in each

firm

0.64 0.228 0.835 0.36 0.195 0.681

Excluding 5 top-paid people in

each firm

0.627 0.243 0.815 0.369 0.188 0.67

Women only 0.485 0.164 0.74 0.306 0.255 0.555

Men only 0.619 0.195 0.89 0.389 0.271 0.718

Ag/Mining/Construct/Oth 0.633 0.169 0.822 0.34 0.19 0.905

Manufacturing 0.576 0.191 0.676 0.251 0.1 0.605

Utilities 0.444 0.111 0.611 0.207 0.167 0.577

Trade 0.678 0.173 0.797 0.275 0.119 0.858

FIRE 0.589 0.12 0.848 0.274 0.259 0.593

Services 0.676 0.231 0.832 0.333 0.157 0.652

Notes: Only firms and individuals in firms with at least 20 employees are included. Only employed
individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning the equivalent
of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public administration or
educational services are not included. “Total Var” indicates total variance of earnings in a given year,
and “Between-Firm Var” indicates total between-firm variance in that year. “Total Var Increase” denotes
the increase in variance between 1981 and 2013, while “Frac Increase Between” denotes the fraction of
that increase in variance accounted for by an increase in between-firm variance. Statistics in rows labeled
“Demean by” include earnings that are demeaned within a given group before all variances are calculated.
Statistics in rows with showing numbers of employees are limited to individuals in firms with that number
of employees. Demeaning by “firm size category” includes each category listed starting with “Size:” in
this table. “Avg 5-year earnings” performs the same analysis but uses all earnings over 5 years, 1981-1985
to 2009-2013, to calculate statistics. “Min earn =” uses different minimum earnings thresholds. “Min earn
based on 2013 min wage” uses the 2013 minimum wage adjusted for inflation, rather than the minimum
wage in the given year. “Excluding top...” exclude top people in the overall economy, or at each firm,
from the analysis. Industry groupings are based on SIC divisions. “Continuing firms only” only include
firms, and people at firms, that are in the sample in both 1981 and 2013 (though the individuals at those
firms are likely different).

62



Table A.2 – Complete Robustness Checks on Variance Decomposition - Part 2

Total Var,

1981

Between-

Firm Var,

1981

Total Var,

2013

Between-

Firm Var,

2013

Total Var

Increase

Frac

Increase

Between

Baseline sample 0.652 0.222 0.846 0.357 0.194 0.694

Age 20-29 0.556 0.178 0.62 0.241 0.063 0.993

Age 30-39 0.601 0.219 0.72 0.316 0.119 0.807

Age 40-49 0.631 0.255 0.791 0.348 0.16 0.583

Age 50-60 0.617 0.253 0.789 0.338 0.173 0.491

Continuing firms only 0.607 0.19 0.783 0.292 0.176 0.577

Midwest 0.632 0.221 0.736 0.281 0.104 0.585

Northeast 0.646 0.212 0.871 0.35 0.225 0.612

South 0.612 0.189 0.775 0.299 0.163 0.678

West 0.704 0.228 0.887 0.384 0.183 0.855

Size: 0-10 0.707 0.383 0.769 0.463 0.062 1.291

Size: 10-20 0.711 0.24 0.794 0.346 0.084 1.257

Size: 20-50 0.692 0.216 0.798 0.331 0.106 1.095

Size: 50-100 0.674 0.205 0.793 0.318 0.119 0.941

Size: 100-200 0.654 0.2 0.775 0.31 0.122 0.904

Size: 200-500 0.631 0.191 0.805 0.341 0.173 0.866

Size: 500-1k 0.599 0.17 0.831 0.362 0.232 0.827

Size: 1k-2k 0.582 0.161 0.838 0.364 0.256 0.795

Size: 2k-5k 0.595 0.174 0.867 0.382 0.272 0.764

Size: 5k-10k 0.602 0.176 0.9 0.395 0.298 0.737

Size: 10k+ 0.552 0.164 0.873 0.348 0.32 0.577

Demean: county 0.611 0.181 0.8 0.311 0.189 0.687

Demean: state 0.63 0.2 0.828 0.339 0.198 0.701

Demean: census region 0.638 0.208 0.84 0.351 0.202 0.707

Demean: 2-digit SIC 0.554 0.125 0.75 0.261 0.196 0.697

Demean: 3-digit SIC 0.527 0.097 0.714 0.225 0.187 0.683

Demean: 4-digit SIC 0.517 0.088 0.705 0.216 0.187 0.684

Demean: gender 0.564 0.166 0.819 0.337 0.256 0.668

Demean: firm size category 0.611 0.182 0.838 0.349 0.226 0.738

Demean: person year of birth 0.568 0.186 0.695 0.26 0.127 0.578

Notes: See notes for Table A.1.
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Figure A.5 – Variance of log (wages) across establishments and firms - establishments
in firms with 10,000+ workers

Notes: Plots the employment weighted variance of log wages normalized to 0 in 1980. Source Census
Longitudinal Business Database 1976-2013. All establishments and firms with positive employment and
wages. All sectors excluding education (SIC codes 8200 to 8299) and public administration (sic codes
9000 to 9899). Establishments are dropped if their average wage (defined as total wages/employment) is
above $250,000 or below $12,80 (minimum wage for 35 hours a week for 48 weeks a year) in 2013 dollars.
Establishments only from firms with 10,000+ employees.

we consider an individual to be employed in a given year and include in the analysis if, summing
across all jobs, he/she earns at least the equivalent of 40 hours per week for 13 weeks at that
year’s minimum wage (so $3,770 in 2013). (As discussed above, we also conducted robustness
checks with other threshold levels, which show similar results.)37 This condition ensures that
we are focusing on data about individuals with a reasonably strong labor market attachment,
and that our results are comparable to other results in the wage inequality literature, such as
Juhn et al. (1993b) and Autor et al. (2008). The data from any individual earning below this
threshold in a given year is excluded from all results for both firms and individuals in that
year.

We assign workers to firms based on the firm where that worker earned the most money
in a given year. Firm earnings statistics are based on total annual earnings of each individual

37Note that the worker-firm fixed effect model instead imposes the restriction of 520 hours at the
2013 minimum wage, adjusted for inflation with the PCE.
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Figure A.6 – Cumulative firm size distribution
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Notes: Only employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined
as earning the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms
in public administration or educational services are not included. Both graphs are inverse cumulative
distribution functions. Figure A.6a shows the fraction of firms below a given size; Figure A.6b shows the
fraction of individuals at firms below a certain size. For disclosure reasons, Figure A.6b does not report
the top 3 percentiles.

whose primary job is with that firm, even if the worker earned part of that money in a different
firm. Where our results analyze the same firm over multiple years, we include a correction to
ensure that firms that change EINs are not counted as exiting in one year and entering in the
next. We define an EIN in Year 1 as being the same firm as a different EIN in Year 2 if the
following conditions are met. First, Year 1 must be the last year in which the original EIN
appears, while Year 2 must be the first year that the new EIN appears in our data. Next, more
than half of the individuals who worked in each firm must have also worked in the other firm.
Finally, to ensure that our results aren’t influenced by a few individuals switching companies,
we only include EINs in this switching analysis if they employ at least 10 individuals.

Firms are only included in our sample if they have at least 20 employees in a given year
to ensure that firm-wide statistics are meaningful; for example, comparing an individual to
the mean earnings at their two-person firm may not be a good way to characterize inequality
within firms in a given year (though our results are robust to changing this threshold). We also
exclude firms in the Educational Services (SIC Codes 8200 to 8299) and Public Administration
(SIC Codes 9000 to 9899) industries, as employers in these industries are frequently not what
we would consider firms. Finally, we exclude employers with EINs that begin with certain
two-digit codes that are associated with Section 218 Agreements, or other issues that may not
be handled consistently in the data across years. Individuals whose primary job is with a firm
in one of these excluded categories are also dropped from the data in that year.

In order to analyze a representative sample of individuals in a computationally feasible way,
we analyze a one-eighth representative sample of all U.S. individuals from 1978 to 2013 (except
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Figure A.7 – Comparison to Piketty and Saez (IRS data)
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Notes: Piketty and Saez (2003) data is based on Table B3 in
http://eml.berkeley.edu/∼saez/TabFig2014prel.xls. All values are adjusted for inflation using the
PCE price index. For SSA data, only individuals in firms with at least 20 employees are included. Only
employed individuals aged 20 to 60 are included in all SSA statistics, where ”employed” is defined as
earning the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in
public administration or educational services are not included in SSA data.

in the firm and worker fixed effects analysis, in which we use a 100% sample). Results are robust
to using a 100% sample. The sample is organized as a longitudinal panel, in the sense that
once an individual is selected into the sample, he/she remains in the sample until he/she dies.
In particular, an individual is in our sample if the MD5 hash of a transformation of their Social
Security Number begins with a zero or one; because MD5 hashes are hexadecimal numbers, this
will select one in eight individuals. MD5 is a cryptographic algorithm that deterministically
turns any string into a number that is essentially random. It is designed so that a slightly
different input would lead to a completely different output in a way that is essentially impossible
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Figure A.8 – Alternative Version of Figure 11: Change in Percentiles of Annual Earn-
ings Distribution for Workers Grouped by Employer Size. Workers are first assigned to
samples defined by their employers’ size, and percentiles are computed for each sample sepa-
rately. Select samples are shown to save space.
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Notes: Only firms and individuals in firms with the given number of employees are included. Only
employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning
the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included.

to predict. Because it took cryptographic researchers several years to figure out a way that,
under certain circumstances, MD5 is somewhat predictable, this algorithm is certainly random
enough for our purposes. Thus whether one individual is included in our sample is essentially
independent of whether some other individual is included, regardless of how similar their SSNs
are.
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Figure A.9 – Figure 11, Non-scaled version. Levels of Percentiles in Thousands of
Dollars. All other details same as Figure 11.
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Notes: Only firms and individuals in firms with the given number of employees are included. Only
employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning
the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included.

We top-code all variables of interest above the 99.999th percentile to avoid potential prob-
lems with disclosure or extreme outliers. Variables are top-coded with the average value (or
geometric average value, as appropriate) of all observations within the top 0.001%. Variables
are top-coded immediately before analysis. An exception is in analysis of top income ranks
within firms, as in Figures 11 and 13, which could be more affected by top-coding; for these
analyses, we top-code at the maximum value in Execucomp for the given year (or, before 1992,
the average of the maximum values between 1992 and 1994). Top-coding at the 99.999th per-
centile has no visible effect on the main analysis. Finally, we adjust all dollar values in the data
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set to be equivalent to 2013 dollars with the Personal Consumption Expenditure (PCE) price
index.38

There are several differences between the data used in the worker-firm fixed effect model
(CHK model) and the rest of the text. The most important difference is that the CHK model
only includes data on men. Men are included if they earned the equivalent of at least 520 hours
at the 2013 minimum wage, adjusted for inflation with the PCE; in the rest of the text, the
minimum earnings threshold was 520 times the contemporaneous minimum wage. To estimate
the model, we included men in all firms, regardless of the firm’s size or industry. We then report
results based on the same sample as the rest of the paper: firms, and people in firms, with at
least 20 total (male and female) employees, who are not in public administration. (The only
exceptions are Tables A.3 and A.4, which report summary statistics based on all observations
used to calculate fixed effects.) Thus if someone moved from a 5-person firm to a 50-person
firm, that move would be part of the sample used to calculate fixed effects, but only data from
the second year would only be included in our estimation results. If they stayed at the same
firm and the firm grew from 5 to 50 people, both years would be included in the sample used
to calculate fixed effects, but only data from the second year would be included in estimation
results.

B.2 Current Population Survey Data

We use micro data from the Current Population Survey (CPS) Annual Social and Economic
Supplement, as made available by Flood et al. (2015). Data for year t is based on the survey
from year t + 1. The sample is restricted to those aged between 20 and 60; with non-zero,
non-missing wage and salary income; and who are not in education, public administration,
or military industries. Figures in the text are restricted to those who had at least 35 usual
hours of work per week and who worked at least 40 weeks. For comparability with SSA data,
data for Figures A.2 and A.3 restrict to those earning at least the equivalent of 40 hours per
week for 13 weeks at that year’s minimum wage. All statistics are weighted by the person-
level supplemental weight. Wherever possible, we use variables that are coded consistently
throughout the time period considered. Education data is based on variable EDUC; industry
and occupation data are based on variables IND1990 and OCC1990, respectively.

C Appendix: The Abowd, Kramarz and Margolis

decomposition

C.1 Identifying Assumption

Estimation of the firm effects in equation (3) crucially relies on earnings changes of workers
switching employers. Hence, the estimated firm effects will capture any systematic differences
in earnings of movers before and after the job move. This includes the difference in firm effects
between the sending and receiving firm, but also potential differences in average fixed worker-
firm match effects, or systematic transitory earnings changes leading up to or following a job
change. Hence, to associate estimated firm effects with true underlying firm-specific differences

38http://research.stlouisfed.org/fred2/series/PCEPI/downloaddata?cid=21
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in pay, one has to assume that conditional on worker and firm effects, job moves do not depend
systematically on other components. This assumption, often referred to as the conditional
random mobility (CRM) assumption, and its relation to economic models of job mobility, is
discussed at length in AKM and CHK, among others, and we will not review the theoretical
arguments against or in favor here.

On a fundamental level, whether the CRM assumption is conceptually or empirically plausi-
ble or not, the estimation of the parameters in equation (3) is done by Ordinary Least Squares,
and hence one relies on “random” variation provided by nature, not on known sources of ma-
nipulation. To ensure our core assumption and findings are plausible, following CHK, we will
provide several pieces of corroborating evidence below. This includes event studies of the effect
of worker mobility, the goodness of fit of the model, the value added of allowing for worker-firm
match effects, and the properties of the residuals. After a careful review, we conclude from this
evidence that there appear to be no large, systematic worker-firm or transitory components
influencing job mobility. We thus join an increasing number of papers whose results indicate
the AKM model can be estimated without systematic bias (e.g., AKM, CHK, Abowd et al.
(2018)). Nevertheless, we are well aware of the limitations of the model, and incorporate them
into our overall approach. Among other measurements, we will separately estimate worker-firm
component in earnings mij , and use it to directly assess potential departures from the basic
model for our discussion of earnings inequality.

A few additional technical aspects are worth highlighting. The linear age component is not
separately identified when worker effects and year effects are present. If one simply drops the
linear age effects, the estimated variance of the worker effects is biased. Instead, we follow CHK
and normalize age by subtracting and dividing by 40. Since at age 40 the marginal effect of
age on earnings is approximately equal to zero, the estimated worker effects and their variance
are unbiased.39 However, as is well known, there is still a finite sample bias in estimates of
varj(ψ

j) and vari(θ
i) because of sampling error in the estimated worker and firm effects.

In addition, the estimate of the covariance term (cov(θi, ψj)) is likely to be downward
biased, because the sampling error in the worker and firm effects are negatively correlated. We
do not attempt to construct bias-corrected estimates of these components. Instead, we follow
the literature and focus on trends in the estimated moments assuming that the bias from
sampling errors is similar over time.40 Finally, firm effects are identified up to the difference
with respect to an omitted reference firm. Hence, one can only obtain comparable estimates
of firm effects for firms that are connected by worker flows. Following AKM and CHK, we
estimate equation (3) on the greatest connected set of workers, which in our case comprises
close to 98% of all observations (see Table A.3).

39The age-earnings gradient in SSA data flattens out around age 40. The worker effect is biased
because it absorbs the time-invariant effect of age (i.e., age at start of the sample, which is effectively
a cohort effect). Note that for the analysis of changes in the variance of worker effects over time, the
normalization has no effect on the trend as long as the age distribution of the population and the
return to age are roughly stable over time. The firm effects are not affected by the normalization. The
covariance of worker and firm effects may be affected insofar as workers are sorted into firms by age.

40Andrews et al. (2008) show that the degree of negative correlation declines with the number of
movers that is used to identify firm effects. We indeed find that the level of the covariance rises with
our sample size. However, the gradient over time is unaffected.
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C.2 Model Fit

Table A.3 shows basic characteristics for the full sample of men as well as for observations
of men in the connected set, separately for each of our five time periods. In the following, we
will focus our discussion on men. Unless otherwise noted, the results for women are similar.
(For space reasons, the results for women are in Appendix Tables A.6 and A.7.) Table A.3
shows that in all five periods, approximately 98% of workers are in in the greatest connected
set. As a result, the mean, median, and standard deviation of earnings in the connected set
are very similar to the overall sample. If one compares the number of observations with the
number of workers, one obtains that the average worker is in the sample about 5 of 7 years in
each period. This number is very similar to numbers reported by CHK (Table I) for full-time
men in Germany.
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Figure A.10 – Regression residuals by firm fixed effect decile
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(c) Change from 1980-1986 to 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Only firms and
individuals in firms with at least 20 employees are included. Only employed individuals aged 20 to 60 are
included in all statistics, where ”employed” is defined as earning the equivalent of 2013 minimum wage,
adjusted for inflation with the PCE for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included. Within each firm FE decile group, worker FE
deciles are order from left to right from 1 to 10.
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Figure A.11 – Distribution of workers among firm FE deciles, by firm size

(a) 1980-1986
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(b) 2007-2013
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(c) Change from 1980-1986 to 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Only firms and
individuals in firms with at least 20 employees are included. Only employed individuals aged 20 to 60 are
included in all statistics, where ”employed” is defined as earning the equivalent of 2013 minimum wage,
adjusted for inflation with the PCE for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included. Within each firm size group, firm FE deciles are
order from left to right from 1 to 10.
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Figure A.12 – Distribution of workers among worker FE deciles, by firm size

(a) 1980-1986
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(b) 2007-2013
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(c) Change from 1980-1986 to 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Only firms and
individuals in firms with at least 20 employees are included. Only employed individuals aged 20 to 60 are
included in all statistics, where ”employed” is defined as earning the equivalent of 2013 minimum wage,
adjusted for inflation with the PCE for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included. Within each firm size group, worker FE deciles
are order from left to right from 1 to 10.
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Table A.3 – Summary Statistics for Overall Sample and Individuals in Largest Con-
nected Set

All employed men, age 20-60 Individuals in largest connected set

Log real annual earnings Log real annual earnings

Number of Number of Number of Mean Median Std. dev. Number of Number of Number of Mean Median Std. dev.
7-year worker/yr. workers firms worker/yr. workers firms
Interval obs. obs.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1980-1986
334,147,424 65,942,723 5,964,555 10.397 10.514 0.854 330,634,861 64,987,602 5,165,584 10.396 10.515 0.851

(98.9) (98.6) (86.6) (100.0) (100.0) (99.6)

1987-1993
372,145,155 71,152,434 6,541,630 10.394 10.493 0.892 367,763,450 70,062,879 5,627,188 10.393 10.494 0.888

(98.8) (98.5) (86.0) (100.0) (100.0) (99.5)

1994-2000
405,222,444 76,179,038 6,873,943 10.445 10.527 0.910 399,981,325 74,930,695 5,822,056 10.444 10.528 0.907

(98.7) (98.4) (84.7) (100.0) (100.0) (99.7)

2001-2007
427,033,756 81,260,292 7,134,061 10.514 10.593 0.935 420,186,588 79,688,393 5,816,098 10.514 10.595 0.932

(98.4) (98.1) (81.5) (100.0) (100.0) (99.8)

2007-2013
421,150,246 82,515,998 6,735,729 10.496 10.572 0.951 413,228,494 80,665,231 5,232,154 10.498 10.575 0.949

(98.1) (97.8) (77.7) (100.0) (100.0) (99.8)

Change from 0.099 0.057 0.096 0.102 0.060 0.099
first to last interval

Notes: Ratio of largest connected set to all observations in parentheses. Only men are included in these
statistics. Individuals are included regardless of industry or firm size. Only employed individuals aged 20
to 60 are included in all statistics, where ”employed” is defined as earning the equivalent 520 times the
contemporaneous minimum wage.
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Table A.4 – Estimation Results for AKM Model, Fit by Interval

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5
1980-1986 1987-1993 1994-2000 2001-2007 2007-2013

(1) (2) (3) (4) (5)

Sample # Worker effects 64,987,602 70,062,879 74,930,695 79,688,393 80,665,231
Summary # Firm effects 5,165,584 5,627,188 5,822,056 5,816,098 5,232,154
Statistics Sample size 330,634,861 367,763,450 399,981,325 420,186,588 413,228,494

sd(log(y)) 0.851 0.888 0.907 0.932 0.949

Summary of sd(WE) 0.587 0.624 0.657 0.677 0.693
AKM Parameter sd(FE) 0.338 0.323 0.305 0.319 0.326
Estimates sd(Xb) 0.239 0.261 0.282 0.249 0.243

corr(WE,FE) 0.028 0.078 0.117 0.130 0.145
corr(WE,Xb) 0.106 0.087 0.031 0.076 0.102
corr(FE,Xb) 0.123 0.126 0.109 0.123 0.141
rmse(residual) 0.431 0.427 0.421 0.428 0.411
Adj R2 0.743 0.768 0.784 0.789 0.812

Comparison rmse(match residual) 0.365 0.363 0.354 0.360 0.346
Match Model Adj R2 0.816 0.833 0.848 0.851 0.867

sd(match effect) 0.254 0.250 0.255 0.256 0.241

Notes: Only men are included in these statistics. Individuals are included regardless of industry or firm
size. Only employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined
as earning the equivalent 520 times the 2013 PCE-deflated minimum wage.

Table A.4 displays basic statistics from the estimation. The table delivers a snapshot of
the basic findings, as well as important diagnostic checks. In terms of basic findings, the table
shows how the standard deviation of worker effects has risen over time, especially in the early
1980s. The standard deviation of firm effects has remained stable. In contrast, the correlation
of worker and firm effects rose almost five fold from our first period, 1980-1986, to our last
period, 2007-2013.41 The table also shows that the RMSE has remained stable, and has at best
declined somewhat over time. If the rise in sorting of workers to firms had resulted from an
increasing role of complementarities (i.e., match effects), we would have expected the goodness
of fit of the model without match effects to decline over time. Instead, the RMSE drops at the
same time as the variance of earnings increases. As a result, the adjusted R2 increases from
74% in 1980-1986 to 81% in 2007-2013.

While the goodness of fit based on worker and firm effects and age is quite high, at around
80%, there is room left for additional components. To check whether adding a match-specific
component would substantially increase the fit of the model, the bottom of the table shows
basic statistics of a model that also allows for a match effect (mij). Not surprisingly, allowing
for a match effect reduces the RMSE and increases the adjusted R2, by about the same amount

41The correlation of observable worker characteristics (mainly age) with worker and firm effects has
a U-shaped pattern—declining to a low point during the economic book of the late 1990s, and returning
to similar levels by the end of the period.
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each period, to 81− 87%. However, the standard deviation of match effects declines somewhat
over time. As noted by CHK, this is consistent with an interpretation of the match effects
as uncorrelated random effects. If instead they were specification errors caused by incorrectly
imposing additivity of the person and establishment effects, one would expect the standard
deviation of match effects to rise and the relative fit of the AKM model to deteriorate over
time as the covariance of worker and firm effects increases in magnitude.

As additional check on the appropriateness of the basic AKM specification of model (3), we
examined average regression residuals for different groups of worker and firm effects. Violations
of the separability assumptions in the AKM model would likely cause large mean residuals for
certain matches, say, where highly skilled workers are matched to low-wage establishments. To
search for such potential interactions, we followed CHK and divided the estimated person and
establishment effects in each interval into deciles, and computed the mean residual in each of
the 100 person firm decile cells.

Figure A.10b shows the mean residuals from the cells using data from period 2007–2013.
For most cells, the mean residual is very small, below 0.02, and shows few systematic patterns;
because the dependent variable is in logs, this means that the predicted value and actual average
generally differ by under 2%. Only for cells with either low worker effects or low firm effects
do residuals appear larger. It is interesting to note that this pattern is quite similar to those
found by CHK (Figure VI), who report larger mean residuals for the lowest worker and firm
effect groups. Hence, in both Germany and the U.S. separability appears a good description for
all worker and firm groups but for the bottom end.42 Figure A.10c shows the change in mean
residuals within cells over time. The changes are of opposite signs of the deviations in A.10b,
implying that the absolute magnitude of deviations has declined over time. Hence, overall, the
goodness of fit of the model has improved from the first to the last period in our sample.

Another diagnostic assesses the ability of the model to explain earnings changes at job
changes. If the model is correctly specified, on average workers changing from one firm to
another should experience earnings changes corresponding to the estimated firm effects. To
implement this comparison, we used our data to perform event-study analyses of the effect of
job mobility on earnings akin to those shown in CHK (Figure VII). As in CHK, we divided
firms into quartiles according to both their average wage and their firm effects, and recorded
the mean earnings of workers moving between the four firm-type classes in the years before
and after the job change. One complication is that we do not observe when in a given year
a worker leaves his initial employer, and whether he joins his new employer in the same year
or at some point in the adjacent year. To deal with the fact that we do not know the specific
time of the move, we followed workers from two years before the year t in which we observe
the move (i.e., from year t− 2 to t− 1), to two years after the year succeeding the move (from
year t+ 2 to t+ 3). To further try to approximate transition between “full-time” jobs, we only
look at workers who remained at the firm in the two years before and two years after the move.
Since we are following workers for six years, we adjust earnings for flexible time trends. The
results are shown in Figures 7 and A.13, for firm classes based on firm fixed effects and firm
average wages, respectively. The results are discussed in the main text in Section 4. Overall,
we conclude that despite the fact we are modeling information on annual earnings rather than

42Not surprisingly given the presence of labor supply effects, the mean residuals in Figure A.10 are
on average larger than those shown CHK (Figure VI).
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daily or hourly wages, our model delivers a good approximation of the underlying earnings
process.

Figure A.13 – Event study of change in mean earnings for job changers

(a) Firms ranked by earnings: 1980-1986
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(b) Firms ranked by earnings: 2007-2013
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Notes: Calculations based on SSA data. Only men are included in these statistics. Men are included
regardless of industry or firm size. Only employed individuals aged 20 to 60 are included in all statistics,
where ”employed” is defined as earning the equivalent 520 times the contemporaneous minimum wage.
For an explanation of the methodology see Section4.2 and Appendix C.2. For all observations main job
is the same in years 1, 2, and 3 and then switches to a new main job for years 4, 5, and 6. The shaded
region marks the possible years of the job switch. Mean earning quartiles are weighted by worker-years and
calculated in years 2 and 5. Mean earnings are computed as “leave-out” means, i.e. for each individual,
mean firm earnings are computed over all employees except the reference employee. Log earnings are
detrended by subtracting the time-varying observable AKM component from each observation.
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Several other robustness checks are shown in Table A.5, all of which show fairly similar
results. The second column shows that the main results are similar when restricting the sample
to women only, rather than men only. For the third column, We construct a “sandwich sample”
to include only observations on either side of a job move: that is, we drop an observation for
an individual in year t if that individual’s primary EIN in year t is different from their EIN
in years t − 1 or t + 1. This sandwich sample helps ensure that our results are not driven by
changes in labor supply caused by the process of switching jobs. In the last column, we restrict
our sample to those with at least the equivalent of 2000 hours at the 2013 minimum wage. The
similarity of the main results to the results of the specifications with labor supply restrictions
suggest that our results are being driven more by wage differences than by differences in hours
or weeks of work.

Finally, Tables A.6 and A.7 show more details on our main results for the women-only sam-
ple. Women see somewhat less rising between-firm variance than men. However, for women
as well as men, rising between-firm variance still accounts for most of rising inequality; rising
dispersion of individual fixed effects accounts for most of rising variance in the basic decompo-
sition; and, in the detailed decomposition, sorting and segregation dominate the between-firm
component.

Table A.10 shows detailed descriptive statistics on the characteristics of job movers. The
first row shows the average number of moves per interval. The table shows a slight decline in
the average number of job moves per worker. However, we suspect that this is due to the effect
of the Great Recession in 2007-2013 as prior to this interval the series shows no trend. We also
include average age, earnings, worker fixed effect, firm size, and firm fixed effect of job movers
versus job stayers. As expected, job movers tend to be younger, come from smaller firms, and
have lower average earnings. Job movers also on average have lower firm fixed effects than job
stayers. In addition, if we disaggregate job movers by the number of switches per interval, we
find a negative, monotonic relationship between the number of switches and the average firm
fixed effect. This in turn implies a positive relationship between match duration and firm fixed
effects. What is important for our purposes is that the average years in the sample of movers
and stayers is similar and has remained similar over time, suggesting that differential selection
into the sample is unlikely to affect our estimates.

Table A.11 reports the correlation of estimated firm effects across intervals. The estimated
firm fixed effects are significantly correlated across intervals and this correlation drops only
slightly as the time period is extended to a three interval difference. In particular, the firm
fixed effects of large firms are highly correlated over time.
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Table A.10 – Descriptive Statistics for Job Movers versus Job Stayers
Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Change

(1980-1986) (1987-1993) (1994-2000) (2001-2007) (2007-2013) from 1 to 5
Type of worker (1) (2) (3) (4) (5) (6)

Mean number All workers 1.02 1.03 1.14 1.06 0.91 -0.11
of job moves Job mover 1.82 1.89 1.97 1.91 1.79 -0.03

Job stayer 0.00 0.00 0.00 0.00 0.00 0.00
One year in sample - - - - - -

Percent of Job mover 55.97 54.49 58.03 55.55 50.68 -5.29
observations Job stayer 34.95 37.16 33.52 35.62 39.37 4.41

One year in sample 9.08 8.35 8.45 8.83 9.95 0.88

Mean years Job mover 5.55 5.67 5.80 5.74 5.62 0.07
in sample Job stayer 5.43 5.67 5.69 5.64 5.52 0.10

One year in sample 1.00 1.00 1.00 1.00 1.00 0.00

Mean age Job mover 31.34 31.53 33.00 33.86 34.07 2.73
Job stayer 36.89 37.54 39.12 40.04 40.40 3.50
One year in sample 33.37 34.05 34.17 34.94 35.87 2.50

Mean firm size Job mover 294.1 271.9 232.0 309.9 369.9 75.84
(thousands) Job stayer 723.3 675.3 527.0 569.7 669.4 -53.90

One year in sample 373.6 282.8 257.6 352.2 424.8 51.15

Mean log earnings Job mover 10.08 10.00 10.12 10.16 10.15 0.07
Job stayer 10.59 10.60 10.65 10.71 10.67 0.08
One year in sample 9.37 9.26 9.34 9.34 9.40 0.03

Mean worker FE Job mover 10.39 10.23 9.67 10.64 10.53 0.14
Job stayer 10.73 10.63 10.07 11.05 10.93 0.20
One year in sample 9.95 9.79 9.22 10.13 10.09 0.14

Mean firm FE Job mover -0.05 0.08 0.67 -0.21 -0.09 -0.04
Job stayer 0.08 0.19 0.73 -0.14 -0.03 -0.11
One year in sample -0.15 -0.02 0.56 -0.32 -0.21 -0.07

Notes: “One year in sample” refers to workers workers who are in the sample only a single year and
hence cannot be classified as movers or stayers. Statistics are computed at the worker-interval level.
For each individual in each interval we compute number of years in the sample, number of job switches,
average age, average earnings, average firm size, worker fixed effect, and average firm fixed effect. Then
we compute descriptive statistics based on the worker-level variables. Only men are included in these
statistics. Individuals are included regardless of industry or firm size. Only employed individuals aged 20
to 60 are included in all statistics, where ”employed” is defined as earning the equivalent of 520 times the
contemporaneous minimum wage.
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Table A.11 – Correlation of Firm Fixed Effects across Time

All Large Medium Small
firms firms firms firms
(1) (2) (3) (4)

A. Correlation across one interval
1980-1986 to 1987-1993 0.67 0.92 0.75 0.39
1987-1993 to 1994-2000 0.67 0.88 0.80 0.40
1994-2000 to 2001-2007 0.66 0.84 0.80 0.40
2001-2007 to 2007-2013 0.72 0.90 0.87 0.46

B. Correlation across two intervals
1980-1986 to 1994-2000 0.60 0.80 0.67 0.33
1987-1993 to 2001-2007 0.60 0.72 0.74 0.36
1994-2000 to 2007-2013 0.64 0.84 0.78 0.36

C. Correlation across three intervals
1980-1986 to 2001-2007 0.57 0.68 0.63 0.32
1987-1993 to 2007-2013 0.61 0.77 0.74 0.33

Notes: Fixed effects are weighted by the average number of observations across intervals. Large firms
have more than 10,000 employees, medium firms have 101 to 10,000 employees, small firms have 1 to 100
employees. Employment is counted in terms of males aged 20-60 years. Only men are included in these
statistics. Individuals are included regardless of industry or firm size. Only employed individuals aged 20
to 60 are included in all statistics, where ”employed” is defined as earning the equivalent of 520 times the
contemporaneous minimum wage.
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C.3 Patterns of Sorting By Firm Earnings, Firm Size, and In-
dustry

Tables 5 and 6 have shown that the substantial between-firm component of the rise in
earnings inequality in the United States from the early 1980s to today can be attributed almost
entirely to sorting (a rise in the correlation of worker and firm effects) and segregation (a rise
in the variance of mean worker effects between firms). We have also found that these patterns
are particularly pronounced for moderately sized firms (i.e., for employment size less or equal
to 1000). In this section, we will use our estimated worker and firm effects from implementing
equation (3) to assess how workers are sorted into high-wage firms and large firms, and how
this has changed over time. We will also describe the changing patterns of firm and worker
effects by firm size and industry.

To learn more about the pattern of sorting, the first two panels of Figure 8 display the
joint distribution among deciles of worker and firm effects in 1980-1986 and 2007-2013. The
cross-sectional sorting patterns displayed in the figure are striking. Consider first the early
1980s shown in Figure 8a. One can see that most workers are in medium to high fixed-
effect firms. Yet, lower fixed-effect workers are over-represented at lower fixed-effect firms;
workers with fixed effects in the middle range are over-represented at middle to high fixed-effect
firms; and high fixed-effect workers are over-represented at high fixed-effect firms. However,
one also sees that low to medium fixed-effects firms have modes at both low and high fixed
effects workers, presumably reflecting a distribution of lower-skilled production workers and
managerial employees.

The distribution for the years 2007–2013 displayed in Figure 8b show these patterns have
changed substantially over time. Figure 8c shows the net change of density of the two distribu-
tions at corresponding deciles.43 Overall, there has been a substantial shift in the distribution
away from the two highest firm categories towards middle to lower fixed-effect firms. Yet,
this shift did not occur uniformly across worker groups. It is the middle of the worker fixed-
effect distribution that predominantly left high-wage firms, such that high-wage workers are
now over-represented at the top firms. This pattern is augmented by a move of the highest
fixed-effect workers to higher-paying firms.

The figures confirm the evidence from the variance decomposition that sorting has increased,
and show which workers and firms appear most affected. A striking finding is that the incidence
and composition of workers at high-wage firms has been changing substantially. Since high-
wage firms are likely to be in part large firms, and we have found large firms to play a special
role in the evolution of inequality, we use our data to examine the incidence of worker and fixed
effects separately by firm size. These results are shown in Figures A.11 and A.12 for three firm
size groups (firms with number of workers in range 1− 100, 101− 9999, and 10, 000+).

From Figure A.11 it is clear that on average, high-wage firms tend to be larger. However,
over time, Figure A.11c shows that large employers have experienced a substantial shift out of
high-wage firms to middle and lower-wage firms. Figure A.12 shows that among larger firms,
the decline was accompanied by an increase in the incidence of high wage workers at larger
firms. In addition, especially employers with more than 10,000 employees saw a reduction in

43Note that the definition of the deciles differ between the two time periods. Yet, since the distribution
of firm effects has changed little, the deciles of firm effects are roughly comparable over time.
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workers in the middle of the worker fixed-effects distribution. Hence, this confirms that larger
firms have become, on average, workplaces that pay less and employ a more unequal set of
workers.

To examine potential differences in sorting patterns, we have also examined the joint dis-
tribution of firm and worker fixed effects within each size class. These figures can be produced
upon request. The results show that the pattern of sorting is quite similar among our two
larger firm size classes, and reflects the pattern shown in Figure 8 – there is a substantial net
shift in the mass of workers from high-wage firms to middle-wage firms. The bulk of this shift
is comprised of middle-wage workers. In contrast, high-wage workers have left middle-wage
firms to move to the top firms. In contrast, the distribution of low-wage workers has changed
less. These results corroborate our finding from Table 6 that the differences in the sources of
inequality growth by firm size is not the between-firm component, whose levels evolve similarly,
but rather the within-firm component of inequality.

We have also examined the pattern of marginal distributions of firm and worker effects by
one-digit industry. These figures can also be produced upon request. The results show that the
large decline in the incidence of employment in higher wage deciles tends to be concentrated
in manufacturing. Employment at high-wage manufacturing firms is increasingly replaced by
employment in middle-wage service firms. In terms of workers, middle-wage workers have
again shifted out of manufacturing, and moved to services. Yet, services has also received an
increasing proportion of high-wage workers, with low-wage workers increasingly moving to firm
with unknown industry affiliation. These are likely to be disproportionately new employers,
which might be likely to have low firm fixed effects.

Overall, the findings from the figures corroborate and strengthen our core results from
the detailed variance composition in Table 6. There is a clear pattern of increasing sorting
of higher-wage workers into higher-wage firms over time. In particular, from the early 1980s
to today, high-wage firms appear to lose middle-wage workers to middle-wage firms, and in
turn gain more high-wage workers. These patterns partly correspond to shifts between firm-
size classes. Fewer middle-wage workers work at very large employers, at the same time as
these employers are increasingly composed of lower-wage firms. Yet, within firm-size classes
the patterns of sorting are similar to the full sample, and characterized by a substantial shift
between firm-size classes and substantial redistribution of workers. Overall, these findings hint
at a substantial reorganization of U.S. businesses over the last 40 years. This reorganization
has had profound consequences for both the level and the nature of earnings inequality.

D Non-Parametric Counterfactual Decomposition: Tech-

nical Details

In this appendix section, we describe the technical details underlying the counterfactual
decomposition presented in Section 3.2. This methodology was developed by Machado and
Mata (2005) and Autor et al. (2005), but is adapted slightly for our purposes.

We start with one observation per person in a given year. For each person, we make note of
their log earnings in that year, and their firm’s mean log earnings in the same year. Individuals
are then sorted into 100 firm-based bins with equal numbers of people, denoted f , on the basis
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of their firm’s mean log earnings. (Thus, except when a firm is right on the border between
bins, all people within a given firm are in the same firm-based percentile.) Next, people in each
firm-based percentile are sorted into 500 individual-based bins, denoted i on the basis of their
own log earnings. There are then 50,000 firm-individual bins, denoted fi, and each person is
placed in one of them. So, for example, if f = 60 and i = 400, that indicates that the bins
includes everyone between the 59th percentile and 60th percentile, among all people, in terms
of their firm’s mean log earnings; and, within that bin, they are between the 79.8th percentile
and the 80th percentile by their own earnings.

In year t, the mean log earnings in a firm-individual bin is denoted as w̄tfi, while the mean
log earnings for the entire firm-based bin is denoted by w̄tf . Then, a statistic dtfi is calculated
for each of the firm-individual bins: deviation from firm bin average, dtfi = w̄tfi − w̄tf .

We can now simulate various counterfactuals with the 50,000 bin-level observations. First,
we can simulate the actual data for year t with 50,000 data points: each point in this counter-
factual is calculated as ct,tfi = dtfi + w̄tf for all fi. (Note that in this case, ct,tfi = w̄tfi.) Once
we have these 50,000 data points, we then sort them into 100 percentiles, we and calculate
the average value of ct,tfi within each percentile, as with the blue-diamond line in Figure 5.
The “change” (in this case just due to the binning procedure) can then be calculated as the
difference between the values in these percentiles, minus the average earnings within actual
percentiles of the earnings distribution in year t. These changes, calculated based on 1981
data and 2013 data, are shown in Figure A.14. If the binning procedure were perfect, each
point would be at zero; in fact, except for some small deviations at the top, they are very
close to zero. For example, in 1981, the average log earnings for those in the 99th percentile
was 11.9634 (corresponding to $156,906). Using our counterfactual procedure, the average of
c1981,1981
fi within the 99th percentile of that statistic was 11.9656 ($157,251); the difference of

0.0022, the largest such difference for 1981, is plotted in Figure A.14 at the 99th percentile
point along the red “1981” line.

More interestingly, these statistics allow us to simulate what the distribution would be
if between-firm inequality stayed constant at levels from year t, but within-firm inequality
changed to the levels observed in year s. To do this, we would use 50,000 data points made
up of ct,sfi = dtfi + w̄sf for all fi. Alternatively, we can simulate the distribution if within-firm
inequality stayed constant at levels from year t but between-firm inequality changed to the
levels observed in year s by using 50,000 data points made up of cs,tfi = dsfi + w̄tf for all fi. In
either case, we can compare this to the true distribution in year t or s by sorting these 50,000
data points into percentiles by their value, calculating the average in each percentile, and then
comparing the values in these bins to the percentiles of the actual distribution in year t or s.

The results of these counterfactuals are shown in Figure 5. For example, the average of
c2013,1981
fi within the 99th percentile of that statistic is 12.31; the difference between that value

and the average log earnings within the 99th percentile in 1981 (11.96, as noted above) is 0.34;
that difference is plotted in Figure 5, on the red “Between-Firm Effects Only” line, at the 99th
percentile point. Similarly, the average of c1981,2013

fi within the 99th percentile of that statistic
is 12.13; the difference of 0.17 is plotted on the green “Within-Firm Effects Only” line, at the
99th percentile point.
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Figure A.14 – “Counterfactual” difference in distribution due to binning procedure
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Notes: Each point shows the difference in average log earnings within that percentile between actual
earnings in that year, and earnings simulated in that year using the counterfactual procedure discussed in
Appendix Section D. Only firms and individuals in firms with at least 20 employees are included. Only
employed individuals aged 20 to 60 are included in all statistics, where ”employed” is defined as earning
the equivalent of minimum wage for 40 hours per week in 13 weeks. Individuals and firms in public
administration or educational services are not included. Each point shows the difference in average log
earnings within that percentile between actual earnings in 1981, and another distribution.
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